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Tůma April 2014

Modeling and Control of Engines and
Drivelines

Eriksson and
Nielsen

April 2014

Modelling, Simulation and Control of
Two-Wheeled Vehicles

Tanelli, Corno and
Savaresi

March 2014

Advanced Composite Materials for
Automotive Applications: Structural
Integrity and Crashworthiness

Elmarakbi December 2013

Guide to Load Analysis for Durability
in Vehicle Engineering and Speckert

Johannesson November 2013



VEHICLE DYNAMICS

Martin Meywerk

Helmut-Schmidt-University (University of the Federal Armed Forces Hamburg),
Germany



This edition first published 2015
© 2015 John Wiley & Sons Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United
Kingdom

For details of our global editorial offices, for customer services and for information about how to apply
for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with
the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior
permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The publisher is not associated with any product or
vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is
not engaged in rendering professional services and neither the publisher nor the author shall be liable
for damages arising here from. If professional advice or other expert assistance is required, the services
of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data Applied for.

ISBN: 9781118971352

A catalogue record for this book is available from the British Library.

Set in 11/13pt Times by Laserwords Private Limited, Chennai, India

1 2015

http://www.wiley.com


For my wife Annette
and my children Sophia, Aljoscha, Indira and Felicia





Contents

Foreword xi

Series Preface xiii

Preface xv

List of Abbreviations and Symbols xvii

1 Introduction 1
1.1 Introductory Remarks 3
1.2 Motion of the Vehicle 4
1.3 Questions and Exercises 8

2 The Wheel 11
2.1 Equations of Motion of the Wheel 11
2.2 Wheel Resistances 14

2.2.1 Rolling Resistance 14
2.2.2 Aquaplaning 18
2.2.3 Bearing Resistance 19
2.2.4 Toe-In/Toe-Out Resistance 19

2.3 Tyre Longitudinal Force Coefficient, Slip 20
2.4 Questions and Exercises 24

3 Driving Resistances, Power Requirement 27
3.1 Aerodynamic Drag 27
3.2 Gradient Resistance 29
3.3 Acceleration Resistance 29
3.4 Equation of Motion for the Entire Vehicle 32
3.5 Performance 34
3.6 Questions and Exercises 39



viii Contents

4 Converters 43
4.1 Clutch, Rotational Speed Converter 45
4.2 Transmission, Torque Converter 48
4.3 Questions and Exercises 54

5 Driving Performance Diagrams, Fuel Consumption 57
5.1 Maximum Speed without Gradient 60
5.2 Gradeability 61
5.3 Acceleration Capability 61
5.4 Fuel Consumption 63
5.5 Fuel Consumption Test Procedures 68
5.6 Questions and Exercises 70

6 Driving Limits 73
6.1 Equations of Motion 74
6.2 Braking Process 79
6.3 Braking Rate 84
6.4 Questions and Exercises 91

7 Hybrid Powertrains 93
7.1 Principal Functionalities 93
7.2 Topologies of Hybrid Powertrains 99
7.3 Regenerative Braking and Charging 101
7.4 Questions and Exercises 106

8 Adaptive Cruise Control 107
8.1 Components and Control Algorithm 107
8.2 Measurement of Distances and Relative Velocities 112
8.3 Approach Ability 117
8.4 Questions and Exercises 118

9 Ride Dynamics 121
9.1 Vibration Caused by Uneven Roads 124

9.1.1 Damped Harmonic Oscillator 124
9.1.2 Assessment Criteria 128
9.1.3 Stochastic Irregularities 130
9.1.4 Conflict between Safety and Comfort 132

9.2 Oscillations of Powertrains 144
9.2.1 Torsional Oscillators 144
9.2.2 Centrifugal Pendulum Vibration Absorbers 147

9.3 Examples 151
9.4 Questions and Exercises 152



Contents ix

10 Vehicle Substitute Models 155
10.1 Two-mass Substitute System 155
10.2 Two-axle Vehicle, Single-track Excitation 158
10.3 Non-linear Characteristic Curves 165
10.4 Questions and Exercises 167

11 Single-track Model, Tyre Slip Angle, Steering 169
11.1 Equations of Motion of the Single-track Model 169
11.2 Slip Angle 177
11.3 Steering 181
11.4 Linearized Equations of Motion of the Single-track Model 185
11.5 Relationship between Longitudinal Forces and Lateral Forces in the

Contact Patch 188
11.6 Effect of Differentials when Cornering 189
11.7 Questions and Exercises 191

12 Circular Driving at a Constant Speed 193
12.1 Equations 193
12.2 Solution of the Equations 195
12.3 Geometric Aspects 197
12.4 Oversteering and Understeering 201
12.5 Questions and Exercises 205

13 Dynamic Behaviour 207
13.1 Stability of Steady-state Driving Conditions 207
13.2 Steering Behaviour 210
13.3 Crosswind Behaviour 213
13.4 Questions and Exercises 216

14 Influence of Wheel Load Transfer 217
14.1 Wheel Load Transfer without Considering Vehicle Roll 217
14.2 Wheel Load Transfer Considering Vehicle Roll 221
14.3 Questions and Exercises 228

15 Toe-in/Toe-out, Camber and Self-steering Coefficient 229
15.1 Toe-in/Toe-out, Camber 229
15.2 Questions and Exercises 233

16 Suspension Systems 235
16.1 Questions and Exercises 245

17 Torque and Speed Converters 247
17.1 Speed Converters, Clutches 247



x Contents

17.2 Transmission 252
17.3 Questions and Exercises 258

18 Shock Absorbers, Springs and Brakes 259
18.1 Shock Absorbers 259
18.2 Ideal Active Suspension and Skyhook Damping 264

18.2.1 Ideal Active Suspension 264
18.2.2 Skyhook Dampers 267

18.3 Suspension Springs 269
18.4 Brake Systems 277
18.5 Questions and Exercises 281

19 Active Longitudinal and Lateral Systems 283
19.1 Main Components of ABS 283
19.2 ABS Operations 287
19.3 Build-up Delay of Yaw Moment 290
19.4 Traction Control System 293
19.5 Lateral Stability Systems 294
19.6 Hydraulic Units for ABS and ESP 296
19.7 Active Steering System 297
19.8 Questions and Exercises 298

20 Multi-body Systems 301
20.1 Kinematics of Rigid Bodies 302
20.2 Kinetic Energy of a Rigid Body 305
20.3 Components of Multi-body Systems 309
20.4 Orientation of Rigid Bodies 312
20.5 Derivation and Solution of the Equations 315

20.5.1 Derivation of the Equations 315
20.5.2 Solution of Equations 316

20.6 Applications of MBS 317
20.7 Questions and Exercises 322

Glossary 323

References 329

Index 331



Foreword

This book is an extract of lectures on vehicle dynamics and mechatronic systems
in vehicles held at the Helmut-Schmidt-University, University of the Federal Armed
Forces, Hamburg, Germany. The lectures have been held since 2002 (Vehicle Dynam-
ics) and 2009 (Vehicle Mechatronics). The book is an introduction to the field of
vehicle dynamics and most parts of the book should be comprehensible to under-
graduate students with a knowledge of basic mathematics and engineering mechanics
at the end of their Bachelor studies in mechanical engineering. However, some parts
require advanced methods which are taught in graduate studies (Master programme
in mechanical engineering).

I wish to thank Mrs Martina Gerds for converting the pictures to Corel Draw with
LaTeX labels and for typing Chapter 9. My thanks go to Mr Darrel Fernandes, B.Sc.,
for the pre-translation of my German scripts. I especially wish to thank Mr Colin
Hawkins for checking and correcting the final version of the book with respect to
the English language. My scientific assistants, especially Dr Winfried Tomaske and
Dipl.-Ing. Tobias Hellberg, I thank for proofreading, especially with regard to the
technical aspects. Special thanks for assistance in preparing a number of Solid Works
constructions for pictures of suspensions and transmissions as well for help in prepar-
ing some MATLAB diagrams go to Mr Hellberg. Last but not the least, my thanks go
to my family, my wife, Dr Annette Nicolay, and my children, Sophia, Aljoscha, Indira
and Felicia, for their patience and for giving me a lot of time to prepare this book.





Series Preface

The automobile is a critical element of any society, and the dynamic performance
of the vehicle is a key aspect regarding its value proposition. Furthermore, vehicle
dynamics have been studied for many years, and provide a plethora of opportunities
for the instructor to teach her students a wide variety of concepts. Not only are these
dynamics fundamental to the transportation sector, they are quite elegant in nature
linking various aspects of kinematics, dynamics and physics, and form the basis of
some of the most impressive machines that have ever been engineered.

Vehicle Dynamics is a comprehensive text of the dynamics, modeling and control of
not only the entire vehicle system, but also key elements of the vehicle such as trans-
missions, and hybrid systems integration. The text provides a comprehensive overview
of key classical elements of the vehicle, as well as modern twenty-first century con-
cepts that have only recently been implemented on the most modern commercial
vehicles. The topics covered in this text range from basic vehicle rigid body kinematics
and wheel dynamic analysis, to advanced concepts in cruise control, hybrid power-
train design and analysis and multi-body systems. This text is part of the Automotive
Series whose primary goal is to publish practical and topical books for researchers
and practitioners in industry, and post-graduate/advanced undergraduates in automo-
tive engineering. The series addresses new and emerging technologies in automotive
engineering supporting the development of next generation transportation systems.
The series covers a wide range of topics, including design, modelling and manufac-
turing, and it provides a source of relevant information that will be of interest and
benefit to people working in the field of automotive engineering.

Vehicle Dynamics presents a number of different designs, analysis and implementa-
tion considerations related to automobiles including power requirements, converters,
performance, fuel consumption and vehicle dynamic models. The text is written from
a very pragmatic perspective, based on the author’s extensive experience. The book
is written such that it is useful for both undergraduate and post-graduate courses, and



xiv Series Preface

is also an excellent reference text for those practicing automotive systems design and
engineering, in the field. The text spans a wide spectrum of concepts that are critical
to the understanding of vehicle performance, making this book welcome addition to
the Automotive Series.

Thomas Kurfess
October 2014



Preface

This books covers the main parts of vehicle dynamics, which is divided into three
topics: longitudinal, vertical and lateral dynamics. It also explains some applications,
especially those with a mechatronic background, and outlines some components.

Figure 1 provides an overview of the chapters of the book. The main parts (lon-
gitudinal, vertical and lateral) as well as applications and component chapters are
grouped together. Many principal aspects of dynamics are explained by using simple
mechanical models (e.g. quarter-vehicle model and single-track model). As the vir-
tual development process with very complex multi-body systems (MBS) is used in
the design of modern cars, this simulation technique is described very briefly in the
last chapter. Although these MBS models are able to predict many details, the user of
such models should understand the principles of how vehicles behave, and the main
theory behind dynamic behaviour. It is therefore important to learn the basic dynamic
behaviour using the simple models described in this book.

Chapter 1 contains some general data for vehicles. These remarks are followed by
an introduction to some of the basics of frames and axis systems. This introduction
should be read by everyone. Following this are the three groups of longitudinal, ver-
tical and lateral dynamics, which are largely independent. The longitudinal and the
vertical parts are completely independent of the other parts and may be read and
understood without any knowledge of the other parts. The third group, containing the
lateral dynamics part, includes a number of aspects that may be difficult to understand
without first reading the longitudinal or the vertical part.

The application chapters can only partly be understood without reading the corre-
sponding theory chapter. Readers are therefore recommended to start with the basic
parts: the basics for Chapters 7 (Hybrid Powertrains), 8 (Adaptive Cruise Control) and
17 (Torque and Speed Converters) can be found in the longitudinal dynamics chapters,
while lateral dynamics is important for Chapter 16 (Suspension Systems), in the case
of Chapter 18 (Shock Absorbers, Springs and Brakes) a knowledge is required of verti-
cal dynamics as well as some aspects of longitudinal and lateral dynamics. Chapter 19
(Active Longitudinal and Lateral Systems), as the name reveals, involves longitudinal
and lateral aspects. Chapter 20 is nearly independent of the theoretical considerations.

Figure 1 includes the letters B and M, which stand for Bachelor and Master, behind
every chapter. Chapters of level B should be comprehensible for undergraduate
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Figure 1 Chapters of the book

Analysing Evaluating Creating

Applying

Understanding

Remembering

Figure 2 Bloom’s taxonomy of learning

students with a knowledge of engineering mechanics and mathematics at the end
of their Bachelor studies in mechanical engineering. Topics covered are: algebra;
trigonometric functions; differential calculus; linear algebra; vectors; coordinate
systems; force, torque, equilibrium; mass, centre of mass, moment of inertia; method
of sections, friction, Newton’s laws, Lagrange’s equation. In chapters followed by
level M, an advanced knowledge is useful, as is usually taught to graduate students:
ordinary differential equations (ODE), stability of ODEs, Laplace transformation,
Fourier transformation, stochastic description of uneven roads and spectral densities.

At the end of nearly each chapter, you will find some questions and exercises. These
are for monitoring learning progress or for applying the material learned to some small
problems. For this reason, the questions and tasks are arranged in classes according
to Bloom’s taxonomy of learning (cf. Figure 2).

The simplest class is Remembering, which means that you only have to remember
the correct content (e.g. a definition or a formula). You should be able to answer the
questions of the second class Understanding if you have understood the content. The
tasks of the third class Application involve applying the content to some unknown
problem. The remaining three classes Analysing, Evaluating and Creating are more
suited to extended student works, such as Bachelor or Master theses, and are therefore
rarely included in this book.



List of Abbreviations and Symbols

The tables on the following pages summarize the mathematical symbols and abbre-
viations used in this book. In most cases (but not in all), the indices used with the
symbols indicate the following:

• v vehicle
• b body
• w wheel
• t tyre
• x, y, z: �ex∗, �ey∗, �ez∗

Sometimes a symbol, which is needed only in a very local part of the book, could
be used in another meaning than it is described in the following tabular, as well as
sometimes the units can differ from those given in the tabular. Symbols that occur
only in a small part of the book are not listed in the tabular.
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a Acceleration of the vehicle a = ẍv m/s2 84
A Aerodynamic area m2 27
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ACC Adaptive cruise control – 107
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N 35
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N 34
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N 50
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Fxj Section force for tyre-road N 32
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Fzj Section force (wheel load) (j = 1 front; j = 2

rear)
N 74

Fzj aero Wheel load aerodynamic portion (j = 1 front;
j = 2 rear)

N 76

Fzj stat Wheel load static portion (j = 1 front; j = 2
rear)

N 75
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N 78
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g Gravitational acceleration m/s2 13
Gaj Weight of the axle j (j = 1 front; j = 2 rear) N 75
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h Distance: centre of mass Scm – road m 86
hb Distance: centre of mass of the body – road m 75
hcm Distance: centre of mass Scm – road m 77
HP Pump – 297
hpp Distance: Centre of pressure Spp – road m 76

for air flow in the �evx-direction
HSV High-pressure selector valve – 297
id Transmission ratio of the differential (final

drive)
1 44

ig Transmission ratio of the gearbox; 1 30
for a stepped transmission: ig = iz

it Total transmission ratio it = izid 1 58
iz Transmission ratio of gear z of the

transmission, z = 1, . . . , Nz max

1 48

Jaj Moment of inertia of the axle j kg m2 30
Jc Moment of inertia of gear, differential, Cardan

shaft
kg m2 30

Je Moment of inertia of engine, clutch kg m2 30
Jz Moment of inertia of the vehicle with respect to

the �ez-axis
kg m2 172

κ Angle of rotation of the body of the vehicle rad 222
κcc Instantaneous curvature (κcc = 1/ρcc) of the

vehicle path
1/m 171

κw Wavenumber of an uneven road rad/m 164
� Wheelbase; distance between front and rear

axle
m 75

�1 Distance in the �evx direction between front axle
centre of mass and centre of mass Scm of the
vehicle

m 75

�2 Distance in the �evx direction between rear axle
centre of mass and centre of mass Scm of the
vehicle

m 75

λ Rotational mass factor 1 33
λe Eigenvalue with respect to time 1/s 207
�cm Distance: centre of gravity Scm – m 172

centre of pressure Spp in the �evx direction
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μ = μ(S) Tyre longitudinal force coefficient 1 21
Ma Aerodynamic moment Nm 74
μa Coefficient of adhesion 1 21
maj Mass of the axle (j = 1 front; j = 2 rear) kg 32
Maj Section moment at the axle j Nm 32

(j = 1 front; j = 2 rear)
mb Mass of the body or sprung mass of the vehicle kg 31
MBS Multi-body systems – 4
Mcc Centre of curvature – 170
Mcr Instantaneous centre of rotation – 173
Me Torque supplied from the engine N 58
M100 Full load moment of the engine Nm 37
Mi Input moment (e.g. at input of transmission or

clutch)
Nm 45

M(Pmax) Moment where the power of the engines Nm 37
reaches a maximum

Ml Torque loss from the engine N 59
Mmax Maximum torque of the engine Nm 55
M(nmax) Full load moment of the engine at nmax Nm 37
M(nmin) Full load moment of the engine at nmin Nm 37
Mo Output moment (e.g. at input of transmission or

clutch)
Nm 45

μs Coefficient of pure sliding 1 22
mtot Total mass (sprung and unsprung mass) kg 29
Mws Torque supplied at the wheel from the

powertrain
N 58

nc Total caster trail nc = nkc + ntc m 188
ne Engine speed (revolutions) rad/s 44
ni Input speed or revolutions (e.g. at input of

transmission or clutch)
rev/s 45

niz Input speed (revolutions) of transmission at
gear z

rad/s 48
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nmax Maximum speed of the engine rpm 37
nmin Minimum speed of the engine rpm 37
no Output speed or revolutions (e.g. at input of

transmission or clutch)
rev/s 45

n(Pmax) Engine speed where the power of the engines rpm 37
reaches a maximum

nw max Maximum revolutions per minute of the wheel rpm 44
noz Output speed (revolutions) of transmission at

gear z
rad/s 48
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ntc Tyre caster trail m 177
nw Wheel speed (revolutions) rad/s 44
Nz max Number of gears in a transmission 1 48
ODE Ordinary differential equation – 5
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ωi Input angular velocities (e.g. at input of

transmission or clutch)
rad/s 45

ωo Output angular velocities (e.g. at input of
transmission or clutch)

rad/s 45

p Gradient (inclination) of a road p = tan αg 1 29
ψ Yaw angle rad 7
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P100 Full load power of the engine W = Nm/s 37
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W = Nm/s 35

ϕaj Angle of rotation of the axle j (j = 1 front;
j = 2 rear)

rad 32

ϕb Pitch angle of the body rad 159
Pbasic Basic demand of power: Pbasic = Pr + Pa N 35
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Pe Power supplied from the engine W = Nm/s 46
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W = Nm/s 35
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m3 131

Φh(Ω0) Coefficient of roughness m3 131
Pbasic Total power demand: Pbasic = Pr + Pa N 34
Pideal Ideal (demand) characteristic map of power at

the wheel
N 37

Pi Input power (e.g. at input of transmission) in
Chapter 4

W = Nm/s 45

Pi Power of inertia forces in Chapter 3 W = Nm/s 35
Pmax Maximum power of the engine reaches a

maximum
W = Nm/s 37

Po Output power (e.g. at input of transmission) W = Nm/s 45
Pr Power of rolling resistance (S = 0: Pr = Frvv) W = Nm/s 34
Ptot Total power demand:

Ptot = Pr + Pa + Pg + Pi

N 34

ϕw Rotational angle of the wheel w.r.t the �ewy-axis rad 14
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Pwsi Power supplied at the wheel from the
powertrain for gear i

W = Nm/s 50

Pw Power at the wheel W = Nm/s 63
ρa Mass density of air kg/m3 27
ρcc Instantaneous radius of curvature of the vehicle

path
m 171

rk Scrub radius: distance between the intersection m 183
of the steering axis with road and the centre of

the contact patch
rσ Kingpin offset between the wheel centre and

the steering axis
m 184

Rw0 Dynamic rolling radius m 20
Rw0j Dynamic rolling radius (j = 1 front; j = 2 rear) m 32
rwst Static radius of a wheel m 14
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front; j = 2 rear)
m 32

σ Inclination angle of the steering axis; angle
from the �eV z direction to the projection of
the steering axis on to the �eV z-�eV y-plane

rad 181

Sj Slip at wheels of the axle j (j = 1 front; j = 2
rear)

1 32

sj Track of the axle j (j = 1 front; j = 2 rear) m 219
Scm Centre of mass of the vehicle (sprung and
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– 6

Scmw Centre of mass of a wheel – 7
SOV Switch over valve – 297
Spp Centre of pressure – 76
Scp Centre point of the contact patch – 7
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rad 181
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tt Transmission time s 80
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�va Velocity vector of wind m/s 214
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1
Introduction

Automobiles have been used for over 100 years for the transportation of people and
goods. Despite this long period, essential elements of an automobile have in principle
remained the same, i.e. four wheels and an internal combustion engine with a torque
converter drive. However, the technical details of an automobile have changed a great
deal, and the complexity has increased substantially. This has partly gone hand in hand
with general technical progress, on the one hand, and increasing customer demands,
on the other. Legal requirements have also led to distinct changes in automobiles.

The importance of automobiles becomes evident when we look at the graphs in
Figures 1.1–1.4. You should bear in mind that the abscissas of most graphs are parti-
tioned logarithmically. The quantity, the distances travelled and the distances travelled
per capita are at a very high level, or these values are increasing at a high rate. If we
look at some European countries or the United States of America, we can recognize
stagnation at a high level, whereas emerging economies exhibit high rates of growth.
The need to develop new, economic and ecological vehicles is evident. In order to
do this, engineers should be familiar with the basic properties of automobiles. As the
automobile is something which moves and which not only moves forward at a constant
velocity, but also dynamic behaviour depends on these basic properties. Consequently,
the basic dynamic properties form the main topic of this book.

The ecological aspect could be a dramatic limiting factor in the development of
vehicles throughout the world. If the number of cars per 1000 inhabitants in China
and Hong Kong grows from 22 in the year 2007 to 816, which is the number in
the USA, then this represents a factor of 40. If we now multiply the CO2 emissions
of the USA from the year 2007 by 40, we obtain around 57 000 Mt, which is 12 times
the world CO2 emissions from fuel combustion in road transport for the year 2007.
This seems to be very high (or perhaps too high), and vehicles with lower fuel con-
sumption or hybrid or electric powertrains will have to be developed and improved in
the coming decades.

Vehicle Dynamics, First Edition. Martin Meywerk.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/meywerk/vehicle
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Figure 1.1 Passenger cars (and light trucks in US) per 1000 inhabitants (data from OECD
2014)
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Figure 1.4 International Energy Agency (IEA) CO2 from fuel combustion (Mt) in Road
Transport (data from OECD 2014)
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Figure 1.5 Importance of purchase criteria (Braess and Seiffert 2001)

The presentation of the most important buying criteria in Figure 1.5 highlights the
ecological and economic aspects as well as safety, handling behaviour and comfort.
The last three points, namely safety, handling behaviour and comfort, are strongly
linked with the driving dynamics and suspension, making these aspects of particu-
lar importance in the automotive industry. Safety is generally subdivided into active
safety (active safety systems help to avoid accidents) and passive safety (passive safety
systems protect the occupants during an accident).

It is evident that the dynamics of the vehicle is of crucial importance because of the
impact on active safety; handling behaviour and comfort are also closely associated
with the properties of vehicle dynamics. For this reason, particular emphasis is placed
on the aspect of dynamics in this course.

The aim of this course is to define and identify the basic concepts and relationships
that are necessary for understanding the dynamics of a motor vehicle.

The content of this textbook is limited to the essentials, and the course closely
follows the monograph of Mitschke and Wallentowitz 2004 (German). Further rec-
ommended reading can be found in the bibliography at the end of this book, e.g.
Heissing and Ersoy 2011, Dukkipati et al. 2008, Gillespie 1992, Jazar 2014, or Reim-
pell et al. 2001.

1.1 Introductory Remarks

The content of this book is divided into four parts: longitudinal dynamics, vertical
dynamics, lateral dynamics and structural design of vehicle components and
automotive mechatronic systems. Longitudinal dynamics is included in Chapters
2–6, which discuss the process of acceleration and braking. Key importance here is
given to the total running resistance, the demand and supply of power and the driving
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state diagrams. In Chapters 7 and 8, additional systems of longitudinal dynamics are
described: alternative powertrains and adaptive cruise control systems. In Chapters 9
and 10, the behaviour of the vehicle when driving on an uneven surface is explained
in the context of vertical dynamics. These chapters study the basics of the theory of
oscillations and the influence of vibrations on humans. Lateral dynamics, the contents
of Chapters 11–15, describes the handling behaviour of a vehicle during cornering.
Important concepts such as slip, oversteer and understeer, toe and camber angle are
explained. It deals with the influence of wheel load on the handling behaviour.

Chapters 16–19 highlight the engineering design (structural) aspects of an
automobile. In addition to speed and torque converters, they also discuss brakes and
chassis elements of active safety systems, such as anti-lock braking system (ABS),
anti-slip regulation (ASR) and electronic stability programme (ESP). In Chapter 20,
multi-body systems (MBS) are explained. MBS are computational models which
allow more precise calculations of the dynamic behaviour of vehicles.

1.2 Motion of the Vehicle

To describe the dynamics of motor vehicles, we use, as in any other branch of engi-
neering, models with a greater or lesser degree of detail. The complexity of the models
depends on the questions under investigation. Today the MBS models are most com-
monly used in both science and research as well as in the development departments
of the automotive industry. Multi-body systems consist of one or more rigid bodies
which are interconnected by springs and/or shock absorbers and joints.

Figure 1.6 shows an MBS model of a vehicle. This model is taken from the commer-
cial MBS programme ADAMS. Another example of a McPherson front axle is shown
in Figure 1.7. These MBS models allow high accuracy in the simulation of dynamic
behaviour. A lot of details can be incorporated into these models, even flexible parts
can be considered. However, the detailed simulation yields a large number of effects
in the calculated results and the engineer has to interpret and understand these results.
As an example, an engineer has to distinguish between main effects and numerical
phenomena. For this purpose, it is helpful to understand the basic dynamics and to
know simple models for calculating the behaviour of a vehicle in order to interpret or
even to check the MBS results. This book therefore takes vehicle dynamic behaviour
and simple models as its main topics.

In a simplified view of the motor vehicle, a model could consist of five rigid bodies:
the four wheels and the body structure. These are interconnected by springs, shock
absorbers and rigid body suspensions with joints. A rigid body has six degrees of
freedom. This simple model would therefore have 5 × 6 = 30 degrees of freedom1.

1 We may argue that the suspension between wheel carrier and body of the vehicle locks five degrees of freedom,
the wheel bearing will unlock one degree of freedom, which results all together in only two degrees of freedom for
one wheel. The sum for the whole vehicle will then be 14. That is correct under the assumption that there are no
compliances in the suspension. Since modern cars have these compliances, the number of 30 is correct.
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Figure 1.6 MBS model of a four-wheel-drive vehicle (example of the MBS programme
ADAMS)

Centre of mass

McPherson strut

A-arm

Drive shaft

Subframe

Mount of the
powerplant

Shock absorber
Spring

Rubber
bushings

Mounts of the
roll restrictor

Figure 1.7 McPherson front axle with driven wheels (from MBS programme ADAMS)

It is evident that a description of even this simple model with 30 degrees of freedom
will require 30 equations of motion of second order (with respect to time).

Equations of motion are ordinary differential equations that describe the motion of
(rigid) bodies. A simple example of the equation of motion for a single mass oscillator
is given below (mass m, stiffness of spring k, displacement z):

mz̈ + kz = 0 . (1.1)

Equations of motion are often second-order differential equations with respect
to time. For specific problems, these models are therefore reduced to a few masses
with limited motion options. Hence, we in turn limit ourselves to certain specific
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questions. This approach will be used in this book. For this reason, we first introduce
the terminology and coordinates to describe the possible motions of a vehicle.

Frame system: A quadruple (A,�ex, �ey, �ez) is a frame system of an affine space. Here,
A is a point (the origin) and �ex, �ey, �ez is a Cartesian tripod (the axis system). To
describe the position of a point P with respect to A, three coordinates x, y, z are
sufficient: −→

AP = x�ex + y�ey + z�ez . (1.2)

The point A can be defined as fixed in space (or in an inertial frame). This is called
an inertial frame system (sometimes called earth or world coordinate system). If
the point A and the tripod �ex, �ey, �ez are fixed to a body and continues to be firmly
connected to the body then the result is called a body-fixed frame system.

We introduce several frames. The first one is an inertial frame (O,�eix, �eiy, �eiz)
which is fixed to the earth (or the world)2. To describe the motion of a point in this
inertial frame, three Cartesian coordinates x, y, z are necessary, in the case of the cen-
tre of mass, Scm, of the vehicle we introduce xv, yv , zv. This point Scm is the origin
for two other, fixed body frame systems for the vehicle:

1. (Scm, �evx, �evy, �evz): vehicle frame system
2. (Scm, �ex, �ey, �ez): intermediate frame system

The first one is completely fixed to the body of the vehicle, i.e. all three vectors �evx,
�evy, �evz move together with the vehicle. The origin of the second is also fixed to the
vehicle. To define the intermediate frame system, we assume only a rotation about the
�eiz direction, this means that �eiz = �ez . Then the vector �ex is the vector �eix rotated by
the so-called yaw angle, ψ, about the �eiz direction. The vector �ey is oriented to the left
side of the vehicle, perpendicular to �ex and parallel to the �eix − �eiy plane. The vector
�ez = �ex × �ey is the vector or cross product3.

In order to define the orientation of the vehicle and the orientation of the axis system,
�evx, �evy, �evz, with respect to the inertial axis system, �eix, �eiy, �eiz , three angles are
necessary. There are different ways to use these three angles: here we use the Euler
(see footnote) convention. This means that we first rotate about the �eiz-axis; the angle
for this first rotation is the yaw angle, ψ. After this, we rotate about the new �e ′

iy-axis
(which is the rotated �eiy-axis from the first rotation); the angle for this second rotation
is the pitch angle, ϑ. The third rotation is about the new �e ′′

ix-axis. The �e ′′
ix-axis is the

2 In some MBS software tools this coordinate system is called world system. Strictly speaking, an earth frame system,
i.e. a coordinate system which is fixed to the earth, is not an inertial system due to the rotation of the earth. These
aspects are usually neglected, as is the case here as well.
3 If the coordinates of two vectors with respect to an orthonormal basis are (x1, y1, z1) and (x2, y2, z2), then the
vector product can be calculated by (y1z2 − y2z1,−(x1z2 − x2z1), x1y2 − x2y1).
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Figure 1.8 Motion of a vehicle

result from the �eix-axis due to the two rotations with the angles ψ and ϑ. The angle
of the third rotation is the roll angle4 ϕ.

Some more frame systems are necessary to describe the motion of the vehicle.
Figure 1.8 depicts a frame system, (Scmw, �ewx, �ewy, �ewz), fixed to the wheel at its
centre of mass and an additional system at the contact patch, (Scp, �etx, �ety, �etz).

Figure 1.8 shows the frame systems and the angles ψ, ϑ and ϕ. The angles are not
depicted as angles of a sequence of rotations, but as angles of single rotation. This
simplification is made in several considerations of this book. For most of them, it is
sufficient to look at a single rotation and neglect the interaction of rotation. If the
interactions of the rotations are to be investigated, the complexity of the equations
will increase significantly. Simple, analytical results are not available for these inves-
tigations and the motion of the vehicle should be modelled by MBS.

4 These three angles are called the Tait–Bryan angles in the literature; a characteristic feature is that every axis (with
index x, y and z) occurs in the sequence of rotational axes. In German literature, these angles are sometimes called
Cardan angles. Another possible definition of the orientation is the use of so-called Euler angles. In this definition, the
first axis of rotation is, for example, the �eix-axis, the second is the �e ′

iz-axis and the third, again about an x-axis, i.e.
the �e ′′

ix-axis. In some MBS software as well as in ISO 8855 2011 we find the name Euler associated with the definition
of Tait–Bryan angles. Consequently, you should read the exact definition of the sequence of rotations carefully and
you should not simply assume that a particular convention applies.



8 Vehicle Dynamics

When the vehicle is driving in a straight line, the �evx and �eix directions coincide.
The first part of this course is limited to the straight-line motion of a vehicle (lon-
gitudinal dynamics) and considers resistances, driving performance and braking and
acceleration processes. In this aspect of longitudinal dynamics, rotation of the vehicle
always occurs about the �eiy-axis. As mentioned above, this rotational motion about
the �eiy-axis is called pitch. Hence pitch and straight-line, forward motion are con-
nected: as the centre of mass, Scm, is above the road, every acceleration or braking
manoeuvre causes inertia forces to act on Scm, which yields a moment and therefore
a pitch motion.

The second class of movements is caused by uneven roads. It is grouped together
under the concept of vehicle vibrations. The movements are translations of the vehicle
in the �eiz direction (bounce), rotation about �eiy direction (pitch) and the �eix direction
(roll).

In cornering, i.e. a non-constant yaw angle and in general the �eix direction do not
coincide with the �evx direction, the vehicle, in addition to rotating about the �eiz-axis,
rotates about the �evx-axis (roll) and for deceleration or acceleration it rotates about the
�evy-axis (pitch). A lateral motion also occurs. Cornering is investigated in the third
part of this book, the lateral dynamics or cornering part.

These short considerations show that nearly always more than one degree of free-
dom is involved in the motion of the vehicle.

1.3 Questions and Exercises
Remembering

1. What kinds of models often describe the dynamics of vehicles?
2. How many degrees of freedom does the body of a vehicle have?
3. What are the names of the six degrees of freedom of the body associated with

movements?
4. The dynamics of motor vehicles is usually divided into three main forms of move-

ment. What are they?
5. What form of movement plays an important role in longitudinal dynamics?
6. What form of movement plays an important role in vertical dynamics?
7. What form of movement plays an important role in lateral dynamics?

Understanding

1. Which degrees of freedom of a vehicle are involved when passing a speed bump
(same height for left and right wheels)?

2. Which degrees of freedom of a vehicle are involved when passing a pothole (at one
side of the vehicle only)?
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Applying

1. Which effects are the same when comparing a handcart with nearly stiff wheels
which are fixed to the body without suspension and a vehicle with a centre of mass
at the height of the road during acceleration or braking? Consider inertia forces
and resulting moments.

2. Which effects are the same when comparing a handcart with nearly stiff wheels
which are fixed to the body without suspension and a vehicle with a centre of mass
at the height of the road during cornering? Consider centrifugal forces.





2
The Wheel

The wheels are the link between the road and the vehicle structure. For this reason,
they play a central role in the dynamics of a vehicle. This chapter derives the equations
of motion for the wheels. Furthermore, it also explains wheel resistances (rolling resis-
tance, rolling resistance on a wet road, bearing resistance, toe resistance and curve
resistance).

2.1 Equations of Motion of the Wheel

The equations of motion of a wheel which are derived here are only for the motion in
the�ewx–�ewz plane. The translational motion of the wheel is described by the motion of
its centre of mass, Scmw, by the coordinates xw and zw (see Figure 2.1), the rotation
about the �ewy-axis is described by ϕw. The distance between the wheel’s centre of
mass, Scmw, and the road is given by rwst. It is important that the radius rwst should
not be the radius of the undeformed and unloaded wheel. We call this radius, rwst, the
static radius of the wheel. The wheel rolls on an inclined plane, the angle of inclination
is αg (index ‘g’ for grading). In order to establish the equations of motion, the wheel
is cut free from both the inclined plane and the wheel hub (or the bearing). The tyre
does not touch the plane only at one point but, instead, at a contact surface (contact
patch).

Contact patch: This is the contact area where the tyre and the road are in contact.
The size of the contact patch depends on the geometry and design of the tyre, the
internal pressure and the wheel load. For a passenger car tyre, it has the magnitude
of a postcard. (In comparison, the contact area of a railway wheel with the track is
the size of a thumb nail).

If the wheel does not move, the normal stress distribution in the contact patch is
symmetrical with respect to the �ewy–�ewz plane and the tangential force distribution

Vehicle Dynamics, First Edition. Martin Meywerk.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/meywerk/vehicle
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Figure 2.1 Coordinates of the wheel
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Figure 2.2 Normal stresses in the contact patch of the tyre

(tangential to the flat road) is almost zero. However, when the wheel rolls, the normal
force distribution is no longer symmetrical. Figure 2.2 shows the basic trend of the
normal stress distribution. The wheel rolls up the plane. It can be seen that the normal
stress distribution is asymmetrical and that the line of action of the resultant force, Fz ,
(which is obtained by integrating the normal stress distribution over the contact area)
is shifted by the eccentricity, ew. Considering the moment due to the force, Fz , and the
eccentricity, ew, we recognize that it counteracts the rolling movements of the wheel.

The occurrence of the asymmetric normal stress distribution can be illustrated with
the help of Figure 2.3, which shows a wheel in motion at three different points in time
(the wheel rolls from right to left). To illustrate the elastic and damping properties, the
wheel may be imagined as a flexible ring which is supported by spring-damper ele-
ments against the rim. Only one single spring-damper element is shown in Figure 2.3.
This spring-damper element is considered for a sequence of three points in time t1,
t2 and t3. The other spring-damper elements have to be imagined as arranged radially
around the circumference. The wheel and the (imaginary) unloaded spring-damper
element are visible in the left section of Figure 2.3 for t = t1.

In the middle section of Figure 2.3 for t = t2, the tyre and therefore the spring
and the damping elements are compressed. The force that is necessary depends firstly
on the compression Δs (from the spring) and secondly on the compression rate Δṡ
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Compression Decompression

υw υwυw

t = t1 t = t2 > t1 t = t3 > t2

Figure 2.3 Illustration of the asymmetric normal stress distribution in the contact patch

(from the damper). At this particular time, both compression and compression rate
are positive: Δs > 0, Δṡ > 0. Consequently, the resulting force is

F = kΔs︸︷︷︸
>0

+ bΔṡ︸︷︷︸
>0

. (2.1)

In the right-hand section of Figure 2.3 for t = t3, the damping element under con-
sideration is relaxed again. And, of course, there are normal forces acting on the tyre
as compressive forces, the resultant external force is the sum of the spring force dimin-
ished by the force which is necessary to relax the damper, i.e. Δs > 0, Δṡ < 0. This
leads to a reduction in normal forces in this area since

F = kΔs︸︷︷︸
>0

+ bΔṡ︸︷︷︸
<0

. (2.2)

All things considered, the normal stresses in the front part of the contact patch are
larger than in the rear part.

The decelerating torque from the rolling resistance is illustrated below with refer-
ence to the equations of motion of the wheel. For this purpose, we cut the wheel free
from the structure (section forces X and Z; section torque Mw) and the road (section
forces Fx and Fz). The free-body diagram is shown in Figure 2.4. The torque, Mw,
represents a driving or braking torque. The normal stress (normal to the road) and tan-
gential stress (tangential to the road) distributions in the contact area are summarized
in the free-body diagram by the resultant forces Fz and Fx, respectively. In addition,
the moment, Mw, acts at the centre of the wheel hub and the section forces X and
Z, too. Moreover, the weight force, Gw = mwg (g is the acceleration due to gravity)
acts on the centre of mass1 of the wheel. In a further simplification, it is assumed that

1 Strictly speaking, the centre of gravity is the correct point, but centre of mass and centre of gravity differ only very
slightly for such small objects as vehicles.
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Figure 2.4 Free-body diagram of the wheel

the weight force acts at the wheel centre and also that the wheel centre is equal to
the centre of mass. The d’Alembert forces of inertia, mwẍw and mwz̈w, act on the
centre of mass. Furthermore, the moment of inertia, Jwϕ̈w, completes the free-body
diagram. We determine the sum of forces in the �ewx-direction and set this sum to zero.
By rearranging, we then obtain the following equation of motion:

mwẍw = Fx − X − Gw sin αg. (2.3)

Similarly, we obtain the sum of the forces in the �ewz-direction:

mwz̈w = Fz − Z − Gw cos αg. (2.4)

From the condition that the sum of the moments disappears, we obtain the sum with
respect to the centre of mass (here by rearranging the equation):

Jwϕ̈w = Mw − Fxrwst − Fzew . (2.5)

2.2 Wheel Resistances

Rolling of the wheel creates several wheel resistances (these forces act against the
rolling direction). In this section, we consider the rolling resistance in more detail,
other resistances such as the resistance from a wet road, from friction in the wheel
bearing or from toe-in or toe-out are outlined roughly.

2.2.1 Rolling Resistance

We first give the definition, and the derivation of the formula follows from the
definition.
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Rolling resistance: If a wheel is rolling on a road, an asymmetric normal stress
distribution occurs between road and wheel in the contact patch (Figure 2.2).
The line of action of the resultant force, Fz , of the asymmetric normal stress
distribution does not intersect the centre of the wheel, but is shifted in the rolling
direction. The distance between the wheel centre and the line of action of Fz is the
eccentricity, ew. This results in a moment M = ewFz . To overcome this moment,
a tractive torque, Mw, in the case of a driven wheel or a tractive force, Fr, in the
case of a towed wheel is necessary. This force, Fr, is called the rolling resistance.
It can be derived by solving the sum of moment 0 = rwstFr − ewFz for Fr:

Fr =
ew

rwst

Fz . (2.6)

In the case of a driven wheel, the rolling resistance is

Fr =
Mw

rwst

. (2.7)

Starting from the equation of motion (2.3) of the wheel in the �ewx direction, we derive
the relationship for the force Fr. We assume that the wheel rolls in a steady state on
a non-inclined roadway (hence αg = 0). Steady state means that the velocity, ẋw, is
constant. Hence,

ẍw = 0 . (2.8)

Taking the results from Equation (2.3) and Equation (2.8) we obtain

Fx = X . (2.9)

From the moment equation (2.5), we obtain (the wheel is neither driven nor braked;
ϕ̈w = 0 applies here because of the steady rolling):

0 = −rwstFx − ewFz . (2.10)

With Fx = X from Equation (2.9) and from Equation (2.10) we get

X = − ew

rwst

Fz . (2.11)

We call Fr = −X

Fr =
ew

rwst

Fz (2.12)

the rolling resistance.
Comparing this result with the free-body diagram (Figure 2.4), we see that the trac-

tive force, X , must act in the rolling direction to overcome the rolling resistance. The
dimensionless factor ew/rwst is called the coefficient of rolling resistance, fr,

fr =
ew

rwst

. (2.13)
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Coefficient of rolling resistance: The coefficient of rolling resistance fr is the ratio of
rolling resistance, Fr, to the resulting normal force, Fz , in the contact patch:

fr =
Fr

Fz

.

The rolling resistance may be approximated by means of the following empirical
formula (depending on the speed) (v0 = 100 km/h)

fr(v) = f̃r0 + f̃r1
v

v0
+ f̃r4

(
v

v0

)4

. (2.14)

Remark 2.1 It can be seen that a quadratic term is missing from this formula.
This member is omitted because it is negligibly small when compared with the air
resistance increasing quadratically with speed. Furthermore, the term v4 exceeds the
quadratic member.

Remark 2.2 The values fr are in the range 0.005–0.015. The coefficients f̃r0, f̃r1
and f̃r4 depend, amongst other factors, on the type of tyre and the inflation pressure.
Average values for HR tyres are f̃r0 = 9.0 × 10−3, f̃r1 = 2.0 × 10−3, f̃r4 = 3.0 ×
10−4.

Remark 2.3 The rolling resistance defined here is based on the effect of asymmetric
normal forces and dissipative effects in the material of the tyre. A further resistance
on the wheel is based on slip in the contact patch.

Remark 2.4 The coefficient of rolling resistance falls with an increase in pressure
and also with an increase in the wheel load. The dependency of the coefficient fr on
the wheel load means that the rolling resistance, Fr, is not linearly dependent on the
wheel load, Fz .

Remark 2.5 The coefficients in the empirical formula (2.14) of the coefficient of
rolling resistance as a function of the speed depend, amongst other factors, on the
internal pressure. The coefficients f̃r0 and f̃r4 tend to decrease with increasing infla-
tion pressure whereas f̃r1 increases.

Figures 2.5, 2.6 and 2.7 show rolling resistance coefficients for tyres of differ-
ent dimensions (namely width) for summer tyres, winter tyres and all-season tyres,
respectively. The basis for the diagrams was an investigation by TÜV Süd on behalf of
the German Federal Environmental Agency in the year 2002 Reithmaier and Salzinger
2002. These studies investigated tyres (number n) of different sizes from several dif-
ferent manufacturers.
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Reithmaier and Salzinger 2002)
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2.2.2 Aquaplaning

Another wheel resistance, Faq, is due to water on the roadway. The force Faq depends
on the displaced volume of water per unit of time. It is roughly proportional to the
tyre width, b, and a power of the velocity

Faq ≈ bvnaq . (2.15)

From about 0.5 mm of water height, the exponent is naq ≈ 1.6.
At a specific speed, the so-called floating speed or aquaplaning speed, the tyre loses

contact with the road, and the lateral and longitudinal forces in the contact patch
tend towards zero. This phenomenon is called aquaplaning. The aquaplaning speed
depends on several parameters, e.g. width and tread pattern. Figures 2.8 and 2.9 show
aquaplaning speeds for different groups of tyres. A tendency can be seen for the aqua-
planing speed to decrease with increasing width and for most winter tyres to have
higher aquaplaning speeds than summer tyres.
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Figure 2.8 Aquaplaning speed for summer tyres (data from Reithmaier and Salzinger 2002)
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2.2.3 Bearing Resistance

The friction in the wheel bearing results in frictional forces, which result in a moment,
Mwb:

|Mwb| = μbrb

√
X2 + Z2 . (2.16)

Here,
√

X2 + Z2 is the resulting normal force from the section forces, X and Z, in
the bearing, μb is the Coulomb friction coefficient and rb the radius of the bearing
where the friction force occurs. This moment results in a bearing resistance Fwb:

|Fwb| = μb
rb

rwst

√
X2 + Z2 . (2.17)

Setting Mwb in the sum of moments (2.5) and considering a stationary motion, i.e.
ϕ̈w = 0, yields

0 = Mwb − Fxrwst − Fzew . (2.18)

Substituting ew = frrwst and Mwb = μbrb

√
X2 + Z2 from Equation (2.16) into

Equation (2.18), we obtain

−Fx = frFz + μb
rb

rwst

√
X2 + Z2 . (2.19)

In addition to the rolling resistance, frFz , the bearing resistance, Fwb =
μb

rb

rwst

√
X2 + Z2, also occurs here. The bearing resistance is often negligibly small

with respect to the rolling resistance.

2.2.4 Toe-In/Toe-Out Resistance

An additional resistance is caused by the angular position of the wheels (rotation about
the �ewz-direction). This inclined position is called toe-in or toe-out (cf. Figure 15.1).
The resulting resistance is for small δ10:

Fwtoe = cαδ10 sin(δ10)︸ ︷︷ ︸
≈δ10 for δ10�1

≈ cαδ2
10 . (2.20)

Here cα is the so-called cornering stiffness and δ10 is the toe-in or toe-out angle, i.e.
the angle by which the wheel is rotated about the �ewz -axis (for more information see
Chapter 15).

Remark 2.6 The magnitude of the toe resistance is 1/100th of the rolling
resistance.
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Another resistance is the curve resistance, Fwc, which occurs during cornering due
to increased lateral forces. The entire wheel resistance is made up of rolling resistance,
Fr, the resistance due to water, Faq, the bearing resistance, Fwb, the toe resistance,
Fwtoe and the curve resistance, Fwc.

When the vehicle is driving in a straight line on a dry road, the whole wheel
resistance is essentially equal to the rolling resistance (the other resistances may be
neglected).

2.3 Tyre Longitudinal Force Coefficient, Slip

We first turn to the concept of slip. Let us consider a wheel with a driving torque, Mw,
acting in such a way that Fx = 0 (Figure 2.4). This wheel is assumed to roll in a steady
state on the roadway. The driving torque has to compensate for the rolling resistance
exactly. The angular velocity is ωw0 and the velocity is vw0. Since the tangential forces,
Fx = 0, do not act at the contact area, the parts of the tyre which are in contact with
the road adhere to the road. Consequently, a radius Rw0 can be defined

Rw0 =
vw0

ωw0
. (2.21)

Since no sliding occurs in the contact patch, we call this state a rolling wheel without
slip. The radius Rw0 is defined by vw0 and ωw0 for a slip-free rolling wheel. This
radius, Rw0, is called the dynamic rolling radius when the wheel rolls without slip (in
this wheel tangential forces do not occur at the contact area)2.

However, if the wheel is driven such that Fx �= 0, then the relationship between the
driving speed, vv, and the angular velocity, ω, is no longer valid:

Rw0ω �= vv . (2.22)

The wheel does not stick to the road but slides or slips. The speed of the individual
material particles in the contact area vc = Rw0ω (the so-called circumferential speed;
N.B.: this velocity is defined in the wheel-body fixed coordinate system) is not equal
to the driving speed vv of the wheel (vw is the velocity of the wheel centre and equal to
the velocity of the vehicle vw = vv) and thus no longer equal to the speed of the road-
way seen from the point of view of the centre of the wheel (i.e. from the wheel-body
fixed coordinate system). To capture this sliding effect quantitatively, we introduce

2 The dynamic rolling radius Rw0 is smaller than the radius of the undeformed wheel, rw0, and is larger than the
static radius of the wheel, rwst. Other definitions for a rolling radius exist in the literature, with one example being
the effective rolling radius, Re, which is defined for a free rolling wheel, which means that no driving torque, Mw = 0,
is applied. For this case, the angular velocity, ωw and the translational velocity of the wheel, vw , yield the effective
rolling radius, Re = vw/ωw . For this wheel, which is not driven but towed (the towing force is the rolling resistance),
the tangential force in the contact patch is equal to the rolling resistance, Fx = Fr �= 0. From Fx �= 0 it follows that
a non-zero relative velocity occurs between tyre and road. The latter effective rolling radius, Re, is therefore not as
well suited to define relative motion. The relative motion is used for the definition of longitudinal slip. Nevertheless,
the latter definition is used in the literature (for more details cf. Pacejka 2002, p. 65). The relation between the slip and
the tangential force, Fx, differs slightly for the two definition of slip, using Rw0 on the one hand or Re on the other.
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the concept of slip, where a distinction in the definition between a driven and braked
wheel is necessary:

Slip: For a driven wheel, slip is defined as the difference between the circumferen-
tial speed, vc = Rw0ω and the driving speed, vv, divided by the circumferential
speed, vc.

S =
vc − vv

vc

. (2.23)

The slip of a braked wheel is defined as

S =
vv − vc

vv

. (2.24)

The slip is often given as a percentage value.

Remark 2.7 The percentage value of the slip means that a value of S = 0.2, for
example, is referred to as 20% slip. Considering the slip in any of the equations, we use
in this book, we have to decide whether to use the decimal slip value or the percentage
value; usually we prefer the slip as an absolute value and not as a percentage.

Remark 2.8 The definition of the two cases – one for a driven and one for a braked
wheel – is necessary for two reasons: the asymmetry of the definitions in the numerator
ensures that the slip is always positive. The asymmetry in the denominator prevents
division by zero.

Remark 2.9 This representation, in which the tyre slip is a global simplification of
local phenomena in the contact patch, is an idealized view. If we examine the contact
patch closely, we will find areas in which the material particles slip more than in other
areas, where slip is less or even where stick can be observed.

Tyre longitudinal force coefficient: A tangential force, Fx, arises at the driven or the
braked wheel, depending on the slip and the normal force Fz:

Fx = μ(S)Fz . (2.25)

The value μ is referred to as tyre longitudinal force coefficient. This is a function
of the slip, S. The functions μb(S) for braking and μd(S) for driving differ slightly:
μ(S) ≈ μb(S) ≈ μd(S). This is the reason why we do not distinguish between
braking and driving with respect to the longitudinal force coefficient: μ(S) = μb(S)
= μd(S).

The function μ(S) is shown in Figure 2.10. The tyre longitudinal force coefficient
rises to the coefficient of adhesion, μa, and then falls again. The descending section
cannot be driven with a normal motor vehicle in a steady state. When we enter this
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Figure 2.10 Tyre longitudinal force coefficient, μ, as a function of the slip S

region, the slip increases rapidly to 1 and the tyre longitudinal force coefficient falls
to the coefficient of pure sliding3, μs.

The coefficient of adhesion, μa, is achieved in the range of S = 0.05 to S = 0.2.
The order of magnitude of μa ranges from 0.2 (snow) to 1.1 (dry concrete). The
coefficient of adhesion μa is highly dependent on the weather (rain, snow, ice and
temperature). Figures 2.11 and 2.12 show the wet braking capability of different tyres.
To illustrate this, a braking manoeuvre on a wet road is investigated. The graph shows
the mean deceleration, amean = Δv/T , during braking from 80 km/h to 10 km/h, with
reference to gravitational acceleration, g, (Δv = 70 km/h and T is the time that is
necessary to decelerate the car). The sum of the four wheel loads of a car (neglecting
aerodynamic lift) is Fztot = mtotg; the mean longitudinal inertia force during decel-
eration (neglecting rotational parts of the vehicle) is Fxa = mtotamean. Consequently,
μ = Fxa/Fztot = amean/g is a measure of the wet braking capability of the tyre4.

In the following, we look at two idealized (and in some senses artificial) examples
in order to illustrate the interaction between the slip and the rolling resistance. The
rolling resistance is due to the asymmetric normal force distribution, which has a
resultant moment.

Example 2.1 We consider a wheel rolling on an ideal slippery surface (think of soap
or oil on a pane of glass). The wheel moves with a velocity of vv and rotates with an
angular velocity of ω = vv

Rw0
We wish to answer the following question: What forces

3 The expressions coefficient of adhesion μa and coefficient of pure sliding μs are short but, strictly speaking, not
correct. They are used in the German literature; in ISO 8855 (2011) the expression maximum longitudinal force
coefficient is used instead of coefficient of adhesion. A detailed look at the friction physics of the tyre shows that,
sliding occurs in nearly every situation. Nevertheless, we use and prefer the expressions coefficient of adhesion, μa,
and coefficient of pure sliding, μs, here for convenience.
4 It should be emphasized that the different measurements are not comparable to each other, because the road was
changed by the braking manoeuvres during the investigations of Reithmaier and Salzinger 2002. This is obvious
from the measurements for the summer tyre 205/55 R16, which yield very high values for μ; the reason is that these
measurements were taken on a new road with a very high grip level.
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Figure 2.11 Mean deceleration divided by gravitational acceleration during braking from
80 km/h to 10 km/h for summer tyres (data from Reithmaier and Salzinger 2002)
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Figure 2.12 Mean deceleration divided by gravitational acceleration during braking from
80 km/h to 10 km/h for winter tyres (data from Reithmaier and Salzinger 2002)

and moments must act on the centre of mass, Scmw, so that this motion is converted
to a stationary state?

Thus we are looking for the force, X, and the moment, Md, which are necessary to
permit the motion described above (see Figure 2.4).

To calculate these quantities, we consider the equations of motion (αg = 0):

0 = Fx − X , (2.26)

0 = Fz − Z − Gw , (2.27)

0 = Md − Fxrwst − Fzew . (2.28)

Since the road surface is perfectly slippery, no tangential forces can be transmitted,
so Fx = 0. Consequently, from Equation (2.26) we obtain: X = 0. From the free-body
diagram of the body (mass of the body mb, Figure 2.4) we get

Z =
mb

4
g , (2.29)
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and we assume that the centre of mass lies in the middle of the vehicle (this means
that all wheel loads are equal). Eliminating Fz from the above equations, we obtain

Md = Fzew

=
(mb

4
+ mw

)
gew . (2.30)

It can be seen from this example:

1. that the rolling resistance is not necessarily associated with tangential forces Fx �=
0;

2. that rolling of the wheel (i.e. a movement without the occurrence of sliding in the
contact patch) is possible when a moment acts on the wheel; a driving force X �= 0
is not required.

Example 2.2 We consider a wheel rolling on an ideal rough surface (i.e. no sliding at
the contact area is possible; mathematically speaking μ(S) → ∞ for all S �= 0). Due
to the ideal rough surface considered on the wheel, we have

ω =
vv

Rw0
. (2.31)

The load is the driving torque Md =
(

mb

4 + mw

)
gew and the weight Z = mb

4 g of the
quarter body mass.

We want to calculate the tangential force, Fx, at the contact patch. From Equation
(2.27), we obtain

Fz =
(mb

4
+ mw

)
g . (2.32)

Substituting Equation (2.32) into Equation (2.28) for the sum of the moments, we
obtain

Fx = 0 . (2.33)

It can be seen in both examples that the resulting tangential force, Fx, can be zero
independent of the sliding or adhesion conditions in the contact patch.

In reality, when pure rolling of the wheel occurs, there are also sliding zones in the
contact area, which lead to a slight increase in the rolling resistance. The literature
therefore sometimes divides the rolling resistance into two parts, which results from
deformation of the tyre and that from friction.

2.4 Questions and Exercises
Remembering

1. What is the contact patch?
2. What does the normal stress distribution in the contact patch of a wheel look like?
3. What is the name of the value by which the resulting normal force of the normal

stresses is shifted in the contact area?
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4. How great is the magnitude of rolling resistance due to the asymmetric distribu-
tion of normal force?

5. What is the name of the ratio of rolling resistance, Fr, to the resultant normal
force, Fz?

6. What is the highest exponent in the relation between the coefficient of rolling
resistance, fr, and the speed?

7. On what do the coefficients f̃r0, f̃r1 and f̃r4 in the following formula depend?

fr(v) = f̃r0 + f̃r1
v

v0
+ f̃r4

(
v

v0

)4

(2.34)

8. How does toe-in affect the forces on the wheel?
9. Which of the resistances acting on the wheel has the greatest influence on the

wheel resistance when driving in a straight line?
10. How is the slip, S, defined?
11. Draw a free-body diagram of a rolling wheel.
12. What is the name of the ratio of the tangential force, Fx, to the vertical force, Fz ,

in the contact area?
13. How does this ratio depend on the slip?

Understanding

1. What causes the eccentricity, ew?
2. Explain the necessity of the asymmetric definition in the formula for the slip,

S, using the two manoeuvres racing start without ASR and full braking without
ABS!

3. Explain what happens with respect to the longitudinal force, Fx, when the slip,
S, increases from a starting value of S = 0 (the wheel load, Fz , is constant)!

Applying

1. In ABS (anti-lock braking system) one criterion for sensing the locking of a wheel
is that the angular deceleration exceeds a limit value. Estimate this limit for the
parameters given below (the mass of the body is equally distributed across all
four wheels; you will find more parameters than you need for the calculation in
the parameter list)! μa = 1.1, μs = 0.9, fr = 0.011 mw = 20 kg, mb = 1200 kg,
Jw = 0.1 kg m2 and rwst = 0.3 m.

2. The total mass of a vehicle is mtot = 1500 kg. What is the magnitude of the
rolling resistance of the whole vehicle?

Analysing

1. In ABS (anti-lock braking system), one criterion for sensing the locking of a
wheel could be that the slip, S, of this wheel exceeds a limit value. The difficulty
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is that the driving velocity is not known; the driving velocity can be estimated by
using the angular velocities of the wheel.

Analyse the following situation: Your ABS estimates the driving velocity of
the vehicle by calculating the mean of the circumferential velocities, vci, of the
four wheels, (i = 1, . . . , 4). During a braking process, the angular velocities
of all four wheels follow the same time dependency ωwi = Ω0(1 − t/T0), i =
1, . . . , 4. The braking process starts at t = 0 s and ends at t = T0. Is the ABS
control algorithm able to detect that the slip exceeds the slip limit?

2. Analyse the following situation: The road for the left-hand side of your vehi-
cle differs from the road on the right-hand side with respect to μa and μs (this
type of road is called a split-μ road). Now you should consider a braking process
assuming that the slip values for all four wheels are equal. What happens to the
vehicle?

3. Calculate the coefficient of rolling resistance for a velocity of vv = 30 m/s (f̃r0 =
9.0 × 10−3, f̃r1 = 2.0 × 10−3, f̃r4 = 3.0 × 10−4).

4. The power P necessary for overcoming the rolling resistance can be calculated by
P = Frvv, where Fr is the rolling resistance and vv is the velocity of the vehicle.
Calculate the power necessary for a car (m = 1500 kg; all wheel loads equal;
g = 9.81 m/s2) with the above mentioned coefficients of rolling resistance!

5. Consider a wheel (static radius rwst = 0.3 m, excentricity ew = 3 mm, wheel
load Fz = 2500 N). A driving torque M = 382.5 Nm is acting on the wheel. The
wheel is moving with the velocity vv = 30 m/s. Assume for this exercise that the
function μ can be approximated linearly

μ(S) = 10S . (2.35)

Calculate the angular velocity of the wheel! As this problem may be challeng-
ing, please follow the solution procedure:
(a) Calculate the tangential force Fx in the contact patch! (Remember that you

need one portion of the torque M to overcome the rolling resistance.)
(b) Calculate with the linearized function (2.35) the longitudinal slip S. (Remem-

ber that μ(S) = Fx/Fz.)
(c) Calculate with the longitudinal slip S the angular velocity ϕ̇w.



3
Driving Resistances, Power
Requirement

In the following chapter, we turn to other resistances (apart from the rolling resistance)
which have no effect on the wheel, but are mainly attributable to the whole vehicle. In
Section 3.1, we concentrate on the air forces that lead to aerodynamic drag. Section
3.2 deals with the gradient resistance that occurs when driving on an inclined road. In
Section 3.3, we discuss d’Alembert’s inertial forces resulting in the so-called accelera-
tion resistance. In Section 3.4, we use the driving resistances (total running resistance)
to set up the equations of motion for the entire vehicle. These form the basis for con-
sideration of the power in Section 3.5, in which the concept of supply and demand is
explained in the characteristic graphs.

3.1 Aerodynamic Drag

The air flow around the vehicle causes turbulence losses to occur in some areas, which
are reflected in aerodynamic drag. The largest contribution comes from the vortex
behind the car (cf. Figure 3.1). Small vortices at wheels, mirrors, the engine compart-
ment and at the A-column (cf. Figures 3.2 and 3.3) contribute to the aerodynamic drag,
too. The force exerted by the formation of these vortices on the vehicle is

Fa = cdA
ρa

2
v2

r . (3.1)

Here cd is the aerodynamic drag coefficient, A is projected area of the vehicle in
the longitudinal direction, ρa the density of air and vr the resulting velocity of the air,
which comes from the driving velocity of the vehicle, vv, and wind velocity, va, which
have to be added with reference to their directions.

Vehicle Dynamics, First Edition. Martin Meywerk.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/meywerk/vehicle

http://www.wiley.com/go/meywerk/vehicle
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Figure 3.1 Vortex behind a car (reproduced with permissions of Daimler AG)

Figure 3.2 Vortex at A-column (reproduced with permissions of Daimler AG)
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Figure 3.3 Vortex at engine compartment and at A-column (reproduced with permissions of
Daimler AG)

The drag coefficient depends on the flow direction. In order to achieve a better
comparison of vehicles, it is common to use a simplified approach in which the wind
speed is not considered.

Aerodynamic drag force: On a vehicle with the projected frontal area, A, travelling
at a speed vv in the longitudinal direction, a longitudinal force, Fa, the so-called
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aerodynamic drag force, acts as follows (wind velocity va = 0):

Fa = cdA
ρa

2
v2
v . (3.2)

Here cd is the coefficient of aerodynamic drag. The value of cd for modern passen-
ger cars is about 0.2–0.3. A typical size for the frontal area A is 2 m2.

3.2 Gradient Resistance

Gradient resistance: The gradient resistance (or climbing resistance), Fg, is the por-
tion of the weight of the vehicle which acts parallel to the road:

Fg = mtotg sin αg . (3.3)

The slope of roads is determined by the gradient, p, which is the rise of the road divided
by the (horizontal) run. Thus the gradient, p, is equal to the tangent of the inclination
angle:

p = tan αg . (3.4)

The gradient may also be indicated in percentage. For small angles (αg ≤17◦), we can
replace sinαg in the formula (3.3) for the gradient resistance by tanαg (the error is
less than 5%). Performing this substitution yields a simplified formula

Fg = mtotg sin αg

≈ mtotg tanαg

= mtotgp . (3.5)

The error resulting from tanαg ≈ sinαg can be calculated (for αg ≤17◦):

|mtotg sinαg − mtotg tan αg|
|mtotg sin αg|

=
| sin αg − tanαg|

| sin αg|
≤ 0.045 . . . . (3.6)

For small values of the angle αg (3.3), a second approximate formula can be derived
by substituting sin αg ≈ αg:

Fg ≈ mtotgαg . (3.7)

In this formula (3.7), it is essential to use radians as the units for the angle αg . The
specification of p can be found on traffic signs.

3.3 Acceleration Resistance

Acceleration resistance: Another resistance is due to d’Alembert’s inertial forces.
These inertial forces (from translational and rotational motions) are combined
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and are referred to as the acceleration resistance (or inertial resistance), Fi (see
Figure 3.4). The acceleration resistance not only takes into account the forces due
to the translatory acceleration, but also the forces in the longitudinal direction,
which arise due to the angular acceleration of the rotating masses.

We proceed by assuming that the excitation of the pitching motion is negligible.
Similarly, we neglect the inertial forces of the wheels and axles in the first step. These
are considered at the end and added to the acceleration resistance. The rotational iner-
tia of the wheels and the axles here are initially neglected, but can also be considered
analogous to the other rotational inertias. Figure 3.5 is a sketch of a vehicle from the
top. It shows the front axle (angular velocity ϕ̇a1 and moment of inertia Ja1) and the
engine-driven rear axle (angular velocity ϕ̇a2 , moment of inertia Ja2).

The vehicle is driven by the engine (angular velocity ϕ̇e and moment of inertia Je

with clutch and portion of the transmission) which is connected through the clutch
and transmission (transmission ig) and the Cardan shaft (moment of inertia Jc with
portion of the transmission) and the final drive or differential (transmission ratio id)
to the rear axle.

The question to be answered in the following concerns how large a force F ∗
i acting

on the centre of mass Scm has to be in order to accelerate the vehicle1.
We assume that the slip on the front wheels, S1, and the rear wheels, S2, is constant.

In order to calculate the force, F ∗
i , we derive the kinetic energy of the entire vehicle,

Ma,1

Ma,2Ma,1

Ma,2

Fx,1

Fx,2

Fz,1

Fz,2

Ga,2

Ga,1

Fa + Fi*

Gb

X1

X1

X2

Z1

Z1

X2
Z2

Z2

Figure 3.4 Free-body diagram of the entire vehicle (without inertia forces at the axles)

1 In this first step we denote the force, F ∗
i , which is necessary to accelerate the car with an asterisk to distinguish

it from the complete acceleration resistance, Fi. It is important that this force, F ∗
i , should not act as d’Alembert’s

inertial force in the centre of mass, but, nevertheless, we depict it in this position for convenience; later, when we
derive the axle loads with the equation of the moment of equilibrium in Chapter 6, only d’Alembert’s force, mbẍv ,
acts in the centre of mass.
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Figure 3.5 Free-body diagram for determining the acceleration resistance (without inertia
forces at the axles)

which we specify in terms of the velocity, vv = ẋv, of the vehicle. The acceleration
resistance can then be derived by Lagrange equations2.

We will proceed with the calculation of F ∗
i :

F ∗
i =

d
dt

(
∂Ekin

∂vv

)
. (3.8)

The expression Ekin is the kinetic energy of the vehicle. The potential energy term,
V , and the derivative with respect to the spatial coordinate, xv, yield the gradient
resistance and are therefore not considered here.

The kinetic energy of the system (without the axles and wheels) is

Ekin =
1
2
mbẋ

2
v +

1
2
Jc

(
idẋv

(1 − S2)Rw0

)2

+
1
2
Je

(
idigẋv

(1 − S2)Rw0

)2

. (3.9)

2 The Lagrange function, L = T − V , is the difference between the kinetic, T , and the potential energy, V . The
variables in L are velocities and displacements, e.g. xi and vi = ẋi (i = 1, . . . , n) for translational motions. The
equations of motion can be established by simply calculating derivatives:

d
dt

(
∂L

∂vi

)
− ∂L

∂xi

= 0 , i = 1, . . . , n .
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We assume that the transmission ratios id and ig are not dependent on time or velocity3

and obtain

F ∗
i =

(
mb + Jc

(
id

(1 − S2)Rw0

)2

+ Je

(
idig

(1 − S2)Rw0

)2
)

ẍv . (3.10)

3.4 Equation of Motion for the Entire Vehicle

In the following section, we present the equations of motion for a vehicle moving in
the longitudinal direction. We proceed from Figure 3.4. Equations of motion for the
front and rear axles are ( j = 1, 2):

maj ẍaj = −Xj + Fxj − Gaj sinαg , (3.11)

Jajϕ̈aj = Maj − Fxjrwstj − Fzjewj . (3.12)

The moment of inertia, Jaj , includes the wheels, brakes and hubs and, in the case of
a driven axle, the drive shafts. Assuming ideal bearings for the front wheels results
in Ma1 = 0. The acceleration of the axis, ẍaj , is equal to the acceleration, ẍv, of the
vehicle. We resolve the equations for the sum of the moments (3.12) for Fxj and
insert this into Equation (3.11) for the sum of forces in the longitudinal direction
and obtain (ẍaj = ẍv):

maj ẍv = −Xj − Gaj sin αg +
1

rwstj

(−Jajϕ̈aj + Maj − Fzjewj) . (3.13)

The equation of motion for the vehicle is obtained from the free-body diagram in
Figure 3.4:

X1 + X2 = Fa + F ∗
i + Fg . (3.14)

Here Fa is the aerodynamic drag force, F ∗
i is the acceleration resistance (without

axles, wheels, etc.) and Fg the gradient resistance. As in the previous sections, we do
not consider the pitching motion of the vehicle. We express the angular velocities of
the axles, ϕ̇aj , by the velocity, ẋv, of the vehicle. For the driven rear axle, this means

ϕ̇a2 =
ẋv

(1 − S2)Rw02
(3.15)

and for the front axle

ϕ̇a1 =
(1 − S1)ẋv

Rw01
. (3.16)

At this point, the asymmetry returns as the definition of the slip.

3 For continuous variable transmissions (CVT), the transmission ratio of this CVT may be dependent on time-or
velocity. Consequently, the derivative with respect to time and/or with respect to ẋv has to be taken into account. The
formula then becomes more complicated.
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If we replace the angular accelerations, ϕ̈aj , in the equations of motion for the axles
(3.13) by the body acceleration ẍv according to the relationship in Equations (3.15)
and (3.16), then resolve Equation (3.13) for X1 and X2, and substitute X1 and X2 in
(3.14) we obtain (wind velocity va = 0)4

Ma1

rwst1
+

Ma2

rwst2
= cdA

ρa

2
ẋ2

v (3.17)

+

(
mb + Jc

(
id

(1 − S2) Rw02

)2

+ Je

(
idig

(1 − S2) Rw02

)2
)

ẍv

+

(
ma1 + ma2 + Ja1

(1 − S1)
2

R2
w01

+ Ja2
1

(1 − S2)2R2
w02

)
ẍv

+ G sin αg

+ fa1Fz1 + fa2Fz2 .

Here, faj are the rolling resistance coefficients for the front and the rear axle.
Adding the masses mb, ma1 and ma2 to give the total mass mtot of the vehicle yields
the so-called rotational mass factor, λ,

λ = 1 +
1

mtot

(
Jc

(
id

(1 − S2) Rw02

)2

+ Je

(
idig

(1 − S2) Rw02

)2

+ Ja1
(1 − S1)

2

R2
w01

+ Ja2
1

(1 − S2)2R2
w02

)
. (3.18)

Now, Equation (3.17) can be rewritten as

1
rwst1

Ma1 +
1

rwst2
Ma2 = cdA

ρa

2
ẋ2

v︸ ︷︷ ︸
=Fa

+ Fi + Fg + fa1Fz1 + fa2Fz2 . (3.19)

Here Fi = λmtotẍv is the acceleration resistance of the entire vehicle; thus including
the wheels, axles, drive shafts and brakes. This equation yields the moments at the
wheels required to overcome the resistances. It is one of the fundamental equations in
longitudinal vehicle dynamics.

Remark 3.10 Equation (3.19) considers the wheels of one axle considered together.
We can also consider the wheels separately and then proceed in the same way to a
similar equation.

4 Here Ma1 < 0 is a small braking torque from the bearing. If the front axle is driven, too, the torque Ma1 is a portion
of the torque of the engine. In this case, we have an all-wheel-drive vehicle and there is an additional differential
between front and rear axles. The equation must then be modified, and this modification determines how the angular
velocities between front and rear axles depend on each other.
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Remark 3.11 These equations include many parameters that may be time dependent
or may depend on other variables, such as faj , Fzj , λ, rwstj , Rw0j , Sj . Not substituting
these parameters, which are not constant, with time-dependent variables enables the
equation of motion to be represented in this simple form.

3.5 Performance

The power which is necessary at the axles to move the vehicle is

Ptot = Ma1ϕ̇a1 + Ma2ϕ̇a2 . (3.20)

Substituting the angular velocities ϕ̇aj by the velocity ẋv of the vehicle, we obtain

Ptot = Ma1
(1 − S1)ẋv

Rw01︸ ︷︷ ︸
≥0

+ Ma2
ẋv

(1 − S2)Rw02︸ ︷︷ ︸
≥0

. (3.21)

Assuming that only one axle is driven (in this example, the rear axle with S =
S2) and that we are interested only in the power of this driven axle, we obtain from
Equation (3.19) by neglecting the difference between Rw0 and rwst

Ptot =
1

(1 − S)
ẋv(Fa + Fi + Fg + Fr)︸ ︷︷ ︸

=Ftot

, (3.22)

where Fr = frG was simplified assuming that the coefficients of rolling resistances
are equal at rear and front axle. Further neglecting slip (S ≈ 0) and making use of the
approximation sin αg ≈ tanαg = p for the gradient resistance, we obtain the power
necessary at the wheels of one axle (v = ẋv; velocity of wind va = 0):

Ptot =
(

fr + p + λ
ẍv

g

)
Gv + cdA

ρa

2
v3 . (3.23)

If there is wind in the negative �xv-direction with a speed va, Equation (3.23) reads
as follows:

Ptot =
(

fr + p + λ
ẍv

g

)
Gv + cdA

ρa

2
(v + va)

2v . (3.24)

The graph in Figure 3.6 shows different components of the power required by the
various resistances. The parameters were chosen as follows:
f̃r0 = 0.0087, f̃r1 = 0.0022, f̃r4 = 5.7258 × 10−4, mtot = 1350 kg, cd = 0.32, A =
2.2 m2, ρa = 1.226 kg/m3, va = 0.
Included in the graph are the power at the axle: Pr = Frv from the rolling resistance,
Pa = Fav from the aerodynamic drag force, and the sum of both Pbasic = Pr + Pa.
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Figure 3.6 Power demand of several resistances

The other curves Pg/i(y) = (Fg(p) + Fi(λẍv/g))v give the power needed to over-
come the gradient and acceleration resistances for the value

y = p + λ
ẍv

g
. (3.25)

The power, Pg/i, could be the result of a pure gradient resistance with p = y, but it
could also be the power of a pure acceleration ẍv = gy/λ or a combination of both in
accordance with Equation (3.25). The total power

Ptot = Pr + Pa︸ ︷︷ ︸
=Pbasic

+ Pg + Pi︸ ︷︷ ︸
Pg/i

(3.26)

is also shown.
The basic demand for power increases with the third power of the vehicle velocity,

v (velocity of the wind neglected) from Fa and the fifth power from Fr. Consequently,
there is a significant amount of power for high velocities (for example at 200 km/h,
approximately 165 kW is needed).

If we look at the total amount of power needed to climb a hill with a gradient of 5%
(p = 0.05), for example, it is obvious that for high velocities a large amount of power
is needed to overcome the gradient resistance.

The graph in Figure 3.7 shows the tractive forces (the resistances and the sums of
resistances) for the same circumferences as in Figure 3.6.

In the following, we assume that the maximum and minimum inclination, and the
maximum accelerations to be attained by a vehicle should lie between y = p + λ ẍv

g =
0 and y = p + λ ẍv

g = 0.55
This means that the drive power has to cover a particular region at a certain speed.

This area is marked on the graph in Figure 3.8. This power area corresponds to an area
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Figure 3.7 Tractive forces demand of several resistances
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Figure 3.8 Power demand area

for the tractive force (see Figure 3.9) which is also marked. This area represents all
the required power-vehicle speed or tractive forces-vehicle speed points which would
be necessary to have the capability to climb a hill with p = 0.55 at every possible
velocity.

We call this area the vehicle characteristic demand map. This demand map has to
be compared with the delivery map of the power train.

Before we start with this comparison, we will take a closer look at some boundary
conditions. These boundary conditions define the ideal engine delivery map.

We first assume that an ideal power train can deliver the maximum engine power
over the entire speed range. In Figure 3.8, this is shown by the horizontal line PP hyp.
In the tractive force graph in Figure 3.9 this horizontal line becomes a hyperbola,
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Figure 3.9 Forces demand map

the so-called ideal traction hyperbola, because the constant power yields the tractive
forces by F = Pe/v. The traction hyperbola FP hyp is depicted in Figure 3.9.

A further constraint to the ideal engine delivery map is determined by the maximum
speed of the vehicle (identified by the vertical lines Pv max and Fv max in the graphs
in Figure 3.8 and Figure 3.9, respectively).

The third limitation is due to the maximal tyre longitudinal force coefficient, the
coefficient of adhesion, μa. This limit depends on the axle load. Figures 3.8 and 3.9
depict the limit for a vehicle with a driven front axle. This means that the limit is
Fz1μa, where Fz1 is the section force between the wheels of the front axle and the
road. Neither graph takes into account the load transfer from rear to front axle during
acceleration nor other effects on axle loads (for example air lift forces), and, further-
more, the coefficient of adhesion, μa, decreases slightly with increasing velocity (in
these graphs the value of μa decreases linearly from 1.1 for the velocity v = 0 to a
value of 1.05 at the velocity v ≈ 72 m/s). This limit is marked by the lines Pμ lim and
Fμ lim.

These three boundaries result in an ideal engine delivery map. The ideal engine
delivery map is highlighted in Figures 3.10 and 3.11.

Contrasting with this is the characteristic map of real engines. Figure 3.12 shows
the characteristic map of a diesel engine as an example. We also call this characteristic
map a real engine delivery map.

The parameters shown are the power ratio P100/Pmax and the moment ratio
M100/M(Pmax) over the related rotational speed n/n(Pmax). Here P100 = P (100%)
is the maximum power which can be delivered from the engine at a particular
rotational speed while M100 = M(100%) is the full load torque, Pmax the maximum
power of the engine, M(Pmax) and n(Pmax) are, respectively, the moment and
rotational speed where the power of the engine reaches a maximum.

We compare the real engine delivery map (as shown in Figure 3.12) with the ideal
delivery characteristic map (Figure 3.10 or 3.11). Three differences are obvious:
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Figure 3.10 Ideal engine delivery map for the power

0 20 40 60 80 100 120 140 160 180 200 220
0

2

4

6

8

10

12

υ in km/h

F
..

.i
n

kN

Fr

Fideal

Fa
Fbasic

FP hyp
Fμ lim
Fυ max

Fg/i(y = 0.05)
Fg/i(y = 0.1)
Fg/i(y = 0.4)
Fg/i(y = 0.55)
Ftot(y = 0.05)
Ftot(y = 0.1)
Ftot(y = 0.4)
Ftot(y = 0.55)

Figure 3.11 Ideal engine delivery map for the tractive force

Remark 3.12 In the ideal delivery characteristic map, there should be a large region
in which the power is constant. In the case of a real characteristic map, however, this
is only possible in a very small region at the end of the speed range.

Remark 3.13 In the ideal characteristic graph, there is a short drop due to the traction
limit. This area is not covered in the real characteristic map.

Remark 3.14 The ideal characteristic map covers all speeds, the real characteristic
map of the engine is not able to deliver power below a certain speed. (We call this gap
in the characteristic map the speed, torque or power gap.)

One notable feature in the comparison of the ideal delivery characteristic map for
the torque is that the torque varies only a little over the range of rotational speed in
the real map, whereas the variations in the real map are large.
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Figure 3.12 Real engine delivery map for the tractive force

Furthermore, the efficiency, ηe, of the engine is plotted in Figure 3.12. The maxi-
mum efficiency of ηe = 0.37 is attained at one point in the characteristic graph. This
point is not on the full load characteristics (boundary line in Figure 3.12).

3.6 Questions and Exercises
Remembering

1. What is the gradient resistance?
2. What is the acceleration resistance?
3. How does the aerodynamic drag depend on the velocity?
4. What is the order of magnitude of the drag coefficient and the aerodynamic area?
5. The translatory inertias and the rotating masses are usually combined. Which fac-

tor plays a role here?
6. What order of magnitude does the rotational mass factor have?
7. How do we calculate the performance?
8. How do we obtain the required characteristic values for the traction force and

performance?
9. What limits the required characteristic value?

Understanding

1. Describe the ideal delivery characteristics for traction and performance.
2. Describe the real delivery characteristic map of an internal combustion engine.
3. What are the implications from comparing a real and an ideal characteristic map?
4. Why λi > λi+1 holds for the rotational correction factor?
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5. Why λi > 1 holds for the rotational correction factor?
6. Is it possible to build a vehicle with λi = 1?
7. Which of the following equations hold for the basic demand of power (no wind)?

fr is the coefficient of rolling resistance, it is assumed that the coefficients of
all four wheel are equal; G is the weight of the car; cd the aerodynamic drag coef-
ficient; A the cross-sectional area; vv the speed of the vehicle; av the acceleration
of the vehicle; p the gradient; and λ the mass correction factor.

More than one answer may be correct.
(a) Gfr + cdA

ρa

2 v2
v

(b) Gfr + cdA
ρa

2 v3
v

(c) Gfrvv + cdA
ρa

2 v3
v

(d) (Gfr + cdA
ρa

2 v2
v)vv

(e) (Gp + cdA
ρa

2 v2
v)vv

(f) (Gy + cdA
ρa

2 v2
v)vv where y = p + λav/g

8. The following statements have to be assigned to the points in the diagram of power
demand curves (cf. Figure 3.13).
(a) The total power demand for v = 150 km/h for a grading of p = 0.05 without

acceleration.
(b) The total power demand for v = 150 km/h for a grading of p = 0.00 without

acceleration.
(c) The total power demand for v = 200 km/h for a grading of p = 0.1 without

acceleration.
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Figure 3.13 Demand curve for the power

9. The following limits have to be assigned to the curve in the diagram of the ideal
characteristic map in Figure 3.14.
(a) Limit of adhesion μa.
(b) Limit of maximum power.
(c) Limit of maximum velocity of the vehicle.
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Applying

1. Consider a wheel (static radius rwst = 0.3 m, excentricity ew = 3 mm, wheel load
Fz = 2500 N). A driving torque M = 382.5 Nm is acting on the wheel. The wheel
is moving at a velocity vv = 30 m/s. Assume for this exercise that the function μ
can be approximated linearly

μ(S) = 10S . (3.27)

Calculate the angular velocity of the wheel!
2. Calculate for the following parameters the aerodynamic resistance and the

power necessary to overcome this resistance at driving speeds of vv = 10 and
vv = 60 m/s: aerodynamic drag force coefficient cd = 0.3, cross-sectional area
A = 2 m2, mass density of air ρa = 1.226 kg/m3. The speed of wind is zero. To
calculate the power Pa, please use Pa = Favv.

3. The mass density of air depends on the temperature, the pressure and the
humidity5.

Parameter Temperature Pressure Mass density
set T (K) p(Pa) ρa (kg/m3)

1 223.15 (−50 ◦C) 1.1 × 105 1.717
2 323.15 (50 ◦C) 6.24 × 104 0.648

(3.28)

Using the vehicle parameters from the second task of application calculate
the power of the aerodynamic resistance for the two densities in the table
(vv = 60 m/s).

5 For a calculation of the density see for example http://wind-data.ch/tools/luftdichte.php
?lng=en.

http://wind-data.ch/tools/luftdichte.php




4
Converters

Chapter 3 presented discrepancies between the ideal and the real delivery
characteristic map. These discrepancies require a conversion of the real characteristic
map supplied by an internal combustion engine with the aim of

1. closing the speed gap and
2. approximating the ideal delivery characteristic map by the real delivery character-

istic map.

Other aspects such as environmental protection play an important role in the devel-
opment of motor vehicles. Consequently, further environmental requirements have to
be fulfilled, such as the reduction in fuel consumption and emissions of pollutants.
Here we will look primarily at the two objectives listed above, i.e. closing the speed
gap and attaining an approximation to the ideal delivery characteristic map.

Figure 4.1 shows the real and the ideal characteristic maps for the torque and the
power together. The abscissa represents the speed, while the power or torque is plotted
on the ordinate. For simplicity, only one rotational speed axis has been drawn in the
diagram here. However, there should in fact be two axes: one for the speed of the
wheels and one for the speed of the motor. However, we assume that the rotational
speed of the motor has been translated in such a way that the speed limit of the real
characteristic diagram coincides with the boundary of the ideal characteristic field
(see the following example).

Similarly, the moment and the power of the engine have to be converted to the
corresponding magnitudes at the wheels.

Example 4.1 The maximum speed of a motor is 6000 rpm (revolutions per minute).
This is achieved in the highest gear at a speed of vmax = 50 m/s. The radius of the
wheel is rwst = 0.32 m. From the radius rwst and the maximum velocity vmax, we

Vehicle Dynamics, First Edition. Martin Meywerk.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/meywerk/vehicle

http://www.wiley.com/go/meywerk/vehicle


44 Vehicle Dynamics

obtain the maximum revolutions per minute of the wheel nw max (here the last term (s
rpm = s rev/min) is necessary to convert the units):

nw max = 60
vmax

2πr
s
rev
min

≈ 1492
rev
min

.

This means that, between the engine speed, ne, and the wheel speed, nw, there should
be a transmission ratio (from the differential) of id = 4:

id =
ne

nw

. (4.1)

The index d here indicates the ratio of the differential.

This transmission ratio from the example is already considered in Figure 4.1. We see
that it is necessary to have a basic transmission ratio, which is required to downsize the
speed of the engine. The differential is necessary in addition to this basic gear ratio,
which is why this basic transmission ratio is often implemented in the differential.
One of the higher gears of the transmission can then be designed with a transmission
ratio of 1, without a gear pair, in order to maximize the efficiency (cf. Figure 4.5).

The imperfections can be seen in Figure 4.1: the engine merely delivers torque and
power above a certain speed, and yet large parts of the ideal characteristic map are not
covered by the real characteristic map.

Converters are necessary to overcome these gaps.

Ideal characteristic map
for wheel torque and

wheel power

dieReal characteristic map
for wheel torque and

wheel power

Torque gap

Revs n

Revs n

Revs gap

Mwd , Mes

Pwd , Pes

Figure 4.1 Real and ideal characteristic maps
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4.1 Clutch, Rotational Speed Converter

To overcome the speed gap, we need a converter that ideally converts the torque and
the power from high speeds to low speeds. This is not possible without power losses in
the converter (as we see in the following), but it is possible for the torque. Hence, the
input and the output torques are equal, but the speeds are not. These two characteristics
can be used to define the speed converter with the following two equations:

Mo = Mi , (4.2)

no �= ni . (4.3)

Here, Mi is the torque at the input of the speed converter, Mo the torque at the output
and ni and no are the speeds of the input and output, respectively (here with the units
rev/s). If we look at the following brief calculation, it is immediately evident that the
input power Pi and the output power Po have to be different

Po �= Pi , (4.4)

where

Po = 2πno︸ ︷︷ ︸
ωo

Mo , (4.5)

Pi = 2πni︸︷︷︸
ωi

Mi . (4.6)

The principle of speed converters becomes clear when they are illustrated using
Figure 4.2. Two discs are fastened at the ends of two shafts. The left-hand shaft is
joined to the engine, and the right-hand shaft is connected to the transmission. The
engine shaft rotates at the angular velocity ωi = 2πni, and the torque is Mi. The ana-
logue parameters of the transmission shaft are ωo = 2πno and Mo.

The two discs are now pressed by a coupling force, F , against each other. This
means that the normal force acts on the friction surface and, if ωi �= ωo holds true,
then a frictional force occurs. From Figure 4.2, we obtain the sum of the moments
about the rotational axis (for the stationary condition, i.e. ω̇i = 0 and ω̇o = 0 which
results in vanishing torques due to inertia effects):

Mo = Mi . (4.7)

This condition for a speed converter is thus fulfilled. It can be seen in the free-body
diagram of Figure 4.2 that there are no inertial forces. Consequently, the relation Mo
= Mi holds true only during stationary operation. In non-stationary operation, the
error would be small if the moments of inertia were small (which is generally not the
case for a speed converter coupled with a reciprocating internal combustion engine).

With the help of Figure 4.3, we show an example of how a speed converter operates
in a vehicle starting on a hill with a slope of 10%. The diagram shows the moments
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Figure 4.2 Principal mode of operation of a speed converter

nE

Ideal characteristic map
for torque Mω and power Pω

Real characteristic map
for torque Me and power Pe

p     = 10%
“hill start”

desired revs ni

revs n

revs  n

F

F   :    Presses the discs
against each other;
Stick when F       =  F0

F

Mo ,   Mi

Po , Pi

Pi

Po

P

Mo, Mi

F0

F

F

F

n
ni

no

Figure 4.3 Engagement of clutch when starting on a hill

Mo and Mi and the power Po and Pi in each case, i.e. the output and the input of the
speed converter. The inputs Mi and Pi correspond to the motor torque Me = Mi and
the motor power Pe = Pi (here the index e stands for engine). The ideal characteristic
map and the real characteristic map (for the fourth gear) are shown in both diagrams
as well as the torque demand curve for p = 10% is highlighted in the diagram for the
torque. The intersection of this torque demand curve with the real characteristic map
indicates the necessary rotational engine speed, ne, at which the engine must rotate
to provide the required torque. We consider the process in which the contact force, F
(see Figure 4.2), is slowly increased until F attains the value F0. At this value, the two
clutch plates stick to each other. The motor speed is kept constant during this process
with the clutch in. If we increase the contact force, then the output moment, Mo, of the
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speed converter rises immediately, which indicates: Mo = Mi (see the small diagram
at the top left of Figure 4.3). The output speed, no, also increases with the contact
force, F . When the latter reaches F0, the discs stick and the speeds no = ni are the
same (if the output torque is slightly higher than the torque for driving on the slope).
This excess torque is necessary so that the vehicle can also be accelerated and no can
increase. From Mo = Mi and with Equations (4.5) and (4.6) we obtain

Po

2πno
=

Pi

2πni
, (4.8)

which can be rearranged as
Po = Pi

no

ni
. (4.9)

The efficiency η = no
ni

of the clutch increases to 1 with increasing force, F . If the
real characteristic map is attained, the speed converter is no longer needed. At this
point it should be noted that, as illustrated here, the vehicle generally does not move
forward from standstill in higher gears but in first gear. The characteristic diagram for
the fourth gear was chosen here purely for the convenience and ease of presentation.

Figure 4.4 shows more details of a friction clutch. The shaft of the motor is fixed to
a flywheel. The flywheel is rotatably mounted on the transmission shaft. In addition
to the flywheel, the clutch cover contains the diaphragm spring, the pressure plate, the
clutch lining and the throwout bearing (or release bearing). To disengage the clutch, a
force presses against the throwout bearing. In the engaged state, the diaphragm spring
presses the pressure plate with the clutch lining against the flywheel. The clutch lining
is firmly connected by the clutch disc to the transmission with the shaft. To disengage

Pressure plate
Flywheel

Shaft to engine

Clutch lining

Diaphragm spring

Throwout bearing
Shaft to the gearbox

Depress the clutch

Figure 4.4 Significant functional components of a friction clutch
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the clutch, a force, F , acts in the direction of the arrow, the pressure of the pressure
plates then decreases and the friction lining starts to slip on the flywheel.

4.2 Transmission, Torque Converter

We now turn to the second part, completing the coverage of the ideal delivery char-
acteristic map (Figure 4.1) with the help of the transmission (or torque converter).
Here we will only consider the stepped transmission. This raises the question of how
the ratios of the individual stages of the transmission should be chosen. We use the
transmission ratio to identify a specific stage of the transmission.

Transmission ratio: The transmission ratio, iz , is the ratio (the quotient) of the input
speed niz to the output speed noz of a transmission:

iz =
niz

noz

z = 1, . . . , Nz max . (4.10)

The index z indicates the stage of transmission with Nz max gears. The transmission
ratio, iz , is independent of the speed. The name gear ratio is used, too.

Progression ratio: The progression ratio, αgz , denotes the ratio (quotient) of the trans-
mission ratios for two adjacent gears:

αgz =
iz−1

iz
z = 2, . . . , Nz max . (4.11)

We consider the layout design of a five-speed transmission (Nz max = 5). The fifth
gear of a step-variable transmission can be designed so that the maximum speed of
the vehicle can be achieved at the highest speed of the engine. This is only possible
for vanishing resistances, which means that the gradient resistance for negative gra-
dients, p < 0, compensates for the sum of the rolling resistance and the aerodynamic
drag force. Furthermore, this maximum speed is not the maximum speed that can be
attained by the vehicle on a non-inclined road. In Figure 4.1, the real characteristic
diagrams have been drawn so that this is the case. The transmission of the final drive
or differential is used to adjust the maximum speed of the engine to the maximum
speed of the vehicle. The fifth or one of the higher gears of the transmission is often
selected as a direct gear with i5 = 1 by choosing an interlocking connection between
the input and output shafts of the transmission1, to minimize mechanical losses. In
higher gears, fuel consumption plays an important role. This is the reason for mini-
mizing losses and maximizing efficiency in the highest gear. The transmission ratio
of the first gear is selected so that the requirement for the maximum torque is met.
The transmission ratios have to be chosen such that a good approximation to the ideal

1 This locking interconnection is not possible for all transmission designs.
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characteristic map is achieved. Figure 4.7 shows the ideal characteristic map and the
real characteristic map on the left. The real characteristic diagram is already converted
by the differential (transmission ratio id and efficiency ηd) on the right boundary of
the ideal characteristic map. Apart from the gear ratio, iz = niz/noz , converting the
torque characteristic map also requires the efficiency, ηz:

Po = ηzPi . (4.12)

With Pi = 2πnizMi and Po = 2πnozMo (niz and noz in rev/s), we also obtain from
this equation:

Mo = Miηz
niz

noz

. (4.13)

The efficiencies ηz for manual transmissions are close to 1.
Figure 4.5 shows examples of transmission ratios2.
In some of the designs, the transmission ratio of 1 can be recognized, but not all

of the designs are geometric, which is obvious from Figure 4.6. In the last three cars,
the same automatic transmission is used; this is the reason why no differences can
be seen.

The design of gears 2, 3 and 4 can be prepared by two formal methods: the geometric
design and the progressive design. For the geometric design, we obtain

αg5 = αg4 = αg3 = αg2 . (4.14)
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A−class manual 66 kW (1)
B−class manual 66 kW (2)
C−class manual 125 kW (3)
E−class manual 100 kW (4)
G−class automatic 155 kW (5)
M−class automatic 159 kW (6)
S−class automatic 150 + 20 kW (7)

Figure 4.5 Gear ratios for several vehicles from Mercedes

2 Source: http://www.mercedes-benz.de/content/germany/mpc/mpc_germany_website/de.../home_mpc/passengercars
/home/new_cars/models/a-class/w176/facts_/technicaldata/models.html substitute a-class/w176 by: b-class/w246,
c-class/w205,e-class_ w212, g-class/w463_crosscountry, m-class_ w166, s-class/w222, Sept. 18th 2014.

http://www.mercedes-benz.de/content/germany/mpc/mpc_germany_website/de.../home_mpc/passengercars
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Figure 4.6 Progression ratios for several vehicles from Mercedes

The increments are therefore constant. Using the definition of the progression ratio
from Equation (4.11), Equation (4.14) is equivalent to

i4
i5

=
i3
i4

=
i2
i3

=
i1
i2

. (4.15)

From Equation (4.15), we obtain i1i5 = i2i4 = i23, which yields

i3 =
√

i1i5 , i2 =
√

i1i3 and i4 =
√

i3i5 . (4.16)

In a progressive design, the increments are chosen according to the following
equation:

αgz = αp1α
5−z
p2 . (4.17)

Defining the transmission ratios allows the characteristic maps for the power and
for the torque to be converted.

Figure 4.7 shows an example.
For both torque and power maps, we still detect differences between ideal and real

maps; in particular, gaps can be identified in comparison of the maps. In the geometric
design the gaps are approximately of the same size. The geometric design is used
mainly in utility vehicles such as lorries. The progressive design, in which the gaps
become smaller with increasing speed, is usually found in private or passenger cars
(cf. Figure 4.7). Due to the low driving resistance for private cars at lower speeds,
these gaps do not drop as much in weight. For higher velocities of 60 m/s or higher, the
significant increase in aerodynamic drag force requires smaller gaps. These small gaps
enable the driver to use the power limit (or the level slightly below this) to accelerate
the car without causing a collapse in torque and hence a collapse in the acceleration.

Figures 4.9 and 4.10 compare geometric and progressive transmission ratios
(Pwsi and Fwsi denote the supplied power and forces, respectively, at the wheels). A
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Figure 4.7 Basic operating principle of the manual transmission

reduction in the gaps can be clearly seen in the progressive grading gaps, while the
gaps in the geometrical grading remain almost constant. In the shift chart (in the left
graphs of Figures 4.9 and 4.10) it can be seen, that the speed decreases when shifting
is constant for the geometric design, whereas in progressive grading it decreases with
increasing gear.

One aim of the transmission is to cover the ideal characteristic map. Another aim
is that, for a broad area in the tractive force–velocity plane, the powertrain should be
able to deliver good efficiencies of the engine (the same applies to the power–velocity
plane). Achieving this latter goal calls for a smooth design of the transmission. An
absolutely smooth design can be achieved with a continuously variable transmission,
which means that every transmission ratio within a certain range can be attained. This
continuous design can be realized approximately by means of a transmission with a
large number of discrete gears. This is one reason why the number of gears in auto-
matic transmissions has risen over the course of time.

Figure 4.8 shows a nine-speed automatic gear unit. The spread of the transmission
ratio is i1/i9 = 9.15, the efficiency of the Trilok converter is η = 0.92. The efficiency
is increased by a lock-up clutch in non-converting mode of the Trilok converter. A twin
torsional damper and a centrifugal pendulum absorber reduce the torsional oscilla-
tions. The transmission has four planetary wheel sets and six shifting elements for
braking single wheels of wheel sets (brakes) or for joining wheels or wheel sets
(clutches).

For both the speed converter and torque converter, there are other operating princi-
ples and constructive design reactions, such as a continuously translating transmission
or a speed converter with fluid operation (cf. Chapter 17).

At this point, we have derived the demand of power and forces at the wheel resulting
from driving resistances, on the one hand, while, on the other, we have deduced the
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Figure 4.8 Nine-speed Mercedes automatic gear unit (reproduced with permissions of
Daimler AG)
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Figure 4.9 Geometric (second row diagrams) and progressive transmission (first row dia-
grams) ratios represented for the forces

supply of forces and power from a powertrain (internal combustion engine with a
transmission).

These quantities are summarized in Figures 4.11 and 4.12 for the forces and the
power, respectively. For the sake of completeness, the ideal characteristic maps are
depicted, too. In the next steps (in the following chapter), we will compare the sup-
ply of forces and power from the powertrain with the demands of a specific driving
situation, e.g. the demand when climbing a hill with p = 0.1.
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mission ratios represented for the power
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4.3 Questions and Exercises
Remembering

1. What is the aim of a speed converter?
2. What is the aim of a torque converter?
3. What is the definition of the transmission ratio?
4. What is the definition of the progression ratio?
5. Name two ways of designing a manual transmission.
6. What conditions apply to the input and output sides of torque and speed of the

speed converter?
7. What is the efficiency of a speed converter?
8. What is the ratio of the input-to-output speed of a torque converter?

Understanding

1. In Figure 4.13 you see a transmission.

1 2

3

Figure 4.13 Transmission

Which number of the gears shown belongs to the third gear?
2. Is it possible to design a combined speed and torque converter with Po > Pi for

steady-state condition?
3. Describe non-steady-state situations, where Pi < 0 and Po < 0 for a clutch or a

transmissions.

Applying

1. The full-load characteristic for the torque of an engine is approximated by a
parabola. This parabola interpolates the points in the table (M : moment; n: speed;
for convenience indices are omitted):

n in rpm M in Nm
n1 = 1000 M1 = 100
n2 = 3000 M2 = 200
n3 = 5000 M3 = 100

. (4.18)
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Calculate the interpolation parabola:

M(n) = a2n
2 + a1n + a0 . (4.19)

The maximum of the parabola (which is the maximum torque of the engine) is:
Mmax = M2 at n = n(Mmax). The minimum speed is nmin = n1, the maximum
speed nmax = n3, the corresponding torques are M(nmin) and M(nmax),
respectively.

Hint: You can use Lagrange’s interpolation formula:

M(n) =
3∑

i=1

Mi

3∏
j=1
j �=i

n − nj

ni − nj

. (4.20)

2. Calculate the maximum power of the engine and the revolutions per minute, where
the power becomes maximum.

Hint: You obtain the power from P = Mω, and thus the revolutions per minute,
where the power becomes maximum, by

∂P

∂n
= 0 . (4.21)

3. The aim of the remaining parts of this application (3 to 6) is to design a six-gear pro-
gressive transmission. The fourth gear should be a gear with a direct joint between
the input and output shafts; thus, the gear ratio is i4 = 1.

The radii of the wheels are rwst = 10.5
10π m.

Calculate the gear ratio id of the differential under the condition that the vehicle
speed of 180 km/h in the fourth gear is attained for the maximum engine speed
of n3.

4. We have the parameters for the aerodynamic drag of the car: cd = 0.3, ρa = 1.2
kg/m3, A = 2 m2.

Calculate the gear ratio i6 of the sixth gear assuming that the maximum velocity
of the vehicle in the sixth gear becomes maximum, i.e. for other gear ratios ĩ6 �=
i6 the maximum velocity is always less than that which you should calculate for
the gear ratio i6. Please follow the hints for the simplification of this calculation;
otherwise, the calculations become too complicated.

Hints:
• You obtain this gear ratio i6, if you calculate the section between the basic

demand of power (without the small rolling resistance Fr) of the vehicle and
the full load characteristic curve of the sixth gear assuming that this section
point is at the maximum power (cf. task 2 of application) of the engine.

• You are recommended to neglect the rolling resistance; otherwise, you will have
to calculate the roots of a fourth-order polynomial.

• You should assume that the efficiency in the sixth gear is η6 = 1.
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5. The mass of the car is 1200 kg, the maximum payload 800 kg and a towed trailer
500 kg (for calculation of the gradient resistance use 10 m/s2 and the simplified
formula Fg = Gp).

Calculate the gear ratio of the first gear i1. The car with payload and trailer
should be able to drive on an inclined road with p = π/10 at the maximum avail-
able engine torque of 200 Nm.

6. The progression ratio for a progressive design is

αgz = αp1α
6−z
p2 =

iz−1

iz
. (4.22)

Calculate αp1 and αp2.

Hint:
This or other similar derived formulas will help you:

αgzαg(z−1) =
iz−1

iz

iz−2

iz−1

=
iz−2

iz

= α2
p1α

12−(2z−1)
p2 (4.23)



5
Driving Performance Diagrams,
Fuel Consumption

In this chapter, we will discuss driving performance diagrams.

Driving performance diagrams: A driving performance diagram comprises
1. the (real) supply characteristic maps of the engine converted to forces and power

at the wheels as a function of the driving speed and in the same diagram
2. the required tractive effort (the driving resistances) or the effort for the power.

With the help of these diagrams, we can, for example, determine the maximum speed
without gradient, the climbing ability in any gear and the acceleration capability.

Figure 5.1 shows characteristic supply maps for each of the five gears (force and
power) and the demands for several driving situations for the standard set of param-
eters. These demand curves are based on the driving resistance and consist of the
essential components of the gradient resistance Fg, acceleration resistance (inertial
resistance) Fi, rolling resistance Fr and aerodynamic drag Fa.

The basic difference to Figures 4.11 and 4.12 is that Figure 5.1 shows an all-wheel
drive with respect to the adhesion limit. It is obvious that the limit in Figure 5.1 is
nearly twice as high as the limit in the other diagrams of Figures 4.11 and 4.12.

The supply characteristic diagram of the engine must be converted (by the trans-
mission ratios iz and the efficiency ηz of the transmission and the transmission ratios
id and the efficiency ηd of the differential) to be comparable with the demand curves.
Hence, the power and the torque of the engine are converted to tractive force, and the
power at the driven wheels and the angular velocity (or speed) of the engine must be
converted to the rotational speed of the wheels, nw, and then to the driving speed, v,
of the vehicle:

v = rwst2π
ne

izid︸︷︷︸
nw

. (5.1)

Vehicle Dynamics, First Edition. Martin Meywerk.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/meywerk/vehicle

http://www.wiley.com/go/meywerk/vehicle
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Figure 5.1 Driving performance diagrams; y = p + λẍ/g

First the torque, Me, from the engine must be converted using the total transmis-
sion ratio of the torque and speed converter, it, to the torque at the wheel. The total
transmission ratio it = izid consists of the transmission ratio of the differential id
and that of the transmission, iz . The torque at the wheel is, however, reduced due to
torque losses. The torque losses yields the efficiency of the torque and speed converter
ηt = ηzηd (ηt is the efficiency of the transmission in zth gear and the differential), so
the supply torque, Mws, at the wheels is

Mws = ηtitMe (5.2)

for driving, and

Mws =
1
ηt

itMe (5.3)

for braking.
The distinction between driving and braking is necessary, since the torque losses

are always braking torques, thus reducing the driving torque of the engine or increas-
ing the braking or drag torque of the engine. The equation for braking (5.3) holds
approximately for efficiency ηt close to unity:

ηt = 1 − ζt , (5.4)

with ζt � 1.
The torque loss, Ml, of the speed and torque converter is

Ml = ζtitMe . (5.5)
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The braking torque at the wheels is composed of the drag torque of the engine, itMe,
and the torque loss, Ml = ζtitMe:

itMe + ζtitMe = (1 + ζt)itMe . (5.6)

If we consider the following series expansion:

1
ηt

=
1

1 − ζt

=
(

1 + ζt −
1
2
η2

t + · · ·
)

(5.7)

we recognize the following relationship and hence the approximate validity of
Equation (5.3):

Mws = (1 + ζt)itMe

≈ 1
1 − ζt

itMe . (5.8)

Similarly for the power

Pws = ηtPe, (5.9)

Pws =
1
ηt

Pe, (5.10)

where in (5.9) the power for the driven axle is positive Pe > 0 and in Equation (5.10)
the power for the braked axle is negative Pe < 0.

We obtain Equation (5.9) as follows:

Pws = ωwMws

= ωwηtitMe

= ηt

=Pe︷ ︸︸ ︷
ωwit︸︷︷︸

ωe

Me

= ηtPe . (5.11)

The derivation of Equation (5.10) is similar.

Remark 5.1 In these calculations, we are simplifying the assumption of a constant,
speed-independent efficiency, ηt. However, the efficiency is a function of the angular
velocity, the transmission ratio and the torque itself.

Figure 5.1 shows the power and the tractive forces supply characteristic maps for
the different gears, including the loss. The demand curves are shown for different
values y = p + λẍv/g. In the following sections, we will have a closer look at these
diagrams in order to obtain characteristics of a vehicle.
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5.1 Maximum Speed without Gradient

To determine the maximum speed of a vehicle without any gradient of the road, we
determine the intersection of the demand power curve with the full load characteristic
of the fifth gear (see the upper diagram in Figure 5.2). The case illustrated yields the
speed v1. In the upper part of Figure 5.2, we see that the demand curve for y = 0
intersects the full load curve at its maximum. In this setting, the highest value for
the maximum speed can be attained in the fifth gear, z = 5, Pws5. In the fourth gear,
z = 4, Pws4, the vehicle reaches a maximum speed v2(z = 4) < v1(z = 5).

If we consider the maximum speed for a gradient of p = 0.12, it is obvious, i.e.
v3 for the fourth gear and v4 for the fifth gear that the reverse holds: v4(z = 5) <
v3(z = 4).

There are also possible settings for the fifth gear, other than the design described
above, in which the demand curve intersects the full load curve at the maximum power.
The lower part of Figure 5.2 indicates two other possibilities. For a characteristic
map, Pws1, the transmission, î5, is larger than that for Pws2: î5 > i5. For the third
characteristic map, Pws3, the following holds: ĩ5 < i5. It can be seen that for both Pws1
and Pws3, the maximum velocities v3 and v2 are, respectively, smaller than v1: v2 < v1
and v3 < v1. Comparing the maximum velocities for a gradient with p = 0.12, we
observe that the maximum velocity v5 for Pws1 is higher than v6 for Pws2: v5 > v6.

The decrease in the maximum velocity reaches a maximum for Pws3 and a minimum
for Pws1:

v2 − v4 > v1 − v6 > v3 − v5 . (5.12)

Here the variant Pws3 of the engine rotates at a low speed, i.e. in a range with a
higher efficiency. The lower speed and higher efficiency (see Figure 3.12) mean that
less fuel is consumed. This gear is therefore called an economic drive or overdrive.
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Figure 5.2 Determination of the maximum speed without gradient
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In the layout Pws1, the engine rotates at a higher speed for the same vehicle speed.
The two variants Pws1 and Pws3 differ significantly in power reserve, which can be
recognized by the drop in maximum velocities for the gradient (cf. Equation (5.12)).

5.2 Gradeability

The gradeability is the ability of a vehicle to drive on a road with a certain inclina-
tion of p. If the velocity v lies below the maximum speed, the excess of power (the
difference between the demand for driving with no gradient, p = 0, and the full load
power of the powertrain) can be used for accelerating or driving on an inclined road.
The gradient resistance, Fg, can be written as a function of the remaining resistances
Fr and Fa as,

Fg = Z(z) − (Fr + Fa) , (5.13)

where Z(z) is the maximum tractive force in gear z (on the full load characteristic
curve). The acceleration resistance should not be considered since no acceleration
ẍv = 0 occurs when the vehicle is driving on the slope. By replacing Fg = pG and
Fr = frG, it follows that

p =
1
G

(Z(z) − Fa) − fr . (5.14)

The full load characteristic curve Z(z) can be replaced by the supplied power from
the powertrain in gear z: Pwsz/v.

5.3 Acceleration Capability

The acceleration capability can be considered as similar to the climbing ability. The
demand characteristic maps in Figure 5.1 are shown for the parameter y = p + λ ẍv

g .
To obtain the acceleration capability, we have to replace p by λ ẍv

g in Equation (5.14).
We obtain

ẍv =
g

λzG
((Z(z) − Fa) − Gfr) . (5.15)

The main difference between the gradeability and acceleration ability is the rotating
mass factor, λz , which depends on the gear engaged.

In order to make statements about the acceleration ability of a vehicle, we often
use average data such as the time required for a vehicle to change from a speed of
v1 = 0 km/h to a speed of v2 = 100 km/h. To calculate this, the equation

ẍv =
dvv

dt
(5.16)

is rearranged (by reading dvv and dt as a differential in the mathematical sense)

dt =
1
ẍv

dvv . (5.17)
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Integration of Equation (5.17) yields

Δt =
∫ v2

v1

1
ẍv

dvv . (5.18)

The average acceleration, ẍv, for this case would be

ẍv =
v2 − v1

Δt
. (5.19)

The travel distance during the acceleration process can be calculated by using the
following relationship:

ẍv =
dvv

dt

=
dvv

dxv

dxv

dt

=
dvv

dxv

vv (5.20)

which, after solving for dxv, yields

Δxv =
∫ v2

v1

vv

ẍv

dvv . (5.21)

Due to the different rotational mass factors in different gears, the speed, voptg,
for which the gear needs to be changed to achieve a maximum climbing ability dif-
fers when compared with the speed, vopti, at which maximum acceleration ability is
attained. To illustrate this, we consider the upshift point from the first to the second
gear (cf. Figure 5.3). When we consider the free tractive force Zf (z) (Z(z) is the
maximum tractive force on the full load characteristic curve for the zth gear)

Zf (z) = Z(z) − Fr − Fa (5.22)

the intersection point of Z(z = 1) and Z(z = 2) yields the optimum velocity, voptg,
for upshifting from the first to second gear in order to achieve optimum climbing abil-
ity or in order to achieve maximum towed load for an inclined road. However, when
we look for this speed, voptg, in the acceleration capability, we obtain the following
for these two gears (Ẑf = Zf (z = 1) = Zf (z = 2)):

ẍ1.gear =
g

λ1G
Ẑf , (5.23)

ẍ2.gear =
g

λ2G
Ẑf . (5.24)

Since λ1 > λ2, the maximum acceleration at this speed voptg for the first gear is sig-
nificantly below the maximum acceleration for the second gear. The speed for the opti-
mum upshift point v = vopti for optimum acceleration capability is obtained if the ratio
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2. Gear

Z
1. Gear

Zf1 = Zf2λ1/λ2
Zf1

Zf2

Zf

Fr + Fa

Figure 5.3 Free traction, Zf , at the intersection of traction full load characteristics for the
first and second gears

of free traction for the first gear, Zf1 = Zf (z = 1), to the second gear, Zf2 = Zf (z
= 2), corresponds to the ratio of the rotational mass factors:

Zf1

Zf2
=

λ1

λ2
. (5.25)

The optimum upshift velocity, vopti, thus lies below the optimum point, voptg, for
optimum climbing ability: vopti < voptg.

5.4 Fuel Consumption

First, we will assume constant efficiency of the engine and transmission for the fuel
consumption, which involves a simplification because the efficiency of the engine
depends on the torque and the speed, while the efficiency of the powertrain depends
(slightly) on these quantities. From Figure 3.12, we know that the efficiency of the
engine depends on the torque (or power) and the rotational speed. Furthermore, the
efficiency of the entire speed and torque converter (clutch, transmission and differen-
tial) depends on the rotational speed and torque, too. In the first approach to fuel
consumption, the efficiency of the motor, ηe, and the speed and torque converter
including the differential, ηt, is assumed to be constant. To calculate the fuel con-
sumption, we need the work (or energy) Ww required for moving the vehicle. This
work is calculated from the power, Pw at the wheels:

Ww =
∫ T

0
Pw dt , (5.26)

where the power is approximately equal to the product Pw ≈ Fwvv (the slip is
neglected; Fw is the tractive force at the driven wheels). If B is the amount of fuel
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(e.g. in � = (dm)3) and Hl the lower heating value (e.g. in J/�), we obtain from the
amount of fuel, B, an energy which is equal to the work Ww:∫ T

0
Fwvv dt = Ww = ηeηtBHl . (5.27)

The lower heating value, Hl, is the amount of heat per unit volume (or mass unit) of a
fuel that is released during complete combustion, along with water that is produced in
the gaseous form. The lower heating value is relevant for internal combustion engines.
It differs from the upper heating value, Hu, by the heat of vaporization of water Qv:
Hl = Hu − Qv. Solving Equation (5.27) for B, we obtain the fuel consumption in
relation to the distance travelled, L:

B

L
=

1
ηeηtHl

1
L

∫ T

0
Fwvv dt . (5.28)

When driving with a constant speed v0 (i.e. Fi = 0 and Fw = Fr + Fa + Fg =
const.), we obtain,

B

L
=

Fr + Fa + Fg

ηeηtHl

. (5.29)

Here v0 = L/T is substituted. The fuel consumption is therefore low if the effi-
ciency of the motor and of the speed and torque converter are large and when the
driving resistances, Fr, Fa and Fg, are small.

The case of varying velocity vv(t) = v + Δv(t) (Figure 5.4) will be considered in
more detail below. Here v is the average velocity (with respect to time, not with respect
to the distance travelled)

v =
1
T

∫ T

0
vv(t) dt (5.30)

and Δv denotes the deviation

Δv(t) = vv(t) − v . (5.31)

Here we restrict ourselves to non-inclined roads because the gradient resistance pro-
vides a component independent of the velocity. With reference to the driving distance,

T0 t

Figure 5.4 Example of varying velocity
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the fuel consumption is given by

B

L
=

1
ηeηtHlL

∫ T

0
(Fr + Fi + Fa)vv dt . (5.32)

If we set Fr = frG, Fi = λG
g ẍv and Fa = ρa

2 cdAv2
v, we obtain the following for

the integral:∫ T

0
(Fr + Fi + Fa)vv dt = frG

∫ T

0
vvdt + λ

G

g

∫ T

0
v̇vvv dt +

ρa

2
cdA

∫ T

0
v3

v dt .

(5.33)
Since the rolling resistance, Fr, plays a minor role, we neglect the velocity depen-

dence of fr and assume a constant coefficient of the rolling resistance fr. The first
term is then

frG

∫ T

0
vv dt︸ ︷︷ ︸
v

= frGvT , (5.34)

where v is the average velocity. The second term can be substituted as follows( 1
2

d
dt

(
v2
v

)
= v̇vvv

)
: ∫ T

0
v̇vvvdt =

∫ T

0

1
2

d
dt

(v2
v)dt

=
1
2
(v2

v(t = T ) − v2
v(t = 0)) . (5.35)

When we use the integral to calculate the power in this way, we assume that the
energy of the braking process (usually the thermal energy in brake discs) can be com-
pletely recovered. In a conventional motor vehicle with an internal combustion engine,
this is not the case but would at least be approximately possible in a hybrid or electric
vehicle with a very high efficiency. We assume in the vehicle under consideration that
the initial velocity vv(t = 0) and the final velocity vv(t = T ) are the same, so that

vv(t = 0) = vv(t = T ) . (5.36)

This is not an essential restriction because we consider a long period of time, T (e.g.
a trip on a highway of 20 or 30 min or even longer). It follows that∫ T

0
v̇vvv dt = 0 . (5.37)

For the deviation, Δv(t), the following two equations hold:∫ T

0
Δv(t) dt = 0 , (5.38)

∫ T

0
(Δv)3(t) dt � v

∫ T

0
(Δv)2(t)dt . (5.39)
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Equation (5.38) results directly from the definition of Δv

∫ T

0
Δv(t)dt =

∫ T

0
(v(t) − v) dt

=
∫ T

0
v(t) dt︸ ︷︷ ︸
vT

−
∫ T

0
v dt︸ ︷︷ ︸

vT

(5.40)

= 0 . (5.41)

The second relation (5.39) holds because firstly the velocity deviation Δv is small
compared to the average velocity v and secondly because in the integral of (Δv)3 posi-
tive and negative parts cancel each other out to some extent, whereas no compensation
occurs in the other integral of (Δv)2 .

The integral of the third term can then be written as follows:
∫ T

0
v3
vdt =

∫ T

0
v3 + 3v2Δv + 3v(Δv)2 + (Δv)3 dt

=
∫ T

0
v3 dt︸ ︷︷ ︸

=Tv3

+ 3v2
∫ T

0
Δv dt︸ ︷︷ ︸
=0

+ 3v
∫ T

0
(Δv)2 dt︸ ︷︷ ︸
=σ2

vT

+
∫ T

0
(Δv)3 dt︸ ︷︷ ︸

�3vσ2
vT

≈ T (v3 + 3vσ2
v) , (5.42)

where σv is the standard deviation of v:

σv =

√
T̂

∫ T

0
(Δv)2dt (5.43)

Overall, for consumption the result is

B

L
=

1
ηeηtHl

[
frG +

ρa

2
cdAv2

(
1 +

3σ2
v

v2

)]
. (5.44)

This case uses the relation between the distance, L, the velocity, v, and the time, T :

L =
∫ T

0
v(t) dt

=
∫ T

0
(v + Δv(t)) dt

=
∫ T

0
v dt︸ ︷︷ ︸

vT

+
∫ T

0
Δv(t) dt︸ ︷︷ ︸

=0

. (5.45)
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On one hand, we notice the constant consumption due to the rolling resistance.
On the other hand, we can see the consumption change as a result of the speed and
aerodynamic drag.

In spite of the assumed complete recovery of energy when braking, the term
3ρa

2 cdAσ2
v due to velocity changes remains in the equation. This term is a

consequence of the quadratic dependence of the aerodynamic drag on the velocity.
Finally, we go to the consumption for speed-dependent efficiency ηe of the engine.

Figure 5.5 shows the characteristic diagram of the diesel from Figure 3.12, where it
had already been converted to the vehicle speed vv. Shown in the left of the diagram is
the fourth gear. The graph on the left shows three points of the greatest efficiency, too,
which can be joint by the curve of the greatest efficiency. We can obtain this curve
of the greatest efficiency by drawing a horizontal line for each value of the power
(the dashed horizontal line on the left-hand graph of Figure 5.5) and seek the constant
efficiency curve (these are the dot and dash lines) for which the horizontal, constant
power line is a tangent at the maximum of the constant efficiency curve. In the graph,
this is the example curve for ηe = 0.36.

The greatest efficiency curve is also the curve of the lowest specific fuel consump-
tion. The right-hand graph compares the lowest specific fuel consumption curves (for
two points) for the fourth gear and the fifth gear with each other.

If we compare a driving speed (vv ≈ 25 m/s, this is indicated in the graph on the
right by the vertical dashed line) for the two gears at a low power, P1, (lower hor-
izontal line), the efficiency in the fifth gear is then ηe(z = 5, P1) = 0.36 and in the
fourth gear it lies below ηe(z = 4, P1) < 0.36. If we consider the power P2 (upper
horizontal line), the efficiency in fourth gear is ηe(z = 4, P2) = 0.35, in the fifth gear
it lies slightly below ηe(z = 5, P2) < 0.35. This means that there are driving speed
performance regions in which the fourth gear is more efficient and those in which
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the fifth gear is more favourable. However, this last case is the exception. In general,
choosing a higher gear is more efficient for fuel consumption at a given speed and a
given power than choosing a lower gear.

5.5 Fuel Consumption Test Procedures

A lot of test cycles exist for measuring fuel consumption and exhaust emissions and
for comparing different cars. Examples include the NEDC (New European Driving
Cycle), EPA (Environmental Protection Agency, United States) FTP-75 (Federal Test
Procedure) or the SFTP (Supplemental FTP US06, SC06, Cold Cycle) or the 10 mode
or 10–15 mode from Japan. The Worldwide harmonized Light vehicles Test Proce-
dures (WLTP) is a test cycle developed by experts from the European Union, Japan,
and India to harmonize the various test cycles used in different countries. These tests
are usually executed on a chassis dynamometer. The road loads and the parameters
of the vehicle have to transferred to the dynamometer. In these cycles, driving speed
is defined as a function of time, with periods of standstill or stopping of the engine.
Figure 5.6 shows the velocity for the NEDC. In the acceleration and deceleration peri-
ods, the velocity depends linearly on the time, which means that in these periods the
acceleration is constant (in the other periods the acceleration is zero). The accelera-
tions and the decelerations are low, with the maximum value for the acceleration in
the city part of the cycle being: (3.75 km/h)/(1s) ≈ 1.042 m/s2.

Periods of cold starts can also form part of the cycles, whereas gradients are not
included. This means that energy recovery during negative inclination of a road is
not included in the tests. Several boundary conditions are defined, such as tempera-
tures, tyres and their inflation pressure, payload. In some older cycles, e.g. the NEDC,
shift points for manual transmissions are defined, too. As modern vehicles use man-
ual transmissions with up to six gears, fixed gear shift velocities are difficult, as these
shift points influence the results. One aim of the cycles is to compare different cars
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Figure 5.6 The velocity–time dependence of the NEDC
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Table 5.1 WLTP vehicle classes

Class Description Power to mass ratio P/mtot

1 Low-power vehicles P/mtot ≤ 22 kW/t
2 Medium-power vehicles 22 kW/t < P/mtot ≤ 34 kW/t
3 High-power vehicles P/mtot > 34 kW/t

Power, P , in kW, mass mtot in t

with respect to fuel consumption or exhaust emissions (e.g. CO or NOx). The test
procedures may differ according to the power and weight of the vehicles. In WLTP,
for example, there are three classes (cf. Table 5.1) of vehicles distinguished by the
power to weight ratio (in kW/t).

Different WLTC (test cycles) are defined for these three classes. The main differ-
ences are the velocity ranges, which for class 3, for example, cover a total of four
parts: low, medium, high and extra-high velocities.

In order to assess a vehicle with respect to a test cycle, the demand of power or trac-
tive force of this vehicle with respect to the test cycles can be plotted in the driving
performance diagram of a vehicle. The driving performance diagram for this purpose
should be extended by efficiency lines. Then the different demands can be assessed
with respect to efficiency. An overall assessment with respect to emissions is not pos-
sible with simple diagrams, because the engine is operated in a non-steady-state mode.

Figure 5.7 depicts the power and the tractive forces at the wheels from a powertrain
with an internal combustion engine and a five-speed transmission. It also shows the
points of maximum efficiency in the five gears, and an elliptical approximation of one
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Figure 5.7 Power and tractive forces supplied by the powertrain with an internal combustion
engine and the demand for power from NEDC
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isoline of constant efficiency. In addition to the information depicted in the preced-
ing diagrams, this figure also shows the demand for tractive force and power for the
NEDC. Apart from the demand for power and tractive forces, the negative portions are
shown, too. These negative parts can be used by hybrid or electric vehicles to recover
parts of the kinetic energy. The parabolic shape of all pieces of the force curves is the
result of the basic demand, and mainly the aerodynamic drag forces.

It is obvious that the demand for power for the NEDC is very low, which is the
result of the low value of acceleration, and that the ranges for good efficiencies are
not attained by these demand curves.

5.6 Questions and Exercises
Remembering

1. What is a driving performance diagram?
2. What are the essential components needed to determine the driving resistance?
3. On which variables do these components depend?
4. What data are needed for a driving performance diagram?
5. How should the engine characteristics be converted for the driving performance

diagram?

Understanding

1. How do we determine the switching point for the optimum acceleration capability?
2. How do you determine the fuel consumption?
3. Are higher or lower gears more fuel efficient? Explain the relationships.
4. Why do the shift points of the optimum climbing ability not coincide with those

of optimum acceleration?

Applying

1. The full load characteristic for the moment M of an engine is approximated by a
parabola:

M(n) = a2n
2 + a1n + a0 , (5.46)

where a2 = −0.00005 Nm/(rpm)2, a1 = 0.3 Nm/(rpm), a0 = −50 Nm
Calculate the full load curve for the tractive force as a function of the vehicle

velocity v
F (v) = b2v

2 + b1v + b0 , (5.47)

in the fourth gear i4 = 1; the gear ratio of the differential is id = 3, the radii of the
driven wheels are rwst = 0.3 m; the slip should be neglected.
Hint: You have to transform the revolutions of the engine and the moment.
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2. Use the parameters from task 1 of ‘Applying’.
Estimate the climbing ability in the first gear i1 = 3. For this, you should neglect

the basic demand Fr + Fa (otherwise the calculations become complicated).
Please, use g = 10 m/s2 and the simplified formula for the gradient resistance

Fg = Gp (the value p is too high for this formula, but the calculation is very easy
using with this value). The total mass of the vehicle is 1200 kg.





6
Driving Limits

Chapter 5 examined the derivation of maximum speed, climbing ability and
acceleration capability for vehicles. The main focus there was on the power or
tractive forces. In the case of μ > μa, it is not possible to apply the longitudinal force
to the road. This relationship was captured by the third limit of the real characteristic
map (page 37 in Chapter 3). We assume for this third limit in Chapters 3 and 41 that

1. only one axle of the vehicle is driven;
2. the centre of mass is in the middle of the car, which means (G is the total vehicle

weight):
Fz = G/2; (6.1)

3. that there is no transfer of axle load from the rear axle to the front axle and vice
versa;

4. there are no other effects which influence the wheel or axle load; and
5. vertical motion and pitching motion may be neglected.

In this chapter, we therefore turn in Section 6.1 to the vertical forces at the axles
depending on different factors. These vertical forces are essential for the maximum
transferable longitudinal forces when braking and accelerating the vehicle. Further-
more, the vertical forces affect the maximum possible tangential forces during cor-
nering. Section 6.2 is dedicated to the braking process. Section 6.3 examines the
distribution of braking forces.

We restrict our considerations to motions without oscillations in the vertical direc-
tion and without pitching oscillations.

1 In Figure 5.1, we assume an all-wheel-drive vehicle; load transfer from the rear to front axle and vice versa are
neglected and so the other effects on axle loads.

Vehicle Dynamics, First Edition. Martin Meywerk.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/meywerk/vehicle
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6.1 Equations of Motion

In the derivation of the equations of motion, we assume the free-body diagram in
Figure 6.1. In addition to the forces previously considered, a lifting force by the
air, Faz , and a moment, Ma, due to the aerodynamic forces are also included. The
equations of motion for the body and for the front and rear axles are given directly in
the free-body diagram.

The moment of inertia of the engine, Je, is not taken into account, and this would
be dependent on the orientation of the rotational axis of the engine: if the axis is
longitudinal, the moment of inertia does not appear, if the axis is lateral the moment
of inertia of the engine appears. In the latter case, the inertial moment of the engine is
Mie = Jeϕ̈e, where Je is the moment of inertia and ϕe is the angle of rotation of the
engine; the sign of Mie depends on the direction of the rotation. For vehicles with a
front engine and driven rear axles, the inertia of the drive train (clutch, transmission,
Cardan shaft without drive shafts), which rotates about the longitudinal axis, leads to
changes in wheel load between the left- and right-hand sides but not between the front
and the rear axles. Consequently, these inertia terms do not appear here, either.

For the pitch and vertical oscillations, we consider only steady states, so that z̈v = 0
and ϕ̈v = 0 hold.

In the following, we will examine the axle loads Fz1 and Fz2 between the road and
the front and rear axle respectively. For simplicity, it is assumed here that the radii of
the deformed wheels and the eccentricities are the same for all wheels: rwst = rwst1 =
rwst2 and ew = ew1 = ew2.

The sum of the forces in the z-direction gives

0 = Fz1 + Fz2 − (Ga1 + Ga2) cos α + Faz − Gb cos α . (6.2)
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Figure 6.1 Free-body diagram
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The equilibrium conditions for the forces in the x-direction are (the force F ∗
i =

mbẍv is d’Alembert’s inertial force and not the acceleration resistance of the body
from (3.8)):

F ∗
i + Fi1 + Fi2 = Fx1 + Fx2 − (Ga1 + Ga2 + Gb) sinα − Fax . (6.3)

The sum of the moments with respect to the point A on the rear tyres (see Figure 6.1)
(� = �1 + �2) is

0 = Fz1(ew + �) + Fz2ew (6.4)

+ (Fi1 + Fi2)rwst + (Ga1 + Ga2)rwst sin α

− Ga1� cos α + Mi1 + Mi2 − Gb�2 cos α

+ (Fax + F ∗
i )hb + Faz�2 + Ma + Gbhb sinα + Mie .

The inertial forces are rewritten with the help of acceleration ẍv and the angular
accelerations ϕ̈a1 and ϕ̈a2, where we choose the weight divided by the acceleration
due to gravity instead of the masses as a parameter. The overall result is

Fz1� = (Ga1� + Gb�2) cos α − ((Ga1 + Ga2)rwst + Gbhb) sin α

− Faxhb − Faz�2 − Ma − ((Ga1 + Ga2)rwst + Gbhb)
ẍv

g

− (Ja1ϕ̈a1 + Ja2ϕ̈a2) − Mie

− Frrwst . (6.5)

Here the rotating inertia terms for the wheels have been replaced by the correspond-
ing expressions Ja1ϕ̈a1 and Ja2ϕ̈a2

If we form the sum of the moments about point B (Figure 6.1), we obtain the axle
load for the rear axle:

Fz2� = (Ga2� + Gb�1) cos α + ((Ga1 + Ga2)rwst + Gbhb) sin α

+ Faxhb − Faz�1 + Ma + Mie

+ ((Ga1 + Ga2)rwst + Gbhb)
ẍv

g
+ (Ja1ϕ̈a1 + Ja2ϕ̈a2)

+ Frrwst . (6.6)

The individual summands can be divided into four groups, in which we do not
consider the negligibly small rolling resistance, Frrwst, in detail.

1. Static parts: The major portion of static parts is due to the weight, Gb, of the body.
For α = 0, the distribution of the total weight, G = Gb + Ga1 + Ga2, depends on
the position of the centre of mass. For the front axle load, Fz1, at α = 0 we obtain

Fz1 stat = Ga1 +
�2

�
Gb , (6.7)
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and for the rear axle load, Fz2,

Fz2 stat = Ga2 +
�1

�
Gb . (6.8)

When the vehicle is on an inclined road αg > 0, the front axle load decreases and
the rear axle load increases. In the following, we estimate how large the angle αg

must be, so that the front axle load Fz1 is just not equal to zero. To this end, we
neglect the axle weights of Ga1 and Ga2 and obtain from

0 = Gb�2 cos αg − Gbhb sinαg . (6.9)

the tangent of the limit angle:

tanαg =
�2

hb

. (6.10)

In this limiting case, the line of action of the weight, Gb, runs straight through
the point A. It can be seen that in practice this limiting case is of no importance,
since in general l2 > hb applies, from which α > 45◦ would follow. However, the
reduction of the front axle load plays a role when we look at the tractive forces
at the front wheels. If the front wheels are driven, the reduction of the front axle
load results in a reduction of transmittable tangential forces. With a driven rear
axle, the transmittable tangential force increases because of the higher normal
forces.

2. Air forces: The overall aerodynamic lift forces, Faz , and the aerodynamic torque,
Ma, can be represented via two forces, Faz1 and Faz2, acting at the front and rear
axle respectively. The axle loads due to these forces can then be written as:

Fz1 aero = −Fax

hpp

�
− Faz1 , (6.11)

Fz2 aero = Fax

hpp

�
− Faz2 . (6.12)

Here, hpp is the distance between the centre of pressure Spp and the road.
The lift forces, Faz1 and Faz2, can be calculated in a similar way to the aerody-

namic drag forces by using the lift coefficients cl1 and cl2:

Faz1 = cl1
ρ

2
Av2

v , (6.13)

Faz2 = cl2
ρ

2
Av2

v . (6.14)

Sample values given for the lift coefficients are based on the historical development
of the BMW 3 Series in Figure 6.2 and for the Porsche 911 in Figure 6.3.

A large lift coefficient at the rear axle has a destabilizing effect on the driving
behaviour. The aerodynamic drag forces decrease the front axle load and increase
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Figure 6.2 Lift coefficients of BMW 3 Series (data from Braess 1998)
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Figure 6.3 Lift coefficients of Porsche 911 (data from Harrer et al. 2013)

the rear axle load, whereas the aerodynamic lift reduces the load on both axles in
conventional passenger cars (however, this is not true for racing cars, for example).

3. Dynamic parts: We summarize the dynamic components and obtain

Ghcm = (Ga1 + Ga2)rwst + Gbhb , (6.15)

where G is the total weight of the entire vehicle, and hcm is the distance of the
centre of mass for the entire vehicle from the roadway. Neglecting the slip and
setting Rw0 = rwst in the definition of the slip, we obtain
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((Ga1 + Ga2)rwst + Gbhb)
ẍv

g

+ (Ja1ϕ̈a1 + Ja2ϕ̈a2) =
(

Ghcm

g
+

Ja1

rwst

+
Ja2

rwst

)
ẍv

= G(hcm + (λ∗ − 1)rwst)
ẍv

g
, (6.16)

where
λ∗ = 1 +

1
mr2

wst

(Ja1 + Ja2) . (6.17)

However, this relationship is valid for an engine with an axis of rotation in the
longitudinal direction of the vehicle. If this rotational axis is in the lateral direction,
the term must be extended. Assuming that the direction of rotation of the motor is
equal to the direction of rotation of the wheels, we obtain

λ∗ = 1 +
1

mr2
wst

(Ja1 + Ja2 + i2di
2
gJe) . (6.18)

The sign of the last term must be negative if the engine rotates in the opposite
direction.

During acceleration, the inertial forces diminish the vertical forces on the front
axle and increase them on the rear axle, whereas the opposite effect occurs dur-
ing braking. This means that in a front-wheel drive vehicle the maximum tractive
force decreases as acceleration increases because the tractive force is limited by
the coefficient of adhesion, μa.

All together, the following holds for the dynamic portion of the axle loads:

Fz1 dyn = −G(hcm + (λ∗ − 1)rwst)
ẍv

g
, (6.19)

Fz2 dyn = G(hcm + (λ∗ − 1)rwst)
ẍv

g
. (6.20)

Aside from the rolling resistance forces, it may be noted that the front axle loads
reduce when the vehicle is driving on a gradient, during acceleration and due to air
forces. Figure 6.4 (the middle diagram) depicts the three principal components of the
axle loads: the static, the aerodynamic and the dynamic components. To calculate the
dynamic components, we assume that the vehicle is accelerated at maximum, i.e. the
vehicle is accelerated at acceleration capability.

The maximum acceleration of a vehicle is not only determined by the power, but
also the coefficient of adhesion, μa, and the axle load of the driven axle. Since the
axle loads vary during acceleration, not every acceleration that could be theoretically
achieved at the acceleration capability limit is transferable to the vehicle.

The upper graph in Figure 6.4 shows the dynamic axle loads. We can see how the
axle loads for front and rear axles approach each other with increasing speed because
of the associated decline in acceleration. The total wheel load decreases due to the



Driving Limits 79

0 50 100 150 200 250
4

6

8

10

v in km/h→

F
..
.
in

k
N

 

 
Fz1
Fz2
(Fz1 + Fz2)/2

0 50 100 150 200 250
−5

0

5

10

v in km/h→

F
..
.
in

k
N

 

 
Fz1 dyn

Fz2 dyn

Fz1 stat
Fz2 stat
Fz1 aero
Fz2 aero

0 50 100 150 200 250
0

0.5

1

1.5

2

v in km/h→

f
1
,f

2
,µ

a

 

 
f1 = /Fz1

f2 =
F*

*
i

Fi /Fz2
µa

→
→

→

Figure 6.4 Components of axle loads

aerodynamic lift forces. In this example, the forces arising from the available accel-
eration, i.e. d’Alembert’s inertial force F ∗

i = mbẍv, shows that the adhesion limit in
first and second gear prohibits the huge theoretically attainable accelerations. This
can be seen when comparing the longitudinal force coefficient, f1 = F ∗

i /Fz1, with
the adhesion limit, μa. In third gear, the longitudinal force coefficient, f1 = F ∗

i /Fz1,
for the front driven axle is close to the adhesion limit, μa, whereas f2 = F ∗

i /Fz2 for
the rear driven axle is well below the adhesion limit.

6.2 Braking Process

In the following, we turn to the braking process. This is divided into different time
segments as follows.

Reaction time: The time from the first appearance of an obstacle to the start of
build-up of the braking force at the pedal (force at the foot, Ffoot), this period is
called reaction time, tr. This phase includes perception (There is something on
the road.), recognition (It is a child.) and the decision time (It is better to brake
than to steer to the right.) as well as the time required to move the foot from the
accelerator to the brake pedal. In Figure 6.5, the length of this phase is tr = 0.9 s.
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Foot pressure build-up time: After time tr, the foot force, Ffoot, rises. The time
to build the maximum braking force is called the pressure build-up time, tfb. In
Figure 6.5, the length of this phase is tfb = 0.8 s.

The deceleration of the vehicle, however, starts after the expiry of the time tr + tt
(tt: transmission time)

Transmission time: The transmission time, tt, is the time in which the tolerances in
the joints and bearings must be overcome. In Figure 6.5, the length of this phase is
tt = 0.2 s.

Rise time until maximum pressure: The time elapsed from the start of deceleration
to the maximum deceleration is called the rise time until the maximum pressure,
tb, or pressure build-up time. This is greater than tfb. In Figure 6.5, the length of
the phase is tb = 0.8 s.

Remark 6.1 A typical value for tr + tt is 0.6 s when the obstacle shows up in front of
the driver and 0.9 s when the driver has to turn his head to detect the obstacle. The time
that passes until the vehicle comes to a standstill is called the total stopping time, ts.
The total stopping distance, stot, consists of three parts, namely the reaction distance
(or thinking distance), s1, the brake engagement distance, s2, and the physical braking
distance, s3 (see Figure 6.5, lower graph).
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Remark 6.2 In modern brake systems, some of these times can be reduced to a certain
extent, with examples being the foot pressure build-up time, tfb, or the transmission
time, tt. Brake-assist systems are able to anticipate the driver’s wish for full brak-
ing and can therefore reduce the stopping distance. These systems detect the sudden
change of foot from the accelerator to the brake pedal and calculate the desired brak-
ing application, then build-up the maximum brake pressure independently of the pedal
force. Furthermore, the reaction time can be positively influenced by warning signals
in a head-up display. As a result, the actuation pressure build-up time and the initial
response time are shortened.

In the following, we derive an equation for the total stopping distance, stot.
The deceleration in the time interval tr + tt is zero, so the velocity is constant. We

immediately obtain the distance s1 (where vi is the initial velocity):

s1 = vi(tr + tt) . (6.21)

We assume a linear relationship for the deceleration up to the maximum value of
ẍf during the pressure build-up time, tb:

ẍ =
ẍf

tb
t . (6.22)

From this we then obtain the velocity during the pressure build-up period

v(t) = vi +
∫ t

0

ẍf

tb
t dt

= vi +
ẍf

2tb
t2 . (6.23)

Further integration yields the distance

s2 =
∫ tb

0
v(t) dt

= vitb +
ẍf

6
t2b . (6.24)

Note the negative value of ẍf . At this point, we assume that the vehicle does not stop
during the pressure build-up period (otherwise the equation will have to be modified,
because the upper limit of integration is less than tb). This assumption means that the
velocity at the end of the pressure build-up period is greater than zero. From Equation
(6.23), we derive

0 < vi +
ẍf

2
tb . (6.25)

Dividing this equation by ẍf < 0 yields

0 >
vi

ẍf

+
tb
2

. (6.26)
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The speed and time dependence during the full braking time is given by

v = v2 + ẍf

∫ t

0
dt

= v2 + ẍf t . (6.27)

Here v2 is the velocity at the beginning of the full braking phase:

v2 = vi +
ẍf

2
tb . (6.28)

Putting these together, we obtain the speed after the full braking phase which has to
be zero:

v = vi +
ẍf

2
tb + ẍf tf

= 0 . (6.29)

Solving Equation (6.29) for the time tf yields

tf = − vi

ẍf

− tb
2

. (6.30)

As the condition (6.26) holds, the time is positive: tf > 0. The distance s3 is

s3 =
∫ tf

0
v dt

=
∫ tf

0
(v2 + ẍf t) dt

= v2tf +
ẍf

2
t2f

= − v2
i

2ẍf

− vitb
2

−
ẍf t2b

8
. (6.31)

The total braking distance (or stopping distance), stot, is given by the sum of
Equations (6.21), (6.24) and (6.31),

stot = s1 + s2 + s3

= vi

(
tr + tt +

tb
2

)
− v2

i

2ẍf

+
ẍf

24
t2b . (6.32)

This equation shows factors that influence the stopping distance. Some systems in
vehicles are developed in order to reduce stot. Some can be seen in Figure 6.6.

• To reduce the reaction time, systems can help to enhance the driver’s perception,
recognition and decision making. Some such systems are shown in Figure 6.6:
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infrared systems or cornering lights, for example, help the driver to recognize obsta-
cles earlier. Head-up displays can direct the attention of the driver towards certain,
critical situations and hence reduce the time for perception, recognition or even
decision-making.

• The time for transmission and full pressure build-up can be reduced by electri-
cal systems such as the electrohydraulic brake (EHB) introduced by Daimler or
the electronic wedge brake announced by Siemens VDO (but not yet put into prac-
tice). The electronic systems can on the one hand reduce the above-mentioned times
while, on the other, they can be used to amplify the driver’s braking input. The latter
functionality is part of brake-assist systems.

• In the last group of systems, the maximum deceleration, ẍf , can be influenced. In
brake-assist systems, a sudden change of the driver’s foot from accelerator pedal to
brake pedal is taken as an indicator that the situation requires emergency braking.
In this case the brake-assist system amplifies the driver’s input and increases the
brake pressure to maximum, until the anti-lock braking system (ABS) limits the
pressure in the brake cylinders. These systems have been introduced because drivers
who are short on experience do not fully exploit the capabilities of braking systems
(including ABS onset). Hence, a significant amount of braking capability is not
used. In this respect, the brake-assist system helps to reduce the braking distance.

The second means of enhancing deceleration capability is to improve the coef-
ficient of adhesion. This can be achieved by improving tyre characteristics. If we
consider the mean deceleration capabilities of tyres in Figures 2.11 and 2.12, it is
obvious that there are differences in the magnitude of approximately 10%.
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Infra red night vision device
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Electrohydraulic Brakes (EHB)
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Figure 6.6 Factors influencing total braking distance



84 Vehicle Dynamics

6.3 Braking Rate

When considering the deceleration of the vehicle, we first refer to Figure 6.1. When
the vehicle is on a road without any inclination, by neglecting the rolling resistance,
air resistance and the rotational inertia, we obtain the equilibrium of forces in the
longitudinal direction of the vehicle:

Fx1 + Fx2 = mtotẍv . (6.33)

Remark 6.3 Neglecting the rotational inertia does not cause any major errors, as a
significant proportion of the braking force is required for deceleration of the trans-
lational inertia when the clutch is not engaged. The air forces support the braking
process. The rolling resistances are neglected because they are small compared to the
braking forces.

The longitudinal forces, Fxi, and the acceleration, a = ẍv, are negative during brak-
ing. In order to avoid the negative signs, positive braking forces B1 = −Fx1, B2 =
−Fx2 and a positive deceleration or braking ratio Z = −a/g are introduced. With
these, we obtain (G = mtotg):

B1 + B2 = GZ . (6.34)

The quotients B1/Fz1 and B2/Fz2 yield the longitudinal force coefficient, μ (see
the diagram in Figure 6.7).

The maximum tangential force is achieved for the coefficient of adhesion μa. If the
quotients B1/Fz1 and B2/Fz2 simultaneously become μa, the maximum braking ratio
Zmax of the vehicle (G = Fz1 + Fz2) can be derived from

μa(Fz1 + Fz2)︸ ︷︷ ︸
=G

= B1 + B2

= GZmax . (6.35)

1

Non-steady
μ

μa

μs

S

Figure 6.7 Tyre longitudinal force coefficient, μ, as a function of the slip S
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Consequently, the maximum braking ratio is:

Zmax = μa . (6.36)

The maximum braking ratioZmax is equal to the value of the coefficient of adhesion,
μa. In most cases, it will be below this value, as we shall see in the following. To obtain
the ratio of the braking force, Bj , to the wheel load Fzj (j = 1 or j = 2), we look at
the longitudinal force coefficient, which we denote by f1 and f2:

B1

Fz1
= f1 ≤ μa , (6.37)

B2

Fz2
= f2 ≤ μa . (6.38)

The demanded maximum braking ratio, Zmax, and therefore the shortest braking
distance can be achieved if neither the wheels at the front axle nor at the rear axle are
blocking (except in the case when both simultaneously achieve μa). This leads to the
condition in which the longitudinal force coefficients f1 and f2 at the front and rear
axles, respectively, must be equal, and in the case of the maximum braking ratio Zmax
equal to μa:

f1 = f2(= μa for Zmax) (6.39)

⇒ B1

Fz1
=

B2

Fz2
(6.40)

⇒ B1

B2
=

Fz1

Fz2
. (6.41)

This ratio of the braking forces will be referred to as the ideal braking force
distribution.

The ratio of the braking forces is of importance because in a vehicle only one brake
pedal is usually available, but an ideal braking force distribution requires individual
braking forces for the front and rear axles. The desired braking force is transmitted
using the pedal to the appropriate transmission paths (usually this is a hydraulic sys-
tem) of the braking system at the front and rear axles. Here, on the one hand, the
distribution between the front and rear axles is of crucial importance in order to
achieve good braking performance and, on the other hand, to prevent the wheels from
locking. If there is too much braking force on the front axle and the wheels slip, this
means that no more cornering forces can be transmitted and the vehicle can no longer
be steered; it therefore travels in a straight line. Locking of the rear wheels results in
a loss of cornering forces, which leads to instability: with a small lateral disturbance,
the vehicle turns from the longitudinal direction. In the ideal braking force distribu-
tion, there is no premature axle locking (or all four wheels lock simultaneously) so
the maximum possible deceleration is achieved.

Due to the hydraulic transmission from the foot power, there are few possibilities
of influencing the distribution. The hydraulic pressure can be divided into a constant
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ratio for the rear and front brakes or a pressure limiter can be present in the system,
which prevents a further rise in braking pressure for the control of the rear axle. In the
ideal braking force distribution, the ratio of braking forces, B1/B2, is not constant,
since the ratio of wheel loads is again dependent on the deceleration. Now we derive
the ideal braking force distribution; to do this, we use only simplified equations for the
wheel loads. From Figure 6.8, it follows that (we omit the index cm here, in Figure 6.8
and in the following, thus hcm = h)

Fz1 =
�2G

�
+

GZh

�

=
G

�
(�2 + Zh) , (6.42)

Fz2 =
�1G

�
− GZh

�

=
G

�
(�1 −Zh) . (6.43)

This results in the following ratio of the braking forces:

B1

B2
=

�2 + Zh

�1 −Zh
. (6.44)

Together with
B1 + B2 = GZ (6.45)

we have two Equations (6.44) and (6.45), which can be solved for the two variables
B1 and B2:

B1 =
�2 + Zh

�
GZ , (6.46)

B2 =
�1 −Zh

�
GZ . (6.47)

�1 �2

B1

G h

Fz1

B2
Fz2

–mx ̈ = mgZ = GZ

Figure 6.8 Dynamic wheel load under braking
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Figure 6.9 Ideal braking force distribution

It can be seen that the ratio is not constant but depends on the deceleration. In the
graph at the top of Figure 6.9, the wheel loads, Fzi, and the ideal braking forces,
Bi (i = 1, 2), are plotted against the braking ratio, Z = −a/g. It is very good to see
the steady growth of the braking force gradient on the front axle and the decreas-
ing gradient of the braking force on the rear axle. With stronger deceleration, the
braking force on the rear axle drops because of the dynamic reduction of the wheel
loads.

The middle graph is a plot of the longitudinal force coefficients, f1 and f2, for both
axles against the braking ratio, Z = −a/g. It additionally shows a maximum longi-
tudinal force coefficient flim = μa = 1.1. Here the ideal trends are obvious, since the
maximum braking ratio, Z , is achieved for any given longitudinal force coefficients.
The graph at the bottom shows the data of ratio B1/G and B2/G. This representation
is common in the literature. The black line is the ideal braking force ratio.

For implementation in a vehicle, a fixed ratio of the braking forces is derived from
the above design constraints. In the following, we shall consider various fixed braking
force ratios along with their advantages and disadvantages.

First, a design based on the static wheel loads can be implemented at a deceleration
of Z = 0. Then we have

B1

B2
=

Fz1stat

Fz2stat
. (6.48)
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Solving Equation (6.48) for B2 and setting this in G = B1 + B2, it follows

B1 = Fz1statZ . (6.49)

Using Equation (6.48), we obtain

B2 = Fz2statZ . (6.50)

In this braking force distribution, the rear axle is strongly over-braked, i.e. the rear
wheels lock prematurely, thus limiting the achievable deceleration. This relationship
can be seen clearly in the middle graph of Figure 6.10. With a longitudinal force
coefficient of f2 = 1, only a braking ratio Z ≈ 0.7 can be attained. On the other hand,
the front axle is clearly below its potential. If the braking force of an axle is below the
ideal possible force in the diagram of braking force versus braking ratio Z , we call
this axle under-braked, if it is above the ideal force, we call it over-braked. Hence, in
the static design of the braking force distribution, the front axle is under-braked, the
rear axle over-braked.

For μa = 1.1 = flim the (ideal) deceleration of Z = 1.1 could be achieved. In the
present case, however, onlyZ ≈ 0.7 is possible. It will therefore not use much braking
potential. One especially bad feature of this design is the locking of the rear axle. If
the wheels lock prematurely, which by definition they should not, then that should
happen on the front axle. This will only eliminate the ability to steer the vehicle, but
the vehicle will remain stable.
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Figure 6.10 Braking force distribution on the basis of the static wheel loads
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Figure 6.11 Braking force distribution on the basis of the dynamic wheel loads at Z = 1

The design based on the dynamic wheel loads at Z = 1 gives us a better braking
force distribution (see Figure 6.11). This shows the entire range up to Z = 1 f2 < f1.
One disadvantage is the strong convexity of the longitudinal force coefficient, f2, on
the rear axle at medium decelerations, which again results in much loss of braking
potential. An improvement can be achieved if the dimensioning is oriented towards
dynamic wheel loads at lower decelerations, e.g. Z = 0.8 (see Figure 6.12). Up to
a deceleration of Z = 0.8, f2 < f1 holds. The fi-curves are in the vicinity of the
ideal design f1 = f2 = Z , and therefore up to a value of Z = 0.8 not as much brake
potential is wasted as in the design with Z = 1.0. A disadvantage in the design Z =
0.8 in comparison to Z = 1.0 is that Z = 0.8 leads to a locking of the rear axle at
lower braking ratios than for a design with Z = 1.0.

Using a braking force limiter for the rear axle makes it possible to avoid
the above-mentioned locking of the rear axle and therefore further improve the
distribution. First, there is a layout as usual but this is only for very low decelerations,
usually Z = 0.6. Up to this point, over-braking of the front axle and under-braking
of the rear axle take place, but both differ only slightly from the ideal path. From
this point, for example Z = 0.6, the braking force B2 at the rear axle is constant, the
rear axle is under-braked. (see Figure 6.13). In the diagram, the improvement over
a continuous linear distribution is clearly seen. Both longitudinal force coefficients
are close to the ideal distribution. Over the entire range of braking, the front axle is
over-braked, while the rear axle is simultaneously under-braked, causing the vehicle
to remain stable.
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Figure 6.12 Braking force distribution on the basis of the dynamic wheel loads at Z = 0.8
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Figure 6.13 Braking force distribution on the basis of the dynamic wheel loads at Z = 0.6
and rear braking force delimiter
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The graph at the bottom of Figure 6.13 allows a comparison of the designs explained
above. The design with the force delimiter is close to the ideal design.

6.4 Questions and Exercises
Remembering

1. What are the essential parameters that constitute the wheel loads?
2. Explain the terms reaction time, tr, transmission time, tt and rise time until maxi-

mum pressure, tb.
3. What are typical magnitudes for reaction time, tr, transmission time, tt and rise

time until maximum pressure, tb.

Understanding

1. Which parameters affect the essential proportions of wheel loads?
2. What does the wheel load distribution depends on in the front and rear wheels and

in the left and the right wheels?
3. Explain the effect of air forces on wheel loads.
4. Explain the effect of inertial forces on the wheel loads.
5. What role does the mounting direction of the motor play on the wheel loads?
6. Why are static braking force distributions unfavourable?
7. Explain a dynamic braking force distribution.
8. Explain the braking force distribution with a force delimiter.

Applying

1. Calculate the aerodynamic lift forces (v = 60 m/s, A = 1.8 m2) for a vehicle built
between 1960 and 1970 on rear and front axles and the sum of those lift forces.

2. The following parameters are given: tr = 0.9 s, tt = 0.2 s, tb = 0.8 s, vi = 30 m/s,
ẍf = 8 m/s2. Calculate the total braking distance (stopping distance) and the effect
of doubling tr, tt or tb.

3. The height of the centre of mass Scm of a car is hcm = h = 0.8 m, the mass
m = 1200 kg, the distance of Scm to the front and rear axles is �1 = 2.0 m,
�2 = 2.5 m, resp.

Calculate the braking forces B1 and B2 for an ideal braking force distribution
for an acceleration of ẍ = −5 m/s2 (please, use g = 10 m/s2).

4. The height of the center of mass Scm of a car is hcm = h = 0.8 m, the mass m =
1200 kg, the distance of Scm to front and rear axle is �1 = 2.0 m, �2 = 2.5 m, resp.

Calculate the braking forces B1 and B2 for a braking force distribution that is
ideal for Z = 0.8, for an acceleration of ẍ = −5 m/s2 (please, use g = 10 m/s2).
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Analysing

1. Explain the effect on taking slip at the driven axle into account for the wheel load.
2. Explain the effect of increasing the pressure build-up time, tb, on the full braking

duration, tf?



7
Hybrid Powertrains

Some of the first (automotive) vehicles were electrically driven, but for more than 100
years now vehicles with internal combustion engines have dominated most areas of
automotive engineering. Since the last decade, more and more hybrid or purely electric
driven passenger cars have entered the market, with several reasons being responsible
for this. This chapter explains some basic concepts of hybrid powertrains. As the new
developments are continously changing the situation, the description here is restricted
to the basics.

7.1 Principal Functionalities

This section outlines the principal functionalities of hybrid powertrains. The idea of
hybrid powertrains involves combining an electric motor and an internal combus-
tion engine in order to combine the advantages of both and in order to avoid the
disadvantages.

Two disadvantages of internal combustion engines that seem to be the main reason
for the rise in the numbers of hybrid vehicles are the limited resources of fossil fuel
available and the air pollution they cause. In order to reduce dependency on fossil fuel
and to reduce air pollution, internal combustion engines are being combined with elec-
tric motors in hybrid powertrains. The following describes some modes of operation
using a so-called parallel hybrid powertrain. In parallel hybrid powertrains (details of
different kinds of powertrains are explained in Section 7.2) an internal combustion
engine and the electric motor are mechanically joined by a shaft (the joint may be
interruptible by a clutch). An example of a vehicle with a parallel hybrid powertrain
is shown in Figure 7.1.

With this combination of the internal combustion engine and the electric motor,
it is possible in some situations to meet the demand for power (or tractive force)
exclusively by the electric part of the powertrain, or, alternatively, it is possible to
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Figure 7.1 Vehicle with a parallel hybrid powertrain

Additional supply is converted
by the electric motor

Low demand is supplied by
the electric motor

F
w

s
e

 in
 k

N

υ in km/h
0

0

5

10

15

50 100 150 200

Additional demand is delivered
by the electric motor

Figure 7.2 The hybrid idea

reduce the amount of power provided by the combustion engine because of the power
delivered by the electric motor. An example is depicted in Figure 7.2. It shows the trac-
tive force supplied by a conventional powertrain with an internal combustion engine
and a five-speed manual transmission. The centres of the white circles are the points
of optimum efficiency for the combustion engine. Principal modes of operation are
able to reduce emissions, and here we explain the mode to reduce CO2 (or reduce fuel
consumption) and a mode to reduce NOx emissions. If the demand for tractive forces
in a specific situation is greater than the tractive force at optimum efficiency, the elec-
tric motor can close the gap and deliver the additional amount of tractive force. If the
demand in the situation is below the best efficiency curve, the excess energy can be
converted by the electric engine into electrical power, which can be stored as chemical
energy in the battery, and then used later to drive the electric motor. Consequently, one
advantage of a hybrid powertrain is a mode of operation for the combustion engine at
nearly optimum efficiency in order to reduce CO2 emissions. To achieve low demands
for power, another mode of operation is important to reduce NOx, CO and HC emis-
sions. For low power demand, the combustion engine runs in lean mode with higher
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emissions. Two possible hybrid modes can be applied to reduce these emissions: with
pure electric driving the emissions can be avoided, with an increase in power (the addi-
tional power is converted to chemical energy in the battery) the combustion engine can
be operated in regions with lower emissions.

After explaining one advantage of hybrid powertrains, we will look at different
modes of hybrid powertrains.

The first, explained in the preceding passage, is illustrated in Figure 7.3. One portion
of the power is necessary for the driven wheels to overcome the driving resistances, the
rest is converted by the electric motor into electric power, and then stored as chemical
energy in the battery. The amount of storable energy depends on the characteristics of
the electric motor, on the capability of the power electronics converter, and, lastly, on
the capacity of the battery.

In hybrid powertrains, the electric motor can be integrated in the powertrain, with
a small amount of additional space being necessary. Figure 7.4 shows an example in
which the electric motor is positioned immediately after the clutch; the transmission,
which would be the next component of the powertrain, is not shown in the figure. This
is, of course, a small electric motor, which cannot convert high amounts of power. We
call this mode the generator mode.

There is a secondary generator mode called regenerative braking. In this situation,
the demand for tractive force or for power is negative, because the driver wants to
decelerate the car and the driving resistances from the air, the tyres and any gradient
are too small to deliver the braking moment that the driver wants to act on the car. In
this situation, the driver applies the brakes. The electronic control unit recognizes the
driver’s request and switches the electric motor to generation mode in order to convert
a portion of the kinetic energy into electrical energy (cf. Figure 7.5). To increase the
efficiency, it is advantageous to disengage the clutch between the combustion engine
and the electric motor in order to avoid drag torques from the combustion engine
(which would be converted to heat energy in the combustion engine).

In the so-called boost mode, the torque of the combustion engine is raised by the
torque of the electric motor. This can be performed, as described at the beginning of
this section, to operate the combustion engine in an optimum or fairly high efficiency
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Figure 7.3 Split of the power from the internal combustion engine
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Figure 7.4 Electric engine integrated in the powertrain (reproduced with permissions of
Schaeffler)
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Figure 7.5 Regenerative braking

range, or it can be performed to increase the maximum torque available from the
combustion engine, as in the case of a sports vehicle, for example (cf. Figure 7.6).

The last mode of operation is a purely electric mode, in which all the power is deliv-
ered by the electric motor. The duration of this mode depends on the capacity of the
battery, and whether this mode makes sense within the entire speed range depends on
the maximum power of the electric motor and on the driving resistances. For high-
way coasting, this means driving at a moderate and constant velocity on a highway,
where the need for power results mainly from aerodynamic drag, rolling resistance
and gradient resistance (cf. Figure 7.7).
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Figure 7.6 Boost mode

IC engine

Electric motor

disengaged

Clutch
Gearbox

D
rive shafts

Differential gear

Battery

Power electronics

Figure 7.7 Purely electric mode

Another advantage of the hybrid powertrain is that start–stop operations are possi-
ble, which means that the combustion engine can be stopped, for example, at a traffic
light, and the electric motor can start the engine again. This eliminates the need for
an extra starter motor.

There are different hybrid levels, some characteristics of which are summarized in
Figure 7.8. The lowest level is the so-called mild hybrid, with a small electric motor,
usually in parallel mode. This type permits a start–stop functionality, and the elec-
tric motor can deliver an additional torque to support the combustion engine. The
magnitude of electric power is about 20 kW, which is used for starting the engine, for
delivering an additional torque at low velocities or for boosting the vehicle. Regenera-
tive braking, within limits of course, is also possible. The power necessary at a velocity
of 30 m/s, for example, to decelerate a vehicle of 1200 kg at 5 m/s2 is 180 kW, which is
significantly greater than the electric power in a mild hybrid vehicle. To compare these
values, it is reasonable to look at half of the desired braking power if only one axle is
driven and therefore only one axle can brake regeneratively. A mild hybrid requires
an electric power supply system with a higher voltage than the usual 14 V system.
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Figure 7.8 Hybrid levels
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Figure 7.9 Hybrid powerpack from GM, Mercedes and BMW (reproduced with permissions
of Daimler AG)

The second hybrid level is the full hybrid, which exists in different topologies
(serial, parallel or a combination of the two). The purely electric mode is possible
for longer distances and the combustion engine can be separated by a clutch from the
electric engine or the drag torque can be avoided by cylinder deactivation. A power-
ful electric engine is necessary for this kind of powertrain. An example of an electric
motor integrated in the automatic transmission is shown in Figure 7.9.

The highest hybrid level is the plug-in hybrid, which is a full hybrid vehicle with a
battery that can be recharged by an external power supply system.

The next level in this series will be a purely electric vehicle.
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7.2 Topologies of Hybrid Powertrains

Several topologies can be used in hybrid powertrains. The simplest of these is a paral-
lel hybrid in which an electric engine is mounted directly onto the combustion engine
(cf. Figure 7.10). A first approach to implementing this powertrain involves using only
one clutch (in Figure 7.10, a clutch with a trilok converter is integrated in the gearbox),
no clutch between the combustion engine and the electric engine is provided for in this
concept. This means that the combustion engine is firmly mounted with the electric
engine. This can be accomplished with high package densities (cf. Figure 7.4). This
picture shows a clutch with a flywheel and an electric motor. The parallel hybrid is
suited for both mild hybrid and full hybrid mode; although the latter needs an electric
engine with more power than those shown in Figure 7.4. The configuration with one
clutch is suitable for start–stop operation, for boosting and shifting operation point of
the combustion engine and for regenerative braking. However, the latter mode is not as
efficient in a parallel hybrid with one clutch as in a parallel hybrid with two clutches.
In the one-clutch configuration, the braking torque during deceleration is split, with
one portion being necessary for the drag torque of the combustion engine (this portion
is lost because it is converted to heat in the combustion engine), and only the other
portion being capable of conversion into electrical energy by the electric motor. This
disadvantage is avoided by a configuration with two clutches. Here, the combustion
engine is separated by disengaging the clutch, and the entire power output from brak-
ing can be converted into electric energy provided that the electric motor, the power
electronics and the battery are able to handle the power.

An essentially different design for a hybrid powertrain is a serial configuration as
shown in Figure 7.11. In this case, the combustion engine drives a generator (EM1),
which charges the battery. A second electric machine (EM2) is used for driving the
vehicle or for regenerative braking operations. In this configuration, the operation
mode of the combustion engine is independent of any actual demand for power or
tractive force of the vehicle. This means that the combustion engine can be operated
at certain points with high efficiency or with low emissions of NOx, CO and CH4.
As the driving torque must be delivered by the second electric machine, this machine
must have enough power to drive the car. The first electric machine must also have
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Figure 7.10 Parallel hybrid vehicle
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enough power to convert the power from the combustion engine. One advantage is that
no clutch and no transmission are necessary in the driving powertrain (EM2, Cardan
shaft, differential, drive shaft), so that this part of the serial hybrid is significantly
simpler than the analogue part of the parallel hybrid. Nevertheless, there are some
disadvantages with this type of hybrid powertrain. The first is the efficiency. As the
power from the combustion engine has to be converted from mechanical to electrical,
from electrical to chemical, from chemical to electrical and, finally, from electrical
to mechanical energy, the efficiency decreases as a result of the energy conversion
processes. Further drawbacks are evident in the number of components that incur high
costs and add a high weight. As both electric machines have to manage the full power
(the first machine, EM1, the whole power of the combustion engine, and the second,
EM2, the whole power necessary to drive the vehicle), these electric machines have a
high weight and are expensive. One advantage in this connection is the high potential
of EM2 to regenerate energy during braking.

The disadvantage of the high weight and the capability of the electric machines can
be reduced by using a serial–parallel hybrid powertrain (cf. Figure 7.12), in which the
two electric machines can be connected by engaging a clutch. If the clutch is engaged,
the powertrain is similar to a conventional parallel hybrid powertrain in which the
power of the combustion engine can be directly transmitted to the driven axle and
hence the operating mode is the same as that of a parallel hybrid. Direct connection of
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Figure 7.12 Serial–parallel hybrid vehicle
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Figure 7.13 Power–split hybrid vehicle

the combustion engine to the differential requires a transmission. Consequently, more
components have to be attached to the powertrain, but smaller electric machines can
be selected because the combustion engine can deliver power for high demands.

The last hybrid powertrain described here is the power split system (cf. Figure 7.13).
The central part of this system is a planetary gear. The combustion engine, a small gen-
erator and the Cardan shaft are joined to the planetary gear: the combustion engine to
the planet carrier, the ring gear to the Cardan shaft and the sun gear to the generator.
The power from the combustion engine can be used directly to drive the wheels, or a
portion of this power can be converted by the generator into electrical energy and then
this electrical energy can be used to drive the electric motor (in terms of efficiency, it
does not make sense to charge the battery). This means that the combustion engine can
be operated at a favourable point with high efficiency. The electric motor can be used
for boosting or for regeneration of energy during braking. In the case of regeneration,
the torque of the generator can be set to zero. The other torques in the planetary gear
are then zero, too, and there is no drag torque from the combustion engine to decrease
the efficiency of energy regeneration. One advantage of the power–split hybrid system
is that the planetary transmission ratio is continuously variable, which is made possi-
ble by the fact that the torque of the generator is continuously variable, too. This results
in a free choice of the engine operating point, which means that this type of hybrid
powertrain is similar to a continuously variable transmission (CVT), with respect to
the revolutions of the combustion engine.

Other possibilities also exist such as a combustion engine on one axle and an electric
motor on the other axle, giving a dual clutch hybrid. The various components for the
different types of hybrid powertrains are summarized in Figure 7.14. It is evident that
the number of components differ.

7.3 Regenerative Braking and Charging

Considering the fundamental equation of the longitudinal dynamics, we recognize that
the existing driving resistance from the air resistance and the rolling resistance needs
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Figure 7.14 Components of hybrid powertrains
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Figure 7.15 Driving performance diagrams

a portion of the available energy (kinetic energy and potential energy), so that only
the remaining power can be recovered during braking. Figure 7.15 shows the tractive
forces (which are mainly due here to negative values of y braking forces) and the
power for different negative values of y = p + λẍv/g. As there are absolute values up
to 1.2, it is obvious that the high values are the result of a braking process, but not of a
negative inclination of the road. Looking at the curve for y = −0.1, we recognize that,
up to a velocity of v = 131 km/h, the power (or tractive force) is negative. This means
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that between 0 and 131 km/h, it is possible to recover energy from kinetic energy. For
higher values of y ≈ −0.3 the power and the tractive forces are both negative, and
therefore it is possible to recover energy during regenerative braking over nearly the
whole velocity range.

The point of intersection with the abscissa defines the speed range in which energy
recovery is possible, and the shape of the curve, especially the distance of the curve
to the zero line, determines the portion of power that can be recovered. The portion
of recoverable energy due to the potential energy is generally small because the slope
does not attain very large values. The proportion of the energy recovery that can be
theoretically achieved due to a braking operation achieves significantly higher values.
The following considerations are used to judge these theoretically attainable values.

We will examine four scenarios below, for which we can determine the traction, the
moment and the recoverable power. The starting point is a vehicle with the following
data: cd = 0.3, A = 2 m2, ρa = 1.2 kg/m3, fr = 0.01, mtot = 1500 kg, g = 10 m/s2,
rwst = 0.3 m, it = idig is the total transmission ratio which is the product of the trans-
mission ratio of the differential id and the gearbox ig.

Stop and go: We start with the first scenario, which corresponds to a stop-and-go
situation. It is assumed that the vehicle is decelerated from a speed of v0 = 5 m/s
to a speed of 0 m/s. The acceleration used as the basis here is a0 = 2.5 m/s2. This,
for example, is a reasonable value for an ACC in city traffic or when continuously
stopping and starting in a traffic jam. We assume a constant negative acceleration;
this means that there is a linear decrease in the velocity:

v(t) = v0

(
1 − ta0

v0

)
. (7.1)

The duration of the braking is T0 = v0/a0 = 2 s. The mass correction factor is λ =
1.5. Assuming these values, we obtain a relatively small aerodynamic drag force
Fa = 9 N at v0 = 5 m/s, a rolling resistance of Fr = 150 N and an acceleration
resistance of Fi = −5625 N. Hence the force, Fmax rec that can be used for energy
recovery is minimal in the velocity interval considered at v0 = 5 m/s, and this force
is Fmax rec = −5466 N. The maximum force, Fmax rec, results in a maximum power
of Pmax rec = 27.33 kW. Since we assume a constant acceleration, the velocity
decreases linearly, so that the following relationship for the recovery power holds:

Prec = Pmax rec(1 − t/T0) . (7.2)

In order to determine whether this maximum power of 27.33 kW from an electric
motor is recoverable, we have to convert the power into a torque at the engine using
the radius of the wheels and the velocity of the vehicle and the total transmission
ratio of it = 12. In this configuration, we assume that we have a parallel hybrid
vehicle in which the electric motor is connected to the driven wheels via the gear
unit. The result is an engine torque of

Mmax rec = Fmax recrwst/it = 136.65 Nm (7.3)
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and a speed at which this torque must be applied by the electric motor of

nmax rec = 60v0/(2πrwst) ≈ 1910 rpm . (7.4)

City: The second case corresponds to a braking operation in city traffic with
an assumed speed of v = 15 m/s. The rotating mass factor is assumed to be
λ = 1.2, the overall transmission ratio it = 7. We obtain the following results for
this situation: Fmax rec = −4269 N, Mmax rec ≈ 183 Nm, nmax rec ≈ 3324 rpm,
Pmax rec ≈ 64 kW.

Country road: The third case concerns application of the brakes on a country road. (As
in the case of urban transport, recovery power will be charged only at one point, i.e.
at the initial velocity). The starting point is a speed of v = 25 m/s, λ ≈ 1, it = 4.
Here we obtain: Fmax rec = −3375 N, Mmax rec ≈ 235 Nm, nmax rec ≈ 3183 rpm,
Pmax rec ≈ 84 kW.

Highway: The fourth case concerns application of the brakes on a highway. (As in
the case of urban transport, recovery power will be charged only at one point, i.e.
at the initial velocity). The starting point is a speed of v = 35 m/s, λ ≈ 1, it = 4.
Here, we obtain: Fmax rec = −3159 N, Mmax rec ≈ 237 Nm, nmax rec ≈ 4456 rpm,
Pmax rec ≈ 111 kW.

Applying these values in a diagram for an electric motor, see Figure 7.16 (the forces
are depicted as grey bullets with a positive sign, the black bullets and the black and
dark grey lines are the demand forces for NEDC), we can see that the city driving
was well covered by the engine, whereas braking on the country road is at the limit,
meaning that the electric machine is not able to recover the braking power at a velocity
of 35 m/s.
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Figure 7.17 Curve of constantly recoverable power

Figure 7.17 shows the values of a negative inclination for which energy recovery is
possible from potential energy. The solid line is the limit, below which energy recov-
ery is possible; the other three lines are (p, v) for which the recoverable power is
Precov, where Precov = 10 kW, Precov = 20 kW and Precov = 30 kW. It is evident that
significant amounts of power can only be recovered for large values of p.

In the last part, we will discuss the fact that even the theoretical amount of regen-
erative energy cannot currently be stored as chemical energy in the battery by each
vehicle configuration. Another limiting factor in the energy recovery is that not all
axles are driven in many vehicles. Since energy recovery can only take place on the
driven axles; this is a limiting factor for vehicles without all-wheel drives. Further-
more, from the physical point of view of the vehicle, it is necessary for the braking
forces to be larger at the front axles than at the rear axles. This immediately leads to
the conclusion that the regenerative potential is greater for a front-wheel-drive vehicle
than for a rear-wheel-drive vehicle.

Assuming that the braking force at the front axle is 60%, the efficiency of the electric
motor is 90%, and the efficiency of the power electronics and the battery is 80%; these
values will result in a regenerative potential of only 41% of the theoretical value at
the front axle. Under similar assumptions of the efficiency of the electric motor and
the battery, a regeneration potential of 27% is obtained at the rear. With slightly better
values originating from an efficiency of 95% for the electric motor and 90% for the
battery, we see a potential of 49% on the front axle, and a potential of 32% on the
rear axle. With four-wheel-drive vehicles, we see a potential in each case which is
composed of the sum of the two.

The constraints on the theoretical regenerative potential explained above, which
relate to the driving resistances along with the regeneration of moments by an electric
motor, the distribution of braking forces and the constraints resulting from efficiencies
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reveal that only a small portion of energy in a vehicle can actually be regenerated. This
should always be considered when comparing different drive concepts.

7.4 Questions and Exercises
Remembering

1. Describe the idea of hybrid powertrains.
2. Describe different toplogies of hybrid powertrains.
3. Explain regenerative braking and charging for deceleration and for a negatively

inclined roads.

Applying

1. Consider a vehicle on an inclined road p = −0.1. Calculate the maximum regen-
erative power for a braking force distribution of 60% front and 40% rear for a
front-wheel-drive and a rear-wheel-drive vehicle at a velocity of v = 20 m/s. The
parameter are: cd = 0.3, A = 2 m2, ρa = 1.2 kg/m3, fr = 0.01, mtot = 1500 kg,
g = 10 m/s2.
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Adaptive Cruise Control

In this chapter, active cruise control is explained. In Section 8.1, the principal
components and a control algorithm are considered. Section 8.2 is devoted to the
measurement of distances and relative velocities. Thereafter, the approach ability of
a vehicle is discussed in Section 8.3.

8.1 Components and Control Algorithm

The abbreviation ACC stands for adaptive cruise control. ACC is an extension of
cruise control (CC). CC (also known as speed control) provides the opportunity for
the vehicle to be driven at a constant speed without the driver having to intervene by
using the brake or accelerator pedal. Different systems are in use for CC. Often there
is only one engagement in the engine, which is via the throttle position (or control of
the injection quantity in a diesel engine) so that the engine torque is set to maintain a
certain speed. Rapid interventions that are necessary for the traction control (ASR),
such as the firing angle adjustment or the suppression of individual injection pulses,
are not necessary in CC.

The starting point for a mathematical description is the basic equation of the longi-
tudinal dynamics which contains all the driving resistances.

We derived the equation of motion for the vehicle in Chapter 3, see Equation (8.1):

Ma1
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ẋ2
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+ G sin α

+ fa1Fz1 + fa2Fz2 . (8.1)

We do not need all the details, hence we reduce Equation (8.1) to the simpler form

1
rwst1

Ma1 +
1

rwst2
Ma2 = cdA

ρa

2
ẋ2

v + Fi + Fg + fa1Fz1 + fa2Fz2 . (8.2)

The torque is controlled so that a certain speed is maintained. A CC is relatively
easy to implement because of the presence of an engine control unit in all vehicles,
since it is only necessary to intervene in engine management in its simplest form.
Extensions of the CC are possible if brake interventions can be performed with the
existing ESP and with an additional sensor for measuring distances. In it simplest
form, CC is therefore possible in all vehicles.

ACC represents a significant expansion of the CC; initially the speed set by the
driver on a free roadway is maintained. If there are other vehicles in the trajectory
which are driving more slowly, the velocity ahead is no longer kept constant, but
a time gap or distance controller keeps the vehicle within a predetermined distance
(which depends on the speed) from the vehicle ahead. A controller structure for an
ACC is shown in Figure 8.1. We can observe the vehicle model and the engine model
in the control structure; both are inverted. Furthermore, it can be seen that the ACC is
connected to other systems, particularly to the ESP, the engine and the transmission
control.
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The vehicle model of longitudinal dynamics from Equation (8.2) can be used in two
ways:

1. The first and straightforward way is to calculate the maximum gradeability or the
maximum acceleration for a given wheel torque.

2. The second way is to prescribe one or more resistances and then to calculate the
necessary torque.

Since the first way is often used as a conventional, straightforward calculation,
the second, i.e. the opposite way, is referred to as an inverted model of longitudinal
dynamics. This is the reason for the expression ‘Vehicle−1’ in Figure 8.1.

The functionality of the ACC can be summarized in the steps:

1. The driver’s request is interpreted: the reference velocity, vref , which is requested
by the driver and which the driver has fixed via the ACC operating panel or lever,
is transmitted to the velocity controller (and the limiter for acceleration and the
driver warning device, usually a visual signal). This transmission is disrupted, for
example, when the driver requests a higher acceleration than that specified for the
ACC (kick down), when the driver brakes, when the clutch is disengaged, etc.

2. The next level of control consists of three units (besides the warning device, which
has no electronic control but a human control function serving, for example, to
motivate the driver to slow down):

The velocity (or speed) controller sets the desired acceleration in order to
reach the reference velocity, vref . For this purpose, the reference velocity, vref , is
compared with the actual velocity, vact. A function of the difference vref − vact
yields the desired acceleration aref : aref < 0, if vref − vact < 0, or aref > 0,
if vref − vact > 0. The velocity controller should choose aref such that it is
comfortable for the driver (e.g. not too high, so as not to unsettle the driver, not
too low, so as not to make the driver impatient). The velocity controller could
fulfil another task: the reference acceleration, aref , yields a desired torque for the
engine; it is therefore possible to operate the engine in an economical state.

The speed limiter could, for example, consider legal requirements or ISO stan-
dards. Figure 8.2 shows the acceleration limits and the jerk limit from ISO 22179.
In the first option, basic ACC control strategy in accordance with ISO 15622, the
ACC switches off below vlow,max = 5 m/s. The minimum set speed is vset,min =
7 m/s. The maximum or minimum accelerations are speed dependent. The require-
ments of ISO 22179 (FSRA: Full speed range adaptive cruise control; the system
is designed for standstill to maximum speed) prescribe different limits, but there
is also the possibility of regulating to a standstill.

The last control unit at this level is the distance controller (or time gap con-
troller). The input values of distance controller are the signals from the radar sensor
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(relative velocity of the vehicle travelling ahead and the distance to this vehicle)
and the actual velocity, vact. These data are used to derive the desired acceleration;
while the reference acceleration, aref , of the velocity controller is mainly positive,
the reference acceleration of the distance controller is negative if the distance is
too small, or it alternates in follow-up control.

3. The reference values for acceleration are coordinated in the next unit, which con-
siders special situations such as cornering. If the desired negative acceleration, aref ,
is larger (in terms of its absolute value) than the acceleration which the engine is
able to deliver from drag torque, additional braking torque from ESP has to be
applied to the wheels. If the ACC operates over the whole velocity range, an auto-
matic or automated transmission is necessary in order to change the gear during
velocity changes. A switchover from speed to distance control, and vice versa,
takes place automatically, so that the driver does not have to intervene.

4. The last unit consists of a PI controller, which is described below.

In order to determine the reference wheel torque, Mref , which is necessary to
achieve the reference acceleration, aref , we set aref , the actual velocity, vact, and the
gear ratio, z, in Equation (8.1). Using these three variables, it is possible to determine
the acceleration resistance, Fi, and air resistance, Fa, (with zero velocity of the
wind). Since the inclination of the road cannot easily be measured (the inclination
can, for example, be estimated from a longitudinal acceleration sensor, which has
to be corrected by the vehicle’s acceleration, which is the result of the estimated
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engine torque) and the current set of tyres and tyre inflation pressure are not known,
rolling and gradient resistance cannot be determined but merely estimated. The sum
of acceleration and air resistance can be used to estimate the desired wheel torque,
Mw ref , which yields the desired torque at the engine, Mref (z is the engaged gear, id
the gear ratio of the differential, iz the gear ratio of the transmission):

Mref =
1

idiz
Mw ref . (8.3)

Using the desired torque, Mref , and the actual speed, nact = idiznw, of the engine
(nw is the speed of the wheels) it is possible to determine the throttle angle, θe, which
is necessary to deliver the desired engine torque. An engine map such as that in
Figure 8.3 is used for this purpose. Looking at the engine map, Me = Me(ne, θe), as
a function of the two variables speed, ne, and throttle angle, θe, we see that the deter-
mination of the throttle angle θe is a kind of inversion of Me. That is the reason why
some published sources and Figure 8.1 refer to θe = M−1

e (Mref , nact) or engine−1.
The distance between the two vehicles which is necessary for safe operation

depends on the speed. The lower boundary for the distance is generally determined
by a minimum time gap τmin = 1s. This is the time it takes for the ACC vehicle to
travel the distance to the vehicle ahead. The minimum distance, dmin, is

dmin = τminv . (8.4)

In ISO 15622 the time gap is recommended between 1.5 s and 2.2 s.
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8.2 Measurement of Distances and Relative Velocities

The difficulty with ACC is to determine, in addition to the distance, the relative speed
of the vehicle ahead, while distinguishing between relevant vehicles driving in the
same lane and non-relevant vehicles travelling in other lanes.

Determining the distance and the speed is often performed by distance radar. There
are different ways to determine the distance with the help of radar. One measur-
ing principle involves an emitted radar wave being reflected from a metallic object,
with the reflected (electromagnetic) wave being processed by the receiver signal, thus
indicating the distance and the relative speed. The relative distance is based on the
determination of the time delay required for a radiated signal to return to the receiver.
The relative velocity can be determined from the Doppler shift of the frequency.

Since direct distance determination using the time delay of electromagnetic
waves and direct determination of the velocity via the Doppler effect are relatively
expensive (you need high sampling rates so as to detect the time delay and the
Doppler shift)1, ACC frequently uses distance radars with indirect determination
by means of a so-called FMCW (frequency modulated continuous wave). In this
method, the frequency of a sinusoidal signal is changed linearly (a frequency ramp)
with both negative and positive slopes. The frequency shift of the received signal
is based firstly on the Doppler effect due to the relative speed and, secondly, on the
fact that the received signal was transmitted at a time when a different frequency was
being transmitted to that being transmitted at the time of reception (the latter effect
is the result of the time delay).

Let us assume that fs is the frequency of the transmitted signal varying linearly
according to the following formula (f0 = 76, 5 GHz or f0 = 24 GHz)

fs(t) = f0 + m1t . (8.5)

We obtain the frequency of the received signal

fe(t) = f0 + m1

(
t − 2d

c

)
− 2

(
f0 + m1

(
t − 2d

c

))
vrel

c
. (8.6)

The second term of the formula is the frequency shift due to the time delay, the third
term represents the frequency shift due to the Doppler effect.

The received signal with frequency fe and the transmitted signal with frequency fs

are mixed by adding the signals; as the difference of the frequencies is small, the result
is a signal that includes a beat with a relatively low frequency (of half the frequency
difference). The second frequency component (the mean value of frequencies) of this
mixed signal is large. After low pass filtering and a fast Fourier transformation, we
obtain the frequency difference, Δf , by measurement. This frequency difference can

1 If a resolution of 5 m is needed for the distance between the vehicles, the time delay difference is 10 m/3 ×
108 m/s = 1/3 × 10−7 s, the magnitude of the relative frequency shift is approximately Δvrel/c = 1/3 × 10−8 s
for a velocity resolution of 1 m/s.
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be calculated from the two signals fs and fe at a time t; we obtain

Δf(t) =
1
2
|fe − fs|

=
∣∣∣∣−dm1

c
−

(
f0 + m1

(
t − 2d

c

))
vrel

c

∣∣∣∣ . (8.7)

If Δf1 is the measured frequency of the beat and if we substitute this in Equation
(8.7), we obtain

Δf1 = −dm1

c
−

⎛
⎜⎜⎜⎝f0 + m1

(
t − 2d

c

)
︸ ︷︷ ︸

=Δf�f0

⎞
⎟⎟⎟⎠

vrel

c
. (8.8)

Equation (8.8) is a non-linear function for two unknown variables, the distance, d,
and the relative velocity, vrel. This means that the distance, d, and relative velocity, vrel,
cannot be derived from one measurement of Δf1. At least one more measurement
is necessary. To obtain good results (with respect to errors from measurements), it
is necessary to have a second measurement with a different slope m2 for frequency
change. If the slope is changed to m2 and then the frequency of the beat, Δf2, is again
measured, a second equation for d and vrel is obtained

Δf2 = −dm2

c
−

(
f0 + m2

(
t − 2d

c

))
vrel

c
. (8.9)

Considering the intersection of Equations (8.8) and (8.9) in the graph, where the
time of measurement has to be chosen for the time t, we obtain the desired distance,
d, and the desired relative velocity, vrel. Assuming that the frequency changes are rela-
tively small, Δfi, (i = 1, i = 2), with respect to the fundamental frequency, f0, we can
neglect the non-linear term in Equations (8.8 ) and (8.9 ), whereby the determination
of d and vrel reduces to the simple solution of a linear system of two equations.

Figure 8.4 shows how the ramped frequencies are changed for a radar sensor. Here,
we observe more than two slopes. These slopes, which vary in both sign and magni-
tude can be used to determine the relative speed and distance more accurately.

We now consider the various frequency ramps with different slopes, mi

(i = 1, . . . , 4), as shown in Figure 8.4. A slowly rising ramp will now be added to
this figure (same absolute value of the slopes). If we assume that the measurements
of the beat frequency, Δf , have an error of ±1%, then the possible distances, d, and
relative velocities, vrel, fulfil the equation

(1 ± 1%)Δf = −dmi

c
−

(
f0 + mi

(
t − 2d

c

))
vrel

c
. (8.10)

The limits are shown in Figure 8.5. The parameters for this figure are: distance
d = 120 m and relative velocities vrel = 10 m/s. Ideally, without any error, the curves
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would intersect at the point (d, vrel) = (120 m, 10 m/s ). It can be seen that the
inaccuracy of this method, which uses only two fast ramps, is higher than that using
two slow ramps. Hence, using the third, slowly increasing function increases the
accuracy.

Multiple antennas and receivers are further used to predict the direction from which
the reflected beam arrives. Figures 8.6–8.9 depict the detection ranges for each of three
different transmitters. A number of devices sometimes also work with four transmit-
ting and receiving units.

Figures 8.6–8.9 illustrate sample configurations that need to be recognized by an
ACC. The examples include situations in which a vehicle leaves its lane and another
vehicle moves into the detection area, as shown in Figure 8.6. In this situation, the
slow-moving vehicle 1 is shown briefly between the two points in time within the
detection range of the ACC but then leaves it again on the right-hand side. The faster
vehicle 2 enters from the left. The ACC has to distinguish these two vehicles, which
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is not complicated in the situation shown due to the different positions and different
speeds.

Figure 8.7 illustrates a case in which the ACC switches from speed control to dis-
tance control because vehicle 1 cuts into the safe distance. In this situation, there
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to the faster vehicle travelling in the other lane on distance control

would be a reduction in speed of the ACC vehicle. If vehicle 1 was very slow, then
the ACC vehicle would also brake sharply. The circumstances shown in Figure 8.8
illustrate a case similar to that in Figure 8.6. In contrast to 8.6, the ACC has to inter-
vene in Figure 8.8 because the faster vehicle 2 is in the middle detection area and thus
in the same lane as the ACC vehicle. The fact that the slow vehicle 1 was previously
in this region means that ACC signals have to distinguish between the two vehicles
from the side detecting sections and from the measured speeds of the vehicles. For
this reason, ACC systems work with tracking algorithms to calculate the trajectories
of these vehicles.

Comparing the situations in Figures 8.8 and 8.9, we can see that the locations of the
vehicles involved are the same and only the directions differ. In the case of Figure 8.9,
the ACC may not interfere with the circumstances. Since ACC systems may also oper-
ate in a low speed range to some extent, the situation shows an increased requirement
for the ACC.

Since the ACC is connected to the ESP, automatic or automated transmission and
the engine control unit, all signals of these control devices are available. It is therefore
also possible for the ACC to recognize cornering due to the lateral acceleration sensor
of ESP. For such a situation, i.e. the detection of curves and of vehicles travelling
on a curved path ahead, it is possible to use these sensor signals. Again, there are
situations such as that shown in Figure 8.9, where allocation is clearly not possible.
Consequently, tracking algorithms are implemented in the ACC equipment to track
the vehicles on their prospective tracks.

The functionality of the ACC is restricted or is completely lost if there is a failure of
one of the control devices on which the ACC is based (engine control unit, transmis-
sion control and ESP). This is accepted as the ACC can be implemented much more
economically by relying on the existing actuators and sensors of these three systems
than if it were installed with its own separate set of sensors and actuators.
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8.3 Approach Ability

If a slow-moving vehicle comes in front of an ACC vehicle, the ACC vehicle has
to reduce its speed. The so-called approximation capability is the maximum velocity
difference, Δv0, that can just be controlled by the ACC.

Here it is assumed that the maximum acceleration, amax, is achieved linearly from
the value 0 (see Figure 8.10). The slope is γmax (this is the jerk, which should be
limited for comfort reasons, cf. Figure 8.2), the time which is necessary to build up
the maximum acceleration is τup. Consequently, the acceleration is given by

a(t) =

⎧⎪⎪⎨
⎪⎪⎩

γmaxt t ≤ τup
for

amax t > τup
. (8.11)

As a result, the time to build up the maximum acceleration, τup, fulfils the following
relationship:

τup =
amax

γmax
. (8.12)

By integrating the acceleration, we obtain the relative velocity, Δv(t). The relative
velocity, Δv(t), starts with the initial differential velocity, Δv0, then first decreases
parabolically and then linearly to 0. The value 0 is reached at time τe. We hereafter
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Figure 8.10 Determination of the approach ability



118 Vehicle Dynamics

assume that this time τe occurs after the maximum acceleration has been attained, so
τe > τup. The relative velocity curve is then given by

Δv(t) = Δv0 +
1
2
γmaxτ

2
up + amax(t − τup)

= Δv0 −
a2

max

2γmax
+ amaxt . (8.13)

The condition that the difference in velocity must disappear, Δv(τe) = 0, gives us
the equation for the time τe. Integrating the velocity curve, we obtain the curve of the
distance, Δs(t). This starts with the distance d0, which is present between the vehicles
when they merge, and decreases with time.

This distance must not fall below a certain minimum distance, dmin. Substituting
τein the formula for the differential distance, Δs, we obtain Δs(τe) = dmin.

Transformation yields a relationship between the minimum distance, dmin, and the
relative velocity.

8.4 Questions and Exercises
Remembering

1. Name the two control modes on which the ACC is generally based.
2. Give the order of magnitude for the acceleration limits of ACC.
3. On what mechatronic system components does the ACC rely?
4. What happens if one of these system components fails?

Understanding

1. Explain the functioning of ACC.
2. Explain the relationship between the longitudinal dynamics, the engine character-

istic map and ACC control algorithms.
3. Explain how the distance and velocity of vehicles travelling ahead are determined

with FMCW.
4. How should an ACC system be equipped by sensors in order to detect the complete

longitudinal dynamics?
5. Describe driving situations that illustrate the need for a vehicle tracking system.
6. In the context of longitudinal vehicle dynamics, what in general influences the

presence of disturbance variables on ACC systems.

Applying

1. Calculate the frequency of the beat resulting from the Doppler effect and of the time
for wave propagation (distance between the cars is 150 m) for the signal, which is
transmitted at the time t = 0 s.
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The frequency of the transmitted signal is fs = f0 + mt (f0 = 74 GHz), where
t is the time and m = 100 MHz/s.

The relative velocity of the cars is vrel = 3 m/s. Please use c = 3 × 108 m/s for
velocity of electromagnetic waves. The frequency shift can be approximated by:
Δf = 2vrelfs/c.

Hint: The beat frequency of the transmitted frequency fs and the received fre-
quency fr is Δf = |(fs − fr)/2|.
• Calculate the propagation time Tp for both ways (ACC car to run ahead car

and back to ACC car). For this, neglect the change in distance between the cars
during wave propagation.

• Calculate the beat frequency from wave propagation time between transmitted
signal and received signal for t = Tp.

• Calculate the beat frequency from the Doppler effect between transmitted signal
and received signal.





9
Ride Dynamics

The quality of ride is an important aspect to comfort for customers, and it is one
criterion in deciding whether or not to buy a car. The perception of ride quality can-
not be measured as an objective value, but depends on the customer’s perception and
experience and so there are a great deal of factors influencing the customer’s judge-
ment of comfort: age, gender, whether the customer is used to drive high-quality or
low-quality cars, perhaps even the customer’s health. Besides these intrinsic factors,
which cannot be influenced by the car manufacturer, there are extrinsic factors: noise,
vibration, heat and flow of air. All these latter factors can be influenced. In this chapter,
we concentrate mainly on vibration, the sources of vibrations and how they can be
reduced or influenced.

As ride quality is an important factor for a customer to purchase a specific vehicle, it
is an important aspect for an original equipment manufacturer (OEM), too. Although
ride quality is subjective, there are many methods of measuring or judging ride in
order to obtain an objective assessment.

The first stage of modern vehicle development is nowadays purely virtual, which
means that the entire vehicle exists only on various computers as a CAD model, as
a model for judging the stiffness of the body, as a model for the driving dynamics
of the vehicle, as a crash model for passenger safety, as a vibrational model for the
powertrain and, depending on the OEM strategy in the virtual development process,
there may be other models as well. This means that the ride quality as one aspect of
comfort can also be judged in the early stages of development with the aid of models.

The main difference between these virtual methods is whether a human being
is present to judge the ride quality or whether there is a perceptual model of the
human being.

The method with a human being requires a driving or comfort simulator; this sim-
ulator describes the dynamic behaviour of the car by means of multi-body systems
(MBS). In the method without the human being, a procedure is required to compute
the human being’s perception.
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Figure 9.1 Internal and external sources

We concentrate in this chapter on sources of noise and vibration and on the
fundamental means of influencing the noise and vibration in the environment of a
passenger, i.e. the vibration of the seat, the steering wheel and the area where the feet
are placed (e.g. pedals) and the noise received by the ear.

The excitation of vibrations and noise can be roughly divided into internal and exter-
nal sources. Apart from the sources of excitation, the transfer paths from the source
to the passenger are also important in order to reduce noise and vibration arriving at
the passenger.

The external sources (cf. Figure 9.1) are the result of uneven roads (road roughness
and single obstacles such as bumps), from the headwind and from noise generated
by other vehicles. Uneven roads and noise from other vehicles cannot be influenced,
they are determined by the environment. Wind from the weather is predetermined,
too, while the noise generated by protruding parts of vehicles can be influenced by
an OEM. The avoidance of such protruding or turbulence-generating parts is an issue
of aerodynamic optimization of a vehicle, and this area of vehicle development is not
dealt with in this consideration.

The internal sources are mainly the engine and the rotating parts of the whole pow-
ertrain (transmission, Cardan shaft, differential, drive shafts and wheels). These parts
are taken into consideration in the development of a new car. The internal sources are
caused by the engine firing pulses (in the case of an internal combustion engine), by
reciprocating pistons and by mass imbalances in all rotating parts.

In addition to the sources, the transfer paths also play a vital part in judging and
optimizing vibrations. Apart from the sources, Figure 9.2 illustrates some possible
transfer paths (not all). The transfer paths are divided into those belonging to the
external and those belonging to the internal sources.

One crucial factor is joints between sources (e.g. internal combustion engine, mass
imbalance of a shaft) and chassis, for example, the centre bearing of the Cardan shaft,
the mounts of the powerplant (engine and transmission), the bushings between the
suspension and the chassis or between the subframe and the chassis or the hangers of
the exhaust system.

A huge effort is made to isolate oscillations of the powerplant from the chassis, espe-
cially in designing the mounts. Frequently, the powerplant is fixed in two mounts at the
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chassis (sometimes called an engine and a transmission mount) and an additional roll
restrictor (to fix the last degree of freedom; cf. Figure 9.3). The mounts at the power-
plants can be designed as hydrodynamic rubber bushings with a special characteristic
in reducing distinct oscillation for special frequency intervals.

There are different transfer paths for the oscillations and for the noise. Headwind
noise, for example, enters the car through the windows and chassis, and, from these
parts, the vibrations cause oscillations of the air cavity inside the vehicle, which results
in noise in the ears of passengers or the driver.

In the next two sections, we look at details concerning the reduction of torsional
vibrations of the powertrain and concerning vibrations caused by rough roads.
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9.1 Vibration Caused by Uneven Roads

This section deals with vehicle vibrations induced by road surface irregularities. The
frequencies considered range from 0 to 25 Hz. Vibrations are calculated in order to
answer a number of questions.

Comfort: One necessary requirement that a vehicle should fulfil is that the driver
should be able to operate the vehicle for a lengthy period of time without any detri-
ment to health and without becoming unwell. Furthermore, the seat, steering wheel
and pedals should not vibrate excessively because such vibrations also reduce com-
fort. The vibrations of the entire vehicle interior should be kept low in order to
minimize the acoustic strain on the occupants.

Driving safety: The vibrations of the vehicle also cause the wheel loads to fluctuate.
If the wheel load fluctuation is as large as the static wheel load, this leads to a
diminishing wheel load, which means that no further lateral and circumferential
forces can be transferred.

Road surface strain: The wheel load fluctuations impose a strain on the road surface
in addition to the static wheel loads.

Engineering strength: The strength is reduced due to the vibrating loads. The conse-
quence of this is a lower operating lifetime of vehicle parts.

Package space: Vehicle vibrations must not result in parts colliding with each other,
as this firstly produces noise disturbance and secondly leads to a large strain on the
parts or to their destruction. For this purpose, the designed space has to be calculated
under a vibrating load.

9.1.1 Damped Harmonic Oscillator

The damped harmonic oscillator shown in Figure 9.4 serves as an introduction to and
as revision of the basic principles of vibration theory.

The massless wheel travels over an uneven road surface. The mass, m, represents
one quarter of the total vehicle. Between the mass, m, and the wheel is a shock
absorber (damper constant b) and a spring (spring constant k). The single mass oscil-
lator moves at a constant velocity v. The parameters sought are the movement z(t),
of the mass m and the dynamic wheel load fluctuation Fzdyn.

From the free-body diagram, we obtain

mz̈ + Fd + Fs = 0. (9.1)

We assume that the spring and shock absorber forces are linearly dependent upon
the distances and velocities.

Consequently, the result is

Fd = b(ż − ḣ) , (9.2)

Fs = k(z − h) . (9.3)
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Figure 9.4 Damped harmonic oscillator

From this, we obtain the equation of motion of the mass m

mz̈ + bż + kz = bḣ + kh (9.4)

and the dynamic wheel load fluctuation

Fzdyn = −Fs − Fd . (9.5)

We first consider the natural vibrations of the system. These can be obtained by
solving the homogeneous differential equation

mz̈ + bż + kz = 0 . (9.6)

With the aid of the abbreviations σ = b
2m and ν2 = k

m , we obtain with an
eλt-approach of zhom = ẑeλt the characteristic polynomial

λ2 + 2σλ + ν2 = 0 . (9.7)

From Equation (9.7), we obtain two eigenvalues:

λ1,2 = −σ ±
√

σ2 − ν2 , (9.8)

from which the solution of the homogeneous differential equation is obtained:

zhom = ẑ1e
−σtej

√
ν2−σ2t + ẑ2e

−σte−j
√

ν2−σ2t . (9.9)

Here ẑ1 undergoes complex conjugation to ẑ2. If the system is not too strongly
damped (this is the case for ν2 > σ2), then σ is the decay constant and

√
ν2 − σ2 the

natural frequency of the system.
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We determine a particular solution of the equation of motion for the special case
where the road surface irregularity, h, is a cosine function. To simplify the calculation,
we set h(x) as complex:

h(x) = ĥejκx . (9.10)

Ultimately, it is the real part that is of interest for the solution. Inserting this into
the equation of motion, we obtain with x = vt:

mz̈part + bżpart + kzpart = bĥjκvejκvt + kĥejκvt . (9.11)

The free parameter κ here is not the eigenvalue as above but, instead, the angular
wavenumber:

κ =
2π

L
, (9.12)

where L is the wavelength of the harmonic road surface irregularity. Inserting expres-
sion (9.13) for the particular solution zpart into the equations of motion

zpart = ẑparte
jκvt , (9.13)

yields

ẑpart = ĥ
jbκv + k

−m(κv)2 + jbκv + k
. (9.14)

The expression
κv = ω (9.15)

is the angular frequency with which the system is excited. The expression

ẑpart

ĥ
=

bjω + k

−mω2 + bjω + k
(9.16)

is called the transfer function.
If the frequency ratio of the excited frequency to the natural angular frequency of

the undamped system, η = ω/
√

k/m, and the damping constant D = b/(2m
√

k/m)
are introduced, the magnification or transfer function (9.16) can be rewritten as

ẑpart

ĥ
=

1 + j2Dη

(1 − η2) + j2Dη
. (9.17)

The transfer function is therefore merely dependent upon the damping constant, D,
and the frequency ratio, η. Interest is often only directed towards the magnitude of the
transfer function, the phase plays a subordinate role.

For many issues, it is also the acceleration and not the deflection or the path that is
of greater interest. Figure 9.5 is a plot of the acceleration of the mass, m. The function
is obtained from the complex magnification functions by forming the absolute value:∣∣∣∣∣

¨̂z
ĥ

∣∣∣∣∣ = ν2η2

√
1 + 4D2η2

(1 − η2)2 + 4D2η2 . (9.18)



Ride Dynamics 127

0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

η

ẑ̈
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Here ν =
√

k
m is the natural angular frequency of the undamped system. Figures 9.5

and 9.6 show the magnification functions for a natural frequency of 1 Hz (hence: ν =
2π 1

s ) and for the damping factors D = 0.1, D = 0.2 and D = 0.3. The lower graph
shows the wheel load fluctuation for a mass of m = 300 kg. If an amplitude of ĥ = 0.1
m is assumed for the excitation, it can be seen that the wheel load between D = 0.1
and D = 0.2 becomes zero by a value of η ≈ 1. The magnification function for the
force in Figure 9.6 can be derived for this simple mechanical system by multiplying
the function from Figure 9.5 by the mass m = 300 kg.

If the road surface is periodically uneven, this irregularity can be developed into a
Fourier series. The vibration response of the system is then simply a superimposition
of the individual responses.

We can write h as

h(t) =
n∑

i=−n

ĥie
jiωt . (9.19)
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Here h(t) is a real variable if ĥi = ĥ−i is demanded; hence, if the ith complex
coefficient is equal to the complexly conjugated (−i)th coefficient. The response of
the system can then be written as

zpart =
n∑

i=−n

ĥi
bjiω + k

−m(iω)2 + bjiω + k
ejiωt . (9.20)

These Fourier series can be expanded to Fourier integrals if stochastic irregularities
are present. The irregularity of the road surface can then be written as

h(t) =
∫ ∞

−∞
ĥ(ω)ejωtdω . (9.21)

We obtain the response of the system as above

zpart =
∫ ∞

−∞

(
ẑpart

ĥ

)
(ω)ĥ(ω)ejωtdω . (9.22)

The function (ẑpart/ĥ)(ω) is the transfer function (or magnification function) of the
system. Statistical parameters are frequently used to characterize random vibrations.
Initially, the mean is an obvious choice

zpart =
1
T

∫ T

0
zpart(t) dt , (9.23)

where a sufficiently large value of T must be selected. Another important value is the
standard deviation:

σz =

√
1
T

∫ T

0

[
zpart(t) − zpart

]2 dt . (9.24)

This standard deviation can of course be also determined for the wheel load fluctu-
ation and the acceleration.

The importance of the standard deviation is illustrated by the following example.
Let the mean of the wheel load be F = 3000 N, the standard deviation σF = 300 N.
The probability that the wheel load is above F + σF = 3300 N or below F − σF =
2700 N is 31.7%. The probability that the wheel load is above F + 2σF = 3600 N or
below F − 2σF = 2400 N is 4.6%. The probability that the wheel load will be below
F − 3σF = 2100 N or above F + 3σF = 3900 N is 0.3%.

9.1.2 Assessment Criteria

This section explains some assessment criteria for oscillations.

Rebound clearance
The rebound clearance is the distance between the body and the wheel. This must

not exceed a certain value in order to avoid collisions between the wheel and the wheel
housing.
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In order to determine the maximum rebound clearance, we first start on the basis of
an unladen vehicle. The static spring deflection is then

zstat unlad =
munladg

k
; (9.25)

here munlad is the mass of the unladen vehicle, g the acceleration due to gravity and
k the total stiffness of the springs. The spring deflection fluctuates due to the road
irregularities. Let the standard deviation be σzunlad (cf. Figure 9.7). The following
applies to the laden vehicle:

zstat lad =
mladg

k
; (9.26)

here mlad is the mass of the laden vehicle, where mlad = munlad + Δm. The static
spring deflection between the unladen and laden vehicle is therefore

Δzstat =
mladg

k
− munladg

k

=
Δm

munlad

g

ν2
unlad

. (9.27)

Here νunlad =
√

k/munlad is the natural angular frequency of the unladen vehicle.
In specifying the maximum travel, it is common not to use the maximum ranges

because they are relatively unlikely to occur. It is therefore common practice to use
three times the standard deviation instead of the maximum values. In addition to the
static spring deflections, Figure 9.7 also shows the fluctuations due to irregularities.
The broken lines show the respective deviations from 3σz unlad and 3σz lad. The dif-
ference then yields the maximum spring deflection:

zmax =
Δm

munlad

g

ν2
unlad

+ 3(σz lad + σz unlad) . (9.28)

zstat unlad

zstat lad

3σzunlad

3σzlad

zmax

t

z

Figure 9.7 Spring deflection
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Example 9.1 If we start with a passenger car having an unladen weight of munlad =
1200 kg and a load of five persons (80 kg per person) and 60 kg luggage, then Δm =
460 kg. If the natural frequency is funlad = 1 Hz, the static change in spring deflection
results from Equation (9.27):

Δzstat =
460 kg
1200 kg

9, 81m
s2(

2π 1
s

)2 = 95 mm . (9.29)

Wheel Load Impact Factor
In order to assess the wheels and the wheel bearings, the so-called wheel load impact

factor, n, is often introduced. This is the ratio of the maximum wheel load to the static
wheel load:

n =
Fz max

Fz stat
= 1 +

Fz dynmax

Fz stat
. (9.30)

Frequently Fz dynmax is replaced by three times the value of the standard deviation.

n = 1 +
3σF

Fz stat
. (9.31)

9.1.3 Stochastic Irregularities

If the random irregularity of the road is described by a Fourier integral, the time depen-
dent, stochastic responses of the vehicle as a system can also be described by Fourier
integrals. However, interest here is often not directed towards the precise sequence of,
for example, a wheel load or acceleration, but as a general rule merely towards the
statistical parameters such as the root mean square. For this reason, we will therefore
not specify the Fourier transforms of the corresponding variables when describing
stochastic road irregularities and stochastic responses, but the so-called spectral den-
sities instead.

If there is interest in the spectral density of a vehicle variable as a function of the
spectral density of the road, these values can be interconverted easily. Let q(t) be any
vehicle-specific variable (e.g. an acceleration). Then the response function over time,
q(t), can initially be expressed as

q(t) =
∫ ∞

−∞

(
q̂

ĥ

)
(ω) ĥ (ω) ejωt dω , (9.32)

with the quotient q̂

ĥ
representing the response behaviour of the vehicle as a system to

the excitation by an irregular road surface.
The integrands (apart from the exponential function)

q̂(ω) =
(

q̂

ĥ

)
(ω) ĥ (ω) (9.33)

can be regarded as Fourier transforms of the corresponding response (e.g.
acceleration). If means of the stochastic functions are considered, they generally do
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not give any deeper insight into the behaviour of the system or into the road surface
irregularities. Consequently, the mean of the wheel load is then exactly the static
wheel load and the mean road surface irregularity is 0.

More meaningful information comes from the root mean squares (also called effec-
tive values):

q̃(T ) =

√
1
T

∫ T

0
q2(T ) dt . (9.34)

If the stochastic irregularities are described by normal distributions (Gaussian distri-
butions), certain deductions can be drawn with the aid of the root mean squares. Taking
account of the limiting transformation lim

T→∞
for the root mean square and replacing

the time-dependent function by the corresponding Fourier integral, we obtain

q̃ =

√√√√√√
∫ ∞

0

(
q̂

ĥ

)2

(ω) lim
T→∞

4π

T
(ĥ(ω))2

︸ ︷︷ ︸
Φh(ω)

dω . (9.35)

It can be seen that the expression Φh(ω) multiplied by the response behaviour of
the vehicle yields the root mean square for q̃. The operation that leads to this result is a
single integration over the square of the response function multiplied by the function
Φh(ω). This function is called the spectral density, and in this case it is the spectral
density of the stochastic road surface irregularity. With the aid of the response function
and the spectral density, we can thus use formation of the integral to determine the
root mean square values for any variables of the vehicle.

Measurements of real road irregularities have shown that they can essentially
be described by three parameters. Here it makes sense to use the spectral density,
although this is often not specified for the time-dependent range but for the spatial
range instead:

Φh(Ω) = v Φh(ω) (9.36)

where v represents the driving speed of the vehicle. After the measurements, road
irregularities can be represented by

Φh(Ω) = Φh(Ω0)
(

Ω
Ω0

)−w

. (9.37)

Figure 9.8 gives the spectral irregularity densities for a number of roads. It can be
seen in the double-logarithmic plot that the spectral density essentially takes a linear
path. This is also reflected in the straightforward representation of the spectral density
by a simple power function.

The factor Φh(Ω0) is also called the irregularity constant, coefficient of unevenness
or coefficient of roughness and w the waviness. Table 9.1 provides a compilation of
some mean irregularity constants and waviness values for different types of road (the
reference wavenumber for this table is Ω0 = 2π

L0
= 1 rad/m).
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Table 9.1 Typical values for uneven road
parameters

Road Φh(Ω0)/cm3 w

Federal motorway 1 2.0
Federal highway (A road) 2.1 2.3
Rural road (B road) 5.3 2.4
District road 12.2 2.3

Ω0 = 1 rad/m

With the aid of the spectral irregularity density for the road surface together with
the response functions of a vehicle, it is possible to determine any spectral densities
of vehicle variables. This is the starting point for comfort and safety investigations,
which are described in the next subsection. One measure of comfort here is provided
by the weighted acceleration values and a measure of safety by the wheel load.

9.1.4 Conflict between Safety and Comfort

The vehicle vibrations are transmitted to the driver via the seat, steering wheel and the
floor. Depending on their frequency and amplitude and according to the site at which
they occur, the driver perceives them as disruptive to a greater or lesser extent1.

The vibrations of the seat serve as a main criterion for assessing the comfort. In
order to assess these vibrations as objectively as possible, test subjects were exposed
to vertical vibrations. The subjects had to classify the vibrations as not perceptible,

1 The considerations closely follow the monograph of Mitschke and Wallentowitz 2004.



Ride Dynamics 133

f in Hz

a
rm

s 
in

 m
/s

2

CZ = 0.1 (not perceptible)
CZ = 0.2 ( just perceptible)
CZ = 0.8 (readily perceptible)
CZ = 2.5 (strongly perceptible)
CZ = 22 (very strongly perceptible)

102

101

100

100 101 102

10−1

10−2

10−3

Figure 9.9 Evaluated vibration strengths

just perceptible, strongly perceptible and very strongly perceptible. These experiments
showed that the classification depends on the amplitude of the seat vibration and on
its frequency. Figure 9.9 shows an example of a number of curves (cf. VDI Guideline
2057) of the same classification.

It can be seen from the curves that humans react sensitively to seat vibrations in the
range from 4 Hz to 8 Hz because this is the range in which the r.m.s. of acceleration
is lowest. These so-called CZ values are obtained from the r.m.s. values of the accel-
erations in m/s2 by multiplying the numerical values of the minimum of the curves
by 20.

The term CZ comes from comfort and its effect in the z direction. As there are also
C values for the hands and feet, we use the abbreviations Cseat, Chand and Cfoot in the
following.

Investigations have revealed that humans react sensitively to vibrations of the steer-
ing wheel in the range from 8 Hz to 16 Hz.

Frequently it is not the comfort value that is used for assessment but, instead, the
evaluation function E

Eseat =
Kseat

z̈seat,eff
. (9.38)

Figure 9.10 shows the evaluation functions for the seat.
In order to assess the comfort of vehicles, it is not sufficient to assume one transmis-

sion point to the body, but, instead, several transmission points have to be considered
simultaneously. In this respect, it has proven useful to first treat the transmission points
of hand, foot and seat separately from one another, and then combine them with the
aid of a suitable weighting scheme to produce an overall comfort evaluation.
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Figure 9.14 shows three different additional evaluation functions for harmonic exci-
tations in the z direction for seat, foot and hand, which are used in the following
comfort assessment. These evaluation functions, Ei, for harmonic excitations can be
converted into evaluation functions for stochastic excitations by scaling.

Estoch i = Gstoch iEi . (9.39)

The evaluation functions, Ei and Estoch i, depend on the natural angular frequency,
ω. Here the index i is intended to represent the information on the transmission point
and the direction of transmission. The weighting factors for the different transmission
points in the z direction are

Gstoch z seat = Gstoch z foot = Gstoch z hand = 1, 26 . (9.40)

A comfort value of Cstoch z seat, e.g. for stochastic seat vibrations in the z direction,
results from:

C2
stoch z seat =

∫ ∞

0
E2

stoch z seat(ω)φz̈ seat(ω) dω . (9.41)

Here Φz̈ seat seat is the spectral density of the seat acceleration in the z direction.
The corresponding comfort evaluations are obtained in a similar manner for the vibra-
tions from the steering wheel (hand) and from the floor (foot). If the human body is
simultaneously excited at several transmission points, these stochastic comfort values
are weighted and added to obtain the total comfort value Ctot:

C2
tot = 1, 12 C2

stoch z seat + 0, 752 C2
stoch z hand + 1, 32 C2

stoch z foot . (9.42)

The C values for foot and hand again result from the integral over the evaluation
function multiplied by the spectral density of the acceleration at the corresponding
transmission points. This method yields an overall evaluation of the vibration comfort,
although it should be noted that both vehicle and road characteristics are contained in
the respective spectral densities.
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The following shows the procedure for a simple three-mass model as a means of
determining the overall comfort factor. Driving safety continues to be assessed using
this model by calculating the standard deviation of the dynamic wheel loads. During
the course of this section, it becomes clear that a conflict exists between driving safety
and comfort. The starting point is the three-mass oscillator shown in Figure 9.11.

The mass m1 corresponds to a wheel mass plus mass fractions of movable wheel
suspension parts (hub carriers, control arms, etc.), mass m2 represents one quarter
of the body mass in addition to the masses for legs and arms of a driver, with mass
m3 accounting for the remainder of the driver’s mass (without legs and arms). Only
one-half of the driver is considered in this process. If we assume a mass of 18 kg for
arms and legs with a total mass for the driver of 74 kg, we obtain a value of m3 = 28 kg
for the residual mass of the driver. The following compilation includes the data for the
reference model under consideration:

m1 = 31 kg, m2 = 229 kg, m3 = 28 kg,

k1 = 128 kN/m, k2 = 20.2 kN/m, k3 = 9.9 kN/m,

b2 = 1.14 kNs/m, b3 = 0.26 kNs/m.

Ignoring small stiffness values enables the natural frequencies of the system to be
estimated by

ν1

2π
≈ 1

2π

√
k1

m1
≈ 10 Hz,

ν2

2π
≈ 1

2π

√
k2

m2
≈ 1, 5 Hz,

ν3

2π
≈ 1

2π

√
k3

m3
≈ 3 Hz .

(9.43)
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Figure 9.11 Quarter-vehicle model with driver mass
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The equations of motion for the system are

m3 z̈3 + b3(ż3 − ż2) + k3(z3 − z2) = 0 (9.44)

m2 z̈2 + b3(ż2 − ż3) + b2(ż2 − ż1)

+ k3(z2 − z3) + k2(z2 − z1) = 0 (9.45)

m1z̈1 + b2(ż1 − ż2) + k2(z1 − z2) + k1z1 = k1h . (9.46)

Inserting a harmonic excitation for the height profile, h, into this equation yields
response functions for z1, z2 and z3. Similarly, these response functions can be used
to obtain the corresponding response functions for the accelerations. If Φh(ω) is the
spectral density of the road surface plus the driving speed, the spectral densities for
the accelerations of hand, foot and seat can be obtained, namely Φz̈ hand, Φz̈ foot and
Φz̈ seat, respectively. The spectral densities of the respective comfort values as well as
the spectral density for the wheel load can be calculated with the following equations:

ΦC seat(ω) = 1.262E2
seat(ω)

(
ˆ̈z3

ĥ

)2

(ω) Φh(ω)

︸ ︷︷ ︸
Φz̈ seat(ω)

, (9.47)

ΦC hand(ω) = 1.262E2
hand(ω)

(
ˆ̈z2

ĥ

)2

(ω)Φh(ω)

︸ ︷︷ ︸
Φz̈ hand(ω)

, (9.48)

ΦC foot(ω) = 1.262E2
foot(ω)

(
ˆ̈z2

ĥ

)2

(ω) Φh(ω)

︸ ︷︷ ︸
Φz̈ foot(ω)

, (9.49)

ΦF (ω) =

(
F̂z

ĥ

)2

(ω) Φh(ω) , (9.50)

where the following apply:

F̂z

ĥ
(ω) = ω2

(
m1

ẑ1

ĥ
+ m2

ẑ2

ĥ
+ m3

ẑ3

ĥ

)
, (9.51)

(
σF

Fz stat

)2

=
1

F 2
z stat

∫ ∞

0
ΦF (ω) dω . (9.52)

The reference vehicle described above is compared with another vehicle (denoted
by Vehicle 2 in the following, whereas the reference vehicle is denoted by Vehicle 1)
in which only the shock absorber is changed. The shock absorber of Vehicle 2 has
the damping constant b2 = 1.54 kNs/m. The road excitations for both vehicles are



Ride Dynamics 137

identical. The spectral densities for the road (i.e. as a function of the wavenumber)
and the spectral density of the road together with the driving speed (as a function of
the excitation frequency) are shown in Figures 9.12 and 9.13.

It can be seen that the spectral densities, for both road irregularity and for excita-
tion (road and velocity) closely resemble each other. Here the same road excitation
parameters have been selected for Vehicle 1 and Vehicle 2:

Φ(Ω0) = 4 × 10−6 m3 ,

Ω0 = 1
rad
m

,

w = 2 .

The velocity for both vehicles, v, is 20 m/s. From the graph for the spectral density
of the road, we arrive at the graph for spectral density of the road plus driving speed
by multiplying the abscissa axis by v and dividing the ordinate axis by v.

The following example shows how the gradient can be estimated from the graph
in Figure 9.12. We assume that the two angular spatial frequencies of Ω1 = 2π ×
0.1 1

m and Ω2 = 2π × 0.3 1
m . From the graphs, we can read off Φ(Ω1) ≈ 10−5 m3 and

Φ(Ω2) ≈ 10−6 m3. The result is

Φ(Ω2)
Φ(Ω1)

= 0.1 =
(

2π × 0.1
2π × 0.3

)w

. (9.53)

Ω/2π in 1/m

Φ
h
(Ω

) 
in

 m
3

Road 1
Road 2

10-2

10-4

10-6

10-3 10-2 10-1 100

Figure 9.12 Spectral density of the road

ω/2π  in Hz

10−4

10−6

10−8

10−1 100 101

Φ
h
(ω

) 
in

 m
2 s

Vehicle 1/Road 1
Vehicle 2/Road 2

Figure 9.13 Spectral density of the road with driving speed



138 Vehicle Dynamics

Taking the logarithms and rearranging, we obtain

w =
log(0.1)

log(0.1/0.3)
≈ 2.095 . (9.54)

If we consider the vertical evaluation functions (cf. Cucuz 1993) in Figure 9.14, we
can see that the evaluation function for the vertical seat acceleration is approximately
a factor of three above the evaluation functions for the accelerations of foot and hand.
It is obvious that the seat accelerations have a greater influence on the overall com-
fort. For this reason, in the following we merely consider the corresponding functions
for the seat in the graphs. However, all comfort evaluations will be included in the
calculation of the overall comfort grade at the end of this chapter.

In Figure 9.15, we can see the magnification functions of the seat ma seat vibra-
tions for the two vehicles. Considering Vehicle 1, we can clearly see that the two
lowest natural frequencies at approximately 1.5 and 3 Hz. Both natural frequencies
are distinguished by clear resonance rises. If the magnification function of Vehicle 1
is compared with that of Vehicle 2, it becomes clear that the natural oscillation of the
body of the vehicle (frequency at approx. 1.5 Hz) no longer becomes as clearly visible,
which can be explained by the greater body damping b2. However, the second natural
frequency at approx. 3 Hz (natural frequency of seat) becomes significantly greater in
Vehicle 2.

If, however, we compare the magnification functions with the corresponding spec-
tral densities for the seat in Figure 9.16, we can see that the magnification functions
are so distorted by the corresponding spectral densities of the road and the driving
speed that the body acceleration is more strongly emphasized than the seat accelera-
tion. The reason for this lies in the fact that in the case of road irregularities smaller
excitation frequencies with a greater amplitude occur as larger frequencies. Neverthe-
less, in a comparison of the two vehicles in terms of the spectral density of the seat
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Figure 9.14 Evaluation function after Cucuz 1993
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Figure 9.16 Spectral density of the seat vibrations

acceleration, the larger seat acceleration is still distinct in the natural frequency of
the seat.

In evaluating the comfort of the seat vibrations, the evaluation function is of impor-
tance as well as the spectral density for the vertical seat vibrations. As the evaluation
function exhibits a maximum at 5 Hz, the natural frequency of the seat is highlighted
more than the natural oscillation of the body. This becomes apparent in Figure 9.17.
Comparing the two spectral densities of the seat comfort evaluation in this graph
reveals that the natural frequency of the seat for Vehicle 2 is significantly more appar-
ent than for Vehicle 1 and the resonance rise in the natural frequency of the seat is
more clearly visible than in the spectral density of the seat acceleration.

The comfort evaluation results from the integral over the spectral density of the seat
acceleration multiplied by the corresponding evaluation function (Figure 9.17). In the
comparison of the two vehicles in this figure, the value of the function of Vehicle 1 is
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Figure 9.17 Comfort evaluation function

greater for the body vibration, while in the case of Vehicle 2 it is greater for the seat
vibration. We can only determine what effects this has on the overall comfort value
after integration over the function. The influence of the body damping is examined
more closely in the last part of this section. On the basis of the comparison shown
here, it is not possible to make a clear statement on whether the comfort value rises
or falls with increasing damping.

Figure 9.18 shows the spectral density of the wheel load. In the comparison of the
two vehicles, it can be seen that the resonance in the natural oscillation of the body
and the resonance of the natural frequency of the wheel (approx. 11 Hz) are lower in
Vehicle 2 with the higher body damping than in Vehicle 1. As the spectral density of
the wheel load is included in the calculation of the standard deviation, σFz , it can be
expected that the wheel load fluctuations in Vehicle 2 will be lower than in Vehicle 1.
However, certainty is not ultimately achieved until integration of the corresponding

ω/2π in Hz

Φ
F
 w

h
ee

l i
n 

N
2  

s

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

3500

Vehicle 1/Road 1
Vehicle 2/Road 2

Figure 9.18 Spectral density of the wheel load vibrations



Ride Dynamics 141

ω/2π in Hz
0 5 10 15 20 25

0

0.5

1

1.5

2

2.5

3
¥ 105

m
F
 w

h
ee

l i
n 

N
/m

Vehicle 1
Vehicle 2

Figure 9.19 Magnification function of wheel load

integral of the magnification function multiplied by the road excitation (the spectral
density of the wheel load results from the product of the square of the magnification
function of the wheel load with the spectral density of the road plus the driving speed).

The magnification function of the wheel load is shown in Figure 9.19. Here, it can
be seen that the body damping has a small influence on the natural oscillation of the
body and a significant influence on the natural frequency of the wheel. Comparing
the magnification function of the wheel load with the spectral density of the wheel
load, it can be seen, as was previously the case with the seat vibrations that smaller
frequencies are evaluated significantly more highly than larger frequencies. This can
be seen by the fact that the ratios of the amplitudes of the resonance points of the
magnification function are inverted in the spectral density. Ultimately, however, the
consideration allows the conclusion to be drawn that the wheel load fluctuation is most
probably lower in Vehicle 2.

The influence on the wheel load fluctuation or on the standard deviation of the wheel
load is described in greater detail in the following.

In Figures 9.20 and 9.21, the overall comfort evaluations (i.e. seat, hand and foot
accelerations) are shown as a function of the related standard deviation of the wheel
load (the standard deviation refers to the static wheel load). Figure 9.20 shows the
relationship of Ctot as a function of σz/Fz stat for five different values of the body
spring stiffness. The body damping is varied within each of the curves. Essentially,
the curves proceed with increasing body damping from large values for the standard
deviation of the wheel load to small values. However, in the range for very large body
damping, there is a minimum in relation to the standard deviation for the wheel load
and this increases again, with the total comfort value Ctot increasing again as well
(the total comfort decreases).

Figure 9.21 shows the corresponding curves for five different body dampings. Here
the body stiffness changes within the curves. The comfort values rise with increasing
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body spring stiffness. As high values for the total comfort value, Ctot, mean poor
comfort, it may be deduced in the cases shown here that the comfort decreases with
rising stiffness of the body springs.

The ranges for the comfort in relation to the body damping cannot be readily inter-
preted from Figure 9.20. However, it can be seen that the standard deviation for the
wheel load mainly decreases as damping increases; for very high values of the damp-
ing there is again an increase.

Figure 9.22 shows curves with constant body spring and varying body damping
(these curves do not differ substantially from those in Figure 9.20). However, these
curves do not indicate the stiffness of the body spring but the natural frequency of the
body in estimated form. It can be seen that in each case there are regions in which the
standard deviation for the wheel load decreases, but the total comfort value increases.
The boundaries of these regions are each marked by two dots. Here the dots at the
horizontal of the curves indicate the maximum comfort for the corresponding natural
frequency of the body whereas the dots at the vertical show the maximum value for
safety (the smallest standard deviation for the wheel load). Between these two dots,
an improvement in either comfort or safety can only be achieved by a deterioration in
the respective other value. Where such a relation exists, we also refer to solutions with
Pareto optimality. It becomes apparent that a compromise for the design of a vehicle
has to be sought amongst the solutions with Pareto optimality.
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9.2 Oscillations of Powertrains

Most vehicles are driven by internal combustion reciprocal engines. Due to the com-
bustion process and due to geometrical non-linearities (from the conversion of trans-
lation to rotation) deviation in torque and angular velocity occurs naturally. These
oscillations can influence the comfort of the vehicle. Consequently, some devices are
integrated in drive trains in order to reduce these oscillations.

To understand these devices, it is necessary to understand the torsional vibrations
of powertrains. The first subsection of this section explains the theory of torsional
oscillators similar to dual mass flywheels, while the second subsection takes a closer
look at centrifugal pendulum vibration absorbers (CPVAs). The third subsection gives
hints of examples.

9.2.1 Torsional Oscillators

We start with a simple torsional oscillator shown in Figure 9.23, left.
The oscillator consists of one rotating mass (moment of inertia J1) and one rod sim-

plified by a torsional spring (spring constant cT 1). For a more precise consideration,
the rod has to be described by at least one partial differential equation.

The equation of motion is (ϕ1 is the angle of torsion):

J1ϕ̈1 + cT 1ϕ1 = 0 . (9.55)

Now we can consider the free vibration of the system, which is characterized by the
natural frequency (or eigenfrequency):

ω1 =
√

cT 1

J1
. (9.56)

In the case of forced vibrations of the system, it is necessary to introduce a damping,
bT 1, in order to limit resonance amplitudes (cf. Figure 9.23, right). Then the equation
of motion reads

J1 ϕ̈1 + bT 1 ϕ̇1 + cT 1 ϕ1 = M1 . (9.57)

cT1 cT1

bT1

J1 J1

𝜑1 𝜑1

M

Figure 9.23 Torsional oscillators with one degree of freedom
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To calculate the solution of this equation of motion in the case of harmonic excita-
tion, an approach with complex amplitudes prove to be straightforward

M1 = M̂1 ejωt , (9.58)

here M̂1 is the complex amplitude of the excitation torque, j is the imaginary unit (i.e.
j2 = −1), ω is the circular frequency of the excitation, and t is the time. The solution
q1 is the sum of the general solution of the homogeneous equation and a particular
integral

q1(t) =

(
A e

j

√
cT 1
J1

− b2
T 1

4J2
1

t
+ Ā e

−j

√
cT 1
J1

− b2
T 1

4J2
1

t

)
e
− bT 1

2J1
t

+
M̂1

−ω2J1 + jω bT 1 + c T 1
ejωt . (9.59)

For a harmonic excitation

M0 sin(ωt) =
M0

2j
(ejωt − e−jωt) , (9.60)

M0 cos(ωt) =
M0

2
(ejωt + e−jωt) (9.61)

two complex particular integrals have to be combined.
Damped absorbers are applied in order to reduce torsional oscillations.
A simple model of a damped absorber is depicted in Figure 9.24.
The equations of motion are

J1 ϕ̈1 + bT 2 (ϕ̇1 − ϕ̇2) + cT 2(ϕ1 − ϕ2) + cT 1 ϕ1 = M1 , (9.62)

J2 ϕ̈2 + bT 2 (ϕ̇2 − ϕ̇1) + cT 2(ϕ2 − ϕ1) = 0 . (9.63)

Assuming harmonic excitation (in notation with complex amplitudes)

M1 = M̂1e
jωt (9.64)

J1

J2cT1

M1

cT2

bT2

𝜑2

𝜑1

Figure 9.24 Torsional oscillator with two degrees of freedom
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we can write the equations with matrices(
−J1ω

2 + jωbT 2 + cT 1 + cT 2 −jωbT 2 − cT 2
−jωbT 2 − cT 2 −J2ω

2 + jωbT 2 + cT 2

)
︸ ︷︷ ︸

A

(
ϕ̂1
ϕ̂2

)
ejωt (9.65)

=
(

M̂1
0

)
ejωt

The determinant of A is

det (A) = (−J1ω
2 + jωbT 2 + cT 1 + cT 2)(−J2ω

2 + jω bT 2 + cT 2)

− (jω bT 2 + cT 2)
2

= (−J1ω
2 + cT 1)(−J2ω

2 + cT 2) − J2 cT 2ω
2

+ jωbT 2(−J1ω
2 − J2ω

2 + cT 1). (9.66)

With the inverse of A

A−1 =
1

det(A)

(
−J2ω

2 + jωbT 2 + cT 2 jωbT 2 + cT 2
jωbT 2 + cT 2 −J1ω

2 + jωbT 2 + cT 1 + cT 2

)
(9.67)

we obtain the complex amplitude of the mass J1

ϕ̂1 = M̂1
−J2ω

2 + jωbT 2 + cT 2

det(A)
, (9.68)

which yields the amplitude when an absolute value is applied

|ϕ̂1| = |M̂1|

√
(−J2ω

2 + cT 2)2 + ω2b2
T 2

|det(A)| . (9.69)

For an undamped absorber (i.e. no damping bT 2 = 0 Nms and resonance of the
additional inertia J2: ωr

2 = cT 2/J2) the amplitude of the main inertia J1 becomes
zero: ϕ̂1 = 0 (cf. Figure 9.25). In this case, two infinite resonances occur for ϕ̂1: one
below and another above ωr. Figure 9.25 shows the amplitude of inertia J1 for different
values of the damping. The parameters are: J1 = 0.215 kg m2, cT 1 = 1600 Nm, J2 =
0.00215 kgm2, |M̂1| = 1 Nm and

cT 2 =
J2 cT 1

(1 + J2/J1)2J1
. (9.70)

The values for the damping are shown in the graph.
The torsional stiffness, cT 2, is chosen in order to obtain the same magnitudes of the

two intersection points of all curves (cf. Dresig and Holzweissig 2010).
The choice bT 2 = 0 Nms, i.e. a pure absorber, is not advisable for a powertrain of a

vehicle because two resonances occur and because the frequency of the excitation is
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Figure 9.25 Amplitudes of a damped absorber

not constant in vehicles. A damped absorber should therefore be used, and the damp-
ing should not be too high in order to avoid high amplitudes of the inertia.

9.2.2 Centrifugal Pendulum Vibration Absorbers

Damped absorbers with a fixed area in the frequency domain with good damping
characteristics are appropriate for excitation with fixed frequency, e.g. at engine idling
speed.

In internal combustion engines, the frequency of excitation depends on the angular
velocity of the engine itself. Consequently, damping devices with absorbing frequency
which are proportional to angular velocity of the engine are useful.

One device with this characteristic is known as the centrifugal pendulum.
Several authors have dealt with this type of absorber in the literature, e.g. Salomon,

Sarazin and Chilton.
Figure 9.26 depicts some possibilities.
In order to obtain the equations of motion we consider Figure 9.27, where J1 is

driven by the moment Me.
Lagrange’s equations are helpful in deriving the equations of motion for this system

with two degrees of freedom: LL = T − V

d
dt

∂LL

∂ϕ̇1
− ∂LL

∂ϕ1
= Me (9.71)

d
dt

∂LL

∂ϕ̇2
− ∂LL

∂ϕ2
= 0 (9.72)

We neglect gravitational forces, i.e. V = 0.
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Figure 9.26 Different possibilities of pendulum absorber
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Figure 9.27 Centrifugal pendulum absorber

The coordinates x and y of the centre of mass Scm of the pendulum (inertias J2, m)
are

x = L cos ϕ1 + 
 cos(ϕ1 + ϕ2) (9.73)

y = L sin ϕ1 + 
 sin(ϕ1 + ϕ2) (9.74)

Derivation with respect to time yields

ẋ = −Lϕ̇1 sin ϕ1 − 
(ϕ̇1 + ϕ̇2) sin(ϕ1 + ϕ2) (9.75)

ẏ = Lϕ̇1 cos ϕ1 + 
(ϕ̇1 + ϕ̇2) cos(ϕ1 + ϕ2) (9.76)

and these equations result in the velocity

ẋ2 + ẏ2 = L2ϕ̇2
1sin

2ϕ1 + 
2(ϕ̇1 + ϕ̇2)
2sin2(ϕ1 + ϕ2)

+ 2L
ϕ̇1(ϕ̇1 + ϕ̇2) sin ϕ1 sin(ϕ1 + ϕ2)

+ L2ϕ̇2
1cos2ϕ1 + 
2(ϕ̇1 + ϕ̇2)

2cos2(ϕ1 + ϕ2)

+ 2L
ϕ̇1(ϕ̇1 + ϕ̇2) cos ϕ1 cos(ϕ1 + ϕ2). (9.77)
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Using sin2α + cos2α = 1 and cosα cos β + sin α sin β = cos(α − β), we can sim-
plify the equation

ẋ2 + ẏ2 = L2ϕ̇2
1 + 
2(ϕ̇1 + ϕ̇2)

2 + 2L
ϕ̇1(ϕ̇1 + ϕ̇2) cos ϕ2 . (9.78)

The kinetic energy of the whole system is then

T =
1
2
J1ϕ̇

2
1 +

1
2
m(ẋ2 + ẏ2) +

1
2
J2(ϕ̇1 + ϕ̇2)

2 (9.79)

and application of Lagrange’s equations yields

d
dt

∂T

∂ϕ̇1
=

d
dt

(J1ϕ̇1 + mL2ϕ̇1 + m
2(ϕ̇1 + ϕ̇2)

+ m L
(2ϕ̇1 + ϕ̇2) cos ϕ2 + J2(ϕ̇1 + ϕ̇2))

= ϕ̈1(J1 + mL2 + m
2 + J2) + (m
2 + J2)ϕ̈2

+ mL
((2ϕ̈1 + ϕ̈2) cosϕ2 − (2ϕ̇1 + ϕ̇2)ϕ̇2 sin ϕ2) , (9.80)

d
dt

∂T

∂ϕ̇2
=

d
dt

(m
2(ϕ̇1 + ϕ̇2) + mL
 cos ϕ1 cos ϕ2

+ J2(ϕ̇1 + ϕ̇2))

= ϕ̈1(m
2 + mL
 cosϕ2 + J2)

+ ϕ̈2(m
2 + J2) − mL
 ϕ̇1 ϕ̇2 sinϕ2 (9.81)

− ∂T

∂ϕ2
= mL
 ϕ̇1 (ϕ̇1 + ϕ̇2) sin ϕ2 (9.82)

d
dt

∂T

∂ϕ̇2
− ∂T

∂ϕ2
= ϕ̈1(m
2 + mL
 cos ϕ2 + J2)

+ϕ̈2(m
2 + J2) + mL
 ϕ̇2
1 sinϕ2 . (9.83)

Simplifying the trigonometric functions (assuming ϕ2 � 1, cos ϕ2 ≈ 1, sinϕ2 ≈
ϕ2) yields the equations (additionally the external torque Me was introduced):

ϕ̈1(J1 + J2 + m(L + 
)2) + ϕ̈2(m
2 + J2 + mL
)

− mL
(2ϕ̇1 + ϕ̇2)ϕ̇2 ϕ2 = Me (9.84)

ϕ̈2(J2 + m
2) + ϕ̈1(m
2 + J2 + mL
) + mL
 ϕ̇2
1 ϕ2 = 0 . (9.85)

Assuming small amplitudes of ϕ2 and small oscillations ϕ̂1e
iωt of a stationary

movement ϕ1 = ωot of ϕ1, we can linearize these non-linear equations:

ϕ1 = ωot + ϕ̂1 ejωt , (9.86)

ϕ2 = ϕ̂2 ejωt , (9.87)

Me = M̂e ejωt , (9.88)
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M̂e = −ω2ϕ̂1(J1 + J2 + m(L + 
)2) − ω2ϕ̂2(m
2 + J2 + mL
) , (9.89)

0 = −ω2ϕ̂2(J2 + m
2) − ω2ϕ̂1(m
2 + J2 + mL
) + mL
 ω2
0 ϕ̂2 . (9.90)

Introducing

J11 = J1 + J2 + m(L + 
)2 (9.91)

J22 = J2 + m 
2 (9.92)

J12 = J21 = m 
2 + J2 + mL
 (9.93)

allows the equations to be written as(
−ω2J11 −ω2J12
−ω2J21 −ω2J22 + mL
ω2

0

) (
ϕ̂1
ϕ̂2

)
=

(
M̂e

0

)
. (9.94)

In the case of resonance excitation of the pendulum

ω = ω0

√
mL


J22
(9.95)

the solution is

ϕ̂1 = 0 (9.96)

ϕ̂2 = −M̂e
J22

ω2
0J12mL


. (9.97)

Thus it is possible to adjust the parameters of the pendulum in such a way that the
oscillation of the main inertia J1 vanishes.

One remarkable feature is that the resonance frequency ω in Equation (9.95) is pro-
portional to the excitation frequency ω0. As one excitation frequency in reciprocating
internal combustion machines is proportional to the angular velocity of the crankshaft,
the pendulum absorber is ideal because its absorbing frequency is proportional to the
angular velocity.

We look now at the special choice of the parameters; for simplicity we neglect
J2 = 0 and consider a mathematical pendulum. Then for the resonance (or absorbing)
frequency we have

ω = ω0

√
L



. (9.98)

If the goal was to eliminate the nth order of the crankshaft vibration, i.e.

ω = nω0 (9.99)

then it holds that

n2 =
L



. (9.100)
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The length, L, depends on the diameter of the inertia, J1, which would be the fly-
wheel; this means that L < Rflywheel. If, for example, the fourth order is to be absorbed
and the flywheel has a radius of Rflywheel = 0.12 m, then 
 = 0.12 m/16 ≈ 7.5 mm,
which is very small.

The linearized equations of motion are valid for small amplitudes of the pendulum.
This means that the frequency depends on the amplitudes. To avoid the dependency,
the pendulum has to be modified in such a way that the curve on which the inertia J2,
m moves is not a circle. In Denman 1992 or Nester 2004, the so-called epicycloids or
tautochrones are investigated.

9.3 Examples

In this section, we will have a closer look at examples of devices to reduce torsional
vibrations.

The first one is a classical spring-constrained damper located at the free end of
a crankshaft (cf. Figure 9.28). For example, annular plates or rings are fixed with
a rubber spring to the crankshaft. As rubber is very stiff, the mass has to be high,
which is a disadvantage when we are trying to integrate the damper in the crankcase.
One even bigger disadvantage is the temperature dependence of the rubber stiffness.
Another possibility is to integrate the mass into the crankweb (cf. Figure 9.28), thus
it becomes an internal crankshaft damper.

To reduce the space, which is necessary and compensate for an imbalance in mass,
the damper does not have an annular shape but is formed like a horseshoe. The springs

Figure 9.28 Internal crankshaft damper (reproduced with permissions of Schaeffler)
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are steel coil springs and the damping arises from friction between the rotating mass
and the plastic bearing on the inner side of the housing. This means that the damping
is caused by dry, nearly velocity-independent Coulomb friction.

Because Coulomb friction depends on the normal force, the angular velocity of
the crankshaft and the oscillation velocity enter indirectly into the damping force by
centrifugal forces.

The convergence is that the damping moment increases with the angular velocity of
the crankshaft. To avoid clearance in the system, the springs are preloaded. One sec-
ondary effect of preloading is a preload-normal force and therefore a constant friction
force without rotation of the crankshaft. The interaction between centrifugal forces
and preload and their influence on friction forces in the oscillator have an advanta-
geous effect on the damping properties.

More example are shown in Section 17.1, for example, a dual-mass flywheel with
centrifugal pendulum vibration absorber in Figure 17.8 or a clutch disc with torsional
damper and centrifugal pendulum vibration absorber in Figure 17.6.

9.4 Questions and Exercises
Remembering

1. In which issues do vibrations play a role?
2. What is a magnification or transfer function?
3. In which frequency range do humans exhibit a sensitive reaction to seat vibrations,

and in which frequency range do they exhibit a sensitive reaction to the vibrations
of the steering wheel?

4. Which parameters have a great influence on comfort?
5. Which parameters have a great influence on driving safety?
6. Give a typical value for the waviness w of an uneven road.
7. In which ranges do the maxima lie for the evaluation functions for seat, hand and

foot accelerations according to Cucuz?
8. Which accelerations – seat, hand or foot – generally have the greatest influence on

the total comfort value?

Understanding

1. What are evaluated vibration intensities?
2. How do natural frequencies affect the magnification function?
3. How do we determine the response of an oscillatory system to stochastic excitation

stimuli?
4. Explain clearly the spectral density of the road irregularity and the spectral density

of the road irregularity plus velocity.
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5. What influence do respective increases in the masses m1, m2 and m3 have on the
magnification functions?

6. How do different waviness w affect the spectral densities of seat acceleration and
wheel load?

7. Explain the conflict between safety and comfort.
8. Why a frequency-dependent absorber is important for an IC engine?
9. Explain the differences between a simple vibration absorber and a CPVA?





10
Vehicle Substitute Models

Section 10.1 presents a very simple vehicle substitute model known as the
quarter-vehicle model as described already in Chapter 9. It is described with the help
of a two-mass oscillator. With the aid of this model, it is possible to describe the first
natural frequency of a vehicle with which the body mainly oscillates in the vertical
direction, and the second one, with which the wheel mainly oscillates. Section 10.2
is dedicated to a two-axle vehicle with a single-track excitation (in single-track
excitation, the left-hand and right-hand wheels of an axle are subjected to identical
excitation). With the aid of this model, which exhibits five degrees of freedom, it
is possible to investigate pitch oscillations as well as vertical oscillations. Finally,
Section 10.3 deals with the effects of non-linear characteristic curves for springs and
shock absorbers.

10.1 Two-mass Substitute System

The single-mass substitute system dealt with in Chapter 9 is very simple and is of little
assistance in designing spring and damper properties.

Quarter-vehicle model: The quarter-vehicle model (two-mass substitute system,
Figure 10.1) is the simplest substitute system that already exhibits essential
features of a vehicle in terms of vertical dynamics. The substitute system consists
of the two masses, mb (in this case mb is one-fourth of the body mass) and
mw (this is the wheel mass). The body springs and shock absorbers are located
between the masses (spring stiffness kb, damping constant bb). A spring–damper
system (stiffness kw, damping constant bw) also acts between the wheel mass, mw,
and the uneven road surface. Dividing the wheel into the components of wheel
mass, mw, wheel stiffness, kw, and wheel damping, bw, is a simplified model that
permits a good reproduction of the wheel properties.

Vehicle Dynamics, First Edition. Martin Meywerk.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/meywerk/vehicle
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Figure 10.1 Two-mass substitute systems

As a two-mass system is involved, there are four eigenvalues, with pairs of them
being complex conjugates. This means that there are two natural frequencies. In the
following, we first determine the equations of motion for the system. We then consider
the eigenvalues and the magnification functions.

For systems such as that shown in Figure 10.1, which are composed of masses and
spring–shock absorber or damper elements, one possible approach is to derive the
equations of motion with the aid of the Lagrange formalism. We apply the Lagrange
formalism to the undamped system. The Lagrange function, L, is the difference
between kinetic energy, T , and potential energy, V :

L = T − V

=
1
2
mbż

2
b +

1
2
mwż2

w − 1
2
kb(zb − zw)2 − 1

2
kw(zw − h)2 . (10.1)

If we set q1 = zb and q2 = zw, the Lagrange equations become

d
dt

(
∂L

∂q̇j

)
− ∂L

∂qj

= 0 , j = 1, 2 . (10.2)

By differentiation, we thus obtain the two equations of motion as

mbz̈b + kbzb − kbzw = 0 , (10.3)

mwz̈w + (kb + kw)zw − kbzb = kwh . (10.4)
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The damping systems can now be inserted directly in a similar way to the stiffness
terms into (10.3) and (10.4):

mbz̈b + bbżb + kbzb − bbżw − kbzw = 0 , (10.5)

mwz̈w + (bb + bw)żw + (kb + kw)zw (10.6)

− bbżb − kbzb = bwḣ + kwh .

We first consider the natural frequencies of the undamped homogeneous system.
With the aid of an eλt approach, we obtain the eigenvalue equation(

zb

zw

)
=

(
ẑb

ẑw

)
eλt. (10.7)

If we insert (10.7) into Equations (10.5) and (10.6) and divide by eλt (for all complex
values of λ and for all t the following applies: eλt �= 0), it follows that(

λ2mb + kb −kb

−kb λ2mw + kb + kw

) (
ẑb

ẑw

)
=

(
0
0

)
. (10.8)

The terms bwḣ and kwh represent an external excitation and therefore have no
influence on the natural frequencies. We obtain the characteristic equation from the
condition that the determinant of the 2 × 2 matrix from (10.8) disappears:

λ4 + λ2 mwkb + mb(kb + kw)
mbmw

+
kbkw

mbmw

= 0 . (10.9)

The solutions of (10.9) for λ2 are

λ2
1,2 = −mwkb + mb(kb + kw)

2mbmw

(10.10)

±

√(
mwkb + mb (kb + kw)

2mbmw

)2

− kbkw

mbmw

.

The values for λ2
1,2 are purely real and negative; this means that the four solutions

λ1, . . . , λ4 from (10.9) are purely imaginary. The natural frequencies result from the
values of λ1, . . . , λ4, with pairs of the values being identical; hence, two natural fre-
quencies, f1 and f2, result.

Example 10.1 We assume the following values for the parameters of the quarter-
vehicle model: mb = 300 kg, mw = 30 kg, kw = 120 000 N/m and consider the natu-
ral frequencies as a function of the body spring stiffness, kb. The graphs in Figure 10.2
show the natural frequencies f1 and f2 for values of kb in a range from 12 000 N/m to
44 000 N/m of the quarter-vehicle model.

The first natural frequency lies in the range from approximately 1 Hz to 1.7 Hz, and
the second from 10 Hz to 12 Hz, in modern vehicles up to 16 Hz. The body natural
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Figure 10.2 First and second natural frequency as a function of the body spring stiffness

frequency (hence the first natural frequency) lies significantly below the range of 4 Hz
to 8 Hz, in which humans react sensitively to vibrations. The second natural frequency
lies above this range.

10.2 Two-axle Vehicle, Single-track Excitation

The vehicle model presented in this section comprises four masses. It provides a
good reproduction of the actual vibrations of a vehicle if we make some constraining
assumptions.

1. The irregularities of the left-hand and right-hand wheel tracks are identical. We
call this type of excitation the single-track excitation. Let us further assume that
the vehicle is symmetrical in terms of its inertia characteristics with respect to the
�evx − �evz plane. As a result, no rolling or sliding movements occur. As the vehicle
is driving in a straight line, there are also no yaw movements.

2. The rear wheels travel in the same track as the front wheels. This means that the
excitations on the rear wheels are identical to those on the front wheels, although
a phase shift does occur.

Figure 10.3 shows the vehicle model. It consists of four masses. The two masses of
the wheels, mw1 and mw2, support themselves against the road surface via the sub-
stitute stiffnesses, kw1 and kw2. The spring–shock absorber pairs, kb1, bb1 and kb2,
bb2, act between the body mass (mass, mb, mass moment, Jb) and the wheel masses.
The seat–human system is located on the body. In the former, the mass of the driver,
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Figure 10.3 Four-mass oscillator as a model of a two-axle vehicle

md, is supported against the body via the spring–damper pair of the seat ks, bs. The
deflections of the wheel masses are zw1 and zw2, those of the body and the seat–human
system zb and zd, respectively. The body has an additional rotational degree of free-
dom (pitch movement). The respective angle of rotation about the centre of mass, Scm,
of the body is ϕb.

We consider merely small oscillations about the rest position. This means that
trigonometric functions dependent upon the pitch angle, ϕb, can be linearized. The
base of the seat–human vibration system moves as a function of the pitch angle, ϕb,
and the rise, zb. The following applies for the coordinates, zs, of the base, M:

zs = zb − �sϕb . (10.11)

In this equation, the sine function sinϕ has been linearized. In addition to a knowl-
edge of the auxiliary variables, zd, the z-coordinates zb1 and zb2 of the points A1 and
A2 are also helpful in establishing the equations of motion:

zb1 = zb − �1ϕb , (10.12)

zb2 = zb + �2ϕb . (10.13)
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The Lagrange function for the undamped system can be readily established with
the help of the variables zb, ϕb, zw1, zw2, zd and the auxiliary variables zb1, zb2.

L = T − V

=
1
2
mdż

2
d +

1
2
mbż

2
b +

1
2
Jbϕ̇

2
b +

1
2
mw1ż

2
w1 +

1
2
mw2ż

2
w2

−
(

1
2
ks(zd − (zb − �sϕb))

2 (10.14)

+
1
2
kb1(zw1 − (zb − �1ϕb))

2 +
1
2
kb2(zw2 − (zb + �2ϕb))

2

+
1
2
kw1(zw1 − h1)

2 +
1
2
kw2(zw2 − h2)

2
)

.

If the following abbreviations are introduced for the variables: q1 = zd, q2 = zb,
q3 = ϕb, q4 = zw1, q5 = zw2, the equations of motion for the undamped system
become

d
dt

(
∂L

∂q̇j

)
− ∂L

∂qj

= 0 , j = 1, . . . , 5 . (10.15)

We obtain

mdz̈d + ks(zd − (zb − �sϕb)) = 0 , (10.16)

mbz̈b + ks(zb − �sϕb − zd) (10.17)

+kb1(zb − �1ϕb − zw1)

+kb2(zb + �2ϕb − zw2) = 0 ,

Jbϕ̈b + ks�s(�sϕb − zb + zd) (10.18)

+kb1�1(�1ϕb − zb + zw1)

+kb2�2(�2ϕb + zb − zw2) = 0,

mw1z̈w1 + kb1(zw1 − (zb − �1ϕb)) + kw1zw1 = kw1h1 ,

mw2z̈w2 + kb2(zw2 − (zb + �2ϕb)) + kw2zw2 = kw2h2 .

The damping systems can be introduced into the equations in a similar manner to
the two-mass substitute system. In the following, we consider the special case of a
symmetrical vehicle. The following applies to this �s = 0, �1 = �2, kb1 = kb2, kw1 =
kw2, mw1 = mw2, bb1 = bb2.

In the matrix form, the allocated eigenvalue problem can be written with the help
of an eλt approach

(zd, zb, ϕb, zw1, zw2)
T = (ẑd, ẑb, ϕ̂b, ẑw1, ẑw2)

T eλt (10.19)
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as
M(ẑd, ẑb, ϕ̂b, ẑw1, ẑw2)

T = (0, 0, 0, kw1h1, kw2h2)
T , (10.20)

with the matrix M having the following form:

M =

⎡
⎢⎢⎢⎢⎣

mdλ
2 + ks −ks 0
−ks mbλ

2 + ks + 2kb1 0
0 0 Jbλ

2 + 2kb1�
2
1

0 −kb1 kb1�1
0 −kb1 −kb1�1

0 0
−kb1 −kb1
kb1�1 −kb1�1
mw1λ

2 + kb1 + kw1 0
0 mw1λ

2 + kb1 + kw1

⎤
⎥⎥⎥⎥⎦ (10.21)

If we multiply the third row of M with

(mw1λ
2 + kb1 + kw1)/(kb1�1) (10.22)

and then subtract the fourth row from the third and add the fifth, everything in the
third row disappears apart from the entry in the third column. This entry is

Jbmw1λ
4 + λ2(Jb(kb1 + kw1) + 2kb1�

2
1mw1)

kb1�1
+ 2kw1�1 . (10.23)

From the condition that this entry (10.23) disappears, we obtain four of the total of
10 eigenvalues. The following applies to the squares of the eigenvalues that we obtain
from (10.23):

λ2
1,2 = −Jb(kb1 + kw1) + 2kb1�

2
1mw1

2Jbmw1
(10.24)

±

√(
Jb (kb1 + kw1) + 2kb1�

2
1mw1

2Jbmw1

)2

− 2kw1�
2
1kb1

Jbmw1
.

Setting (10.24) in mw1λ
2 + kb1 + kw1, we obtain

mw1λ
2 + kb1 + kw1 =

kb1 + kw1

2
− kb1�

2
1mw1

Jb

(10.25)

± 1
2Jb

√
(Jb(kb1 + kw1) + 2kb1�

2
1mw1)2 − 8Jbmw1kw1kb1�

2
1.

If the two fractions and the square root expression on the right-hand side of (10.25)
are each squared separately, we can see that the value of the two fractions is smaller
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than the square root expression by

kb1

√
�2
1mw1

Jb

(10.26)

The expression

mw1λ
2 + kb1 + kw1 (10.27)

is therefore greater than zero for the positive sign preceding the square root and less
than zero for the negative sign. Consequently, the two accompanying eigenvectors

e1 =
(

0, 0, 1,− kb1�1

mw1λ
2
1 + kb1 + kw1

,
kb1�1

mw1λ
2
1 + kb1 + kw1

)T

, (10.28)

e2 =
(

0, 0, 1,− kb1�1

mw1λ
2
2 + kb1 + kw1

,
kb1�1

mw1λ
2
2 + kb1 + kw1

)T

, (10.29)

have components preceded by the following signs:

e1 : (0, 0,+,−, +) , (10.30)

e2 : (0, 0,+,+,−) . (10.31)

The first eigenmode is therefore equivalent to an oscillation in which the ends of
the body and the wheel masses oscillate in the same phase. In the second eigenmode,
the ends of the body and the wheel masses vibrate in opposite phases. The eigenmode
of the remaining six natural vibrations correspond to purely translatory movements in
the z direction.

In automotive engineering, it is common to define a substitute for the model pre-
sented previously in which merely masses with translational motion occur. The substi-
tute system is shown in Figure 10.4. The body mass in the substitute system is replaced
by three masses. These masses, mb1, mb2 and mc (coupling mass) are connected by
a rigid, massless beam. The three masses are treated as point masses (without mass
moment of inertia). To ensure that the inertia characteristics of the three masses agree
with those of the body, three conditions have to be fulfilled:

mb1 + mb2 + mc = mb , (10.32)

�1mb1 − �2mb2 = 0 , (10.33)

�2
1mb1 + �2

2mb2 = Jb . (10.34)

The above equations guarantee equality of the total mass (10.32), the centre of mass,
(10.33) and the mass moment (10.34). In the form of a system of equations, these
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Figure 10.4 Two-axle vehicle with coupling mass

conditions have the following structure:

⎡
⎣ 1 1 1

�1 0 −�2
�2
1 0 �2

2

⎤
⎦

⎡
⎣mb1

mc

mb2

⎤
⎦ =

⎡
⎣mb

0
Jb

⎤
⎦ . (10.35)

The determinant of the matrix is �1�2(�1 + �2). This means that the system of
equations can always be solved provided that the centre of mass does not coincide
with A1 or A2. However, there may be solutions for which mc < 0 applies; from
the engineering mechanics point of view, a negative mass makes no sense. As the
equations of motion can be arranged in a similar manner to the first model and the
solutions of the equations of motion result in the same motions as in the first model,
we shall dispense with a closer consideration of this second model.

Remark 10.1 The excitations h1 and h2 due to the irregular road surface appear in the
last two differential equations. The different designations indicate that these functions
and hence the excitations are independent of each other. However, as we assume that
the front and rear tyres travel in one track, the excitation at the rear, h2, is the same as
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that at the front but shifted in phase (� = �1 + �2):

h2(vt) = h1

(
v

(
t − �

v

))
. (10.36)

If we assume that h1 can be written as a Fourier series:

h1(vt) =
N∑

i=−N

ĥie
jiωt , (10.37)

then

h2(vt) =
N∑

i=−N

e−jiω �
v ĥie

jiωt . (10.38)

The excitation angular frequencies, ω, are dependent upon the wavenumbers of the
irregularity of the road surface

h(x) =
N∑

i=−N

ĥie
jiκwx . (10.39)

The following applies:
κwv = ω . (10.40)

From this, the excitation on the rear wheels results in the following:

h2(vt) =
N∑

i=−N

e−jiκw�ĥie
jiωt . (10.41)

The fixed phase shift, iκw�, which is independent of the driving speed, v, has the
consequence that

• a harmonic component of the irregularity of the road surface excites the pitch and
vertical vibrations in a certain ratio independent on the driving speed;

• there may be harmonic components of the road irregularity that exclusively excite
either pitch or vertical vibrations.

The phase shift depends on the wheelbase, �, of the vehicle and the wavenumbers,
κw. This has the consequence that in the case of two different vehicles travelling over
a certain test circuit it will only be possible to stimulate vertical vibrations in one of
the vehicles and only pitch vibrations in the other. During the planning of test circuits
and in the comparison, it is therefore necessary to make sure that a certain wavelength
distribution is present.
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10.3 Non-linear Characteristic Curves

To conclude this chapter, we examine non-linearities in characteristic curves in springs
and shock absorbers. As a simple example, we consider the single-mass oscillator with
non-linear characteristic curve for springs:

ẍ + 2Dẋ + f(x) = p0 cos ηt . (10.42)

We restrict ourselves here to a dimensionless notation. We obtain the periodic solu-
tions of this differential equation with the help of a Fourier series. In the following,
however, we merely consider the first member of this series. The essential properties
can be identified with support of this approximate solution:

x = Q cos(ηt − α) . (10.43)

Let the non-linearity be
f(x) = x + 0.05x3 . (10.44)

This is the non-linear stiffness which is called a Duffing oscillator.
Figure 10.5 shows the solutions for the undamped system (hence D = 0).
We can see the relation between the amplitude, Q, and the frequency, η2, of the

autonomous system (hence no external excitation: p0 = 0). In contrast to the linear
single-mass oscillator, there is no fixed natural frequency, but, instead, the frequency,
η, with which the system oscillates depends upon the amplitude, Q. We can see that
the frequency with which the system vibrates is very close to the natural angular fre-
quency, η = 1, of the linear single-mass oscillator for small amplitudes Q. The line
for p0 = 0 is called the backbone curve.

The amplitude for the enforced vibrations can also be seen in Figure 10.5. With a
given amplitude, p0, of excitation, there are three possible amplitudes for the vibration

unstable
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Figure 10.5 Relation of amplitude to frequency (undamped Duffing oscillator)
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Figure 10.6 Relation of amplitude to frequency (damped Duffing oscillator)

that becomes established. The following will examine their significance with the sup-
port of a damped system. Figure 10.6 shows the amplitudes and the frequencies for a
damped system:

ẍ + 0.1ẋ + x + 0.05x3 = p0 cos(ηt) . (10.45)

Here, too, we can see the backbone curve. However, here the amplitude of the oscil-
lations is not shown as the oscillations of the free system decrease because of the
damping. Yet, in contrast to the undamped system, the backbone curve ends at a cer-
tain frequency. Unlike the undamped system, the curves for p0 �= 0 in the damped
system are closed. In the damped case, the backbone curve merely has the function of
a separation line in the amplitude–frequency graph.

We consider the curve for p0 = 2 and raise the frequency beginning from zero. If
the frequency reaches the reversal point, A, the amplitude falls to the section of the
curve with the negative gradient (Figure 10.6).

If the frequency is reduced starting from a high frequency, at the reversal point, B,
the amplitude jumps to the higher branch for p0 = 2. The solutions for the middle

Fs Fd

reboundcompression

Figure 10.7 Non-linear characteristic curves
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branch are unstable and therefore practically play no role. The leap from one branch
to the other always takes place at the points with a vertical tangent.

In summary, this means that there may be more than one solution for forced vibra-
tions in non-linear systems.

Next to the non-linear characteristic curve of the spring (linear and cubic part)
Figure 10.7 shows the path of a non-linear hydraulic shock absorber. The bilinear
path is characteristic. Here, the gradient is lower in the compression range than in the
rebound range.

10.4 Questions and Exercises
Remembering

1. What does a very simple vehicle substitute model look like?
2. In what order of magnitude does the first body natural frequency lie, and in which

does the second lie?
3. Draw a model to investigate the vertical and pitch vibrations of a vehicle.
4. How many natural frequencies does this model have?
5. What are the main natural modes that exist in this model?

Understanding

1. What is a coupling mass?
2. Which conditions have to be fulfilled for the introduction of a coupling mass?





11
Single-track Model, Tyre Slip
Angle, Steering

In this chapter, we present the main concepts, technical terms and inter-relationships
of the lateral dynamics. The lateral dynamics plays a central role in cornering.
Section 11.1 presents important technical terms such as the single-track model
for understanding the cornering and deriving the underlying equations of motion.
Section 11.2 is devoted to the central element of cornering, the cornering of the
tyres and the tangential stress distribution in the contact patch. The steering and the
steering angle and concepts necessary to understand oversteering and understeering
are the content of Section 11.3. Thereafter, the linearized equations of motion of
the single-track model are derived in Section 11.4; these equations are the most
important outcomes of this chapter. Section 11.5 discusses the relationship between
the longitudinal and the lateral forces of the tyre, the effect of differential gears on
cornering is discuss in Section 11.6.

11.1 Equations of Motion of the Single-track Model

In the following section, we deal with driving a vehicle in the plane along a trajec-
tory. The forces arising during cornering and the effect of the tyres are also studied.
Figure 11.1 shows the model with two axles and four wheels. We assume that the cen-
tre of mass, Scm, lies in the plane on which the vehicle travels1. As a result, no wheel
load transfer occurs (either during cornering or during acceleration or deceleration).
The model can therefore be reduced to a single-track model (Figure 11.1).

1 Of course, this an essential simplification, but it allows simple equations of motion to be derived and hence provides
a clear overview of some important phenomena.

Vehicle Dynamics, First Edition. Martin Meywerk.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Figure 11.1 Single-track model

Single-track model: The single-track model is a key model in the lateral dynamics of a
vehicle which allows important parameter dependencies to be considered and con-
clusions to be drawn on the lateral dynamics. The single-track model often forms
the basis of simple ESP systems. One important assumption of the single-track
model is that the centre of mass of the vehicle is on the road, which means that the
distance of the centre of mass to the road plane is zero: hcm = 0. This simplification
limits the applicability of the single-track model.

The centre of mass Scm of the model moves along the trajectory, the velocity, �v =
�vv, of the centre of mass is always tangential to the trajectory. The angle between the
�eix-axis and the vehicle longitudinal �evx-axis is the yaw angle ψ (see also Figure 1.8;
we mainly omit the index v in the following, v = vv etc.).

Vehicle sideslip angle: The angle between the direction of motion of the vehicle’s cen-
tre of mass and the vehicle’slongitudinal axis is called the vehicle sideslip angle β.
The sum of the yaw angle and the vehicle sideslip angle is the course angle.

Circle of curvature: The circle of curvature is a purely geometric object which approx-
imates the trajectory locally at one point. In other words, the circle of curvature
exists even when there is no vehicle moving along the trajectory; it is a character-
istic of the trajectory. The centre of the circle of curvature is Mcc.

The circle of curvature can be calculated by means of a limiting process as shown in
Figure 11.2. Both points marked by the crosses move against the point in the middle
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Figure 11.2 Determination of the circle of curvature using a limiting process

of the crosses. Exactly one circle is defined by the crosses and the point. The circle
which arises in this limiting process is the circle of curvature at the point P .

If the trajectory is given by mathematical functions in the form of parameterized
curves

�r = (xv(ζ), yv(ζ))
(

�eix

�eiy

)
, (11.1)

(here ζ is a curve parameter without a dimension) the curve radius ρcc can be calcu-
lated by

ρcc =

∣∣∣∣∣∣
(
(x′

v)2 + (y′
v)2

) 3
2

x′
vy

′′
v − x′′

vy
′
v

∣∣∣∣∣∣ . (11.2)

For a motion on a straight line the radius is infinite, ρcc = ∞, or the curvature κcc
is zero:

κcc =
1

ρcc
= 0

1
m

. (11.3)

This means that the transition from a straight line motion to a motion on a circle
with the radius ρcc results in discontinuous change in the lateral acceleration

ay =
v2

ρcc
. (11.4)

To avoid this discontinuity, in the planning of roads straight lines are usually not
connected to parts of a circle, but special curves, so-called clothoids (or Euler spirals)
are used. These special track transition curves can be described by so-called Fresnel
integrals (cf. Abramowitz 1984):

(
xv(ζ)
yv(ζ)

)
= Ac

√
π

∫ ζ

0

⎛
⎝cos

(
πξ2

2

)
sin

(
πξ2

2

)
⎞
⎠ dξ . (11.5)
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A closed form solution is not possible, but series expansions and approximate
numerical functions exists. Substituting these integrals in Equation (11.2) yields

ρcc =
Ac

ζ
√

π
. (11.6)

Thus, the lateral acceleration (and therefore the centrifugal forces) depends linearly
on ζ:

ac =
v2

ρcc
(11.7)

=
v2√π

Ac

ζ . (11.8)

This is the reason why the clothoid is suitable for transition from straight line motion
to motion on a circle. The length of a clothoid is

L = A
√

πζ , (11.9)

which means that the curvature κcc = 1/ρcc increases linearly with the length.
Clothoids can be used for transition from two straight line motion or for transition

from a straight line to circular motion and vice versa.
The centripetal acceleration (or radial acceleration), ac = v2

ρcc
, is directed towards

the centre of curvature, Mcc, of the trajectory (v = |�v| is the absolute value of the
velocity vector �v = �vv and ρcc is the radius of the circle of curvature). The tangential
acceleration, v̇, is directed tangentially to the trajectory (and tangentially to the circle
of curvature). The free-body diagram is shown in Figure 11.3.

In addition to the tangential inertial forces, Ft = mv̇, and the centrifugal force,
Fc = mv2

ρcc
, it also shows the air forces, Fax and Fay, and the forces in the contact

patches of the front and rear wheels. The front wheel is turned by the steering angle,
δ1.

From the free-body diagram of Figure 11.3, we obtain three equations of motion
(these form the basis for further investigations):

• Equilibrium of forces in the longitudinal direction of the vehicle:

m
v2

ρcc
sinβ − mv̇ cos β + Fx2 − Fax + Fx1 cos δ1 − Fy1 sin δ1 = 0 , (11.10)

• Equilibrium of forces perpendicular to the longitudinal direction of the vehicle:

m
v2

ρcc
cos β + mv̇ sin β − Fy2 + Fay − Fx1 sin δ1 − Fy1 cos δ1 = 0 , (11.11)

• Moment equilibrium about Scm:

Jzψ̈ − (Fy1 cos δ1 + Fx1 sin δ1)�1 + Fy2�2 + Fay�cm = 0 . (11.12)
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Figure 11.3 Free-body diagram of the single-track model

The axle loads are
Fz1 = G

�2

�
− Faz1 , (11.13)

Fz2 = G
�1

�
− Faz2 . (11.14)

Here, Faz1 and Faz2 are the aerodynamic lift forces at the front and rear axles. The
effects of the rolling resistances and of inertia effects of rotating parts (especially an
engine with a lateral rotation axis) on the axle load are neglected. The static parts from
a gradient of the road or the dynamic parts from acceleration or braking do not result
in a moment because we assume that the centre of mass lies on the road.

The non-linear equations of motion (11.10)–(11.12) are later linearized in order
to obtain linear equations of motion of the single-track model. We first discuss the
movement of the vehicle in terms of the curvature centre point, Mcc, (or the centre of
the circle of curvature) of the trajectory, the centre of mass, Scm, and instantaneous
centre of rotation, Mcr, of the vehicle movement. The centre of curvature, Mcc, of the
trajectory is a purely geometric object, which allows the centre of mass acceleration
to be interpreted and split into radial and tangential components. The instantaneous
centre of rotation, Mcr, also contributes to the calculation of the rotation of the vehicle
(the yaw) about the centre of mass.

In the following, we derive the relations for the distances of the instantaneous
centre of rotation, Mcr, and the centre of curvature, Mcc, from the centre of mass,
Scm. To derive the relationship for the instantaneous centre of rotation, we start from
Figure 11.4.
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Figure 11.4 Instantaneous centre of rotation of the vehicle in motionl

Instantaneous centre of rotation: The instantaneous centre of rotation is an imaginary
point. The vehicle rotates around this point at a particular moment. If we imagine
an infinitely large rigid plate which is fixed to the vehicle and parallel to the road,
the instantaneous centre of rotation is that point of the plate which does not move,
i.e. the velocity of this point vanishes. The instantaneous centre of rotation, Mcr,
is the intersection of two normals of two arbitrary velocity vectors in two different
points of the vehicle.

Figure 11.4 shows an example of the two points A and B. The velocity, �v1, of point
A is the sum of the velocity vector of point Scm and the velocity vector, Δ�v1, due to
the yaw motion. The vector Δ�v1 is derived from the following Equation (11.15):

Δ�v1 = �̇ψ × (�rA − �rcm) . (11.15)

Here �rA is the vector to the point A, �rcm is the vector to the centre of mass Scm, and
�̇ψ is the yaw angle velocity vector. Therefore

�v1 = �vv + Δ�v1 , (11.16)

�v2 = �vv + Δ�v2 where (11.17)

Δ�v2 = �̇ψ × (�rB − �rcm) . (11.18)
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Figure 11.5 Distance of the instantaneous centre of rotation from the centre of gravity

The dashed and chain dotted lines in Figure 11.4 are perpendicular to the velocities
�v1 and �v2, respectively, and the points A and B are on the lines. They are described
by the following two equations in the normal form as

(�r − �rA) · �v1 = 0 , (11.19)

(�r − �rB) · �v2 = 0 , (11.20)

where · denotes the scalar product and �r is the vector to each point of the line. From
Equations (11.19) and (11.20), we obtain the position of the instantaneous centre of
rotation, which is the intersection of the two lines.

Often we are interested only in the distance, ρcr, of the instantaneous centre of
rotation, Mcr, from the centre of mass, Scm. We obtain this by simple geometrical
observations from Figure 11.5. Without any loss of generality, we choose an arbitrary
point, C, on the line through the centre of gravity, Scm, with the direction of the veloc-
ity, �vv. For this point C we determine the velocity �v3 (cf. Figure 11.5). The velocity
�v3 is the sum of �vv and of the portion perpendicular to the �vv-direction from yaw �ψ̇.
The angle α in the velocity triangle is given by (vv = |�vv|):

tan α =
�ψ̇

vv

. (11.21)

The dashed-line triangle is similar (in the mathematical sense of similar triangles)
to the velocity triangle; hence, the angles at the vertex Mcr is the same as the angle
between �vv and �v3 in the velocity triangle. We obtain from the dashed line triangle:

tan α =
�

ρcr
. (11.22)
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From Equations (11.21) and (11.22) together, we have

ρcr =
vv

ψ̇
. (11.23)

The radius, ρcc, of the circle of curvature is associated with the centre of mass veloc-
ity and the course angular velocity, β̇ + ψ̇. The relationship can be easily determined
with the help of Figure 11.6.

The circle of curvature touches the trajectory at one point. The velocity, �vv, is a
tangent to the trajectory and to the circle of curvature, hence the circle of curvature is
an instantaneous approximation of the trajectory. The velocity of Scm on this circle is
equal to the velocity of the movement on the trajectory. The direction of �vv changes
with the course angular velocity β̇ + ψ̇. We therefore obtain

|�vv| = ρcc(β̇ + ψ̇) , (11.24)

which yields (with vv = |�vv|)
ρcc =

vv

β̇ + ψ̇
. (11.25)
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It may seem surprising at this point that just the angles β and ψ, associated with the
movement of the vehicle, appear in the formula for ρcc, the instantaneous radius of the
trajectory, since these angles have nothing to do with the trajectory. This is because
the course angle is merely expressed by the yaw and the vehicle sideslip angle.

11.2 Slip Angle

The following section is devoted to the slip angle of the tyre. Figure 11.7 shows three
views of a tyre: in Figure 11.7(a) the front view, in Figure 11.7(b) the bottom view
and in Figure 11.7(c) the side view.

Slip angle: Lateral slip occurs in a tyre when the xw-direction (i.e. the longitudinal
direction in the tyre coordinate system) does not coincide with the direction
of motion (�vw-direction in Figure 11.7(b)). Between the xw-direction and
�vw-direction, we call this angle the slip angle α.

If the xw and �vw-direction do not coincide, this results in lateral deformations of
the tyre (indicated by dashed lines in Figure 11.7(a) and (b)), it also leads to a force
Fy in the tyre contact patch acting in the yw-direction.

Caster: The point of application of the force Fy does not lie in the symmetry plane
of the tyre, but is shifted against ntc in the xw-direction. We call ntc the tyre caster
trail (see Figure 11.7(b))2.
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Figure 11.7 Forces on a tyre with lateral slip

2 In the literature the technical term pneumatic trail is often used, in Reimpell et al. 2001 the term is tyre caster; as
the lever arm occurs at solid tyres, too, the term pneumatic trail may be confusing, and therefore the term tyre caster
trail is used in this book.
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Figure 11.8 Stresses in the contact area at the wheel with lateral slip

Figure 11.7 lists the section forces. Considering Figure 11.7(b), it is obvious that,
due to the tyre caster trail ntc, a moment Mz = ntcFy is necessary for the conditions
of equilibrium to be fulfilled (here the moment M ∗

z was set to zero). The moment M ∗
z ,

which was introduced here only for the sake of completeness, is due to the angular
velocity of the wheel about the zw-axis, which may occur, for example, during parking
manoeuvre. Such motion results in a moment which is generally small for a rolling
tyre. Since the steady slip is considered here, we set M ∗

z = 0.
The moment Mz counteracts an increase of the slip angle (self-aligning moment)3.

An explanation of the tyre caster trail is illustrated with the help of Figure 11.8, in
which the lateral stresses, σy, are shown schematically. Figure 11.8(a) shows the
longitudinal force coefficient, μ, as a function of the slip. Essential features for the
following explanation are the division in the adhesion area (at the front of the con-
tact patch) and the sliding area (at the end of the contact patch). It is important that
the lateral stresses should fall off rapidly in the transition from adhesion to sliding,
while μ should fall rapidly from μa to μs. Figure 11.8(b) shows the normal stress,
σz , in the longitudinal symmetry plane of the contact area as a function of xw. The
asymmetrical stress distribution due to the rolling has been omitted for the sake of
clarity. Figure 11.8(c)–(e) shows the tangential stresses, σy, in the yw-direction for
three different slip angles.

3 Longitudinal forces in the contact patch from braking or from traction could result in moments, if they do not act in
the centre of the contact patch.
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Figure 11.9 Development of lateral forces

The slip angle α is the smallest in Figure 11.8(c) and is the greatest in Figure 11.8(e).
What happens when lateral slip occurs in a wheel can be first explained with the help
of Figure 11.9, before we return to the stresses. The four sub-images of Figure 11.9
show a wheel in motion on the road for four consecutive points in time, t1, t2, t3, t4.
The wheel moves from bottom left to top right. Wheel and contact area are shown
undeformed in the diagram. We now concentrate on the small strip of material which
is part of the tyre. At t = t1, this strip runs in the contact patch and touches the road
for the first time (the small image on the left shows a section in the xw-zw plane;
the strip in this section is the small rectangle). At time t = t2, the tyre has moved a
little towards the �vw-direction. However, the strip adheres substantially to the road and
therefore does not change its position. The tyre is therefore deformed; the deformed
tyre is shown by the dashed line.

In the further course of the manoeuvre, the movement of the tyre continues in the
�vw-direction (t = t3). The deformations of the tyre become greater. This in turn draws
larger deformation forces or tangential stresses, which means that the tangential forces
acting between the road and the strip become larger. If the forces are too large, then
the strip begins to slide (t = t4). This can occur in the back section of the contact
patch. Consequently, the contact patch may be divided in the adhesion area, which is
located at the front part of the contact patch, and in a sliding area at the rear part of the
contact patch. It is evident that the contact patch no longer has a simple rectangular
shape when cornering.

We now return to the consideration of the stresses in the contact area from
Figure 11.8. Figure 11.8(c) shows the tangential stresses σy for a small slip angle.
The stress increases approximately linearly (light grey area) until it comes to slide
because it exceeds the coefficient of adhesion. In the adhesion area, the location of
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the strip on the road as in Figure 11.9, does not change. In fact, the strip changes
its position only slightly, because a small amount of sliding occurs even in the
so-called adhesion area. This can be seen in Figure 11.8(a). Major sliding occurs in
the transition from the adhesion area to the sliding area. Although the normal stress,
σz , changes only slightly, the tangential stresses, σy, drop quite abruptly, hence the
friction coefficient decreases rapidly at this point from μa to μs. The tangential stress
σy thus increases in the adhesion area and behaves approximately proportionally to
the normal stresses in the sliding area.

Due to this asymmetric distribution of the tangential stress, the resultant force, Fy,
is not located in the centre of the contact patch, but is shifted by ntc in the direction of
the transition from the adhesion area to the sliding area. An increase in the slip angle
(Figure 11.8(d)) over the course of time also increases the lateral displacement of the
strip from Figure 11.9. Consequently, the tangential stress increases rapidly and the
transition to sliding occurs earlier. This results in a smaller adhesion area and a larger
sliding area. As the tangential stress distribution approaches a symmetrical shape, the
tyre caster trail, ntc, becomes smaller. In Figure 11.8(e), this effect is more apparent
at an even greater slip angle; here the tyre caster trail has decreased to almost zero.
By extending the sliding area for very large slip angles on almost the entire contact
patch, the tangential stress distribution is proportional to the normal stress distribu-
tion. If we consider the asymmetric normal stress distribution due to the tyre rolling,
which involves the normal stresses increasing in the front portion of the contact patch,
then theoretically a negative tyre caster trail could arise. This negative tyre caster trail
would mean that the wheel becomes unstable. However, for practical driving patterns,
these extreme slip angles have no meaning.

Cornering stiffness: For small slip angles (approx. α < 4◦) the lateral force Fy can be
approximated by a linearized law:

Fy = cαα . (11.26)

The coefficient cα is called the lateral force coefficient or the cornering stiffness.
For small slip angles we can approximately assume that the sliding portion van-

ishes and the tangential stress increases linearly from zero to the maximum value in
the adhesion area of the contact patch. We then obtain the tyre caster trail simply by
determining the centre point of the tangential stress triangle (cf. Figure 11.8(f)):

ntc =
1
3
�cp . (11.27)

This is an approximate formula, which applies only under the stated conditions.
In Figure 11.10, the lateral force, Fy, the moment, Mz , and the tyre caster trail,

ntc, are shown as a function of slip angle α. Both the lateral force, Fy, and the tyre
caster trail, ntc (order of magnitude for passenger cars: ntc ≈ 0.02 − 0.06 m, cα ≈
40 − 110 kN/rad) depend on the vertical force, Fz . For small slip angles, α, this can
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Figure 11.10 Lateral force, self-aligning moment and tyre caster trail (from measurements
with slight corrections of offsets)

be approximated by polynomials (Fznom is a nominal vertical load):

cα = (ĉα − c̃αFz)Fz , (11.28)

ntc = ntc0
Fz

Fznom
. (11.29)

Equation (11.28) is crucial in subsequent considerations.

11.3 Steering

This section derives the relationship between steering angle, δ1, of the front wheels
and the angle, δs, by which the driver rotates the steering wheel. We use Figure 11.11
to explain the relationship. The rotational movement of the steering wheel is converted
by the rack and pinion into a translational motion of the tie rod. The tie rods are linked
to the steering arms. The rotation of the steering arm results in a rotation of the wheel
carrier, which rotates about the steering axis (the steering axis is the axis through the
two ball joints of the wheel hub carrier; for a McPherson suspension, the steering axis
is the axis through the lower ball joint and the joint between the strut and the body).

The gear ratio of the steering gear is is = �saδs/u∗
r (order of magnitude: is ≈ 16–22;

here �sa is the length of the steering arm and u∗
r/�sa is approximately the steering angle

of the wheels for small angles for neglected steering compliance). In existing steering
amplifiers (power steering), the steering moment Ms is increased by a factor of Vs.
The steering stiffness, ks, is introduced between the rack and the tie rods. This steering
stiffness, ks, represents all compliances (flexibilities), e.g. of the steering column, the
steering gear, the tie rod and the steering arms. The wheel rotates around the steering
axis. In general, this axis is not vertical but tilted. Its position is described by two
tilt angles: the king pin inclination angle, σ, and the so-called caster angle τ . Due to
tilting about the caster angle τ , the instantaneous centre of the steering movement of
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Figure 11.11 Schematic diagram of a rack and pinion steering system (adapted from
Mitschke and Wallentowitz 2004)

the wheel lies in the direction of travel, the distance is the kinematic caster trail4, nkc,
(order of magnitude: nkc ≈ 1–30 mm).

The steering moment at the wheels is then calculated as

M ∗
s = (Fy1� + Fy1r)(nkc + ntc) cos(τ) . (11.30)

For small caster angles, τ , we can only consider the sum of the kinematic caster
trail nkc and the tyre caster trail ntc in this formula and replace the cosine term by 1.
The steering wheel torque is given by

Ms =
M∗

s

isVs

. (11.31)

The steering moment on the tyres depends on the difference in displacement5 utr =
�saδ1 of the tie rod and the displacement of the rack u∗

r (here �sa is the length of the
steering arm):

M∗
s = 2ks(u

∗
r − �saδ1) . (11.32)

The displacement of the rack is obtained from the angle of rotation of the steering
wheel, δs, by means of the transmission ratio is of the steering gear:

u∗
r = �sa

δs

is
. (11.33)

4 In the literature or in ISO 8855 2011 other technical terms are used, e.g. caster offset at ground, castor trail or
kinematic trail.
5 For convenience, we neglect the angle between the steering arm and the longitudinal direction, xv , of the vehicle
as well as the angle between the tie rod and the lateral direction, yv , of the vehicle. Furthermore, the equation utr =
�saδ1 holds only for small angles δ1.
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By eliminating M ∗
s , we obtain

(Fy1� + Fy1r)(nkc + ntc) = 2ks(u
∗
r − �saδ1, ) (11.34)

and hence (the translational stiffness, ks, is substituted by a rotational stiffness, k̃s =
2�saks) by substituting u∗

r using Equation (11.33):

δ1 =
δs

is
−

(Fy1� + Fy1r)(nkc + ntc)

k̃s

. (11.35)

Similar results can be obtained for other steering systems such as a lever arm steer-
ing system6.

It should be emphasized that we have neglected non-linearities of trigonometric
functions in the above derivation.

The influence of longitudinal forces in the tyre contact patch when driving or brak-
ing or when driving over obstacles during cornering can have an effect on the steering
wheel torque. In general, steering arms are not arranged in parallel. During cornering,
the longitudinal forces cause different moments depending on whether they act on the
inside of the curve or the outside of the curve. We denote the influence factors by ii
for the inner wheel and io for the outer wheel. In most cases, ii > io (i.e. the inside
wheel is turned more than the outer wheel).

During the braking process, the braking torque is applied on the one hand by a longi-
tudinal brake force Fb in the contact patch and on the other hand by the corresponding
tangential force on the brake disc. The entire brake force is therefore supported via
the suspension on the body of the vehicle (see Figure 11.12). The total moment act-
ing on the steering system due to the braking forces is therefore related to the braking
forces and to the corresponding scrub radius, rk. The scrub radius is the distance from
the intersection point of the axis of symmetry of the wheel with the roadway to the
intersection point of the steering axis with the roadway. The total moment is therefore
given by7

Ms ≈ (Fboio − Fbiii)rk cos σ︸ ︷︷ ︸
qT

. (11.36)

Because the steering arms are not parallel, ii > io, and as the braking forces at
the outer and the inner wheels are of the same magnitude (Fbo = Fbi), the moment
acting on the steering system is proportional to the scrub radius rk. The scrub radius
can be very small or even zero. To achieve this goal, the distance between steering

6 The stiffness of the compliance k̃s in the equations of the rack and pinion steering system has to be substituted by ks
of a lever arm steering system. The unit of the constant ks in the rack and pinion steering system is a unit of force, the
unit of the constant ks in a lever arm steering is a unit of moment. The moment arm �sa is introduced in u∗

r = �sa
δs
is

to obtain the same equations for rack and pinion and lever arm steering systems. This moment arm �sa, of course, is
not part of the rack and pinion steering system but it is the length of the steering arm for both steering systems.
7 To calculate the torque of the braking forces Fbo and Fbi at the outer and inner sides, respectively, the lever arm,
i.e. the distance between the kingpin axis and the centre of the contact patch, should be introduced. In the literature
and in ISO 8855 2011 this is included by using the symbol qT ; here we prefer to introduce rk , which can be used to
calculate qT = rk cos σ.
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Figure 11.12 Impact of longitudinal forces in the contact area

axis and centre of the wheel and the inclination angle of the steering axis have to
chosen appropriately. A negative scrub radius is also possible. During braking with
ABS control, the braking forces are very high, which could result in a high moment in
the steering system. It is therefore advantageous to have a small or zero scrub radius.

When considering the driven wheels, we assume drive shafts which are parallel to
the lateral vehicle axis (yv-axis). In general, drive shafts with universal joints (or con-
stant velocity joints, CV joints) and splines for adaption to changes in lengths are used.
These drive shafts are, generally not in a straight line. In such cases, the consideration
is more complicated and geometric non-linearities have to be taken into account. For
convenience, we restrict the following to straight drive shafts. The tractive forces act
in the contact patch. Since the drive torque at the wheel cannot be supported via the
wheel hub carrier and the suspension by the body of the vehicle, the corresponding
tractive force, Ft, in the contact patch has to be equal to the section force, St, acting
on the centre of the wheel. The equation St = Ft results from the free-body diagram
in the right-hand part of Figure 11.12. The moments arising from the driving forces
on the innner and outer wheel are not proportional to the scrub radius, but propor-
tional to the so-called longitudinal force moment-arm or the disturbing force lever
arm radius rσ. (On closer examination the disturbing force lever arm must be modi-
fied in accordance with the geometry of the drive shafts; in this context we speak of a
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driving torque arm radius). A straight drive shaft results in a moment, Ms, due tractive
forces Fxi and Fxo

8:
Ms ≈ (Fxiii − Fxoio)rσ cos σ︸ ︷︷ ︸

qW

. (11.37)

This steering moment is proportional to the disturbing force lever arm rσ. In the
suspensions and wheel hub bearings commonly in use today, rσ cannot be chosen
to be arbitrarily small. Impact forces have a similar influence to driving forces, such
as when driving over obstacles. Although these disturbing forces act in the oppo-
site direction, their influence is similar to that of tractive forces: both of them pro-
duce a steering moment that is proportional to rσ. The name disturbing force lever
arm comes from the effect of these disturbing impact forces. By design, the scrub
radius, rk, can be zero or even negative. This became possible in passenger cars par-
ticularly through the introduction of sliding calliper brakes, which only need small
package dimensions, meaning that the steering axle can be placed close to the wheel
centre plane.

A negative scrub radius is advantageous for diagonally split braking systems. In
these systems, the diagonally opposite wheels are each combined in one of the two
brake circuits. If one circuit should fail during braking, a yaw moment occurs. This
yaw moment is the result of load transfer from rear to front axle and therefore greater
braking forces at the front axle. The negative scrub radius, together with a one-sided
braking force at the front wheels, causes a compensatory steering (initiated by the
moment) to the yaw moment from braking forces (cf. Figure 11.13(a)).

Similarly, a negative scrub radius, rk, has a favourable effect on braking on a split-μ
road. The yaw moment from different braking forces is partly compensated for by
steering initiated by the steering moment (from negative scrub radius and the different
braking forces at the front wheels; cf. Figure 11.13(b)). Similar compensation occurs
during braking and cornering (cf. Figure 11.13(c)) where a steering to the inside of
the trajectory is initiated.

11.4 Linearized Equations of Motion of the Single-track Model

In this section we linearize the equations of motion of the single-track model that were
derived in Section 11.1. From v = |�vv| we obtain

v = ρcc (β̇ + ψ̇) . (11.38)

Multiplying this equation by v/ρcc yields the centrifugal acceleration:

v2

ρcc
= v (β̇ + ψ̇) . (11.39)

8 In the literature and in ISO 8855 2011 for the lever arm, the symbol qW = rσ cos σ is additionally introduced in
order to calculate the torque.
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Figure 11.13 Effect of a negative scrub radius in different driving situations

From Figure 11.14, we obtain the relationships between the slip angles, α1 and
α2, of the wheels and the vehicle sideslip angle, β. The velocity components of the
velocities �v1, �v2, and �vv in the vehicle longitudinal direction (xv-direction) must be
the same (v = |�vv|, v1 = |�v1|, v2 = |�v2|):

v cos β = v1 cos (δ1 − α1) , (11.40)

v cos β = v2 cos α2 . (11.41)

The velocity components in the vehicle transverse direction (yv-direction) differ by
the amount of yaw �jψ̇, j = 1, 2 (see also Figure 11.3):

v1 sin(δ1 − α1) = �1ψ̇ + v sin β , (11.42)

v2 sin α2 = �2ψ̇ − v sin β . (11.43)

Note that the slip angles αj were introduced against the yaw, steering and the vehicle
sideslip angle. From the equations, we obtain

tan(δ1 − α1) =
�1ψ̇ + v sin β

v cos β
, (11.44)

tanα2 =
�2ψ̇ − v sin β

v cos β
. (11.45)
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Figure 11.14 Kinematics on the single-track model

Linearizing these equations (tanαj ≈ αj , j = 1, 2, cosβ ≈ 1, sinβ ≈ β),
we obtain

α1 = −β + δ1 − �1
ψ̇

v
, (11.46)

α2 = −β + �2
ψ̇

v
. (11.47)

Substituting the equation for the lateral forces (11.26) in a linear form in the
equations of motion (11.10), (11.11) and (11.12) of Section 11.1 and linearizing
them results in (here Equation (11.39) is used)):

mv̇ = Fx1 + Fx2 − Fax , (11.48)

mv(β̇ + ψ̇) + mv̇β = cα1

(
−β + δ1 − �1

ψ̇

v

)
(11.49)

+cα2

(
−β + �2

ψ̇

v

)
− Fay ,

Jzψ̈ = cα1�1

(
−β + δ1 − �1

ψ̇

v

)
(11.50)

−cα2�2

(
−β + �2

ψ̇

v

)
− Fay�cm .
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The term Fx1δ1 was also neglected here. The set of equations is completed by the
steering equation:

δ1 =
1

1 + cα1nc

k̃s

(
δs

is
+

cα1nc

k̃s

(
β + �1

ψ̇

v

))
. (11.51)

Equation (11.51) is obtained from (11.35)

δ1 =
δs

is
−

(Fy1� + Fy1r)(nkc + ntc)

k̃s

(11.52)

by substituting Fy1 = Fy1� + Fy1r and Fy1 = cα1α1 (α1 from 11.46) and solving for
δ1. It is important that the cornering stiffness, cα1 in this equation should be the stiff-
ness for the whole axle, this means that cα1 = 2cαw1, where cαw1 is the cornering
stiffness of one single wheel at the front axle.

Here the total caster trail, nc = nkc + ntc, is the sum of the kinematic caster trail,
nkc, and the tyre caster trail, ntc. For the limiting case lim

ks→∞
of a rigid steering system

without compliances, we obtain δ1 = δs/is.
Equations (11.48), (11.49), (11.50) and (11.51) are considered in more detail for

special cases in subsequent chapters.

11.5 Relationship between Longitudinal Forces and Lateral
Forces in the Contact Patch

When considering the lateral forces, Fy, (section force in the contact patch), we have
so far assumed that no longitudinal forces, Fx, act on the tyre. In this chapter, the limit-
ing adhesion stress is only affected by the lateral force, Fy. However, the longitudinal
force, Fx, also acts perpendicularly to Fy, hence the lateral force considered by the
adhesion stress is no longer independent of the longitudinal force. A crucial factor for
the adhesion limit is the quotient

√
F 2

x + F 2
y /Fz between the vectorial sum of the two

forces Fx and Fy and the vertical load, Fz. Since the lateral and longitudinal forces

are perpendicular, the resultant force is Fr =
√

F 2
x + F 2

y . The adhesive limit in the
Fx–Fy-plane is described by the following equation:

√
F 2

x + F 2
y ≤ μaFz . (11.53)

Here Fz is the vertical load. If we consider diagram a) in Figure 11.15, this equation
means that the sum of Fx and Fy always lies inside the circle μaFz . We call this circle
Kamm’s circle.

This limitation also affects the maximum of the Fy-α curve. In Figure 11.15(b), this
is reproduced qualitatively. The diagram shows the lateral force-slip angle curves for
three different longitudinal forces Fx1 < Fx2 < Fx3. It can be seen that the maxima
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Figure 11.15 Kamm’s circle and Krempel diagram (Fx > 0: driving; Fx < 0: braking)

of the lateral forces decrease with increasing longitudinal force, Fx. The reason for
this is that adhesive coefficient is exceeded for smaller slip angles α by the action of
the longitudinal and the transverse forces. Figure 11.15(c) shows measurements of
the lateral forces as a function of the longitudinal force for different slip angles (from
G. Krempel, ATZ 1967).

Again in this diagram it is obvious that the lateral forces are dependent on the
longitudinal force. The decrease in the lateral force for large longitudinal forces is
significant. The consequence of this relation is that the maximum cornering or lateral
forces decrease if the vehicle accelerates or brakes. If a vehicle brakes or accelerates
during cornering at the limit of lateral tyre forces, the tyre forces decrease and the
vehicle is not able to continue driving the curve.

An asymmetry between braking (Fx < 0) and accelerating (Fx > 0) can also
be seen.

11.6 Effect of Differentials when Cornering

A so-called axle differential is used in order to distribute the drive torques on the
inner and outer wheels when cornering. A differential divides the input torque into
two drive torques for the two driven wheels on one axle. The behaviour of this differ-
ential is described by a set of equations for the rotational speed and the torque, which
cannot be altered without any external actions. It follows that the distribution of the
drive torque to the drive wheels is constant. The function of a differential is firstly
to avoid torsion of an axle during cornering (this torsion is caused by the different
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speeds of curve-inner and curve-outer wheels) and secondly to distribute the torque
to the inner and the outer wheels. The most widely used differential gear design used
is the bevel gear. In addition to compensating for different speeds when cornering,
the differential also balances the wheels for different slip conditions between left and
right wheels when driving straight ahead. Such conditions may, for example, occur
on a split-μ road.

The bevel gear differential has the following characteristics:

• Same distribution of the input torque, Mi, on right and left wheel:

M� = Mr = Mi/2 . (11.54)

• Stresses between the right and left wheel when cornering or during different slip
condition can be compensated for.

The disadvantage of varying adhesion conditions for the left and right wheels is that
the wheel with the smaller adhesion value determines the total transferable driving
force; this can result in only a very small driving force being transmitted to the road.

The so-called differential lock connects the left and right drives by friction-locking
or interlocking. The simplest form of this is a claw clutch, which connects the two
wheels to each other and is activated when required. Driving is then affected during
cornering and there are large stresses in the axle. With the existing ASR brake sys-
tem, it is possible to achieve good traction behaviour on split-μ roads without the use
of differential locks. In this case, the wheel with the poorer traction performance is
braked individually so that the transmitted forces at the wheel with a good traction
surface are not reduced. The disadvantage of this implementation is that the brake
disc at the braked wheel can heat up considerably; hence ASR with braking on one
wheel is not suitable for permanent application.

Another way to allocate a higher torque to the wheel with the better traction perfor-
mance can be found in systems that automatically partially restrict the speed compen-
sation between left and right wheel when necessary. The systems worth mentioning
here are also based on speed differences (e.g. Haldex) or those which work on moment
sensing (Torsen). Torsen differentials are used for example in four-wheel drive vehi-
cles in order to distribute the moments between the front and rear axles.

Another aspect of partially locked differentials is their response to load changes of
the vehicle when cornering. If we consider the release of the foot from the accelerator
pedal during steady-state circular cornering, then the drag moment from the combus-
tion engine decelerates the vehicle and the wheel loads therefore decrease on the rear
wheels and increase on the front wheels. Reducing wheel loads also causes the cor-
nering forces to decrease on the rear wheels, while the cornering forces increase on
the front wheels. For these reasons the vehicle turns into the curve. Now we assume an
ideal, frictionless differential, so that the engine drag torque would be divided equally
between inner and outer wheels. A partially locked differential, however, means that
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the braking torque on the outer wheel is greater than the inner wheel9. The varying
brake force distribution between the inner and outer wheels means that there is a yaw
moment, and the vehicle rotates out of path so as to counteract the inward turning as
a result of the load change behaviour.

11.7 Questions and Exercises
Remembering

1. Define vehicle sideslip angle.
2. Define course angle.
3. How is the instantaneous centre of rotation defined?
4. How is the slip angle of a tyre defined?
5. How are caster angle, total caster trail, tyre caster trail (pneumatic trail) and kine-

matic caster trail defined?
6. By what are the longitudinal and transverse forces associated with the tyres?

Understanding

1. What key assumption determines the single-track model and what is neglected by
this assumption?

2. What forces and moments act on the single-track model (including d’Alembert
inertial forces and moments and section forces)?

3. Define the centre of curvature of the trajectory and explain its purpose.
4. What qualitative path do the tangential stresses follow in the contact area and how

do they change as a function of the tyre slip angle?
5. What do we obtain from this process?
6. What is cornering stiffness?
7. How do lateral force, self-aligning moment and tyre caster trail depend qualita-

tively on slip angle?
8. What is Kamm’s circle?
9. What is a Krempel diagram?

Applying

1. The following parabola is given in parametrized form:
xv = Aζ,
yv = Aζ2.
Calculate the radius of curvature ρcc.

9 We can illustrate this by imagining that the vehicle is turning about the tyre contact point on the inner wheel (in this
doubtlessly unrealistic extreme case, the inner wheel no longer rotates and the outer curve would provide the complete
input torque).
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2. The following straight line is given:
xv = Aζ ,
yv = 2Aζ

Calculate the curvature κcc.
3. The adhesion limit is μa = 1.1, the velocity of a vehicle is 100 km/h (the gravita-

tional acceleration is g = 9.81 m/s2).
Estimate the minimal radius ρcc, which is possible for the vehicle.

4. Neglect aerodynamical forces and assume, that the centre of mass of a vehicle is
centered between the axles �1 = �2 = 2 m. The cornering stiffness values for all
four wheels are the same cα = 50 kN/rad. The vehicle runs at a steady state (that
means β̇ = 0) on a circle ρcc = 100 m with a velocity v = 30 m/s. Calculate the
slip angles of the tyres for the linear single-track model, the vehicle sideslip angle
β and the front steering angle δ1. As this may be a challenging task, follow the
solution procedure:
• Look at the last equation of the linearized equation (without aerodynamic

forces):

Jzψ̈ = cα1�1

(
−β + δ1 − �1

ψ̇

v

)
− cα2 �2

(
−β + �2

ψ̇

v

)
. (11.55)

Which conclusion can be drawn by considering the steady-state cornering ψ̈ =
0, the equation cα1 = cα2, �1 = �2 and the equations for the slip angles α1 and
α2?

• Calculate the yaw rate ψ̇.
• Look at the second equation of the linearized equation of the single-track model

mv(β̇ + ψ̇) + mv̇β = cα1α1 + cα2α2 . (11.56)

Considering the steady-state condition you can now calculate the tyre slip angles
α1 and α2.

• Using the equation for α2:
α2 = −β + �2

ψ̇
v

you can calculate the vehicle sideslip angle.
• Using the equation for α1:

α1 = −β + δ1 − �1
ψ̇
v

you can calculate the front steering angle δ1.



12
Circular Driving at a Constant
Speed

In this chapter, we consider steady-state driving at constant speed (v = vv = const.)
on a circle with a radius of ρcc. We omit the index v in the following; thus v = vv, etc.
The value ρcc = ∞ corresponds to the case of steady-state driving in a straight line,
which is also included in the following considerations.

In Section 12.1, system of algebraic equations are derived, in Section 12.2, we
consider their solutions. Section 12.3 is dedicated to geometric aspects. In the
Section 12.4, we discus the solutions and introduce oversteering and understeering.

12.1 Equations

This section derives the system of algebraic equations for the description of the
steady-state driving.

Because of the steady state (ψ̇ = const. and β = const.), the following applies:

β̇ = 0 , (12.1)

ψ̈ = 0 . (12.2)

Furthermore, the instantaneous center of rotation Mcr and the center of curvature
Mcc coincide: Mcr = Mcc. From the relationship between the yaw rate, ψ̇, and the
vehicle sideslip angle rate, β̇, and the centripetal acceleration

v2/ρcc = v(β̇ + ψ̇) , (12.3)

we obtain
v

ρcc
= ψ̇ (12.4)

Vehicle Dynamics, First Edition. Martin Meywerk.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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and

mv(β̇ + ψ̇) =
mv2

ρcc
. (12.5)

The linearized equations of motion of the single-track model (11.48)–(11.51) sim-
plify further in steady-state circular travel. First, we use the expression for δ1 from
(11.51)

δ1 =
1

1 + cα1nc

k̃s

(
δs

is
+

cα1nc

k̃s

(
β + �1

ψ̇

v

))
. (12.6)

to substitute δ1 in the term cα1(−β + δ1 − �1ψ̇/v)

cα1

(
−β + δ1 − �1

ψ̇

v

)
= βcα1

(
1

1 + cα1nc

k̃s

cα1nc

k̃s

− 1

)

+�1
ψ̇

v
cα1

(
1

1 + cα1nc

k̃s

cα1nc

k̃s

− 1

)

+
cα1

1 + cα1nc

k̃s

δs

is

= c′α1

(
−β − �1

ψ̇

v
+

δs

is

)
(12.7)

wherein

c′α1 =
cα1

1 + cα1nc

k̃s

(12.8)

has been set.
The equations of motion are simplified to obtain (air forces are not taken into

account):

(c′α1 + cα2) β + (mv2 − (cα2�2 − c′α1�1))
ψ̇

v
= c′α1

δs

is
, (12.9)

−(cα2�2 − c′α1�1)β + (c′α1�
2
1 + cα2�

2
2)

ψ̇

v
= c′α1�1

δs

is
. (12.10)

Equations (12.9) and (12.10) form a linear, non-homogeneous system of algebraic
equations for the unknown constants β, ψ̇ = v

ρcc
and δs. If one of these quantities is

given, which is the inhomogeneity, the remaining two can be calculated by solving
the system of equations.

For example, if the steering wheel angle δs is given for a constant velocity, then the
vehicle sideslip angle, β, and the yaw angular velocity, ψ̇, can be calculated, and the
relation ψ̇ = v

ρcc
allows the radius ρcc of the circle to be derived.
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Another example of using these equations is that for a given circle, ρcc, and a given
velocity, v (which means that the angular velocity, ψ̇, can be calculated by means of
ψ̇ = v

ρcc
and is therefore known, too), the vehicle sideslip angle, β, and the steering

angle, δs, can be calculated.

12.2 Solution of the Equations

In this section, the solutions of Equations (12.9) and (12.10) are derived.
Replacing ψ̇/v by 1/ρcc, we then determine the variables of interest, such as the

steering wheel angle, δs, angle of front wheels, δ1, vehicle sideslip angle, β, or the
moment on the steering wheel as a function of the centripetal acceleration divided
by the acceleration due to gravity, g. We obtain the vehicle sideslip angle, β, when
we multiply Equation (12.9) by �1 and then subtract Equation (12.10) (the second
equation of (12.11) is a rearrangement of (11.47)):

β =
�2

ρcc
− m�1

cα2�

v2

ρcc
(12.11)

=
�2

ρcc
− α2 .

If we write this with the help of the static rear axle load, Fz2 = mg�1/� (without
influence of a gradient, p = 0 or αg = 0), we obtain (β0 = �2/ρcc):

β = β0 −
Fz2

cα2

v2

ρccg
. (12.12)

The value of β0 can be interpreted graphically.
If the vehicle continues to drive on a circle of constant radius, ρcc, and reduces its

speed, then the vehicle sideslip angle β approaches the value β0:

lim
v→0

β = β0 . (12.13)

This means that the vehicle sideslip angle, β, approaches the value of β0 for very
small driving speeds, v. With increasing centripetal acceleration v2/ρcc, the vehicle
sideslip angle, β, decreases linearly with the centripetal acceleration, regardless of
whether the vehicle is understeering or oversteering (see below for an explanation of
these technical terms). The upper diagram of Figure 12.1 gives the trend for the fol-
lowing vehicle data: m = 1350 kg, �1 = 2.05 m, �2 = 2.35 m, nc = 0.051 m, cα1 =
100 kN/rad, cα2 = 90 kN/rad, ρcc = 100 m, is = 19, k̃s = 10 kN m/rad (Here we
assume a constant value of nc, which could be achieved for a constant tyre caster trail
ntc, which is only approximately valid for a small slip angle at the front wheels.).

Example 12.1 For these parameters, the angle β0 is

β0 = 0.0235 rad ≈ 1.35◦ . (12.14)
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Figure 12.1 Vehicle sideslip angle, β, steering wheel angle, δs, tyre slip angles, α1, α2, and
steering angle of the front wheel, δ1, as a function of the centripetal acceleration divided by
the acceleration due to gravity, g

For this angle, the vehicle’s longitudinal axis is directed towards outside of the curve.
The speed at which the vehicle sideslip angle becomes zero and its sign changes thus
becomes:

v =

√
�2�cα2

�1m

≈ 18.34 m/s . (12.15)

Substituting expression (12.11) for β in Equation (12.9) for steady-state cornering,
we obtain the steering angle, δs:

δs =
is�

ρcc
+ mis

cα2�2 − c′α1�1

c′α1cα2�

v2

ρcc

= δs0 +
is�

ρcc

v2

v2
ch

=
is�

ρcc

(
1 +

v2

v2
ch

)
. (12.16)
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Here

v2
ch =

c′α1cα2�
2

m(cα2�2 − c′α1�1)
(12.17)

is the characteristic velocity and

δs0 = lim
v→0

δs =
is�

ρcc
. (12.18)

Substituting the vehicle sideslip angle (12.11) in the second linearized differential
equation (11.49) (the air force is set to zero: Fay = 0), we obtain the angle of the front
wheels:

δ1 =
�

ρcc
+ m

cα2�2 − cα1�1

cα1cα2�

v2

ρcc
. (12.19)

The torque at the steering wheel is obtained by the linearized equation of motion
(this is the equilibrium of forces in the yv-direction)

m
v2

ρcc
= Fy1 + cα2

(
−β + �2

ψ̇

v

)
(12.20)

in which the expression for the vehicle sideslip angle

β =
�2

ρcc
− m�1

cα2�

v2

ρcc
(12.21)

is substituted; it follows (with ψ̇/v = 1/ρcc and � = �1 + �2) that

Fy1 =
mv2�2

ρcc�
. (12.22)

This expression is inserted into the equation for the steering wheel torque, Ms =
Fy1nc/(isVs) (cf. (11.30) and (11.31)), and the steering wheel torque is obtained as
follows:

Ms =
mnc�2

isVs�

v2

ρcc

=
Fz1nc

isVs

v2

ρccg
. (12.23)

The steering wheel angle, δs, the tyre slip angles α1, α2, the vehicle sideslip angle
β and the angle of the front wheels, δ1, as a function of the centripetal acceleration
divided by the gravitational acceleration can be seen in the graphs of Figure 12.1.

12.3 Geometric Aspects

In this section, some geometric aspects and interpretations of the solutions are given.
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Ackermann steer angle: As described for the vehicle sideslip angle and the steering
wheel angle, we introduce the front wheel angle, δ10, for diminishing velocities:

δ10 = lim
v→0

δ1 =
�

ρcc
. (12.24)

We call this angle, δ10, theAckermann steer angle or Ackermann angle.

The Ackermann angle, δ10, and the vehicle sideslip angle, β0, can also be illustrated
geometrically (cf. Figure 12.2). For the limit of diminishing driving velocity, the lat-
eral forces Fy1 and Fy2 are zero for the front and rear axles. Since these lateral forces
(for small tyre slip angles) depend linearly on the tyre slip angle, this means that the
tyre slip angles also disappear at the front and rear wheels. This in turn means that
the trajectories of the front and rear wheels are circles, and the �ewx directions are tan-
gential to the respective circle for the front and rear axle. In Figure 12.2, the circle
on which the rear wheel rolls is the inner circle, the circle of the front wheel is the
outer circle and the actual trajectory of the centre of mass Scm is the middle circle.
The angles in the triangles with the thick lines are derived from the fact that they are
pairs of mutually perpendicular straight lines. For the height, h, we obtain

h =
√

ρ2
cc − �2

2

≈ ρcc , (12.25)

Mcc       =  Mcr

Scm

�

�2

β0

vv
ρcc

δ10

δ10

β0

h

Figure 12.2 Geometric interpretation of the Ackermann angle and the vehicle sideslip angle
for the disappearing tangential velocity (for a single-track model)
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Mcc = Mcr

Scm

�

�2 �1

β0

ρcc

δ10i

δ10o

h

s

Figure 12.3 Geometric interpretation of the Ackermann angle for disappearing tangential
velocity (for a double-track model)

since the angles are all small, and therefore ρcc � �. From sinβ0 = �2/ρcc and
tan δ10 = �/h ≈ �/ρcc, we obtain by linearizing β0 = �2/ρcc and δ10 = �/ρcc; these
are the same relationships that were derived above using the linearized equations of
motion.

The geometry of a double-track model is shown in Figure 12.3. In this double-track
model, the steering angle of the inner wheel δ10i is greater than the angle, δ10o, of the
outer wheel: δ10i > δ10o. In this situation, the longitudinal axes are tangential to the cir-
cle on which the wheels move. These angles can be realized by a trapezoidal steering
geometry as depicted in Figure 11.11. If δ10i < δ10o holds, it is called anti-Ackermann
steering. Anti-Ackermann steering takes into account different wheel loads (higher at
the curve of the outer wheel than at the curve of the inner wheel) and therefore different
transmittable lateral forces.

The angles δ10i and δ10o can be derived from Figure 12.3. We obtain from the rect-
angular triangles (with tan β0 = �2/h):

tan δ10i =
2� tanβ0

2�2 − s tan β0
, (12.26)

tan δ10o =
2� tanβ0

2�2 + s tan β0
. (12.27)

For steady-state cornering at limv→0 · · ·, the centre of curvature and the instanta-
neous centre of rotation coincide: Mcr = Mcc.
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δ1

δ1 – (α1 – α2)

α2 + β
90° – α2

90° – β

α2

(δ1 – α1) – β

β

α1

h

Figure 12.4 Relationship between the front wheel steering angle, δ1, and tyre slip angles,
α1, α2, and the vehicle sideslip angle β for steady-state cornering (Mcr = Mcc)

Figure 12.4 shows the relation between front wheel steering angle, δ1, tyre slip
angles, α1, α2, and the vehicle sideslip angle, β.

Using the sine theorem yields for the large triangle:

h

�
=

sin(180◦ − 90◦ − (δ1 − α1))
sin(δ1 − (α1 − α2))

. (12.28)

For small angles we have h ≈ ρcc, sin(90◦ − (δ1 − α1)) ≈ 1 and sin(δ1 − (α1 −
α2)) ≈ δ1 − (α1 − α2).

From this, we obtain

δ1 =
�

ρcc︸︷︷︸
δ10

+ (α1 − α2) . (12.29)

Applying the law of sines to the small grey triangle, we obtain

�2

h
=

sin(α2 + β)
sin(90◦ − β)

. (12.30)

From this, we obtain

β =
�2

ρcc
− α2 . (12.31)
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We see:

• from (12.29) that the steering angle of the front wheel, δ1, is dependent on the
difference, α1 − α2, between the tyre slip angles and

• from (12.31) that the vehicle sideslip angle, β, is dependent only on the tyre slip
angle, α2, of the rear wheels.

12.4 Oversteering and Understeering

The following are the characteristic variables that are considered in more detail. We
start with the steering angle, δs, of the steering wheel:

δs =
is�

ρcc
+ mis

cα2�2 − c′α1�1

c′α1cα2�

v2

ρcc
. (12.32)

The dependence of the steering angle, δs, on the driving speed is determined by the
factor

mis
cα2�2 − c′α1�1

c′α1cα2�
=

is�

v2
ch

(12.33)

The magnitude, v2
ch, is the square of the so-called characteristic velocity. Since the

characteristic velocity can also be purely imaginary, we should not interpret its mean-
ing when it is complex; however, the absolute value has a meaning (cf. Chapter 13).
It is important to note that v2

ch may be positive or negative (or zero).

Understeer: If v2
ch > 0, this means that an increase in vehicle speed, v (on a circle with

radius ρcc) requires an increase in the steering wheel angle. We call this behaviour
of the vehicle understeer.

An understeering vehicle behaviour is generally desirable.

Oversteer: If v2
ch < 0, this means that an increase in vehicle speed, v (on a circle with

radius ρcc) requires an decrease in the steering wheel angle. We call this behaviour
oversteer.

For oversteering vehicles, the function δs = δs(v2/ρcc) intersects the line δs = 0 at
a certain speed; this intersection speed is called the critical velocity, vcrit. For v > vcrit,
the vehicle has to be countersteered, so when you take a right turn the steering wheel
should be turned to the left.

Generally, the vehicle understeers, if

∂(δs − δs0)
∂(v2/ρcc)

> 0 (12.34)
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Figure 12.5 Relationship between steering angle, δs − δs0, and lateral acceleration, avy =
v2/ρcc, for several Porsche 911 models (data from Harrer et al. 2013)

and oversteers, if
∂(δs − δs0)
∂(v2/ρcc)

< 0 . (12.35)

Self-steering coefficient: The following coefficient

1
is�

∂(δs − δs0)
∂(v2/ρcc)

(12.36)

is called the self-steering coefficient of the vehicle. Likewise, the term

∂(δ1 − δ10)/(∂(v2/ρcc)) (12.37)

is common, which is the self-steering coefficient without considering the steering
stiffness.

For the linear model treated here, the self-steering coefficient1 is 1/v2
ch. The lin-

ear theory applies, however, only up to centripetal accelerations of about v2/ρcc ≈
4 m/s2. The self-steering behaviour serves to assess the vehicles. The aim is to achieve
an understeering behaviour.

The linear behaviour of the single-track model is depicted in Figure 12.1. The
behaviour of real vehicles differs from this ideal linear function, as shown in
Figure 12.5. You can see the non-linear trend of the curves. The models of Porsche
911 from 1970 to 1990 are vehicles with a semi-trailing arm suspension, the other
four from 1995 to 2013 have multi-link suspensions (cf. Chapter 16).

1 The self-steering coefficient is also called the understeer/oversteer coefficient.
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Figure 12.6 Vehicle sideslip gradient for several Porsche 911 models (data from Harrer et al.
2013)

A further criterion for the assessment of driving behaviour is the vehicle sideslip
angle

β =
�2

ρcc
− m�1

cα2�

v2

ρcc
. (12.38)

This indicates the difference in the velocity direction of the centre of mass from
the direction of the longitudinal vehicle axis. Strictly speaking, the vehicle sideslip
angle should be determined at the driver’s position, because this is the angle observed
by the driver. Since the angle at the driver’s position differs slightly from the vehicle
sideslip angle in the centre of mass, β is often selected as an evaluation criterion.
The sideslip angle should be small and the change with the centripetal acceleration,
the sideslip angle gradient

∂β

∂(v2/ρcc)
= −m�1

cα2�
(12.39)

should also be small. This is achieved by a large cornering stiffness of the rear wheels.
Figure 12.6 shows gradients for models of the Porsche 911. It can be seen that the

gradient has decreased over the years.
In the following, we consider the influence of the position of the centre of mass

on the driving behaviour. We limit ourselves to a qualitative approach. Measurements
show that an increase in the wheel load Fz does not increase the cornering stiffness, cα,
proportionally to the wheel load. The variation of the cornering stiffness in response
to the wheel load can be described approximately by

cα = ĉαFz − c̃αF 2
z . (12.40)

The quadratic correction term shows the non-proportional dependence between wheel
load and cornering stiffness. However, a static load transfer from the front to rear axle
results in a reduction of the distance of the centre of mass to the rear axle (this means a
reduction of �2) and an enlargement of �1. However, the cornering stiffness, cα1, does



204 Vehicle Dynamics

not increase by the same amount as �1 decreases, and vice versa for cα2 and �2. This
means that the quotient

cα2�2 − cα1�1

cα1cα2�
, (12.41)

which determine the sign in the formula for the steering angle of the front wheels

δ1 =
�

ρcc
+

cα2�2 − cα1�1

cα1cα2�
m

v2

ρcc
, (12.42)

decreases with increasing rear axle load, or even changes the sign. Taking into account
the simple equations for the wheel loads

Fz1 =
G

�
�2 , (12.43)

Fz2 =
G

�
�1 (12.44)

we obtain (using (12.40))

cα2�2 − cα1�1 = c̃αG2 �1�2

�2 (�2 − �1) . (12.45)

On condition that the front and rear axles have the same tyres, cα2�2 − cα1�1 < 0
applies for the back-heavy vehicle, and cα2�2 − cα1�1 > 0 for the front-heavy vehicle.
This means that the steering angle of the front wheels decreases with increasing speed
for a back-heavy vehicle, while it increases for the front-heavy vehicle. However, that
does not necessarily mean that the back-heavy vehicle exhibits oversteering behaviour
because the behaviour of the car depends on the quotient

cα2�2 − c′α1�1

c′α1cα2�
, (12.46)

where the corrected cornering stiffness, c′α, enters into the quotient. Nevertheless, a
back-heavy vehicle is generally less likely to understeer than a front-heavy vehicle.
Loading a vehicle may result in an unfavourable change in the driving behaviour, i.e.
a shift from understeering to oversteering behaviour. It used to be common to refer to
vehicle understeer if α1 − α2 > 0 and to oversteer if α1 − α2 < 0. This determination
is based on Equation (12.29) for the steering angle of the front wheels:

δ1 =
�

ρ
+ (α1 − α2) . (12.47)

As the driver turns the steering wheel directly, but the front wheels are only indi-
rectly affected, this definition has become less important. However, it can still be also
found in the recent literature. The difference between the definition used in this book
and the older version, based on (12.47), is that the version used in this book takes into
account the steering stiffness, k̃s, and the total caster trail, nc.
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12.5 Questions and Exercises
Remembering

1. Define the Ackermann angle.
2. How can we geometrically interpret the Ackermann angle and the sideslip angle

for the limiting case of diminishing driving speed?
3. How do the changes in the vehicle sideslip angle, the steering angle, the front wheel

steering angle and the steering wheel torque depend on the centripetal acceleration?
4. When is a vehicle said to understeer and when is it said to oversteer?
5. Which quotient determines the sign of the relationship between the steering angle

of the front wheels and the centrifugal force?

Understanding

1. Imagine you are driving on a curve with constant velocity and the radius of the
curve becomes smaller. How do you change the steering wheel angle?

2. What conclusions can be drawn from this?
3. Define the self-steering coefficient.
4. What are the signs of the self-steering coefficient for oversteering and understeer-

ing in driving characteristics?
5. What might occur when loading a vehicle with respect to the self-steering

behaviour?
6. What influence could passengers have on the self-steering behaviour?
7. What influence could a negative aerodynamic lift coefficient on the front axle,

cl,1 < 0, or on the rear axle, cl,2 < 0, have on the self-steering behaviour and on
the vehicle sideslip gradient?

Applying

The following parameters are given: cα1 = 60 kN/rad, cα2 = 50 kN/rad,
�1 = 2.1 m, �2 = 2.2 m, ρcc = 100 m, is = 19, k̃s = 10 kN m/rad (for a rack
and pinion steering system), m = 1350 kg.

1. Which parameter is still needed in order to determine the self-steering coefficient,
∂δs/∂(v2/ρcc) for the linear single-track model?

2. Calculate this missing parameter in order to obtain neutral steering (in other words,
a self-steering coefficient of zero: ∂δs/∂(v2/ρcc) = 0)!

Analysing

1. For a neutral steering vehicle cα2�2 − c′α1�1 = 0 with rack and pinion steering
system the following equation holds for the total caster trail:

nc = k̃s
�1cα1 − �2cα2

�2cα1cα2
. (12.48)
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Is it possible to change the total caster trail in order to achieve neutral steering for
an understeering or for an oversteering vehicle?

2. The simplified axle loads during braking can calculated by (cf. (6.42) and (6.43))

Fz1 =
G

�
(�2 + Zh) , (12.49)

Fz2 =
G

�
(�1 −Zh) . (12.50)

Substituting the axle loads in Equation (12.40) we obtain (same tyres at the front
and rear axle):

cα2�2 − cα1�1 = −ZhG

(
ĉα − 4G�1�2

�2

)
+ c̃α

G2(�2 − �1)
�2 (�1�2 −Z2h2) .

(12.51)
For an unbraked vehicle with �1 = �2 it is cα1 = cα2, and therefore

cα2�2 − c′α1�1 > 0 . (12.52)

Is this true for a braked vehicle with �1 = �2 for any values of Z and k̃s?



13
Dynamic Behaviour

In this chapter, we consider the dynamic behaviour of a vehicle. In Section 13.1, we
proceed to present the stability under steady-state driving conditions. In Section 13.2,
we consider the handling of the vehicle in the event of certain changes of the
steering angle. Thereafter, the role of aerodynamic side forces will be discussed in
Section 13.31.

13.1 Stability of Steady-state Driving Conditions

We understand steady-state driving conditions to mean steady-state cornering
(v̇v = 0, β̇ = 0, ψ̈ = 0, δ̇s = 0) and steady-state driving in a straight line (for which
β = 0 and ψ̇ = 0 additionally holds). We omit the index v in the following, thus
v = vv, etc. The differences between steady-state cornering and steady-state straight
motion are irrelevant for the following considerations; the difference between the two
types of motion is that ρcc is finite for steady-state cornering, whereas it is infinite
for straight-line motion.

To assess the stability of these steady-state driving conditions, we assume the linear
equations of motion (11.49) and (11.50) without air forces:

mvβ̇ + (c′α1 + cα2)β + (mv2 − (cα2�2 − c′α1�1))
ψ̇

v
= c′α1

δs

is
, (13.1)

Jzψ̈ + (c′α1�
2
1 + cα2�

2
2)

ψ̇

v
− (cα2�2 − c′α1�1)β = c′α1�1

δs

is
. (13.2)

In order to assess the stability of a steady-state solution, we substitute β and ψ̇ in
Equations (13.1) and (13.2) using the following eλet approach:

β = βstat + β̂eλet , (13.3)

ψ̇ = ψ̇stat + ˆ̇ψeλet . (13.4)

1 The derivations of the formulas in this chapter closely follow the monograph of Mitschke and Wallentowitz 2004.

Vehicle Dynamics, First Edition. Martin Meywerk.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/meywerk/vehicle

http://www.wiley.com/go/meywerk/vehicle
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For a steady-state solution, the steering angle δs = δs stat is constant. The eigenval-
ues, λe, indicate whether the steady-state solution is stable or unstable: Re(λe) < 0
means a stable solution, while Re(λe) > 0 means an unstable solution. The case of
Re(λe) = 0 results in a so-called centre2.

Substituting Equations (13.3) and (13.4) for β and ψ̇ in (13.1) and (13.2), we obtain

a system of two linear equations for the constants β̂ and ˆ̇
ψ:⎛

⎜⎝mvλe + (c′α1 + cα2)
mv2−(cα2�2−c′α1�1)

v

−(cα2�2 − c′α1�1) Jzλe + c′α1�
2
1+cα2�2

2
v

⎞
⎟⎠

︸ ︷︷ ︸
=S

=

⎛
⎜⎝

β̂

ˆ̇ψ

⎞
⎟⎠ =

⎛
⎝0

0

⎞
⎠ . (13.5)

Based on the condition that the determinant of the coefficient matrix S
=

vanishes,
we obtain the following equation for determining the eigenvalues λe:

0 = det(S
=
)

= λ2
e + 2σfλe + ν2

f = 0 , (13.6)

where,

2σf =
m(c′α1�

2
1 + cα2�

2
2) + Jz(c′α1 + cα2)

Jzmv
, (13.7)

ν2
f =

c′α1cα2�
2 + mv2(cα2�2 − c′α1�1)

Jzmv2 . (13.8)

The real parts of the solutions, λe, of the quadratic equation are smaller than zero
when σf and ν2

f are greater than zero:

Re(λe i) < 0(i = 1, 2) ⇐⇒ σf > 0 and ν2
f > 0 . (13.9)

The eigenvalues are

λe 1,2 = −σf ±
√

σ2
f − ν2

f . (13.10)

In the expression for σf , all constants are greater than zero; therefore σf > 0. The
expression for ν2

f can be described using the square of the characteristic velocity, v2
ch:

ν2
f =

c′α1cα2�
2

Jzmv2

(
1 +

v2

v2
ch

)
. (13.11)

2 We do not wish to enter into details here; for more information on dynamic systems, we refer to Verhulst 2006.
When Re(λe) = 0, simple conclusions are not possible with the linearized equations.
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The sign of the characteristic velocity

v2
ch =

c′α1cα2�
2

m(cα2�2 − c′α1�1)
(13.12)

is crucial for understeer or oversteer:

δs = δs0

(
1 +

v2

v2
ch

)
. (13.13)

Here δs is the steering wheel angle and δs0 = is�
ρcc

. If v2
ch > 0, then the vehicle

exhibits understeering behaviour, which is then independent of the velocity:

ν2
f > 0 for v2

ch > 0 . (13.14)

Understeering vehicles are therefore always stable. For oversteering vehicles, it
holds that v2

ch < 0. The following applies (v2
crit = −v2

ch):

ν2
f > 0 for: v2

ch < 0 and v2 < v2
crit , (13.15)

ν2
f < 0 for: v2

ch < 0 and v2 > v2
crit , (13.16)

This means: if the velocity of an oversteering vehicle is greater than the critical
velocity, v > vcrit, the vehicle becomes unstable3. Figure 13.1 shows the steering
angles for an understeering vehicle (line with positive slope) and an oversteering
vehicle (line with negative slope). Generally, the vehicle behaviour is stable for posi-
tive steering angles (on the left-hand circle). However, when the oversteering vehicle
exceeds the critical velocity, the behaviour becomes unstable. When exceeding the
critical velocity, the steering angle changes signs; the driver then needs to countersteer.

Understeering

Oversteering

Stable

Countersteering Unstable

δs0

δs

υ2

Figure 13.1 Stability of steady-state circular driving

3 The critical velocity is defined for oversteering vehicles only, because in the case of understeering vehicles, v2
crit =

−v2
ch < 0 means that the critical velocity, vcrit =

√
−v2

ch, would be imaginary.
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Apart from the pure consideration of stability, the decay behaviour also plays a role
in the assessment of the dynamic behaviour as well as the frequency of the decaying
oscillation. The decay behaviour is determined by the attenuation factor

Df =
σf

νf

(13.17)

and the dynamic behaviour is detected by the natural angular frequency of the damped
system

νfd = νf

√
1 − D2

f . (13.18)

However, the term natural angular frequency only makes sense for Df < 1 because
for Df > 1 the decay behaviour is aperiodic and then νfd can no longer be referred
to as frequency. For oversteering vehicles, the attenuation factor is greater than 1
above a certain speed, and the behaviour of the vehicle is then aperiodic. As long
as ν2

f > 0, there is a decay in perturbations of steady state. However, if ν2
f < 0 (this

holds for v > vcrit), the real part of one eigenvalue λe i is positive and perturbations
increase exponentially: the driving behaviour is unstable. In understeering vehicles,
the sign of ν2

f > 0 does not change. The eigenvalues, λe i, will always have a neg-
ative real part. However, in the case of an understeering vehicle, perturbations may
fade aperiodically.

13.2 Steering Behaviour

Section 13.1 investigates the stability of steady-state driving conditions. The steering
angle was considered to be constant. In the following section, we consider the vehi-
cle’s response to a step steer input, i.e. a discontinuous change of the steering angle
from the value of zero to a constant value, δs stat. This step function is also used in
the testing of vehicles, (e.g. step steering angle according to ISO 7401: v = 80 km/h;
v2/ρcc = 4 m/s2; ∂δs/∂t > 200

◦
/s), where the step steering angle in the experiment

can only be approximated by a ramp function. In order to define the step steering
angle as a function of time only, the steering wheel angle velocity, ∂δs/∂t > 200

◦
/s,

is required but not the steering wheel angle, δs, is prescribed. The angle δs must be
chosen so as to achieve a lateral acceleration of v2/ρcc = 4 m/s2. Since the velocity
and the lateral acceleration are given, after step steering the vehicle has to drive on a
circle with the radius

ρcc =
(

80
3, 6

)2(m
s

)2 1
4 m/s2

≈ 123.5 m . (13.19)

The Laplace transform is a helpful tool for investigating the response of linear
systems of differential equations to non-harmonic excitations. The Laplace transform,
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f̂(s), of a function f(t) (with f(t) = 0 for t < 0) is obtained by (s is not the track but
the complex argument of the Laplace transform):

f̂(s) =
∫ ∞

0
e−stf(t) dt . (13.20)

The Laplace transform of the time derivative of f is

sf̂(s) =
∫ ∞

0
e−stḟ(t) dt . (13.21)

The reverse transformation is carried out using the following formula:

f(t) =
1

2πj

∮
f̂(s)est ds. (13.22)

The line integral,
∮

, has to be chosen such that all poles of the function f̂(s) lie within
the closed curve of integration. For simple functions, the reverse transformations can
be specified:

1
2πj

∮
1

s + a
est ds = e−at , (13.23)

1
2πj

∮
1

(s + a)k
est ds =

1
(k − 1)!

tk−1e−at , (13.24)

1
2πj

∮
1
sk

est ds =
1

(k − 1)!
tk−1 for k ≥ 2 . (13.25)

The Laplace transform of the step steering angle to the value of δs stat is

δ̂s(s) =
δs stat

s
. (13.26)

In the following, we start from the linear system of ordinary differential equations
(13.1) and (13.2), transform both differential equations using the step function for the
steering angle δs and obtain

(mvs + (c′α1 + cα2))β̂(s) + (mv2 − (cα2�2 − c′α1�1))
ˆ̇
ψ(s)

v
= c′α1

δs stat

iss
, (13.27)

−(cα2�2 − c′α1�1)β̂(s) + (vJzs + (c′α1�
2
1 + cα2�

2
2))

ˆ̇
ψ(s)

v
= c′α1�1

δs stat

iss
. (13.28)

Here we have introduced the Laplace transform of ψ̇ and not ψ. The two equations

form an algebraic system of equations for β̂(s) and ˆ̇
ψ(s). In the following, we restrict

ourselves to the solution for ˆ̇ψ referred to as size of the step steering angle δs stat:

ˆ̇ψ(s)
δs stat

=
1
is�

v

1 + v2/v2
ch

1 + Tz1s

1 + 2σf

ν2
f

s + 1
ν2

f

s2

1
s

, (13.29)
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where
Tz1 = mv�1/(cα2�) . (13.30)

The rational function can be reduced to the following simple form using a partial
fraction decomposition:

A

s
+

B

s − s1
+

C

s − s2
. (13.31)

The poles s1 and s2 are the zeros of the denominator polynomial (s2 + 2σfs + ν2
f ):

s1,2 = −σf ±
√

σ2
f − ν2

f . (13.32)

Due to the simplified representation with the help of partial fraction decomposition,
the inverse transformation can be easily performed with the help of the formula given
above:

ψ̇(t)
δs stat

=
1

is�

v

1 + v2/v2
ch

(
1 +

s1 + 2σf − Tz1ν
2
f

−s1 + s2
es1t

+
−s2 − 2σf + Tz1ν

2
f

−s1 + s2
es2t

)
. (13.33)

It can be seen in the response function to the step steering that the same mathematical
expressions occur as in Section 13.1. The poles s1 and s2 are equal to the eigenvalues
of λe 1 and λe 2 of the stability study. For t = 0, we obtain the following values:

ψ̇(0) = 0 , (13.34)

ψ̈(0)
δs stat

=
c′α1�1

Jzis
. (13.35)

We consider three cases (σf > 0 always applies):

1. Case: ν2
f > 0 and σ2

f − ν2
f > 0

This vehicle is stable according to the stability investigation, both the eigenvalues
λe 1 and λe 2 of the stability study as well as the poles s1 and s2 are purely real and
less than zero. In other words, the yaw angular velocity, ψ̇, relative to the size of
the step steering angle, δs stat, asymptotically approaches the steady value

lim
t→∞

ψ̇

δs stat
=

1
is�

v

1 + v2/v2
ch

. (13.36)

This behaviour can occur below the critical velocity in oversteering vehicles and
in understeering vehicles.

2. Case: ν2
f > 0 and σ2

f − ν2
f < 0

This vehicle is also stable; it approaches the steady state with oscillation. This
behaviour can additionally occur below the critical velocity in oversteering vehicles
and in understeering vehicles.
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stable
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Figure 13.2 Path curves (schematic) with stable and unstable driving behaviour

3. Case: ν2
f < 0

This has the effect that σ2
f − ν2

f > 0 and s1 becomes positive. The vehicle is
unstable and it reacts to the step steering input with an exponentially increasing
yaw rate.

Figure 13.2 shows an example. First, the vehicle runs straight. At t = 0, the steering
wheel is turned abruptly. Vehicles that meet Cases 1 and 2 drive on a steady-state circu-
lar path. Vehicles which satisfy Case 3 exhibit instability: on a path with a decreasing
radius of curvature, the yaw angular velocity increases exponentially.

We can see that stable handling and the response to a step steering input are closely
linked.

13.3 Crosswind Behaviour

In addition to the aerodynamic drag forces in the longitudinal direction of the vehicle,
air forces as a result of crosswinds in the lateral direction also play a role. Crosswind
often does not have a sufficiently great impact on the dynamic behaviour to cause
accidents, but the driver does have to countersteer in crosswinds, which means that
the response of the vehicle to crosswinds is an aspect of comfort: the less the driver
has to steer in crosswinds, the more comfortable the vehicle will be in this respect.
The following determines the steering wheel angle that is necessary to compensate for
crosswinds so that the vehicle travels in a straight line. The air forces in crosswinds
affect the so-called centre of pressure, Spp, which is shifted by �pp from the centre of
mass, Scm. In Figure 13.3, Spp is shifted forward4.

4 In Figure 13.3, two situations are shown, in which countersteering is necessary: crosswind and split-μ braking. In
the crosswind situation, a lateral force is acting on the vehicle, in the split-μ situation no lateral force is acting on the
vehicle.
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Trajectory

Trajectory

Longitudinal axis of vehicle

Figure 13.3 Countersteering: (a) Velocities in crosswinds on the single-track model; (b)
split-μ braking (adapted from Mitschke and Wallentowitz 2004)

We consider steady-state straight-line travel. In this case

ψ̈ = 0, ψ̇ = 0, β̇ = 0 . (13.37)

As a result of crosswinds, it is possible for a steady-state vehicle sideslip angle to
remain constant during straight-line travel. Assuming these steady-state values and
by considering the crosswind term5

Fay = cyA
ρa

2
v2
r (13.38)

in Equations (13.1) and (13.2), we then obtain

(c′α1 + cα2) β = c′α1
δs

is
+ cyA

ρa

2
v2

r , (13.39)

−(cα2�2 − c′α1�1)β = c′α1�1
δs

is
+ cyA

ρa

2
v2

r�pp . (13.40)

The air coefficient, cy, depends on the angle of incidence, τa. For a small angle of inci-
dence (τa < 20

◦
) the air coefficient, cy, can be approximated with sufficient accuracy

5 Here we are using the equations of motion for the single-track model (cf. Mitschke and Wallentowitz 2004);
MacAdam 1989 adopts a simpler approach using an equilibrium of moments for this specific and easier consideration
of steady-state linear motion.
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by a linear function:
cy ≈ cy1 τa , (13.41)

such that:

Fay ≈ cy1τaA
ρa

2
v2

r

≈ kyv
2
rτa , (13.42)

where ky = cy1 Aρa/2 is a linearized air coefficient. For the special case considered
here (wind direction perpendicular to the direction of movement of the centre of mass
Scm) we obtain (assuming small angle τa and β) from

vr sin(τa + β) = va , (13.43)

vr cos(τa + β) = v (13.44)

the following equations (from Equation (13.44) it follows that vr = v):

τa = −β +
va

v
, (13.45)

v2
rτa = −v2β + v va . (13.46)

Overall, the steady-state steering wheel angle relative to the wind speed, va, is

δs stat

va

= −
iskyv

c′α1

cα2(�2 + �pp) − c′α1(�1 − �pp)
cα2 � + ky(�1 − �pp) v2 . (13.47)

The steady-state steering wheel angle is proportional to the wind speed, va, the
vehicle speed, v, and the linearized air coefficient, ky. It is generally smaller as tyre
stiffness at the front axle and steering stiffness increase. The value δs stat = 0 is also
possible if the following holds:

cα2(�2 + �pp) − c′α1(�1 − �pp) = 0 . (13.48)

This is equivalent to

�pp =
c′α1 �1 − cα2 �2

c′α1 + cα2
. (13.49)

For an understeering vehicle it is

c′α1 �1 − cα2 �2 < 0. (13.50)

This means that we do not have to countersteer in an understeering vehicle when the
centre of pressure is located behind the centre of mass, so �pp < 0, and �pp takes the
value of (13.49). The pressure point is often in front of the centre of gravity, so counter-
steering is necessary. In front-wheel-drive vehicles, the centre of mass, Scm, is usually
more in front of the vehicle, i.e. more in the neighbourhood of the centre of pressure,
Spp, so such vehicles are often less susceptible to side winds than rear-wheel-drive
vehicles.
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13.4 Questions and Exercises
Remembering

1. How does the steering wheel angle behave in relation to the square of the speed
for an understeering and an oversteering vehicle?

2. Which equations are needed to obtain information on the stability behaviour of
steady-state cornering?

3. Which approaches are used to obtain information on the stability behaviour of
steady-state circular travel?

4. What kind of driving behaviour can lead to instability?
5. Which parameters play a role in crosswind behaviour?

Understanding

1. How is stability predicted for steady-state cornering? Explain the procedure.
2. How can a vehicle respond to a step steering angle input?
3. How does a crosswind change the behaviour of an oversteering and an understeer-

ing vehicle?
4. Explain the trends in �pp, cα1, cα2, �1, �2 on δs stat

va
, e.g. increasing �pp results in

increasing/decreasing δs stat
va

!

Applying

The following parameters are given: cα1 = 50 kN/rad, cα2 = 60 kN/rad, �1 =
2.1 m, �2 = 2.2 m, ρcc = 100 m, is = 19, k̃s = 10 kNm/rad (for a rack
and pinion steering system), m = 1350 kg, Jz = 3000 kg m2, v = 30 m/s,
nc = 0.04 m.

1. Calculate ν2
f and σ2

f .
2. Calculate the natural angular frequency of the undamped system.
3. Estimate νf for an understeering vehicle at very high velocities (look at the limiting

behaviour of the equation).



14
Influence of Wheel Load Transfer

In the single-track model, it was assumed that the centre of mass is on the level of
the roadway. As a result, no changes would occur in the wheel loads while cornering
(and also when accelerating or braking). In this chapter, we turn to the cornering of a
vehicle which has a centre of mass at a value of hcm above the roadway. This two-track
model allows us to draw the conclusions on wheel load changes and their impact on
the dynamics. In Section 14.1, we consider the wheel load changes in a simplified
manner due to the centripetal acceleration. In Section 14.2, we consider the wheel
load changes in more detail.

14.1 Wheel Load Transfer without Considering Vehicle Roll

We assume a vehicle travelling with a steady-state motion at a velocity v on a circle
of radius ρcc. The centripetal acceleration is v2/ρcc. The resulting moment

M = m
v2

ρcc
hcm (14.1)

due to the centrifugal force, mv2/ρcc, results in transfer of the wheel loads from the
inner to the outer wheels of the vehicle. These wheel load transfers are denoted by
ΔFzji and ΔFzjo for the wheel load transfer on the front (j = 1) or on the rear (j =
2), inside (index ‘i’) of the curve and outside (index ‘o’) of the curve of the wheel,
respectively.

Forces are shown in Figure 14.1 together with the side forces Fy1i, Fy1o, Fy2i and
Fy2o and the centrifugal force.

The track of the front axle, s1, is equal to that, s2, of the rear axle. The lateral forces
on the individual wheels are dependent on the slip angles and the wheel loads. If we
assume that the radius of curvature of the trajectory, ρcc, is large compared to the track
width, s1 and s2, the slip angles of the respective inner and outer wheels are equal,
too1:

α1i = α1o andα2i = α2o . (14.2)

1 Different kinematics in steering geometry and suspension geometry are neglected for this simplified consideration.
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© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Figure 14.1 Wheel load distribution when cornering

This means that the partitioning of the cornering forces on the inner curve and outer
curve wheels is not due to different slip angles but to different wheel loads. We illus-
trate the relationships using the diagram in Figure 14.2. This shows the curves for
the lateral force Fy as a function of the slip angle for three different wheel loads,
Fz0 + ΔFz , Fz0 and Fz0 − ΔFz . Now it is shown that the mean slip angle must
increase as a result of changes in the wheel loads. We assume that the distribution of
the total load on the front and rear axles is not changed and, in the following, consider
one axle, for example, the rear axle with the wheel loads Fz0 on both wheels without
considering load transfer from inner to outer side. Due to the cornering (and cen-
trifugal force), the wheel load on the inside wheel is reduced by ΔFz . Since the total
load on the rear axle remains constant, the wheel load increases on the outer wheel
when cornering by the same magnitude, ΔFz . The lateral forces on the wheels which
would arise if these wheel load changes were neglected are shown in Figure 14.2 by
the arrows at α = 4◦ (for the middle curve Fz0). The sum of these arrows at α = 4◦

gives the side force, Fy tot, which is necessary to drive the vehicle through the turn
(without load transfer). First, the lateral forces are determined that would be obtained
if we assume that the slip angles for the outer and inner wheels remain the same
and only the wheel load changes. The side forces arising are thus shown in the high-
lighted rectangle on the left. It can be seen that the sum of the lateral forces F̃y tot
on the inside wheel (left, dashed small arrow) and the side force on the outer wheel
(left, dashed-dotted large arrow) is below the total lateral force (sum of the arrows at
α = 4◦ from the vehicle without load transfer). This means that the lateral force is
not sufficient to compensate for the corresponding part of the centrifugal force. The
slip angles of both wheels must therefore increase by Δα. The resulting forces can be
seen highlighted on the right-hand rectangle.
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Wheel load Fz0 + ΔFz (Outer wheel)

Wheel load Fz0 – ΔFz (Inner wheel)
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Fy tot
Fy tot

Δα
α

Figure 14.2 Increase of the slip angle due to changes in wheel load distributions

When the varying wheel loads between the inner and outer wheels are taken into
account, the slip angle increases: as the slip angle increases, both lateral forces move
closer to the maximum and the maximum transferable lateral forces decrease with
changes in the wheel load distribution. We should therefore pay attention when design-
ing a vehicle so that the wheel load changes are small when cornering in order to
make the maximum use of the adhesion area. As the whole lateral force Fy tot (=
Fy2i + Fy2o for the rear axle) does not change, the increase in the mean slip angle
α2 = (α2i + α2o)/2 results in a reduction of the mean cornering stiffness cα2

:

Fy tot︸ ︷︷ ︸
constant

= cα2︸︷︷︸
decreases

increases︷︸︸︷
α2 . (14.3)

In the two-track model, further consequences arises from the wheel load changes,
especially if we target the influence of the wheel load changes on the front and rear
axles. Here the load transfer has an influence on oversteering and understeering
behaviour.

To obtain an initial overview of which parameters roughly influence the load trans-
fer, we consider a simplified case of changing wheel loads in the following. We assume
that the amount of wheel load transfer on all wheels is the same ΔFz , and that the front
and rear tracks are equal to s = s1 = s2. The equilibrium (sum of the moments about
an axis lying in the roadway in the middle between the wheels vanishes) results in

0 =
mv2

ρcc
hcm − 2ΔFzs . (14.4)
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The wheel load transfer when cornering under these simplified assumptions is

ΔFz =
hcm

2s

mv2

ρcc
. (14.5)

Consequently, the wheel load transfer increases with increasing centre of mass
height, hcm, and with decreasing track width, s. This means that the maximum trans-
ferable side force decreases with increasing centre of mass height and with decreasing
track width. The ratio of centre of mass height to track width is thus a design criterion
for achieving good utilization of the adhesion.

Using Equation (14.5), it is possible to evaluate an estimation for roll over. The limit
case for roll over applies if

ΔF =
mg

4
. (14.6)

In this limit case, the wheel loads on the inner wheels become zero.
Substituting this limit case for ΔF in (14.5) yields an inequality which describes a

simple roll-over condition:

g
s

2hcm
≤ v2

ρcc
. (14.7)

This equation describes the values of v and ρcc for which a vehicle with given geo-
metrical parameters s and hcm will tilt. In a simple approach2 lateral acceleration
v2/ρcc cannot exceed μag (here μa is the adhesion limit). If we extend (14.7) with
v2/ρcc ≤ μag, the gravitational acceleration, g, cancels out and we obtain

s

2hcm
≤ μa . (14.8)

If (14.8) holds, the vehicle will at least probably tilt at the highest possible cornering
velocity. Conversely, if

s

2hcm
> μa . (14.9)

holds, then the vehicle will probably not tilt. Tilting of the vehicle is especially impor-
tant for sport utility vehicles (SUV) as the height of their centre of mass is relatively
large. The characteristic value s/(2hcm) is called the static stability factor (SSF). It
should be emphasized that this SSF consideration is only a rough method to estimate
the danger of roll-over of a vehicle. In more complex models or in reality, a greater
number of influencing factors have to be considered.

2 If we assume that the total vertical load of the vehicle is mg and that the maximum lateral force is limited by
the adhesion limit value, μa, then the centrifugal force, mv2/ρcc, cannot exceed this limit mgμa, which results in
v2/ρcc ≤ μag.
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Figure 14.3 Derivation of the instantaneous centre of rotation (adapted from Mitschke and
Wallentowitz 2004)

14.2 Wheel Load Transfer Considering Vehicle Roll

In this section, we determine the wheel load changes resulting from the consideration
of roll motion of the body. To describe the roll, we will first introduce the concept
of the instantaneous axis of rotation. This is the axis about which the body of the
vehicle rotates instantaneously. We first consider a cross-section (perpendicular to the
x-direction) of the body through an axle, for example the front axle. We assume that
the wheels are suspended by double wishbone suspensions (Figure 14.3). The position
of the instantaneous axis for other wheel suspensions can be derived analogously.

To calculate the instantaneous centre of rotation (roll axis) of the body for one cross
section, for example at the front axle (we call this the instantaneous centre of rotation
Mcr1), we use a modified observation layout which is designed for easier viewing or
deliberation. We assume that we are fixed to the body and do not consider its rota-
tion; consequently, the roadway has to rotate. The instantaneous centre of rotation of
the road is then Mcr1, and this is the same instantaneous centre of rotation Mcr1 of the
vehicle body. The roadway rotates (horizontal line in Figure 14.3), so the wheels move
up and down. Since the body is fixed, the wheels must rotate around the points of rota-
tion Rp1 and Rp2. The velocities of each point of the control arms and their extensions,
Li, (i = 1, 2) are perpendicular to the corresponding control arm. The intersections
Mcr� and Mcrr of the extensions therefore cannot move, and so the velocity must be
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zero (because the velocity vectors are perpendicular to the control arms and because
the control arms are not collinear). This means that Mcr� and Mcrr yield the instan-
taneous centres of rotation of the wheels. The velocity of the contact point C� of the
left wheel and the road can now be easily constructed by joining Mcr� and C� with a
line L3: the velocity vector is perpendicular to this line L3. Since the wheel, C�, sticks
to the road, we know the speed of the road at point C�, which is also perpendicular
to L3. Similarly, we obtain the velocity direction of the road at the point Cr. On the
one hand, the straight line L3 goes through the points Mcr� and C� and, on the other
hand, the line L4 goes through Mcrr and Cr. The intersection of L3 and L4 is the
instantaneous centre Mcr1 (for the front axle).

We obtain the instantaneous centres Mcr2 and Mcr1 for the rear axle and the front
axle. The axis that connects the instantaneous centres, Mcr1 and Mcr2, is called the
instantaneous roll axis (cf. Figure 14.4). This axis is not fixed but moves depending
on the roll angle because of many non-linearities.

In the derivation of the wheel load transfer, it must be noted that the vehicle is a stat-
ically indeterminate system. We proceed as usual (for such systems) and first divide
the whole system into subsystems. We then consider the deformations or deflections
of the subsystems which are in turn separated as functions of the external loads and
section forces. Subsequently, the actual deflections of the subsystems are determined.
These deflections must be geometrically compatible, which means equal. Hence, we
obtain the desired deflections from the resulting set of equations. Here we derive the
wheel load changes for a vehicle with rigid axles. Figure 14.5 shows the entire vehi-
cle together with the instantaneous roll axis. The instantaneous roll axis is fixed to the
body. Figure 14.6 shows the subsystems as free-body diagrams in different views.
We first turn to the body. Figure 14.6(a) indicates the points of the instantaneous
roll axis, Mcr1 and Mcr2, and the body rotates by the angle κ due to the centrifugal
force, mbv

2/ρcc. The structure is cut free from the rigid axles; the section moments
M1 and M2 from the front axle and rear axle, respectively, are summarized in the
moment M = M1 + M2. Here, we assume a small inclination angle, γ, of the instan-
taneous roll axis and therefore neglect trigonometric correction terms (cos γ ≈ 1).

Mcr1

Mcr2

Figure 14.4 Derivation of the instantaneous axis of rotation
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Figure 14.6 Determination of wheel load changes
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We obtained this moment M from the free-body diagram when making the sum of
the moments about the instantaneous axis

M =
mbv

2

ρcc
h′ + Gbh

′κ . (14.10)

Here, we have assumed that κ is small and therefore use cosκ ≈ 1 and sinκ ≈ κ.
The section forces between the instantaneous roll axis and the rigid axles are not
shown for the sake of clarity. However, this plays no role in the formation of the sum
of the moments with respect to the instantaneous roll axis.

Figure 14.6(b) shows a line between Mcr1 and Mcr2 to represent the instantaneous
roll axis of the structure. The instantaneous axis is cut free from the rigid axles (section
moments M1 and M2). The sum of the moments in the longitudinal direction is as
follows:

M = M1 + M2 . (14.11)

The section moments M1 and M2 resulting from the roll stiffness C1 and C2 at the
front or rear axle and the roll angle κ are given by

Mj = Cjκ , j = 1, 2 . (14.12)

From Equations (14.10) and (14.12)

C1κ + C2κ =
mbv

2

ρcc
h′ + Gbh

′κ . (14.13)

we obtain the angle κ

κ =
Gbh

′

C1 + C2 − Gbh
′

v2

gρcc
. (14.14)

With the help of the angle κ, we can immediately specify the moments M1 and M2.
The section forces mb(v2/ρcc)(�2/�) and mb(v2/ρcc)(�1/�) in the respective points
Mcr1 and Mcr2 are obtained using the free-body diagram in Figure 14.6(b) from the
equilibrium of forces in the lateral direction, and from the moment equilibrium about
the vertical axis. (A negligible tilt of instantaneous roll axis is assumed here.)

The sum of the moments with respect to the wheel contact points (left or right)
with the help of the free-body diagrams (Figure 14.6(c)) gives the wheel load changes
for the two rigid axles. The static portion of the wheel loads are not shown in these
free-body diagrams:

ΔFz1 =
mbv

2

ρcc

(
�2

�

p1

s1
+

C1

C1 + C2 − Gbh
′
h′

s1
+

G1

Gb

h1

s1

)
, (14.15)

ΔFz2 =
mbv

2

ρcc

(
�1

�

p2

s2
+

C2

C1 + C2 − Gbh
′
h′

s2
+

G2

Gb

h2

s2

)
. (14.16)
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mb : mass of the body
�1, �2 : distance: front/rear axle – centre of mass
� : distance front axle – rear axle
C1, C2 : rolling stiffness front/rear axle
Gb : weight of the body Gb = mbg
h′ : distance: centre of mass – instantaneous roll axis
G1, G2 : weight front/rear axle
s1, s2 : track front/rear
p1, p2 : distance: instantaneous roll axis – road; front/rear
h1, h2 : Distance: centre of mass of front/rear axle – road

The wheel load transfer depends on partly influenced constructive variables, such as

• the position of the centre of mass �1/�, �2/�, h1, h2,
• the heights of the instantaneous centres of rotation divided by the tracks: p1/s1,

p2/s2,
• the distance of the centre of mass to the instantaneous roll axis divided by the tracks

h′/s1, h′/s2,
• the ratio of the roll spring constants C1/(C1 + C2 − Gbh

′), C2/(C1 + C2 − Gbh
′).

Section 14.1 explained that the wheel load transfer also results in an increase in the
slip angles. Appropriate selection of the roll stiffness for the front and rear axles makes
it possible to deliberately influence the mean slip angles and thereby the slip angle dif-
ference between front and rear axle (or the mean cornering stiffness). By influencing
the wheel load transfer, we can alter the behaviour of the vehicle, for example from
an oversteering to a neutral or an understeering behaviour. The roll spring stiffness,
Ci, depends on the spring stiffness, ki (i = 1, i = 2), and the geometric relationships
of the suspension. As a rough approximation, we obtain the following for the roll
stiffness, Ci, from suspension springs, ki:

Ci = 2
(si

2

)2
ki . (14.17)

However, the suspension spring stiffness, ki, must be chosen so that, for example,
comfort and safety standards are met. Consequently, these values must not be so large
that they limit the body accelerations (and comfort deteriorates). One way to increase
roll stiffness, Ci, and not to change spring constants, ki, is to use a so-called anti-roll
bar, Figure 14.7.

The anti-roll bar is a rod (highlighted in Figure 14.7) that is fixed at the control arms
to the wheel bearing and to the body. The stiffness of the anti-roll bar is determined
by its bending and torsional stiffness and the geometric parameters as, bs and αs. If
αs = 0◦, then the rod is subjected to torsional deformation , for αs = 90◦ to bending.
In the case of pure torsion αs = 0◦, the lengths of the lever arms as and the torsional
stiffness of the rod determine the overall stiffness of the anti-roll bar significantly,
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(a)

as

αs

bs

(b)

Figure 14.7 Anti-roll bar

while the bending stress of the anti-roll bar arms plays only a minor role. The greater
the angle αs, the larger the bending portion will be.

The anti-roll bar has no effect if both suspension springs are compressed in the same
manner, because no torsional moments are transmitted in the connection between
anti-roll bar and body of subframe. The anti-roll bar achieves its greatest effect when
the structure rolls. An obstacle at one side of the vehicle and a pothole on the other
side has the same effect as the rolling of the structure, stimulating the left and right
wheels with a phase-shift of 180◦; the anti-roll bar also starts to act against this exci-
tation. The comfort of the vehicle drops in these situations. An anti-roll bar is often
installed at the front axle, because this increases the roll stiffness, C1. This in turn
results in an increase in the wheel load changes, ΔFz1, resulting in an increase in the
mean slip angle, α1, at the front axle. This leads to a reduction in the mean cornering
stiffness, cα1. If we consider the steering wheel angle, δs, in Equation (14.18), which
depends on the centripetal acceleration and the coefficient and therefore determines
the oversteer and understeer behaviour:

δs =
is�

ρcc

+ mis
cα2�2 − c′α1�1

c′α1cα2�

v2

ρcc

, (14.18)

it can be seen, with respect to
c′α1 =

cα1

1 + cα1nc

k̃s

, (14.19)

that a reduction in cα1 changes the behaviour of the vehicle towards understeering.
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Figure 14.8 Influence of the stiffness of anti-roll bars at front and rear axles

Figure 14.9 Active roll stabilization (ARS): active anti-roll bar (reproduced with permis-
sions of ZF Friedrichshafen AG)

An anti-roll bar at the front axle thus amplifies any understeer driving behaviour (or
it reduces oversteer driving behaviour), whereas an anti-roll bar at the rear axle does
the opposite. In addition to a deterioration in ride comfort, a further disadvantage of the
anti-roll bar occurs: an increase in the mean slip angle of the axle on which the anti-roll
bar is used means that the wheels of this axle are closer to the limit of adhesion.

Active anti-roll bars can be used to actively affect the dynamic behaviour of a vehi-
cle (cf. Figure 16.8 for a front axle with an active anti-roll bar). This is a conventional
anti-roll bar that is split into two parts; these two parts are connected by an hydraulic
rotary actuator. It is possible to adjust the dynamic behaviour of the car according
to the lateral acceleration in order to prevent roll movement (up to a certain lateral
acceleration) and thus improve comfort when driving straight ahead and improve the
behaviour during off-road driving by deactivating the coupling between the two parts
of the anti-roll bar. Figure 14.8 shows the main influence of the anti-roll bar stiffness.
If both stiffness values are small, the vehicle is more comfortable. If they are stiff,
the vehicle has a sportier performance. Increasing the stiffness at the front axle raises
the tendency of the vehicle to understeer, and increasing it at the rear axle raises the
tendency to oversteer.

Figure 14.9 shows an example of an active anti-roll bar. The active element can be
seen in the middle.
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14.3 Questions and Exercises
Remembering

1. What causes the changes in wheel load?
2. What do the wheel load changes depend on when cornering if we do not take the

roll into account?

Understanding

1. What are the consequences of changes in wheel loads when cornering, with respect
to the slip angle and with respect to the cornering stiffness of a single-track model?

2. What do the wheel load changes depend on when cornering if we take the roll into
account?

3. Why is an anti-roll bar often used on the front axle? Explain the relation.
4. Using the roll stiffness, explain how the vehicle behaviour can be influenced in

terms of oversteer and understeer.

Applying

1. What happens with the vehicle, if the anti-roll bar stiffness at the front axle is
increased during cornering: Will the vehicle turn to the inside or the outside of the
curve?

2. What happens with the vehicle, if the anti-roll bar stiffness at the rear axle is
increased during cornering: Will the vehicle turn to the inside or the outside of
the curve?

3. How do the parameters p1 and p2 influence oversteering or understeering
behaviour?

Analysing

1. How does the anti-roll bar stiffness at the front and rear axles influence the vehicle
sideslip angle for steady-state driving of the single-track model at constant speed
on a circle?

2. How does the anti-roll bar stiffness at the front and rear axles influence the vehicle
sideslip angle gradient for steady-state driving of the single-track model at constant
speed on a circle?



15
Toe-in/Toe-out, Camber and
Self-steering Coefficient

In this chapter, Section 15.1 examines the influence of toe-in/toe-out and camber.

15.1 Toe-in/Toe-out, Camber

In this section, we concentrate on the toe-in/toe-out and camber of the wheels and
their influence on the lateral forces. Both variables are expressed in terms of an angle
and give the position of the wheels (see Figure 15.1).

Toe: The toe angle describes a static rotation of the wheel about the �ewz-axis. We refer
to toe-in when the wheels are turned inwards (cf. Figure 15.1(a)), and toe-out, when
the wheels are turned outwards (Figure 15.1(b)). The angle δ10 is positive for toe-in
and negative for toe-out.

Camber: The camber is the angle between the wheel �ewx–�ewz plane and the vertical
�eiz-axis. The constructive camber angle, γ, is positive when the wheel is inclined
towards the outside of the vehicle and negative if it is inclined to its inside.

Both toe-in/toe-out and camber affect the driving behaviour. We consider the cor-
nering of a vehicle with and without the toe-in angle, δ10, on the front axle. As shown
in Figure 15.2, we start with the case of no changes in wheel loads when cornering.
The total lateral force arises from the sum of the two forces (left arrows in Figure 15.2
at α = 4◦) when the slip angle is α0 = 4◦. If we consider the changes in wheel load,
the slip angle increases by a value of Δα, so that the whole cornering force (sum of
the arrows at α = 4◦) is achieved as the sum of the lateral forces (large solid arrow
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Figure 15.2 Influence of toe-in on the slip angle
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and small solid arrow at α1 ≈ 5.2◦). In the following case, we consider a vehicle in
which the front wheels have a toe-in; hence, the front wheels are inclined inwards by
an angle of δ10 (see Figure 15.1(a)).

The toe-in angle, δ10, alters the slip angle. The slip angle of the inside wheel
decreases, and the slip angle of the outside wheel increases. By decreasing and
increasing the slip angle, α1, as shown in Figure 15.1(a) to δ10, we obtain the lateral
forces with a sum greater than Fy0 by the magnitude ΔFy as a result. Consequently,
in order to achieve the sum of Fy0, the mean slip angle can be reduced to the value of
α̃1 (see Figure 15.2(b)). The actual slip angles α̃1 − δ10 and α̃1 + δ10 then result in
lateral forces that yield just Fy0 when added up. The following applies to the angle α̃1

α̃1 + δ10 > α1 . (15.1)

The value of α̃1 must be determined iteratively from the curves; it is not possible to
specify this angle directly using the curves because of non-linearities. By reducing the
mean slip angle to the value of α̃1, we obtain an increased distance to the maximum
transferable lateral force on the inside wheel and thus an increased cornering force
reserve. On the outside of the curve of the wheel, the reserve is reduced, but since this
reserve is already larger, we obtain a greater distance overall (with respect to the slip
angle) from the maximum possible cornering force. The toe-in angle increases the
maximum possible centripetal acceleration v2/ρcc of a vehicle and thus, for a given
curve radius ρcc, the toe-in angle increases the maximum allowable velocities.

In the following, we consider the influence of the camber angle on the lateral forces.
In order to describe this dependency by a formula, we have to deviate from the adopted
sign convention of the constructive camber angle. The camber angle of a wheel is
positive when the wheel is inclined to the outer side and negative when the wheel is
inclined towards the inner side of the curve. A negative camber increases the maxi-
mum transferable lateral force (constant slip angle assumed). At lower values of slip
angle and smaller camber angle, the lateral force can be approximated by a linear
relationship:

Fy = cαα − cγγ . (15.2)

Both the lateral force slip angle coefficient, cα, and the lateral force camber coef-
ficient, cγ , increase with the wheel load. Figure 15.3 shows the lateral forces, Fy, as
a function of the slip angle, α. The solid, middle curve shows the lateral force at the
inner and outer wheels, again without camber and without the wheel load changes.
For this case, the lateral forces on the two wheels are the same; the total lateral force
is the sum of the individual forces of the same magnitude (solid arrows in the centre).

We compare this case with a vehicle with negative constructive camber angle. This
means that the wheel camber angle, γ, in Equation (15.2) on the outer wheel is less
than zero and on the inner wheel is greater than zero. Without considering the wheel
load changes, these camber angles yield the dashed, lower and the dotted, upper curve
for the determination of the lateral forces. Through the wheel load transfer, we obtain
the lateral forces from the dashed, bottom curve and the dashed–dotted top curve.
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Figure 15.3 Influence of camber on the slip angle

The sum of the resulting lateral forces results in a higher lateral force. Consequently,
the slip angle decreases. A constructive negative camber will therefore reduce the slip
angle or increase the cornering forces at the same slip angle. If the absolute value of
the negative constructive camber increases (at the same cornering force), the mean
slip angle decreases and hence the mean cornering stiffness increases.

The quotient,
cα2	2 − cα1	1

cα1cα2	
, (15.3)

which determines the sign in the formula for the steering angle of the front wheels
given by

δ1 =
	

ρcc

+
cα2	2 − cα1	1

cα1cα2	
m

v2

ρcc
, (15.4)

is crucial for an understeer or oversteer behaviour (or similarly the equation for δs). In
the case of an increase in the absolute value of a negative constructive camber angle
at the rear axle, the rising mean cornering stiffness, cα2, results in more understeering
vehicle behaviour. A positive constructive front camber results in an increased slip
angle and thus in a decreasing mean front cornering stiffness, cα1, which also affects
the behaviour of the vehicle in the direction of understeering behaviour.
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15.2 Questions and Exercises
Remembering

1. How do we define toe-in/toe-out?
2. How do we define camber?

Understanding

1. Explain the influence of toe-in on cornering.
2. Explain the influence of the camber angle on cornering.
3. Explain how different vehicle parameters influence the vehicle behaviour, and

specifically the self-steering behaviour.





16
Suspension Systems

In this chapter, we discuss suspension systems. Examples include independent
suspensions and solid-axle suspensions. Examples of independent suspensions
include general multi-link, McPherson or double wishbone (or upper and lower
A-arm) suspensions. The six degrees of freedom of the wheel carrier (these are the
general six degrees of freedom of a rigid body; the wheel carrier includes the hub
and the wheel bearing) will be locked by the suspension except for one, i.e. the
vertical translational degree of freedom. Independent wheel suspensions can achieve
this by an appropriate arrangement of five arms (or links). A link is a rod which is
pivot-mounted on the wheel carrier on one side and on the body (or subframe) on
the other side, and so one degree of freedom is locked (see Figure 16.1). Two arms
can be combined into one suspension arm or A-arm. With a suitable arrangement of
five arms, five degrees of freedom are disabled and an independent wheel suspension
is obtained in this way. Figure 16.1 shows the principles of the various types of
suspension. The actual wheel carrier is shown in darkgrey. If the wheel is steerable,
then one of the arms is a tie rod. An example of a double wishbone suspension is
shown in Figure 16.2.

The end points of the arms move on spherical surfaces. This has the result that the
movement of the wheel carrier can be very complicated. In general, it will not act in a
motion of a pure translation in the vertical direction, but will instead exhibit a spatial
motion that also contains rotatory portions.

Although the arms are elastic, their deformation is small because they are loaded by
axial forces. To better isolate the structure from the shocks and bumps resulting from
the uneven road surface which would be forwarded by the wheel suspension, the arms
are often not rigidly mounted on the structure, but are mounted with the aid of elastic
rubber bushings. These rubber bushings deform to keep the shocks from the body
and hence also from the vehicle interior. The deformation shift of the wheel carrier
is no longer on the kinematically predetermined path but, instead, on a certain path
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Figure 16.1 Principles of wheel suspension systems

Figure 16.2 Double wishbone (or A-arm) suspension

influenced by the forces. The kinematics that arise from both the purely geometric
kinematics and the movement from elastic deformation as a result of forces are called
elastokinematics1.

1 As the kinematic behaviour of the wheel carrier due to the simultaneously acting forces and moments is an important
characteristic which has a significant influence on the dynamic behaviour of a vehicle, this behaviour is tested in special
kinematics and compliance (K&C) test facilities.
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The kinematics cause changes in important geometrical parameters such as toe and
camber when the carrier moves vertically. Figure 16.3 shows examples of the changes2

as a function of the spring deflection: Figure 16.3(a) and (b) shows the toe-in/toe-out
changes, Δδ, on the front and rear wheels, while Figure 16.3(c) and (d) shows the
changes, γ, in the camber. The nominal toe-in/toe-out for vanishing bounce is not
included in Figure 16.3(a) and (b), but the variation is included. Due to the changes,
it is possible to significantly influence the sizes of the toe and camber for driving
dynamics. With the use of rubber bushing, however, no curves arise in the diagrams,
but areas (grey in Figure 16.3) in which the variables Δδ and γ lie as functions of the
bounce, z, and the forces and moment. In the diagram, the order of magnitude of the
deflection, Δz, is at ±100 mm, for the toe change, Δδ, at ±40′ and for the camber
change, γ, at ±2′.

The change of the toe as represented by the curves in Figure 16.3(a) and (b) can
influence the driving behaviour during cornering as follows: the suspension of the
outer wheel at the rear axle compresses (or rebounds) Δz > 0, which increases the
toe-in angle of the outer wheel at the rear axle and thus the slip angle, α; the situation
is reversed for toe-in at the inner wheel of the rear axle, i.e the slip angle decreases.
Both effects together yield an increase in the cornering forces. This leads to a reduction
in the mean slip angle, and thus an increase in mean cornering stiffness cα2. At the
front axle, the situation is exactly reversed; the mean cornering stiffness, cα1, thus
decreases. This leads to amplification in the expression cα2�2 − cα1�1, an increase in
understeering behaviour of the vehicle or a decrease in oversteering behaviour.

(a) (b) (c) (d)

front axle rear axle front axle rear axle
Δz Δz

Δz : compression

Δz Δz

Figure 16.3 Changes of toe and camber during compression and rebound of the suspension
(adapted from Mitschke and Wallentowitz 2004)

2 These are typical changes from an investigation of vehicles (cf. Mitschke and Wallentowitz 2004); other character-
istics are of course also possible.
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Figure 16.4 Solid axle

The second form of the suspension, the so-called solid (or rigid) axle, is shown in
principle in Figure 16.1; some more details are depicted in Figure 16.4. The two wheel
carriers are connected by a rigid axle. This rigid axle must have two degrees of free-
dom: one for vertical translation and the other for rotation about the longitudinal axis.
For this reason, the rigid axle is connected to the body by means of four arms, which
represents one possible way of linking the axle and the body. Another, simpler method
is the application of leaf springs. The vertical motion of one wheel is transmitted to
the other wheel, which is a disadvantage of this kind of suspension. The camber does
not change during cornering. Further disadvantages are tramp and shimmy vibrations,
the latter only occur in the case of a steered axle. Rigid axles are unusual in passenger
cars but can be used in heavy goods vehicles.

If the wheel carriers are not rigidly connected to each other, on the one hand, and
are unable to move completely independently, on the other, the system is then called
a torsion beam axle.

In order to link the vertical motion of the wheel elastically with the body, additional
coil springs are often used, which are connected to the wheel carrier or to a suspension
arm on one side and to the body on the other side. The shock absorber is used to damp
the vertical motions of the wheel carrier. The shock absorber can be combined with
the coil spring to form a strut, but it is possible to place shock absorber and spring
separately. If this solution is employed, different lever arms can be introduced for the
shock absorber and the spring.

The following shows some suspension systems.
Figure 16.5 shows the McPherson front axle system of a Mercedes B-Class. The

constraints from the strut prevent the wheel carrier from rotating about two axes (this
means that two degrees of freedom are locked). From the point of view of a multi-body
system (MBS), the upper part of a McPherson suspension is a rigid body (the piston
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Figure 16.5 McPherson front axle of a Mercedes B-Class (reproduced with permissions of
Daimler AG)

rod) linked with the body of the vehicle by a cardanic joint3. The piston rod and the
tube of the shock absorber are linked to each other by a cylindrical joint. The tube of
the shock absorber and the wheel carrier form, in the sense of an MBS, one rigid body.
When all of these factors are taken together, the wheel carrier has four degrees of free-
dom (two from the cardanic joint and two from the cylindrical joints). Consequently,
three additional links constraining three degrees of freedom are necessary. Two links,
usually one mainly in the longitudinal direction and the other mainly in the lateral
direction, provide two additional constraints. The last of the five constraints comes
from the steering system, i.e. the tie rod, as the McPherson suspension is mainly used
for front suspensions. The longitudinal and lateral links can be substituted by one
A-arm, as shown in Figure 16.5. Furthermore, this figure depicts the anti-roll bar, the
differential with the drive shafts, the steering system with velocity-dependent steering
ratio and the subframe.

The principle components are depicted in Figure 16.6. The advantages of McPher-
son struts are a reduction in the number of components and therefore a simpler design

3 Strictly speaking, it is a bushing that prevents transfer of shocks and vibrations; this bushing does not allow free
rotations about the two radial axes, but the compliances for these rotations are small; the axial degree of freedom is
irrelevant because there is nearly no resistance in relative rotation of piston rod and tube of the shock absorber.
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Figure 16.6 Principal components of a McPherson front axle suspension

and less demand for design space. As the shock absorber locks two rotational degrees
of freedom, it has to be able to transmit moments. This is the reason why the piston
of a McPherson shock absorber has a larger diameter than the piston rod of a con-
ventional shock absorber. This may be a disadvantage because the shock absorber is
more expensive. Another disadvantage is that the required height of the vehicle for
McPherson suspension is larger than that for a spring and shock absorber linked to
a lower A-arm. The McPherson strut is usually linked to the upper part of the wheel
carrier; as there must be space for the jounce travel, the height of the vehicle at the
upper point of connection of the strut to the body has to be large enough.

Figure 16.7 shows the rear axle of the Mercedes B-Class. It is a four-link suspension.
There are three lateral links and one longitudinal. An anti-roll bar is also depicted. The
shock absorber and the spring are connected at different points to the wheel carrier
and to the body of the vehicle. This leads to greater independence in choosing the
spring rate and the damper characteristic.

Figure 16.8 shows the front suspension of a Mercedes M-Class. It is a double wish-
bone suspension with an air spring with an integrated adaptive damping system (the
control is performed by the skyhook algorithm). Another special component is the
active anti-roll bar: this is a conventional anti-roll bar that is split into two parts; these
two parts are connected by a hydraulic rotary actuator. In accordance with the lateral
acceleration v2/ρcc, it is possible to adjust the dynamic behaviour of the car to pre-
vent roll movement (up to a certain lateral acceleration). In order to improve comfort
when driving straight ahead and to improve the behaviour during off-road driving the
coupling between the two parts of the anti-roll bar can be deactivated.
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Figure 16.7 Rear axle of a Mercedes B-Class (reproduced with permissions of Daimler AG)

Figure 16.8 McPherson front axle of a Mercedes M-Class (reproduced with permissions of
Daimler AG)
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Figure 16.9 Rear axle of a Mercedes M-Class (reproduced with permissions of Daimler AG)

Figure 16.9 shows the rear suspension of the M-Class. Here, too, an active anti-roll
bar (the actuator is placed behind the differential) is embedded. The air springs and
the dampers are separated.

Suspensions with five links allow for the greatest design variety, as each link can
be individually designed with respect to comfort, safety and dynamic behaviour.
However, this kind of suspension is usually more expensive than simpler designs.
Figure 16.10 shows the multi-link rear axle of a Mercedes C-Class. Three links in
the front can be easily recognized, while the others are partially hidden by other
components.

Figure 16.11 shows the design principle of a five-link suspension; all five links can
be clearly seen in this figure. This figure additionally depicts the steering axis (nearly
vertical cylinder which intersects the four extensions of the four links). It is obvious
that both the scrub radius, rk, and the disturbing force lever arm radius, rσ, are very
small.

In the last example we look at two phenomena which can be explained with the
so-called elasto-kinematic axis, the circumferential steering and the steering resulting
from lateral forces. First we look at the elasto-kinematic axis. Before we start with
the elasto-kinematic axis, we explain the mechanical analogue of an elasto-kinematic
point using Figure 16.12. In this figure a body (the square) is connected by three
revolute joints to three links, which are connected to the subframe by three elastic
bushings (two of them are stiff, one is weak). The inertia properties of the body are
described by J and m. The translational degrees of freedom of the body are captured
by x and y, the angle of rotation about the point S is ϕ. We want to establish the
equations of motion for small angles ϕ. If the distance between S and the revolute
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Figure 16.10 Multi-link rear axle of a Mercedes C-Class (reproduced with permissions of
Daimler AG)

Figure 16.11 Design principle of a five-link suspension
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Figure 16.12 Explanation of an elastokinematic point
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joints at the body is a, and the distance between the revolute joint at the body and
the corresponding revolute joint at the subframe is b (both a and b are only depicted
for the horizontal link; for the vertical link the distances are a and b as well), then
the elongation, Δs, of the springs (bushing) for small angles ϕ are (we use a Taylor
expansion of the square root and substitute the cosine function by its Taylor expansion
cos ϕ = 1 − ϕ2/2 + · · ·)

Δs =
√

a2 sin2ϕ + (b + a(1 − cosϕ))2 − b

=
√

2a2 + b2 + 2ab(1 − cos ϕ) − 2a2 cos ϕ − b

=
√

b2 + a2ϕ2 + abϕ2 + · · · − b

=
b

2

(
a2

b2 +
a

b

)
ϕ2 . . . . (16.1)

If we assume that the angle ϕ of rotation of the body about S is small and quadratic
terms can be neglected, then the changes in length of the bushing springs during pure
rotation of the body can be neglected, too. If we then look at the equations of motion
(16.2)–(16.4) of the whole mechanical system (the weak bushing is neglected), we
recognize that there is no restoring moment in the last equation (16.4). This means
that, for even small forces acting on the body, there are significant angles of rotation
if the point S is not on the line of action of the forces. Of course, the angle ϕ will not
increase to very high values because it will be limited by the nonlinearities that we
have neglected in (16.2) to (16.4). The point with the possibility about which the body
can be easily rotated (if the weak bushing is neglected) is S, and this is the intersection
of the linear extensions of the links, which are stiff elastically mounted

mẍ + kx = 0 , (16.2)

mÿ + ky = 0 , (16.3)

Jϕ̈ = 0 . (16.4)

After the explanation of the elasto-kinematic points, we continue with the
elasto-kinematic axis. This axis is depicted as the cylinder with the largest diameter
in Figure 16.13. The suspension is a five-link suspension. Four of the five arms are
connected to the subframe or body by stiff bushings (that means elastic elements), the
fifth arm (one of the arms of the lower A-arm) is weakly mounted to the subframe.
Consequently, we have a similar situation to that of the elastokinematic point,
where the point of easy rotation, S, is the intersection of the linear extensions of
the elastically mounted arms. If we look at the linear extensions of the elastically
mounted arms of Figure 16.13, we recognize, that all four extensions intersect in one
straight line, which is the elastokinematic axis (the three-dimensional analogue to
the elastokinematic point).

In the next paragraph, we look at the effect of cornering forces and of braking forces.
To do this, we assume that the depicted suspension is a rear axle suspension. We start
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Figure 16.13 A five-link suspension similar to the LSA rear suspension of the Porsche 911
Carrera

with a braking manoeuvre during cornering (this can be slight braking, or if the rear
axle is driven it can be a deceleration due to the drag torque of the engine). The decel-
eration causes load transfer from rear to front axle. This results in a decrease in lateral
forces at the rear axle, and an increase in these forces at the front axle, and, all together,
it ends with a moment which tries to rotate the vehicle to the inner side of the curve.
The braking forces at the rear axle on both wheels create a torque with respect to the
elastokinematic axis, because the intersection between this axis and the road is situ-
ated at the outside of the vehicle (the lever arm is n, the lever arm for tractive forces is
m). This means that the torques from the braking forces will easily rotate both wheels
to toe-in. Furthermore, the lateral force at the inner wheel decreases (because the slip
angle of the wheel decreases), while the lateral force at the outer wheel increases.
As the absolute value of the increase at the outer wheel is larger than the decrease at
the inner wheel (because the wheel load at the outer wheel is higher than at the inner
wheel), the sum of both increases, and the above-mentioned moment, which tries to
rotate the vehicle to the inner side of the curve, is partially compensated for as well.

Similar lateral forces act on the toe-in and toe-out. As can be seen in Figure 16.13,
the intersection is situated behind the centre of the contact patch (the lever arm is s).
This means that lateral forces cause toe-in (this in turn means an increase in the slip
angle) at the outer wheel and toe-out (which is a decrease of the slip angle) at the inner
wheel. This results in higher lateral forces.

16.1 Questions and Exercises
Remembering

1. How many degrees of freedom have to be locked by a suspension of one wheel?
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2. How many degrees of freedom are locked by a simple link?
3. How many degrees of freedom are locked by an A-arm?
4. Which is the main degree of freedom of the wheel carrier?
5. What is the principle of an independent suspension?
6. What basic forms of wheel suspensions exist in addition to the independent

suspension?
7. What quantities change during compression and rebound?
8. How is the elastokinematic axis defined?

Understanding

1. Explain the effect of changing the compression and rebound quantities with respect
to the understeering or oversteering driving behaviour of a vehicle.

2. What influence does the position of the elastokinematic axis have on the driving
behaviour?

3. Explain the circumferential steer forces and the lateral steer forces for different
positions of the elastokinematic axis.
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Torque and Speed Converters

In this chapter, we discuss examples of some types of speed converters (clutches) and
torque converters (transmissions).

17.1 Speed Converters, Clutches

The engine speed convertor or clutch connects the engine to the torque converter
(transmission). The tasks are:

• to transmit the torque from the engine to the transmission if the angular velocities
of engine and transmission are not the same; this, for example, is the case when the
vehicle is standing still because an internal combustion engine needs a minimum
angular velocity to keep running;

• to damp torsional vibration in the powertrain;
• to enable a soft and smooth start-up and
• to enable fast shifting of the gears.

Three types of speed converters are common in vehicles: dry and wet running disc
clutches (with one or more discs) and hydrodynamic power transmissions (Föttinger
units, hydrokinetic fluid transmissions).

A dual dry clutch is shown in Figure 17.1. The large gear, which is usually mounted
between the engine and the clutch, is for applying the starter of the combustion engine.
The basic components of a clutch can be seen in the figure twice. The two release forks
(in the lower left part) release the diaphragm springs. The upper fork can be clearly
seen while the second is almost completely hidden. Also visible are the clutch discs
with the torsional springs (one is visible), the linings and the pressure plates. Dual
clutches, as shown here, consist of up to 500 single parts.

Vehicle Dynamics, First Edition. Martin Meywerk.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/meywerk/vehicle
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Figure 17.1 Dual dry clutch (reproduced with permissions of Schaeffler)

Dual clutches are used in transmissions to transmit the torque from the engine with-
out interruption. The dual-clutch transmission has two input and two output shafts.
These two input shafts are joined to the two output sides of the dual clutch by the
two discs and the pressure plates; the input sides of the dual clutch are connected to
the engine. During a gear shift, for example from the first to second gear, the clutch
for the first gear is disengaged at the same time as the clutch for the second gear
is engaged. The principal dependences of the moments and angular velocities are
depicted in Figure 17.2. The diagram at the top shows the demand of the moment, Md,
at the driven wheels; here we assume a constant moment, Md and a constant velocity
of the vehicle. The change of transmission path of the moment takes place between
t1 and t2. The middle diagram depicts the moment from the engine (solid line). Due
to the change in the gear ratio during a gear shift, the moment of the engine has to
increase (we assume id = 4, i1 = 3 and i2 = 2 for the diagrams). During engagement
and disengagement the moment, Mc1, transmitted by the first clutch decreases from
the engine moment at t = t1 to zero, whereas the moment, Mc2, transmitted by the
second clutch increases from zero to the moment of the engine at t = t2.

Figure 17.3 shows an example of a dual-clutch transmission (without the clutches).
The two clutches would be attached to the two input shafts; one of the input shafts (the
shorter one) is a hollow shaft. In this example, the two output shafts are not positioned
axially (in the example in Figures 17.4 and 17.5 the two output shafts are axial, too).
The input shafts are axial because a small volume was chosen as the necessary design
space for this configuration with the two clutches. If the moment transmitted by the
dual-clutch transmission is not to be interrupted, it is essential to spread neighbouring
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Figure 17.2 Operating principle of a dual-clutch transmission

Figure 17.3 Dual-clutch transmission



250 Vehicle Dynamics

Figure 17.4 Dual clutch transmission with two axial countershafts; first gear engaged (repro-
duced with permissions of Dr. Ing. h. c. F. Porsche AG)

Figure 17.5 Dual clutch transmission with two axial countershafts; second gear engaged
(reproduced with permissions of Dr. Ing. h. c. F. Porsche AG)

gears on different input and output shafts. This is necessary for the continuous change
from one gear to another by simultaneously engaging one clutch and disengaging
the other clutch. A disadvantage of an uninterrupted dual-clutch transmission is that,
it is slightly larger and has a slightly higher weight than a manual shift (the effi-
ciencies of a manual and a dual-clutch transmission are similar) but, with respect
to shifting comfort, a dual clutch system is comparable to an automatic transmission.
Another advantage is that the acceleration ability is higher than that for a manual
transmission with interruption of tractive forces at the wheels.

In Figures 17.4 and 17.5, another design with two axial input shafts and two axial
countershafts are shown. In Figure 17.4, the first gear is engaged and in Figure 17.5
the second gear. This design uses two multi-disc wet clutches; the outer for the first,
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third and fifth gears, while the inner clutch for the second, fourth and sixth gears.
The seventh gear is not engaged using the countershaft, but by directly connecting
input and output shafts.

An essential part of a single disc clutch is the clutch disc. An example is shown in
Figure 17.6. Besides the basic parts, the figure also shows some additional features.
First of all, a centrifugal pendulum vibration absorber (cf. Section 9.2.2) is attached
to the disc. A total of four masses are used for the pendulum masses. Furthermore,
the clutch lining is not rigidly connected to the output of the clutch, but connected by
a four-stage torsional spring-damping device. The four stages are implemented by 16
springs, where eight of them are nested (the inner springs cannot be clearly seen in the
figure). There is a clearance between the inner springs and the disc, which means that
the inner springs are only active beyond a certain torsion. This results in a piecewise
linear moment-angle function M = M(α), as depicted in Figure 17.7. The effective
stiffness, C∗

i (i = 1, . . . , 4), in the stages and the switching points, α∗
i , between the

stages in the stiffness curve differ from the stiffness, Ci, and the clearances, αi, given
on the right-hand part of Figure 17.7. For example, the following holds:

C∗
1 =

C1C2

C1 + C2
and (17.1)

α∗
1 = α1

C1

C∗
1

. (17.2)

Figure 17.6 Clutch disc with torsional damper and centrifugal pendulum absorber (repro-
duced with permissions of Schaeffler)
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Figure 17.7 Operating principle of a clutch disc with multi-stage torsional damper

Similar relations hold for the other values of C∗
i and α∗

i . The stiffness values C1
and C2 have the role of a predamping device. The Coulomb friction elements are
responsible for energy dissipation and hysteresis in the system. This means that the
characteristic line depicted on the left-hand side of Figure 17.7 should be expanded
to a moment angle area around the curve.

Another device to reduce vibration in the powertrain, especially to reduce oscilla-
tions in moment and angular velocity, which are induced by the internal combustion
engine, is a flywheel. A rigid flywheel can reduce these oscillations because of its
inertia. Better efficiency in reducing these oscillations can be achieved by means of a
dual-mass flywheel, an example of which is shown in Figure 17.8. In this device, the
mass is divided into two parts. These parts are connected by bow springs, with fric-
tion occurring between the parts. This means that the dual-mass flywheel is a vibration
absorber (cf. Section 9.2.1). Furthermore, centrifugal pendulum absorber masses can
be seen in Figure 17.8. These are attached on the engine side of the dual mass flywheel.
The aim is a velocity-dependent absorbing frequency (cf. Section 9.2.2).

17.2 Transmission

Various transmission designs are used in passenger cars. Figure 17.9 provides an
overview of the usual designs (cf. Naunheimer 2011).

In manual transmissions both gear shift and clutch (dis)engagement are carried out
manually. Two countershaft designs are mainly used in passenger cars: single-stage
and two-stage countershaft transmission. In single-stage transmissions the moment
is transferred from the input to the countershaft, which is also the output shaft.
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Figure 17.8 Dual-mass flywheel with centrifugal pendulum absorber (reproduced with per-
missions of Schaeffler)

Transmissions

Single stage countershaft
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Automated manual transmission

Dual clutch transmission

Convential automatic
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(hydrodynamic torque converter,
planetary transmissions)
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Hydraulic

Electric

Manual Transmission Automatic transmission

Figure 17.9 Overview of passenger car transmissions

In two-stage countershaft transmissions the input and output shaft are coaxial,
and the countershaft and input or output shaft are joined by one fixed pair of
gears. Single-stage transmissions are mainly used in front-wheel-drive vehicles
with front-mounted engines. In this configuration the final drive with differential
is integrated into the transmission. The two-stage transmission is often used for
rear-wheel-drive vehicles with front-mounted engines. In this configuration the
differential is located at the rear axle.

A simple two-stage countershaft transmission is shown in Figure 17.10. The gears
are joined by synchromeshes with the shafts. The different gear ratios are achieved by
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Figure 17.10 Two-stage countershaft transmission with five gears (the fifth gear with direct
transmission)

joining the gears with the output shaft or by directly joining input and output shaft. In
the latter case, the gear ratio of the transmission is one. The reverse gear requires an
additional shaft.

In automated manual transmissions engaging or disengaging the clutch or shifting
the gears can be automated. As only one process is automated in this type of transmis-
sion, these transmissions are called semi-automatic. One of the first examples came
from VW in the year 1967, in which the three pairs of gears were complemented by a
hydrodynamic torque converter. In this automated transmission, the gear shifting was
performed manually. Semiautomatic transmissions are not used in many cars.

Automatic transmissions can be divided into the conventional automatic transmis-
sion with hydrodynamics torque converter and planetary gears, and those with dual
clutches and conventional transmissions with countershafts.

The first type consists of a hydrodynamic torque converter with a lock-up clutch
(in modern vehicles). The latter one locks up the turbine and the impeller in
non-conversion mode of the hydrodynamics converter for increasing efficiency. The
planetary gears are complemented by brakes and clutches in order to achieve the
different gear ratios.

An example of an automatic transmission is shown in Figure 17.11. This trans-
mission consists of four planetary gear sets and five brakes and clutches. The aim of
transmissions with a high number of gear ratios is firstly to achieve a balanced supply
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Figure 17.11 Automatic transmission, 8 gears, first gear engaged

of power and tractive force and secondly to achieve high efficiency values across a
broad range of velocities and power demand (or tractive force demand). The different
gear ratios are achieved by combinations of brake and/or clutch activations.

One crucial element of an automatic transmission is the hydrodynamic torque con-
verter (or Trilok converter), which is explained below.

These hydrokinetic fluid transmissions operate as both a clutch and as a transmis-
sion, thus, in terms of the differences in angular velocities, the Trilok converter is both
a clutch and a transmission.

One characteristic of this converter is that it consists of three rotating elements: the
impeller (or pump wheel), the turbine and the stator. The central part of the Trilok
converter, which enables a torque and a velocity conversion, is the stator, which is
mounted by means of a one-way clutch to the housing and therefore to the body of the
vehicle. The impeller is joined to input shaft (to the engine) and the turbine is joined
to the output shaft (to the transmission). Figure 17.12 depicts an example of a Trilok
converter.

There are two principal modes in which the converter runs.
In the first mode, the torque and angular velocity conversion mode, the angular

velocity of the impeller is clearly greater than the angular velocity of the turbine (the
angular velocity may even be zero for starting the car). In this mode, the fluid flows
to the rear of the stator blades, and the one-way clutch therefore locks and prevents
rotation of the stator. The locking action means that there is a moment between the
housing and the stator.

In the second mode, the stator rotates freely and there is no moment between stator
and housing.
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Figure 17.12 Trilok converter with centrifugal absorber and clutch (reproduced with per-
missions of Schaeffler)

If the torque of the impeller is Mi, that of the turbine Mt and that of the stator is
Ms, then these torques are in equilibrium:

Mi + Mt + Ms = 0 . (17.3)

When the stator is locked, we then have

Ms �= 0 → |Mt| = |Mi + Ms| > |Mi| (17.4)

and when the stator is not locked:

Ms = 0 → |Mt| = |Mi| . (17.5)

In the conversion mode, both, the torques and the angular velocities of input and
output shaft of the converter are not the same. The torque is amplified as shown in
Equation (17.4). The characteristic conversion curve is shown in Figure 17.13. Here,
the input and output torque Tin and Tout are divided by an nominal torque To.

A different type of transmission or torque converter is the so-called continuously
variable transmission, abbreviated as CVT. There are different possibilities for CVTs.
One form is described here which consists of a steel chain (no belt) between two vari-
able speed pulleys (cf. Figure 17.14). The pulleys are adjustable, which means that
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Figure 17.13 Characteristic curve of a Trilok converter

Figure 17.14 One pulley and a part of chain of a CVT (reproduced with permissions of
Schaeffler)
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Figure 17.15 Operating principle of a CVT

stepless variable gear ratios can be achieved. In order to transfer high moments, the
tension in the chain must be high. The operating principle is visualized in Figure 17.15.
Depending on the relative displacements of the two parts of a pulley, different radii of
the pulley take effect, which results in the variable gear ratio. With a CVT, the engine,
especially an internal combustion engine, can be operated in regions of high efficiency,
a change of the engine speed is not necessary. Some aspects of CVTs have been
improved in recent years, with examples being the maximum transferable moment
and the efficiency. An alternative to a conventional, mechanical CVT is an electronic
CVT (eCVT), where the torque is transferred by means of electromagnetic forces.

17.3 Questions and Exercises
Remembering

1. What is the function of a speed converter?
2. What possibilities are there for the vibration damping in powertrains?
3. How can uninterruptible transmissions be achieved?
4. Identify different types of torque converter.



18
Shock Absorbers, Springs
and Brakes

This chapter explains the construction of shock absorbers in Section 18.1, active
vertical systems in Section 18.2, suspension springs in Section 18.3 and brakes in
Section 18.4.

18.1 Shock Absorbers

The automotive industry most commonly uses single and twin-tube shock absorbers.
Figure 18.1 shows a schematic diagram of a monotube shock absorber. The gas

is under a pressure of up to 25 bar. The high pressure in the interior of the shock
absorber is intended to prevent cavitation and foaming. The movement of the piston
rod causes the shock absorber piston to move up and down. During these movements,
the oil flows through either the compression valve (2) or the rebound valve (1), with
the two valves usually having different characteristics for compression and rebound.
The separating piston between the oil and the gas seals off the gas from the oil. The
gas volume is necessary to compensate for the piston rod volume, which moves inside
the working cylinder during compression. Due to the high internal pressure, special
demands are placed on the seal. The flow through the valves for compression is shown
in Figure 18.2 and for rebound in Figure 18.3.

One advantage of the monotube shock absorber is that it can be installed in any
orientation. The disadvantages are the additional costs compared to a twin-tube shock
absorber due to the higher manufacturing precision and the necessary tightness. A
further advantage is the efficient cooling of the oil. The static pressure acting on the
piston rod means that a static force acts permanently. If we assume a pressure of 25
bar and a radius of the piston rod of 6 mm, this force is about 280 N.

Vehicle Dynamics, First Edition. Martin Meywerk.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/meywerk/vehicle
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Figure 18.1 Monotube shock absorber

Figure 18.2 Monotube shock absorber: details of flow for compression (reproduced with
permissions of ZF Friedrichshafen AG)
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Figure 18.3 Monotube shock absorber: details of flow for rebound (reproduced with permis-
sions of ZF Friedrichshafen AG)

Figure 18.4 shows the basic structure of a twin-tube shock absorber with the com-
pression valve (1) and the rebound valve (2). Here the oil is not under a static pressure.
Consequently, the demands placed on the seals and manufacturing precision are not
as high as for the monotube shock absorber. Between the outer and inner cylinders is
the compensation cylinder. The compensation cylinder is necessary for volume com-
pensation of the rod. The oil flows through either the compression valve (4) or the
rebound valve (3) into or out of the compensation cylinder, which is about half-filled
with oil. The remaining part of the compensation cylinder is used for absorption of
oil during expansion (temperatures of up to 120 ◦C are possible). Twin-tube shock
absorbers may not be be installed in any arbitrary orientation; otherwise, air from the
compensating cylinder would be drawn into the working chamber during rebound.

The flow through the valves for compression is shown in Figure 18.5 and for
rebound in Figure 18.6.

Some special types of shock absorbers are in use. One is the suspension strut mod-
ule, which comprises the suspension spring and the shock absorber. This strut is used
in the so-called McPherson wheel suspension. As the coil spring cannot significantly
transfer forces or moments in a radial direction, the shock absorber has to do this. As a
result, the diameter of the piston rod has to be larger than that of a conventional shock
absorber.
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Figure 18.4 Twin-tube shock absorber

Figure 18.5 Twin-tube shock absorber: details of flow for compression (reproduced with
permissions of ZF Friedrichshafen AG)

Continuous damping control (CDC) is a special form of adaptive damping system.
Besides the piston valve and the base valve, a third, variable proportional valve is
present in this shock absorber. This additional and adjustable valve controls the flow
in a shunt flow path which is achieved by means of an additional control tube. The
proportional valve can be electronically adjusted according to factors such as the road
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Figure 18.6 Twin-tube shock absorber: details of flow for rebound (reproduced with permis-
sions of ZF Friedrichshafen AG)

Figure 18.7 Proportional valve in a CDC (reproduced with permissions of ZF
Friedrichshafen AG)

or the oscillations. The flow through this variable valve is illustrated in Figure 18.7.
This type of damping is called adaptive because only the damping characteristics can
be controlled, but there is no way of actively influencing the system, which means
that this method is not able to bring energy or power into the system. The CDC shock
absorber is used in a so-called skyhook damping system which is described in Section
18.2.2. This system controls the damping in order to isolate oscillations of the wheel
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from the body. This isolation is only partly possible because the shock absorber is
dissipative, i.e. the shock absorber does not convert electrical into mechanical energy.
The shock absorber, therefore, remains a passive system, but the characteristics are
adaptable.

18.2 Ideal Active Suspension and Skyhook Damping

This section looks at some details of active body control. We first start by considering
an ideal active body control and in the second subsection we look at the so-called
skyhook damping.

18.2.1 Ideal Active Suspension

Ideal means that we assume an actuator which can deliver arbitrary forces or displace-
ments. This actuator acts between the wheel and the body (cf. Figure 18.8; we prefer
indices 1 and 2 instead of w and b in this section).

The force of the actuator is F ; seat and the driver are not included in this consider-
ation of the operating principle. The mechanical system is described by the following
system of ordinary differential equations:

m2z̈2 = F , (18.1)

m1z̈1 + k1z1 = −F + k1h . (18.2)

We assume that this system is excited by a harmonically uneven road. The uneven
road is described by a harmonic complex function, h, with only the real part being
relevant. As we are mainly concerned with the amplitudes at the end of the derivation,
this consideration is sufficient. The excitation in the time domain is

h = ĥ eiωt. (18.3)

If κ = 2π/L is the wavenumber of a harmonically uneven road and v is the velocity
of the vehicle, then the time angular frequency is ω = vκ. As the excitation of the
system of the linear differential equations is harmonic, the time-dependent variables
are harmonic too:

z1 = ẑ1 eiωt , (18.4)

z2 = ẑ2 eiωt , (18.5)

F = F̂ eiωt , (18.6)

Fz = F̂z eiωt . (18.7)

The last variable, Fz, is the dynamic wheel load, which means only the harmonic
part, not the static load. The wheel load is a result of the deformation of the wheel.
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Figure 18.8 Ideal active body control (the actuator is repositioned by its forces)

The stiffness of the wheel is k1. We then obtain

F̂z = k1(ĥ − ẑ1). (18.8)

Solving this equation for ẑ1 yields

ẑ1 = ĥ − 1
k1

F̂z . (18.9)

The result of substituting ẑ1 in Equation (18.2) (we substitute z̈1 = −ω2ẑ1e
iωt and

divide by eiωt �= 0)
−m1ω

2ẑ1 + k1ẑ1 = −F̂ + k1ĥ (18.10)

is

F̂ = F̂z

(
1 − m1

k1
ω2

)
+ m1 ω2 ĥ . (18.11)

Equation (18.11) contains the complex amplitudes of the actuator force, F̂ ,
the wheel load, F̂z , and the uneven road, ĥ. We introduce a frequency ratio
(ωw =

√
k1/m1 is the natural frequency of the wheel):

η1 =
ω

ωw

, (18.12)

This ratio can be used to rewrite Equation (18.11):

F̂ = F̂z(1 − η2
1) + k1 η2

1 ĥ. (18.13)
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In this equation, it is apparent that the phase between the three complex amplitudes
can be chosen as advantageous or disadvantageous. We consider two extreme cases.

First. the case F̂ = 0. In this case, the actuator is controlled so that there is no
dynamic force between body and wheel (the static force does of course act between
body and wheel). This vanishing force F̂ = 0 results in vanishing acceleration of the
body, which results in a comfort value of zero and therefore in an optimum level of
comfort. The consequence for the complex amplitude of the wheel load can be seen
in the following equation, which we obtain from (18.11):

F̂z = −k1
η2

1

1 − η2
1

ĥ . (18.14)

The denominator 1 − η2
1 becomes zero if the excitation frequency is ω =

√
k1/m1,

which means that state in which the system is excited with the natural frequency of the
wheel. This results in a division by zero; if damping is considered, this results in very
high values of the wheel load amplitude F̂z . The consequence of optimum comfort is
very bad (or infinitely bad) safety values.

The second extreme case is optimum safety, which means vanishing dynamic wheel
loads. From (18.11) with F̂z = 0

F̂ = k1η
2
1ĥ . (18.15)

If the excitation frequency is equal to the natural frequency of the wheel (η1 = 1), then
the uneven road affects the body so that only the wheel stiffness acts between body
and wheel. As the wheel stiffness is very high, this case leads to very high forces and
therefore to poor comfort values. If we look at the amplitudes ĥ, we know from the
stochastic description of uneven road, that the spectral density

Φh(Ω) = Φ(Ω0)
(

Ω
Ω0

)−w

. (18.16)

decreases with Ω−w, where the magnitude of w is 2. It follows that the amplitudes ĥ
behave like

√
Ω−w = Ω−w/2, or as functions of the time angular frequency, ω = vΩ

the amplitudes ĥ decrease in the same way as ω−w/2. As η2
1 = ω2/ω2

w and as w ≈
2, the amplitude, F̂ = k1η

2
1ĥ, increases approximately linearly with ω2−w/2, hence

comfort will become infinitely bad for ideal safety.
Only a compromise is possible. Choosing the appropriate phases between the three

complex amplitudes enables the following equation to be obtained:

|F̂ | + |F̂z(1 − η2
1)| = |k1η

2
1 ĥ| , (18.17)

In general, the following equation holds:

|F̂ | + |F̂z(1 − η2
1)| ≥ |k1η

2
1 ĥ| . (18.18)
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Figure 18.9 Active vertical system of Mercedes S-Class (reproduced with permissions of
Daimler AG)

This means that, in the case of optimal phases (18.17), the distribution of the forces
F̂ and F̂z can only be chosen within the limit |k1η

2
1ĥ|. All together, it is obvious that

the conflict between comfort and safety persists, even for an ideal active actuator.
Figure 18.9 shows an active spring system for the Mercedes S-Class. The active

elements (such active body control from Mercedes) can use hydraulic actuators, but
electric actuators are also possible. With this kind of actuator, it is possible to approx-
imate the ideal phases of Equation (18.17).

18.2.2 Skyhook Dampers

The damping properties of skyhook dampers can be changed continuously1. These
properties are made possibly by the use of proportional valves to achieve a hydraulic,
controllable shunt. Accelerations of the body and wheels enter into the control algo-
rithm, so that every wheel can be controlled individually. If, in addition, pitch and roll
movements are to be influenced, the individual controllers of the wheels have to be
connected to a central controller for body control.

The crucial role in the conflict between safety and comfort is played by the damper
between wheel and body: the damper forces influence both comfort and safety.

1 The derivations of the formulas in this subsection closely follow the monograph of Mitschke and Wallentowitz 2004.
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One way out of this conflict would be a damper for the body which does not act
on the wheel. As there is no possibility of fastening the damper to the body and a
point of the environment, we assume that we can fasten one end of the damper to
the body and the other end to an imaginary hook in the sky (which is not possible in
reality, but we aim to examine whether the comfort can be improved). This skyhook
damper can be adjusted to achieve good values for comfort, and the choice of the
damping constant will not influence safety because the damping force will not act on
the wheel.

This kind of skyhook damper is depicted in Figure 18.10(a). The skyhook damper
is placed between the body and the sky, but there is no damper between the wheel and
the body. The damping constant can be chosen independently of safety requirements.
In the following sections, we answer the question as to whether it is possible to place
a damper between wheel and body which behaves approximately or even exactly like
the skyhook system. This requirement is fulfilled if the force of the skyhook damper,
Fdsky, is the same as the force of a conventional damper, Fd, where

Fdsky = bskyż2 , (18.19)

Fd = b2(ż2 − ż1) . (18.20)

From Fdsky = Fd, we obtain a conventional damper which behaves like a skyhook
damper. To achieve the skyhook behaviour, it is necessary for the damping constant,
b2, to depend on the velocities:

b2 = bsky
ż2

ż2 − ż1
. (18.21)

To evaluate whether this kind of damper is possible, we look at the power,
Pdsky, of the damper (the power, Pdsky, can also be calculated if we start from
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Figure 18.10 Skyhook damper (adapted from Mitschke and Wallentowitz 2004)
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Pdsky = Fd(ż2 − ż1) and substituting b2 by (18.21)):

Pdsky = Fdsky(ż2 − ż1) (18.22)

= bskyż2(ż2 − ż1) . (18.23)

As the damper is a passive element, the power always has to be positive (the damper
is only able to convert mechanical energy into heat), which is fulfilled for

ż2(ż2 − ż1) > 0 . (18.24)

This requirement is equivalent to the condition that the velocity-dependent damp-
ing constant, b2 (cf. Equation (18.21)), should be positive (if we multiply (18.21) by
(ż2 − ż1)2 ≥ 0, the equivalence is obvious; division by zero is not considered here). A
negative value is not possible for a passive damper. This means that a skyhook damper
can only be achieved for velocities which fulfil the condition

ż2(ż2 − ż1) > 0 . (18.25)

Coming back to Figure 18.10(a), we can clearly see that the wheel is not damped
at all, which could result in high values of wheel load fluctuations. To avoid these
fluctuations, an additional, conventional damper (damping constant b̃2) is introduced.
The damping forces of the two dampers are then

Fd tot = bskyż2 + b̃2(ż2 − ż1) (18.26)

=
(

bsky
ż2

ż2 − ż1
+ b̃2

)
(ż2 − ż1) for ż2(ż2 − ż1) > 0

Fd tot = b̃2(ż2 − ż1) for ż2(ż2 − ż1) < 0 . (18.27)

With the mean of such a combination of dampers, it is now possible to adjust the
damping in order to obtain good comfort values and low wheel load fluctuations. To
control the skyhook part of the damper, the velocities ż2 of the body and ż1 of the
wheel are necessary. This means that two sensors for the control of one wheel have to
be built into the vehicle.

Figure 18.11 shows the hardware of a skyhook damping system (CDC): it com-
prises the acceleration sensor for the wheel and for the body acceleration, the control
unit and the proportional valve. Figure 18.12 shows a skyhook damper. The valve for
controlling the damping characteristics is visible at the lower left-hand side.

18.3 Suspension Springs

Different kinds of springs are used in automobiles for connecting the wheel carrier
and body.

In passenger vehicles, a spring travel ±100 mm may occur. Coil springs (seldom
leaf springs) are used mainly, but air springs and torsion bars can also be found.
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Figure 18.11 CDC: Continous damping control (reproduced with permissions of ZF
Friedrichshafen AG)

Leaf springs and torsion bars play a special role because they can also be used as sus-
pension links. Leaf spring or torsion bar suspensions can be found in heavy-duty vehi-
cles, but seldom in new passenger cars. Coil springs and air springs are not suitable for
replacing suspension links. In addition to these springs (air, leaf, coil and torsion bar),
rubber bushings are also used in the suspension in order to reduce noise and vibrations.

Leaf springs (cf. spring 6 in Figure 18.13) are bending beams with a very low second
moment of area, in which the deflections are large. Laminated leaf springs of differ-
ent lengths or leaf springs with a variable cross-section (parabolic profile) reduce the
bending stresses at the clamping end points.

Figure 18.13 shows a leaf spring and coil springs.
The coil spring is a coiled torsion bar. Figure 18.13 shows some different designs.

The basic shape is cylindrical (1) with constant wire diameter and mean spring
diameter. The working characteristic (i.e. the force vs. deflection) is linear.

A non-linear, progressive characteristic is achieved with constant wire and coil
diameters but variable pitch. When the spring is deflected, the number of active coils
decreases due to variable pitch, and hence a progressive characteristic is obtained (cf.
spring 2 in Figure 18.13). A progressive characteristic curve also results from a series
arrangement of two different springs (spring 3). The largest number of degrees of
freedom for creating a spring characteristic is provided by a barrel spring, where the
pitch, the wire diameter and the mean spring diameter are not constant (spring 4).
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Figure 18.12 CDC shock absorber (reproduced with permissions of ZF Friedrichshafen AG)
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Figure 18.13 Suspension springs



272 Vehicle Dynamics

The spring stiffness of a spring with constant wire diameter d, mean spring diameter
D and n active coils is (where G is the shear modulus)

c =
Gd4

8nD3 . (18.28)

Rubber bushings (cf. spring 5 in Figure 18.13) can be found as additional elastic
components in vehicles, with examples being in the joints between the suspension
arms and the body or subframe, in engine or transmission mounts, in anti-roll bar
mounts or shock absorber mounts (e.g. for McPherson struts). The main stiffnesses
of rubber bushings are axial ca, radial cr and torsional cϕ:

ca =
2πhG

ln (r2/r1)
, (18.29)

cr =
k7.5πhG

ln (r2/r1)
, (18.30)

cϕ =
4πhG

(1/r2
1 − 1/r2

2)
. (18.31)

The correction factor, k, depends on the ratio between the height, h, and the thick-
ness, s = r2 − r1, of the rubber. For h/s = 0 the factor is 1, and k increases progres-
sively up to 2.1 for h/s = 5. The shear modulus G increases with Shore A hardness
H (G in N/mm2, H in Sh A; cf. Battermann and Koehler 1982):

G = 0.086 × 1.045H . (18.32)

In hydropneumatic and air springs, the stiffness is determined by a fixed or variable
amount of gas (nitrogen or air). The volume of the gas varies during varying jounce
travel. The functioning principle is shown in Figure 18.14.

po

p V

A

F

Figure 18.14 Functioning principle of an air spring
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The force F acting on the piston is

F = A(p − po) . (18.33)

Here, p is the pressure inside the bellows, po the pressure outside and A is the
cross-sectional area. The pressure, p, inside the gas spring increases when the volume
becomes smaller and decreases when the volume becomes larger.

According to the velocity of change in volume, the temperature stays nearly con-
stant (which is called the isothermal change of state) or it varies. An isothermal change
of state can be described by

pV = const . (18.34)

If the volume is changed very quickly, there is nearly no exchange of heat with the
environment. Consequently, this change of state is called adiabatic, which is described
by the following equation: (κ ≈ 1.4 for air):

pV κ = const . (18.35)

In general, the relationship between pressure, p, and volume, V , is described by the
polytropic equation

pV n = const . (18.36)

Here, n is the polytropic exponent which is between 1 (isothermal) and 1.4 (adia-
batic).

The polytropic exponent rises with increasing velocities.
The characteristic of a gas spring is not linear, but the gradient, dF/ds, of the spring

force, F , can be derived as a function of the jounce travel, s. Starting from

F = A

(
p0V

n
0

(V0 − As)n − po

)
(18.37)

we obtain
dF

ds
= A2n

p0V
n
0

(V0 − As)n+1 . (18.38)

As the gas in the bellows diffuses, a compressor, which can be combined with a
bounce control, is mandatory. If the velocities are small this bounce control can com-
pensate for changes in the bounce.

There are two types of gas springs. Those with the constant volume of gas and those
with a constant mass of gas.

The principal components of a gas spring with constant volume are shown in
Figure 18.15, while those for an air spring with constant mass of gas are depicted in
Figure 18.16.

The piston of gas springs with constant volume presses against the bellows in which
the gas is located. If the vehicle is loaded, the bounce deviates from the reference
value, and the three-way valve connects the gas spring to the compressor; the latter
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Figure 18.15 Functioning principle of an air spring with constant volume
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Figure 18.16 Functioning principle of an air spring with constant mass of gas (hydropneu-
matic spring)

increases the pressure till the bounce reference value is re-established. Unloading the
vehicle causes the air spring to deflate.

Rearranging the equation for the gradient (18.38), we obtain (p0V
n
0 = pV n and

(V0 − As)n+1 = V n+1)
dF

ds
= A2n

p

V
. (18.39)

As the volume, V , remains constant and the static pressure increases in proportion to
the load, the first natural frequency, f1, does not change when the vehicle is loaded or
unloaded. The first eigenfrequency is that of the quarter-vehicle model. If we assume
that the weight, mg, is uniformly distributed over the four wheels, the pressure in
one gas spring is p = mg/(4A). The first natural frequency of a linear single mass
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oscillator (mass m and stiffness c) is
√

c/m) and therefore

fe =
1
2π

√
dF/ds

m/4
(18.40)

=
1
2π

√
Ang

V
, (18.41)

which is independent of the mass and therefore of the load.
Since the volume is in the denominator of (18.41), the first natural frequency of the

quarter-vehicle model with a gas spring with constant volume is independent of the
load, whereas this natural frequency increases with rising load in the case of the gas
spring with constant mass (because the volume becomes smaller).

The volume inside the bellows is sometimes too small to attain a low first natural
frequency (cf. Equation (18.41)) so that, in some gas springs, an additional, external
volume is attached to the main volume (cf. Figure 18.17). The connection between the
main and the external volume can be achieved by an adaptive valve. This adaptation
can be used to control the damping characteristics. An important aspect of an air spring
is the shape of the bellows because the rubber becomes very stiff at high frequencies.
The maximum pressure in air springs lies in the region of 15 bar.

An air spring without any additional volume is shown in Figure 18.18. Figure 18.19
shows an air spring in the wheel suspension of a truck. In passenger cars, air springs

Upper mount with
integrated air house fitting

Integrated compression stop

Additional air volume

Support flange

Electromagnetic
CDC® control valve

Lower mount

Figure 18.17 Air spring with an additional volume (reproduced with permissions of ZF
Friedrichshafen AG)
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Piston valve

Base valve
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Figure 18.18 Air spring without an additional volume (reproduced with permissions of ZF
Friedrichshafen AG)

Figure 18.19 Air spring in a truck wheel suspension (reproduced with permissions of ZF
Friedrichshafen AG)

with constant volume can be found in vehicles in the upper segments and heavy
vehicles, whereas this technology is not common in compact cars.

The second form of air springs, those with a constant mass of gas, is older than
the gas spring with constant volume. This form of gas spring is generally called
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the hydropneumatic air spring and was introduced as a broad industrial standard by
Citroen in the 1950s.

The basic structure can be seen in Figure 18.16. The idea is that the gas (usually
nitrogen in passenger cars) is separated by a rubber membrane from the hydraulic oil.
The compliance of the spring is a result of the gas, while the hydraulic oil is very stiff.
There are some advantages of this form of suspension spring. The spring characteris-
tic can be adjusted to a very weak setting, which yields a high comfort. The damping
can be implemented by a valve for the oil. When the valve is variable, an adaptive
damping characteristic is available. As the cross-sectional area in the hydraulic part
is usually smaller than that in air springs with a constant volume, the gas pressure
of hydropneumatic springs has to be higher (approx. 15–20 bar) than the pressure in
air springs with constant volume. There are some disadvantages to the hydropneu-
matic spring. As the spring characteristic is weak, these systems usually have to be
complemented by a hydraulic pump to compensate for decreasing chassis clearance
when the vehicle is loaded. Although this involves extra effort, it is comparable to the
pneumatic system necessary in air springs with constant volume.

18.4 Brake Systems

Brakes are necessary in a vehicle to reduce the velocity, to allow the driver to stop
the vehicle, to limit the velocity when the vehicle is travelling downhill or to hold the
vehicle at a standstill.

Many legal requirements apply, such as the following from Europe:

• A vehicle has to have two independent brake systems, which are usually achieved
by two brake circuits.

• If one circuit fails, the other circuit has to be able to brake at least two wheels, which
must not be located on the same side of the vehicle.

• One service brake system and one parking brake system are necessary; the latter has
to hold the vehicle at a standstill on an inclined road with a gradient of p = 25%.

This means that the brakes have the function of reducing the kinetic energy of the
vehicle in order to reduce the velocity and they also have to keep the vehicle at a
standstill.

Various brake systems exist and differ according to the type of energy conversion:

• friction brake
• engine brake or exhaust brake
• electromagnetic or eddy-current brake
• hydrodynamic brake or hydrodynamic retarder according to the Föttinger principle.

Friction brakes are most commonly used in passenger cars. These brakes are
designed as disc brakes (standard in modern vehicles) or drum brakes. Figure 18.20
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Figure 18.20 Disc brake with a fixed caliper

shows a so-called fixed caliper brake. This brake is characterized by a caliper which
is not able to move perpendicularly to the disc. There are pistons on both sides of
the disc. The piston on the outside (that means between disc and wheel) limits the
possibility to minimize the distance between the brake and the wheel.

Figure 18.21 shows a different type of brake, namely a floating caliper brake. The
caliper is able to move perpendicularly with respect to the disc, while the piston
between the disc and the wheel is missing. This brake can therefore be positioned
near to the wheel. Another advantage is that these brakes are cheaper and that they
are self-adjusting and self-centring.

Brake pads

Floating caliper

Piston

Brake disc

Hydraulic fluid

Frame mounts

Figure 18.21 Disc brake with a floating caliper
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The distance between the brake and the wheel is an important geometric factor
which influences the disturbing force lever arm radius rσ. The development of the
floating caliper brake made it possible to reduce the disturbing force lever arm radius
rσ and also to reduce the scrub radius rk to zero or even to negative values. A negative
scrub radius has positive effects on the dynamics of the vehicle, but in vehicles with
anti-lock braking system (ABS) a zero or small scrub radius is preferable.

Characteristics of disc brakes are:

• good cooling of the disc; therefore little fading is observed (fading is the reduced
effect of braking due to heating of the disc);

• steady braking;
• no self-amplification.

The brake system is usually hydraulic, with the tandem master cylinder being the
central part, see Figure 18.22. The tandem master cylinder comprises two pistons, one
for each of the two braking subsystems. Pressing the brake pedal moves a push rod
against the primary piston. Under normal operating conditions, the fluid (and a spring
with a small contribution to the force) between the primary and the secondary piston
transmits the force from the primary to the secondary piston. The pressure builds up
when the primary cups of the pistons cover the bypass.

If the primary hydraulic subsystem fails (e.g. in the event of leakage) the force
from the pedal to the secondary piston is transmitted mechanically by a rod at the
front of the primary piston without any hydraulic pressure build-up. If the secondary
hydraulic subsystem fails, the secondary piston is moved to the end of the cylinder,
where it is stopped. After this, the pressure in the primary subsystem can be built up;
the travelling distance of the primary piston is larger in this failure scenario. A spring
is located between the pistons and between the cylinder and the secondary piston in
order to expand the system after the pedal force decreases. If needed, fluid from the

Piston 2Piston 1Pedal force

Front wheel
circuit

Rear wheel
circuit

Figure 18.22 Brake circuit configurations
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Figure 18.23 Brake circuit configurations

reservoir can refill the system. The chambers and the reservoir are connected by two
bypasses, which are closed by cup seals during braking.

There are different designs of brake circuit configuration, see Figure 18.23. Their
names have been chosen to match the letters that best describe their appearance: II (or
TT or black-and-white), X (or diagonal), HI (or HT), LL and HH. The simplest and
the most commonly used configurations today are the II and the X designs. In these
two designs the brake for each wheel has only one set of pistons for one circuit (in
the case of a floating caliper). The other designs (HI, LL and HH) have more than one
piston sets at some of the wheels: HI and LL have two piston sets at each front wheel,
and for HH two piston sets are necessary at each wheel.

In vans or heavy-duty vehicles, other, additional brakes are used, such as exhaust
brakes (in which the exhaust pipe is partially closed by a valve), eddy-current brakes
(in which a rotor is attached to the axles, a stator to the chassis; braking occurs when
an electric current in the windings of the stator generates a magnetic fields in the
rotor, which induces eddy currents in the rotor) or hydraulic retarder, in which a fluid
generates the braking torque between a rotor and a stator.
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18.5 Questions and Exercises
Remembering

1. Explain the different types of shock absorbers and suspension springs.
2. Explain the difference between the two types of gas spring with respect to the first

vertical eigenfrequency.

Understanding

1. What is the reason that the brakes of one brake circuit are not located on the same
side of the vehicle? Explain.

2. Are the pressures in the two circuits equal?
3. How different pressures at front and rear wheels can be achieved?

Applying

1. Explain the development of yaw moments when one circuit fails for the different
brake circuit configurations of Figure 18.23 for straight ahead motion and for
cornering. Take into account the sign of the scrub radius as well as the elastokine-
matic axis.





19
Active Longitudinal
and Lateral Systems

This chapter explains active systems which influence lateral or longitudinal dynamic
behaviour of a vehicle. The systems discussed are anti-lock braking system (ABS),
anti-slip regulation (ASR) and electronic stability programme (ESP).

19.1 Main Components of ABS

In critical driving conditions where full braking is applied, one or more wheels may be
locked if the vehicle does not have the anti-lock braking system (ABS). This locking
of the front wheels may mean that the vehicle can no longer be steered, or the locking
of the rear wheels may cause instabilities in the driving conditions. For this reason, it
is helpful to prevent locking of the wheels.

The main components of an ABS are shown in Figure 19.1. A classical brake sys-
tem is composed of a brake pedal, brake power unit, a master cylinder with a reservoir,
brake lines and brake hoses and wheel brakes with cylinders. Additional components
of an ABS are wheel-speed sensors at all four wheels, a hydraulic unit (hydraulic
modulator with magnetic valves) and a controller. The wheel speed sensors detect the
rotational speed of all four wheels and are necessary in order to detect the locking
tendency of individual wheels. The acceleration of the wheels and the slip are used as
essential parameters for the tendency to lock. There are variants of ABS that operate
with only three speed sensors, as shown by the first ABS from Bosch in Figure 19.2,
in which the rotational speeds of both driven rear wheels have been detected by a
sensor on the Cardan shaft. The reason for the use of two control values (wheel accel-
eration and slip) is based on the fact that some manoeuvres may only be identified
as critical by considering one of these two quantities. Consequently, the slip cannot
be readily adjusted by only the slip-based control during panic braking or a sudden
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Figure 19.1 Components of an ABS

change in adhesion. Pure control over the wheel deceleration may provide no satis-
factory solution for gentle braking to high slip values, because the high slip values are
difficult or impossible to detect. The final adhesion limit is not often exceeded during
a rapid build-up of acceleration, but a reliable detection is, nevertheless, simpler with
the additional aid of slip. For example, the velocities of the non-driven wheels can be
used for determining the velocity for calculation of the slip.

We can recognize the limited possibilities of a purely slip-based control in the
following example. If we assume that all four wheels tend to lock alike, then the cir-
cumferential speed, vci, i = 1, . . . , 4, tends to zero in a similar manner (we assume
for this explanation that all four wheels decrease their velocity identically): vci = at
(here a is an acceleration value and t is the time) and we continue to assume that the
driving speed vv = 1

4

∑4
k=1 vck is calculated from averaging the four circumferential

speeds vci. As a result for the slip values Si, i = 1, . . . , 4, on the four wheels we
obtain

Si =
vv − vci

vv

(19.1)

=

=at︷ ︸︸ ︷
1
4

4∑
k=1

vck −
=at︷︸︸︷
vci

1
4

4∑
k=1

vck

(19.2)

= 0 . (19.3)
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Figure 19.2 Topological principle of the first ABS from Bosch (1978) with one velocity
sensor for the Cardan velocity

Of no relevance for this observation is the fact that the circumferential speeds
decrease linearly with time. ABS systems use both inductive wheel speed sensors
(in older systems) and wheel speed sensors based on the Hall effects. The difficulty
in inductive wheel speed sensors is that they produce a small measured signal
at low speeds which cannot accurately undergo further processing under certain
circumstances. The Hall sensors provide a measurement signal of the same quality
which is independent of the speed.

The hydraulic unit controls the brake pressures in the four wheel brake cylinders. It
is essential here (see Figure 19.3) that the pressure in the brake circuit should not be
passed directly to the wheel brake cylinder, but that two 2/2 solenoid valves should be
provided for each wheel brake. One of these solenoid valves, the so-called inlet valve
(IV), constitutes the connection between the master cylinder and the brake cylinder,
the second, called the outlet valve (OV), constitutes a connection to the feedback cir-
cuit. The low-pressure storage takes the brake fluid in the brake decompression; the
return pump supports the brake fluid return.

A constant pressure is maintained in the wheel brake cylinders provided the IV is
closed, and the OV is also closed. This is one way in which the control device can
influence the braking pressure. If the IV is closed and the OV is opened further, the
braking pressure and hence the braking torque on the concerned wheel decreases. This
is a second way in which the control device can influence the braking torque. After the
brake pressure has been reduced in such a way, it can be increased again by closing the
OV and re-opening the IV. Opening the IV briefly enables the pressure to be increased
in steps. Likewise, the pressure can also be reduced in steps with the IV closed and
the OV being opened briefly.
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Figure 19.3 Hydraulic connections for the ABS (cf. Robert Bosch 2007)

Figure 19.3 shows the complete hydraulic circuit diagram of an ABS system. The
requirements to be met by an ABS device are numerous, which include the following:

• Driving stability and steer ability should be guaranteed under different road condi-
tions (dry, wet, icy road surfaces).

• The coefficient of adhesion should always be fully utilized on as many roadways
as possible.

• In rapidly changing road conditions, the intervention of the ABS must be limited
to a short period so that the braking distance is not prolonged unnecessarily. The
longer intervention time of the ABS during such varying road conditions means
that the good coefficients of adhesive of dry, non-icy road would not be utilized,
thus prolonging the braking distance unnecessarily.

• If the road surfaces for the left and the right wheels are of a different nature (this
is known as a split-μ road), then the yaw moments caused by the different braking
forces on the left and right sides should rise slowly so that a normally skilled driver
can countersteer.

• Even when cornering, the ABS should enable shorter braking distances, bearing in
mind that the limit speed plays an essential role here during cornering. In this con-
text, it is important that the total transmittable forces through the tyres are limited
(Kamm’s circle).

• Uneven roads lead to wheel load fluctuation. ABS should also be able to control
these varying conditions.

• ABS should also be able to control aquaplaning.
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19.2 ABS Operations

The areas in the longitudinal force coefficient–slip curve (μ-S curve) in which the
ABS engages are determined substantially by adhesion limits for straight-line driv-
ing. The diagram in Figure 19.4 shows the curves for different road surfaces. The
longitudinal force coefficient, μ, is the ratio of tangential longitudinal force Fx to the
wheel load Fz:

μ =
Fx

Fz

. (19.4)

Similarly, for the cornering force, Fy, a cornering force coefficient μs = Fy/Fz can
be defined. The cornering force depends on the slip angle α; for small slip angles this
dependence can be linearized: Fy = cαα. Both forces, Fx and Fy, act in the contact
area and influence each other. For this reason, the longitudinal force coefficient, μ,
and the cornering force coefficient, μs, depend on the slip angle, α (cf. Figure 19.5).

The areas in which the ABS is engaged are located at the maximum of the curves
near the coefficient of adhesion, μa. The maximum also corresponds to the optimal
range for the minimum stopping distance. The only exception is the curve for snow.
This occurs because the loose snow forms a wedge in front of a locking wheel (this
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Figure 19.4 Operating areas of ABS (adapted from Robert Bosch 2007)
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Figure 19.5 Operating areas of ABS with slip angle (adapted from Robert Bosch 2007)
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is indicated by the slope of the curve for very large slip values), thus increasing the
braking effect. Similar behaviour occurs when braking on gravel or crushed stone.
Since these are unusual conditions for passenger cars, their significance is low, yet
braking on these roads with ABS leads to an extension of the braking distance. If a
driver is driving on a roadway with conditions such as these, then switching off the
ABS leads to shortened braking distances. However, it is important to note that this
is more common in off-road vehicles. These situations (snow, gravel) may lead to
significantly longer braking distances because of the absence of wedge formation due
to the ABS intervention; under certain circumstances, it is not possible to stop the
vehicle on an inclined road. In commercial vehicles, it should therefore be possible to
switch off the ABS when the driving conditions are as described.

Figure 19.5 shows the conditions during cornering. The main difference while cor-
nering when compared to the straight-ahead driving is that the wheels must not only
transmit longitudinal but also lateral forces. This means that the wheels need to be
controlled during cornering in different ways with respect to the ABS than when driv-
ing in a straight line. For small lateral slip angles (as shown in Figure 19.5 for α = 2◦)
the operating area of the ABS is almost identical to the area of straight-ahead driving.

For larger lateral slip angles (α = 10◦), however, the ABS system initially operates
with very small slip values, S, and a small longitudinal force coefficient, μ. Braking
reduces the speed so that the lateral forces decrease rapidly. The quadratic dependence
of the centrifugal forces, Fc = mv2

ρcc
, plays an important role here. Due to the quadrat-

ically decreasing lateral forces as braking continues, the ABS braking can be active
towards higher slip values and thus be active at a higher longitudinal force coefficient,
μ. Consequently, it can then operate at higher braking forces.

Control variables used for the ABS are the circumferential velocity, vc, of the wheel
(which is used to calculate the circumferential acceleration), the wheel slip, the refer-
ence speed and the vehicle deceleration. These quantities are calculated or estimated
from the wheel speed sensor signals. One means of determining the vehicle speed
is to calculate the mean value of the speed of the diagonally opposite wheels. This
possibility of vehicle speed estimation is no longer available if ABS emergency brak-
ing is engaged. Then the speed can only be roughly estimated. The control variable
of wheel circumferential velocity, vc (or acceleration) must be assessed in different
ways for driven and non-driven wheels. For non-driven wheels, the inertial properties
are known; hence, the increase in wheel circumferential deceleration can be assessed
relatively easily in an emergency stop. For driven wheels, the increase in wheel cir-
cumferential deceleration drops in a slightly different way, depending on whether it
is braked with the engaged or non-engaged clutch. If the clutch is engaged in the first
or second gear, the inertia values of the wheel and of the drive train, including the
transmission and the motor and the drag torque of the combustion engine, are consid-
erably greater than those in the non-engaged state. One result of the different moments
of mass (or different mass correction factors) under emergency braking conditions
is therefore a slower increase in the wheel circumferential acceleration, making the
detection of wheel lock difficult.
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Figure 19.6 Control cycle of an ABS (adapted from Robert Bosch 2007; discontinuities are
added in the time derivative of ϕ̈w at the switching points of the valves, since a discontinuity
in the time derivative of the braking pressure results in a discontinuity of ϕ̈w: Jwϕ̈w = Mbr −
Fxrwst. At the point with v̇c = 0 the slip rate is smaller than zero, Ṡ = v̇vvc/v2

v < 0, the slip
is greater than μ−1(μh); at the points with ϕ̈w = 0 the braking moment |Mbr| and the moment
from the tangential force |Fxrwst| are equal: Mbr − Fxrwst = 0)

In the following, a typical control cycle during braking on a dry road surface is
explained. The essential variables are shown in Figure 19.6, as functions of time (brake
pressure, wheel circumferential acceleration and vehicle speed and wheel circumfer-
ential speed). The entire control cycle comprises phases 2–7; phase 8 marks the start
of a new operating cycle.

First, in phase 1, the brake pressure is built up. This reduces the vehicle driving
velocity, vv, and the circumferential wheel velocity, vc. Comparison of the two
velocities reveals that the wheel velocity, vc, decreases faster than the vehicle
velocity, vv. Consequently, the slip increases and the longitudinal force coefficient,
μ, approaches the adhesion coefficient, μa. Exceeding the adhesion coefficient, the
wheel goes into the non-stationary region, whereby it is greatly accelerated. This high
acceleration is detected by the ABS control unit. As shown in Figure 19.6, the wheel
circumferential acceleration thus exceeds the negative value −ω̇0 (this is a fixed
parameter of the ABS), and the ABS control unit intervenes. This involves the inlet
valve closing, whereby the pressure in stage 2 is maintained at a constant value. The
velocity at the start of phase 2 is the so-called reference velocity, which continues
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to decrease following a specific target(e.g., extrapolation of the deceleration at the
beginning of braking). The assumption behind the extrapolation is that the slip, S, is
in an area where a constant longitudinal force coefficient, μ ≈ μa, predominates, so
that we can assume that the vehicle deceleration is nearly constant. This decreasing
reference speed is reduced to the so-called slip threshold (denoted by S in the
velocity diagram at the top of Figure 19.6). If the wheel circumferential velocity
falls below this threshold, the third phase is initiated, in which the brake pressure
is reduced by the OV opening. Reduction of the brake pressure ends when the
absolute value of the wheel circumferential acceleration falls below the critical value
of −ω̇0; it is followed by phase 4 at constant pressure (inlet and outlet valves are
closed). This phase ends when the circumferential wheel acceleration exceeds the
positive value of ω̇2. This point clearly represents an acceleration of the wheel and
an approach of the wheel circumferential velocity, vc, to the vehicle velocity, vv.
If the circumferential acceleration of the wheel exceeds the threshold ω̇2, the brake
pressure is increased by the intake valve opening until the threshold ω̇2 is attained
for a second time, but in this case for decreasing circumferential acceleration. At
this point, the inlet valve is closed (phase 6) and the pressure is constant until the
circumferential acceleration falls below the threshold ω̇1. Thereafter, the brake
pressure is increased in steps in phase 7 until the deceleration is again below the
negative threshold −ω̇0.

Afterwards, the second cycle starts with phase 8, in which the brake pressure is
immediately reduced; a phase with constant pressure comparable to phase 2 does not
take place in this second braking cycle.

The control cycles of the ABS braking on road surfaces with small adhesion coef-
ficients differ from those with large adhesion coefficients. For roadways with a small
coefficient of adhesion, phases 1 and 3 take the same course for both road conditions,
in phase 4, a further reduction of the pressure is necessary, otherwise the time for
accelerating the wheel again would be too long, the control cycles would become too
long and the ABS would not meet the requirement for short intervention times.

19.3 Build-up Delay of Yaw Moment

If road characteristics for the left wheels are different from those for the right (different
adhesion limits, μhigh and μlow), a deceleration of the vehicle causes a yaw moment
due to the different braking forces. This yaw moment has different effects depending
on the vehicle class and requires different behaviour from the driver. The building-up
of yaw moment depends not only on the adhesion conditions but also on the track of
the vehicle. For a large track, the product of force and lever arm is greater than for a
vehicle with a smaller track. If s is the track, then the maximum moment, Mmax (with
respect to the centre of mass of the vehicle) is (G is the weight of the vehicle)

Mmax =
s

2
(μhigh − μlow)

G

2
. (19.5)
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The impact of this moment will differ depending on the wheelbase � (distance from
the front to the rear axle) and the mass moment of inertia of the vehicle for rotation
about the vertical axis. First, the moment M = M(t) results in an angular momentum
L = Jzψ̇ (Jz is the mass moment of inertia for a rotation about the vertical axis and
ψ̇ is the yaw rate). The angular momentum can be calculated by the integral

L =
∫ Δt

0
M(t) dt . (19.6)

This results in a yaw rate after the time Δt:

ψ̇ =
1
Jz

∫ Δt

0
M(t) dt . (19.7)

The yaw moment must be compensated for by cornering forces, which means that
the driver has to countersteer (cf. Figure 13.3). The moment of countersteering with
respect to the centre of mass is (assuming that the centre of mass is in the geometric
centre of the four contact patches; cα1 is the cornering stiffness of one wheel at the
front axle and cα2 = cα1 at the rear axle, and δcounter is the angle of countersteering at
the front wheels)1

Mcounter = 2cα1δcounter
�

2
. (19.8)

The necessary compensation forces are lower for a large wheelbase than those for
a small wheelbase. In large heavy vehicles, the mass moment of inertia Jz is large,
so that the yaw moment only leads to a slow increase in the yaw rate of the overall
vehicle. With the slow increase and the large wheelbase, it is easier to countersteer in
a large vehicle than in a small vehicle. Countersteering is necessary for both vehicles,
and, to make this easier, the ABS build-up of pressure at the μhigh side is delayed. The
delay is smaller for the large car than for the smaller car.

Figure 19.7 shows the pressure in the master cylinder, and the pressures at the μhigh
and the μlow side as examples. The ABS cycle starts nearly simultaneously on both
sides. The marked area stands for the integral of the difference of the two pressure
curves, and this integral stands for the change in angular momentum, because the
pressure is proportional to the braking force and therefore the pressure difference is
proportional to the difference in braking forces; with this difference in braking forces
the yaw moment can be calculated.

Figure 19.8 shows the pressure delay for a small vehicle, while Figure 19.9 shows
that for a large car. It is evident that the pressure for the small vehicle at the μhigh side
increases very slowly, which results in a small integral and therefore in a small change
in angular momentum, whereas the pressure build-up delay for the larger vehicle is
smaller, while the integral and the change in angular momentum are greater.

1 Similar to the consideration of the effect of crosswind, a vehicle sideslip angle β �= 0 and slip angles α1 �= 0 and
α2 �= 0 occur at the front and the rear wheel of a single track model. In the described situation only a moment acts
on the vehicle, no lateral forces occur. This means that the lateral forces at the front and the rear axle have opposite
signs and the same absolute values: α2 = δcounter/2 and α2 = −δcounter/2 or vice versa; |β| = δcounter/2. In this
consideration we neglect the geometric non-linearities from β �= 0.
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The delay of the yaw moment plays an important role in cornering. When braking
takes place during cornering, an increase in the wheel load on the front axle and a
reduction in the wheel load on the rear axle occur. Due to the larger wheel loads, the
lateral forces on the front axle are increased and the lateral forces on the rear axle
are reduced. This results in a yaw moment which turns the vehicle to the inside of
the curve. If we consider the wheel load, it is apparent that the wheel loads differ due
to the moment of the centrifugal force: on the outer wheels the loads are larger than
those on the inside wheels. If in this situation, the build-up delay for the pressures from
ABS takes effect, then the braking force would have a delayed build-up on the outer
wheels. However, this is not desirable because a rapid build-up of the longitudinal
braking forces on the outer wheels counteracts the inward curve turning yaw moment
from load transfer. Consequently, the yaw moment build-up delay must not be active
during cornering as it is necessary for split-μ braking.

19.4 Traction Control System

In some situations, the wheels may spin when accelerating during unfavourable road
conditions. One problem with spinning wheels is that not only do the longitudinal
forces decrease due to the transition from adhesion to sliding, but the cornering forces
are also no longer transferable. Anti-slip regulation (ASR) systems are used to avoid
this. There are essentially two reasons for large slip. One reason is a low coefficient of
adhesion for both wheels of a driven axle. In this case, both wheels will spin, causing
the lateral forces to break and thus the lateral stability will decrease. The side force
loss on rear-wheel-drive vehicles is critical because this can pose the threat of the rear
breaking out. The other reason is a split-μ road surface. The wheels of an axle on the
vehicle are connected with each other by a differential gear. This differential gear is
required because it helps to drive the vehicle around the curve, because the wheels
should be able to spin relatively to each other during cornering (the radii or the outer
and inner wheels differ). The disadvantage of an axle differential, however, is that
the overall transferable torque is determined by the wheel that rolls on the part of the
roadway with the lower adhesion coefficient μlow. If the coefficient of adhesion is very
low, then a low drive torque will be transmitted even on the wheel that rolls on the
part of the roadway with a high adhesion coefficient, μhigh. Conventional bevel gear
differentials distribute the drive torque in equal parts between the left and right wheels.
When the vehicle starts off on the split-μ road surface so that the μlow wheel spins,
the same torque transferred to the road via the μlow -wheel will also be transmitted to
the μhigh-wheel.

This is the point at which ASR is engaged. ASR has two tasks: firstly, it influences
the total torque of the engine and, secondly, it controls the torque distribution between
left and right wheels. If we consider the total torque, Mtot, on a wheel, we can see that
it comprises half of the moment of the Cardan shaft, Mcar/2, a braking torque, Mb,
and, due to circumstances defined by the roadway, braking torque as a result of rolling
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resistance, Mroad:
Mtot = Mcar/2 + Mb + Mroad . (19.9)

In this formula, the braking torque, Mb, and the road moment, Mroad, are taken as
negative. The moment, Mtot, can be influenced by Mcar/2 and Mb. The moment from
the Cardan shaft, Mcar/2, can be adjusted by varying the parameters of the engine
(electric, combustion or hybrid), and the moment Mb can be adjusted via the individual
braking moment from the brakes.

This second option is that ASR can be engaged by torque control, based on the indi-
vidual braking torques for the left and right wheels. In order to brake the left and right
wheels during acceleration of a vehicle, in addition to the conventional ABS system,
there should be a possibility to provide for a pressure build-up in the braking system
without brake pedal operation. For this reason, the return pump in the ASR system
must be a self-priming pump in order to bring about the pressure build-up. However,
no pressure is taken from the brake cylinders through this self-priming pump, a special
non-return valve between the return pump and the respective OVs of the ABS must
be additionally provided.

The ASR includes two controls: first, the Cardan controller, which regulates the
torque at the Cardan shaft, and the second the differential lock control, which controls
the torque difference between the wheels. The Cardan speed regulator responds to a
rapid increase in Cardan shaft speed, which prevents the corresponding two wheels of
the driven axle from spinning. The differential lock controller responds to differential
speeds between the wheels and brakes the fast-spinning wheel by applying a braking
torque. This braking torque primarily affects the overall torque balance on the cor-
responding wheel. However, a larger torque can be transferred to the non-spinning
wheel on the μhigh side by the increased torque on the spinning wheel.

19.5 Lateral Stability Systems

The ESP (electronic stability programme)2 helps the driver in critical road scenarios
involving lateral dynamics. The ESP prevents accidents due to skidding and reduces
the driver’s steering effort. The ESP is intended to perform when certain driving sit-
uations deteriorate. In today’s systems, the ESP is often secondary to ABS and ASR.
In contrast to ABS, the ESP is based on the control variables such as sideslip angle, β,
and yaw rate, ψ̇. The sensors used for the ESP system are the angular velocity sensors
on all four wheels. In addition to ABS, a steering wheel angle sensor, δs, a yaw rate
sensor, ψ̇, an acceleration sensor for the lateral acceleration, ac, and a pressure sensor
for detecting the pressure, pb, in the master cylinder are also used (cf. Figure 19.10).
The idea of the ESP systems is to apply a corrective torque about the z-axis to the vehi-
cle by braking individual wheels in order to stabilize the vehicle. The effect which is

2 Other names for similar systems are used: DSC (dynamic stability control), VSC (vehicle stability control) as well
as many other names and abbreviations.
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Figure 19.10 Components of an ESP system (adapted from Robert Bosch 2007)

obtained through the braking of individual wheels is an additional yaw moment due
to brake longitudinal forces, and a reduction in the cornering forces, especially in the
area of the limits of Kamm’s circle.

Using the measured variables such as lateral acceleration, ac, steering wheel angle,
δs, yaw rate, ψ̇, angular velocities of the wheels ϕ̇wi, (i = 1, . . . , 4), as well as the
estimated value of the vehicle longitudinal speed, vx, it is possible to estimate other
values such as the braking forces, Fxi, on the four wheels, the sideslip angle, β, the slip
angles at the four wheels, αi, the lateral speed, vy, as well as the cornering forces on
the wheels, Fyi, the wheel loads, Fzi, and the resulting forces in the contact patches,
Fri (i = 1, . . . , 4).

In order to estimate the vehicle sideslip angle, we proceed from the following
equation:

β̇ = −ψ̇ +
1
vx

(ac cos β − ax sin β) . (19.10)

From the relationship between centripetal acceleration ac = v2
x

ρcc
(strictly speaking,

the total velocity has to enter in the equation, but the vehicle sideslip angle is usually
small, and then v ≈ vx) and from the angular velocities of β̇ and ψ̇, we obtain

v2
x

ρcc
= vx(β̇ + ψ̇) . (19.11)

Here we utilize the fact that the velocity, v, of a point on a circular trajectory with
radius R defines the angular velocity, ω = v/R. Substituting R = ρcc, v = vx and
ω = β̇ + ψ̇ yields Equation (19.11).

If we assume small longitudinal accelerations, ax, and small vehicle sideslip angles,
β, Equation (19.10) then simplifies to

β̇ =
ay

vx

− ψ̇ . (19.12)
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Integrating equation (19.12) gives us a formula for calculating the vehicle sideslip
angle, β, as a function of time:

β(t) = β0 +
∫ t

t0

(
ay

vx

− ψ̇

)
dt . (19.13)

Due to errors in the measurement values, a Kalman filter can be used on the basis of
the differential equations for a two-track model in order to estimate the longitudinal
velocity of the vehicle.

The target values for the vehicle sideslip angle, β, and the yaw rate, ψ̇, are deter-
mined from the measured quantities of the lateral acceleration, ac, steering wheel
angle δs, brake pressure in the brake master cylinder, pb, and the desired motor torque.
These are compared with the estimated values of the vehicle; if the difference is
too large, a correction torque is calculated, which is obtained by braking individual
wheels.

19.6 Hydraulic Units for ABS and ESP

Figure 19.3 shows the hydraulic circuit diagram of a four-channel ABS hydraulic unit
for an X-brake design. In the X-design, each diagonally opposite wheel is braked by
the two brake circuits. The diagram shows that an IV and an OV exist for each wheel
brake cylinder. Furthermore, there is a hydraulic pump, HP, in each brake circuit.
The pump is used to transport the brake fluid when the OV is opened in order to
reduce the pressure. Since the response times of the OVs are very short, a low-pressure
accumulator, AC, is additionally provided as a reservoir in the return circuit to receive
this very short-term accumulation of brake fluid quantities. The ABS devices of the
first and second generations used 3/3-way solenoid valves in which functions such as
pressure build-up, pressure reduction and pressure maintenance were achieved by only
one valve. Since these valves were very expensive in terms of electrical activation and
complicated in terms of mechanics, they were replaced by two 2/2-solenoid valves.
In the hydraulic circuit diagram illustrated all wheels can be individually controlled.
There are other arrangements in which the wheels of the rear axle are controlled as a
whole. In these systems, the select-low principle is applied, this means that the slip
of the wheel which rolls on the road surface with a low coefficient of adhesion, μlow,
determines the intervention of the ABS for the two rear wheels.

If a vehicle is also equipped with an ASR system, the return pump must be able to
independently build up pressure. A self-priming pump is therefore used in this case.
Furthermore, two additional valves must be provided for each circuit of an X-brake
layout, whereby an ASR system is equipped with a total of twelve valves. Figure 19.11
shows the hydraulic circuit diagram of an ESP hydraulic unit (also for an X-brake lay-
out). This diagram shows the two additional valves in each brake circuit. In contrast to
the ASR system, it may be necessary to increase the brake pressure that is applied by
the driver in a brake circuit in the ESP system. For this reason, the HSV (high-pressure
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Figure 19.11 Complete ESP hydraulics (cf. Robert Bosch 2007 or Bauser and Gawlik 2013)

selector valve) in an ESP system is designed so that it can switch against higher differ-
ential pressures. During active braking intervention for both ASR and ESP systems,
the HSV is open and the SOV (switch over valve) is closed. This allows the pump,
HP, to increase the pressure in the respective brake circuit, with brake fluid being
pumped into the respective circuit from the reservoir. Consequently, the self-priming
pump does not take in the brake fluid from the brake cylinders unintentionally, and a
non-return valve is provided for each pump.

19.7 Active Steering System

In the field of steering systems, active steering systems are being used increasingly in
both the upper and in the medium and compact classes (active front steering, AFS).
This technology does not rely on pure steer-by-wire systems, but often uses so-called
superimposed steering systems. The mechanical feed-through from the steering wheel
to the rack is present at all times, and is implemented by means of a planetary gearbox
(see Figure 19.12). The steering wheel is connected to the steering column by the
planetary gear, while the sun gear forms the connection to the rack. An electric motor
with a screw drive is used as active element, acting on the ring gear member. In the
case of failure of the electric motor or the control electronics, an electromagnetic lock
ensures that the ring gear member is locked and so the mechanical feed-through is
also guaranteed by the steering wheel to the rack.

The active steering (superimposed steering) system can perform different tasks.
Firstly, a dependence of the steering ratio is on the velocity of the vehicle can be
achieved. This example is shown in the lower part of Figure 19.12. For low speeds,
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Figure 19.12 Schematic diagram of active steering with planetary gear; variable steering
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the steering ratio is small, then the steering is direct and small steering wheel angles
lead to large steering movements. At high speeds, however, the gear ratio is large, the
steering is indirect and small steering movements lead to small effects on the front
wheels. This behaviour is useful at low speeds because it makes the vehicle easier
to manoeuvre. At high speeds, the system provides a gain in vehicle comfort due to
enhanced controllability.

In addition to this variable steering ratio, the system can actively intervene in the
driving process to make course corrections in a similar way to ESP. Compared to the
ESP, a steering intervention by an active steering system is quicker, less noticeable
than a braking intervention by the ESP, but the stabilizing effect of the active steer-
ing is not as great as in the case of the ESP. A possible steering intervention can be
advantageous for split-μ braking.

19.8 Questions and Exercises
Remembering

1. What components is ABS composed of?
2. What additional hydraulic components are necessary for ASR compared to ABS?

Understanding

1. Explain how a hydraulic ABS operates.
2. Explain the intervention strategy of ABS in the brake pressure.
3. Explain the requirements for ABS.
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4. Explain the differences between ABS for small and large vehicles with regard to
split-μ braking and explain appropriate corrective measures.

5. Explain why the build-up delay of yaw moments when braking in curves is
generally undesirable.

6. Explain the operation of ASR when starting off on split-μ road surfaces.
7. Explain the operation of the two built-in ASR controls for the speed of the Cardan

shaft and differential speeds between the driven wheels.





20
Multi-body Systems

In the virtual development process of new vehicles, dynamic behaviour is calculated
by so-called multi-body systems (MBS). The simple models described in the pre-
ceding chapters are not sufficient to obtain details of the behaviour, and, instead,
more precise models have to be used, for example models that capture geometric
non-linearities or which capture more precisely the behaviour of the tyre. In this
chapter we therefore present a brief introduction to MBS1. However, the basics from
the preceding chapters may be helpful in understanding and interpreting the results
calculated with the aid of such MBS models.

The main components of MBS are rigid bodies, which are connected by joints
and/or force elements such as springs.

One characteristic of the bodies is that they are rigid, but modern software for MBS
is also able to consider flexible bodies approximately.

We start with some sample applications.

Example 20.1 One broad area of application is cars and trains, but robots are also
investigated using MBS. Figure 20.13 shows an MBS model of a front axle. Typi-
cally, these models consist of one central rigid body, which is the body of the car
with additional masses for features such as seats and other interior equipment. Other
rigid bodies are chassis subframe, suspensions (trailing arms, wishbones, etc.), wheel
carriers and wheels as well as the different parts of the powertrain, e.g. engine, clutch,
transmission, Cardan shaft, differential and drive shafts. Although it is typical for
the bodies to be rigid in MBS, some of them are approximated by means of flexible
algorithms in order to capture their compliances.

Example 20.2 In order to investigate vehicle safety in the automotive industry, dum-
mies are employed in crashtests. The behaviour of these dummies can be simulated
by means of MBS. For instance, the extremities are several rigid bodies which are
joined, for example, by revolute joints (elbow joint) or by spherical joints (hip joint).

1 Further recommended reading can be found in Blundell and Harty 2004 or Roberson and Schwertassek 1988.

Vehicle Dynamics, First Edition. Martin Meywerk.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/meywerk/vehicle

http://www.wiley.com/go/meywerk/vehicle
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Since flexibility is important for other parts of the human body such as the abdomen
or thorax, these parts are approximated by several rigid bodies which are connected
by springs and dampers.

The goals of the MBS investigations are to reduce the risk of several injuries to
occupants. This goal can be achieved by optimizing occupant safety systems such as
safety belts or airbags.

Example 20.3 Other typical examples for MBS are robots in which the different arms
are rigid bodies. These arms are connected by joints. The difference between these
robot examples and the dummies is that active elements (electric motors) have to be
provided in a robot for each joint.

20.1 Kinematics of Rigid Bodies

Generally a rigid body has six degrees of freedom in three-dimensional space. For
these six degrees of freedom on the one hand, six variables are necessary on the other
hand to describe both the position of a rigid body and its orientation.

Three coordinates are necessary in order to define the position of a point P in
three-dimensional space. If we start from an inertial frame (O,�eix, �eiy, �eiz) (cf.

Figure 20.1), the vector from the origin of the frame O to the point P ,
−−→
OP = �rp, can

be described by using three coordinates x, y, z (Cartesian coordinates or rectangular
coordinates):

�rp = x�eix + y�eiy + z�eiz . (20.1)

We prefer the notation using tuples and scalar products:

�rp = x �eix + y �eiy + z �eiz

= (x, y, z)︸ ︷︷ ︸
=rT

p

⎛
⎝�eix

�eiy

�eiz

⎞
⎠

︸ ︷︷ ︸
=�ei

(20.2)

= rT
p �ei . (20.3)

If one point of a rigid body is fixed, the body can rotate about this point; hence, the
orientation of the body is not fixed. As we need a total of six variables for six degrees
of freedom, there are three additional variables apart from the so-called translational
variables x, y, z (corresponding to the three translational degrees of freedom). From
Euler’s theorem (cf. Roberson and Schwertassek 1988), the motion of a rigid body
can be divided into a translation and a rotation, and the rotation can be described by
three parameters. There are several ways of using these three parameters.
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Figure 20.1 Frames and coordinate systems

One easy way is to introduce a so-called body frame or body-fixed frame
(P,�ebx, �eby, �ebz) (cf. Figure 20.1). The orientation of the body can be described
by the orientation of the axis system (�ebx, �eby, �ebz) with respect to the inertial axis
system (�eix, �eiy, �eiz). Since both systems are dextral and orthonormal systems
(following the right-hand rule: thumb = �ex, forefinger = �ey, middle finger = �ez), it
is known (from mathematics) that a rotation matrix R exists, which maps the inertial
axis system to the body-fixed system:

�eb = R �ei . (20.4)

We will come back to the properties of the matrix later. At this point, we need only
the inverse of R, which is simply the transposed:

R−1 = RT . (20.5)

We now consider a body B (see Figure 20.1) which is translated and rotated and we
want to describe one point Q in this body. The vector �r from P to Q can be written
with the aid of the body-fixed frame:

�r =
−−→
PQ = (r, s, t) �eb . (20.6)

Altogether, we thus derive the vector �rQ =
−−→
OQ by adding

−−→
OP and

−−→
PQ:

�rQ = �rp + �r . (20.7)

Now we want to derive the velocity of Q (in order to obtain the kinetic energy of the
body B). Consequently, we have to differentiate the vector �rQ with respect to time.
For this differentiation, it is important to notice that the coordinates (x, y, z) of P
depend on the time, whereas the coordinates (s, r, t) are independent of time, because
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the point Q is fixed within the body B. We obtain

�̇rQ = �̇rP +
d
dt

(�r)

= �̇rP +
d
dt

((r, s, t) R �ei)

= �̇rP + (r, s, t) Ṙ �ei substitute �ei = RT �eb

= �̇rP + (r, s, t) Ṙ RT︸ ︷︷ ︸
=Ω

�eb

= (ẋ, ẏ, ż) �ei + (r, s, t) Ω �eb . (20.8)

Let us first consider the matrix Ω = Ṙ RT . To obtain the properties of this matrix,
we compute the derivate of the identity matrix

I =

⎛
⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎠ . (20.9)

As
I = R RT (20.10)

is independent of time, the derivative with respect to time is

0 = Ṙ RT + R Ṙ
T

= Ṙ RT︸ ︷︷ ︸
Ω

+
(
Ṙ RT

)T

︸ ︷︷ ︸
ΩT

. (20.11)

Thus
Ω = −ΩT , (20.12)

which means that Ω is an antisymmetric matrix (or antisymmetric tensor) of the angu-
lar velocities. The diagonal components of Ω are zero, and for the off-diagonal com-
ponents, we have only three independent variables:

Ω =

⎛
⎜⎝

0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎞
⎟⎠ . (20.13)

Sometimes the body-fixed axis system should be changed; then we obtain the
new tensor of angular velocities Ω̃ (R̂ is the rotation matrix transforming from one
body-fixed axis system to another):

Ω̃ = R̂ Ω R̂
T

. (20.14)
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The part of the velocity of the point Q which results from the rotation can be cal-
culated by means of a vector product or cross product:

(r, s, t) Ω = (ω1, ω2, ω3) × (r, s, t) . (20.15)

20.2 Kinetic Energy of a Rigid Body

With the equation for the velocity of the point Q in the rigid body B, we are now
able to compute the kinetic energy of the whole rigid body B. This kinetic energy
can be used, for example, in order to derive the equations of motion with Langrange’s
or Hamilton’s equations. In this consideration, we will assume the point P of the
body-fixed frame to be the centre of mass of the body. If we denote the coordinates of
the points Q within B as (r, s, t), then we have (with P being the centre of mass)

0 =
∫

V
rρ dV ,

0 =
∫

V
sρ dV , (20.16)

0 =
∫

V
tρ dV ,

where V is the region of B in the three-dimensional space and ρ the mass density.
The kinetic energy, T , is

T =
1
2

∫
V

ρ| �̇rQ|2 dV , (20.17)

where the square of the velocity can be calculated as follows:

| �̇rQ|2 = (ẋ, ẏ, ż)(ẋ, ẏ, ż)T

+ 2(ẋ, ẏ, ż)((r, s, t) Ω R)T

+ (r, s, t) Ω ΩT (r, s, t)T . (20.18)

The second summand vanishes after integration because the first moments of mass
(20.16) are zero (because the origin of the body-fixed frame, P , is the centre of mass).

We consider the other two terms separately. The first term is the translational part
of kinetic energy (M is the mass of the body B):

1
2

∫
V

ρ(ẋ, ẏ, ż)(ẋ, ẏ, ż)T dV =
1
2
M |�̇rP |2 . (20.19)

To consider the second term, we rearrange the equation

(r, s, t) Ω ΩT (r, s, t)T
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= (r, s, t)

⎛
⎝ω2

2 + ω2
3 −ω1ω2 −ω1ω3

−ω1ω2 ω2
1 + ω2

3 −ω2ω3

−ω1ω3 −ω2ω3 ω2
1 + ω2

2

⎞
⎠

⎛
⎝r

s

t

⎞
⎠

= ω2
1(s

2 + t2) + ω2
2(r

2 + t2) + ω2
3(r

2 + s2)

− 2ω1ω2rs − 2ω1ω3rt − 2ω2ω3st (20.20)

and, with the abbreviations Jjh, obtain the complete kinetic energy, where the last
term is the rotational part of the kinetic energy.

The terms Jjh are the second mass moment. Here they are as follows:

J11 =
∫

V
ρ(s2 + t2) dV , J22 =

∫
V

ρ(r2 + t2) dV ,

J33 =
∫

V
ρ(r2 + s2) dV , J12 =

∫
V

ρrs dV , (20.21)

J13 =
∫

V
ρrt dV , J23 =

∫
V

ρst dV .

Now the total kinetic energy can be rewritten as

T =
1
2
M |�̇rP |2

+
1
2
(J11ω

2
1 + J22ω

2
2 + J33ω

2
3 − 2J12ω1ω2 − 2J13ω1ω3 − 2J23ω2ω3) . (20.22)

The tensor J

J =

⎛
⎝ J11 −J12 −J13

−J21 J22 −J23

−J31 −J32 J33

⎞
⎠ , (20.23)

where J12 = J21, J13 = J31, J23 = J32, and the tensor Ω are formulated with respect
to the body-fixed axis system �eb.

If the body-fixed axis system is changed, the new tensor J̃ of mass moments can be
computed:

J̃ = R̂ J R̂
T

. (20.24)

The kinetic energy can be used to derive the equations of motion, for example using
Lagrange’s or Hamilton’s equations.

At this point, we have the kinetic energy of one rigid body. In MBS there is usually
more than one body, whereas we now have to consider the case of two bodies, as
depicted in Figure 20.2. The two bodies can be connected by a joint. The first of the
two bodies, B1, is described like the body B of the preceding considerations by the
vector from the origin of the inertial frame and by the body-fixed frame. The joint
between body B1 and B2 is located at J1 in body B1. At this point, a joint-fixed
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B1

B2

dm

Pb20

J1

eb1z

eb1y

Pb1
eb1x

eb2z

eb2x

eb2y

rj1

rb2

rb1eiz

eix

eiy rm
r

Figure 20.2 Two rigid bodies

frame is usually introduced. However, to derive the kinetic energy, we can skip this
introduction of the joint-fixed coordinate system. The body-fixed axis system of �b1
can be derived by

(�eb1x, �eb1y, �eb1z)
T = R

1
(�eix, �eiy, �eiz)

T . (20.25)

where R
1

is a rotation tensor.
The vector from the centre of mass Pb1 from body B1 to the joint J1 is �rj1.
The vector from the joint J1 to the centre of mass Pb2 of B2 is �rb2.
In body B2, we now consider the infinitesimal element of mass, dm. The vector

from the origin, O, of the inertial frame to dm is

�rm = �rb1 + �rj1 + �rb2 + �r (20.26)

= rT
b1

⎛
⎝�eix

�eiy

�eiz

⎞
⎠ + rT

j1

⎛
⎜⎝

�eb1x

�eb1y

�eb1z

⎞
⎟⎠ + rT

b2

⎛
⎜⎝

�eb1x

�eb1y

�eb1z

⎞
⎟⎠ + rT

⎛
⎜⎝

�eb2x

�eb2y

�eb2z

⎞
⎟⎠ .

The joint, J1, is fixed in B1 and the element of mass, dm, is fixed in B2 so that the
tuples rj1 and r of the vectors �rj1 and �r are time independent if we use the body-fixed
axis systems:

�rj1 = rT
j1(�eb1x, �eb1y, �eb1z)

T , (20.27)

�r = rT (�eb2x, �eb2y, �eb2z)
T . (20.28)
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At this point, we have to distinguish between different kinds of joints; we give two
examples:

1. If J1 is a revolute joint, the body B2 rotates about the axis of rotation of the joint.
If we formulate the vector �rb2 with respect to the body-fixed axis system of body
B2, the coordinates of rb2 are independent of time.

2. If J1 is a prismatic joint, it is advantageous to introduce the above-mentioned
joint-fixed frame (J1, �ejx, �ejy, �ejz). In this case, the origin of this joint-fixed frame
is, of course, fixed to the joint J1. The axis system (�ejx, �ejy, �ejz) is oriented in such
a way that one axis (e.g. the �ejx-axis) is the axis of the revolute joint, which means
the axis of relative motion coincides with this axis of the joint axis system.

In this case, the coordinates of the vector from J1 to Pb2 can be expressed with
respect to this joint-fixed frame. If the first axis �ejx is the direction of the prismatic
joint motion, then only the first coordinate depends on time.

Only the axis system of the inertial frame is independent of time; the other
body-fixed axis systems depend on time. We now replace the time-dependent axis
systems with the inertial axis systems by introducing the time-dependent rotation
matrices R

1
and R

2
:

(�eb1x, �eb1y, �eb1z)
T = R

1
(�eix, �eiy, �eiz)

T , (20.29)

(�eb2x, �eb2y, �eb2z)
T = R

2
(�eb1x, �eb1y, �eb1z) . (20.30)

Then we obtain the velocity by derivation with respect to time:

�̇rm =
(
ṙT

b1 + rT
j1 Ṙ

1
+ ṙT

b2 R
1
+ rT

b2 Ṙ
1

+rT
(
Ṙ

2
R

1
+ R

2
Ṙ

1

)) ⎛
⎜⎝

�eix

�eiy

�eiz

⎞
⎟⎠ . (20.31)

The first four terms yield the translational energy, and the fifth term yields the
rotational energy, with both energy values being obtained after integration. Since the
vectors are composed by successive rotation matrices, it is easy to derive the kinetic
energy:

Ṙ
2

R
1
+ R

2
Ṙ

1
= Ṙ

2
RT

2
R

2︸ ︷︷ ︸
E

R
1
+ R

2
Ṙ

1
RT

1
R

1︸ ︷︷ ︸
E

= Ṙ
2
RT

2︸ ︷︷ ︸
Ω

2

R
2
R

1
+ R

2
Ṙ

1
RT

1︸ ︷︷ ︸
Ω

1

R
1

= Ω
2
R

2
R

1
+ R

2
Ω

1
RT

2
R

2︸ ︷︷ ︸
E

R
1
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=
(
Ω

2
+ Ω̂

1

)
R

2
R

1
, (20.32)

where
Ω̂1

= R
2
Ω

1
RT

2
(20.33)

is the tensor of angular velocities with respect to the body-fixed axis system of B2.
Looking at the last expression in velocity:

rT
(
Ṙ

2
R

1
+ R

2
Ṙ

1

) ⎛
⎜⎝

�eix

�eiy

�eiz

⎞
⎟⎠ = rT

(
Ω

2
+ Ω̂

1

)
R

2
R

1

⎛
⎜⎝

�eix

�eiy

�eiz

⎞
⎟⎠

= rT
(
Ω

2
+ Ω̂

1

) ⎛
⎜⎝

�eb2x

�eb2y

�eb2z

⎞
⎟⎠ , (20.34)

it is obvious that the kinetic energy can be calculated by successive multiplication
of rotation tensors and their derivations with respect to time. After integration with
respect to the volume of the bodies, we obtain the kinetic energy; we have omitted the
translational portion of energy in the expression. The mixed terms vanish because of
the vanishing first moments of mass.

20.3 Components of Multi-body Systems

Other components can be defined in addition to the rigid bodies. We describe all com-
ponents including rigid bodies in the following:

Rigid bodies: The inertia properties (mass, first and second moments of mass) are
necessary in order to define rigid bodies. Usually the position of a rigid body is
given by its centre of mass, and this is the reference point for the definition of
the mass moments (first and second); consequently, the first moments of mass are
zero, and in some programmes it is not possible to define both an arbitrary point
of the rigid body for the body-fixed frame and additionally the centre of mass with
respect to the first point. A different way of defining the inertia properties is to
define the surface of the body and the mass density. Some MBS programmes are
able to compute the inertia properties by numerical integration. In this case it is
advantageous to define an arbitrary point of the body, the surface (e.g. as FE mesh)
and the mass density (as a constant or non-constant function with respect to space
variables). It is usual to define a body-fixed frame; with this frame it is easy to define
the tensor of second moments of mass and, if necessary, the surface.

Joints: In MBS, several rigid bodies interact with each other. One possibility of inter-
action is through joints, which are constraints because they constrain the relative
motion in pairs of bodies. To simplify the definition, additional frames are located
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at the joint points of the rigid bodies. These joint-fixed frames define, for example,
the axis of rotation for revolute joints.

Figures 20.3–20.8 depict examples of joints. Some bodies may be constrained in
motion with respect to the inertial frame; as these are special constraints because
they are not constraints between two bodies, some MBS programmes have special
ways of defining them.

Forces: Forces can be classified in different ways. They can be subdivided into
active and passive forces. Passive forces depend only on the motion (relative

Figure 20.3 Revolute joint

Figure 20.4 Translational joint or prismatic joint

Figure 20.5 Cylindrical joint
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Figure 20.6 Spherical joint

Figure 20.7 One-degree, nonlinear motion joint

Figure 20.8 Cardanic joint

displacements and velocities) of the bodies. Active forces from actuators need
power. These groups of active and passive forces are applied forces; the other
group is known as constraint forces or reaction forces from the joints.

Geometry of surfaces: It is not possible in all MBS programmes to enter the surfaces
of the rigid bodies. If it is possible, the surfaces can be used either for the internal
computation of the inertia properties (total mass, first and second moment of iner-
tias) or for the computation of contact forces if two bodies come into contact. The
first possibility is easy to implement in the programmes. The second is challenging
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because additional constraint forces occur in the case of contact, and the degrees
of freedom for the whole system decrease. The additional constraint forces depend
on the condition in the contact point: in the case of sliding, there is one normal
constraint force perpendicular to the tangential plane to both bodies at the point of
contact and a tangential force which, for example, depends on the sliding velocity
and on the normal force. In the case of rolling, all reaction forces between the two
bodies in contact are constraint forces.

20.4 Orientation of Rigid Bodies

In addition to one point P (e.g. the centre of mass), describing a body in
three-dimensional space also requires the orientation of the body. Both the point P
and the orientation are usually given by relative descriptions, which means that the
location of P is given relative to the origin of a reference frame, and the orientation is
given by the orientation of the body-fixed axis system with respect to the axis system
of the reference frame (or relative to a body-fixed frame).

As described at the beginning of this chapter, the relative displacement is given by
three (Cartesian) coordinates. The orientation can be described by a rotation matrix
R. The matrix has three free parameters, and, in MBS programmes, there are several
ways of entering the matrix in the programme.

Rotation matrix by numerical values: One possibility is to enter all nine components.
Rotation matrices defined by numerical values would not be appropriate. Consider,
for example, the matrix

R =

⎛
⎜⎜⎝

√
6

4

√
2

4

√
2

2

−
√

6
4 −

√
2

4 −
√

2
2

1
2 −

√
3

2 0

⎞
⎟⎟⎠ , (20.35)

which is the result of a sequence of three rotations (30◦, 90◦ and 45◦). It is obvious
that there are many square roots, and it is known that these roots (of 2 or 3 for
example) can only be approximated by numerical values. This could result in the
violation of a necessary condition, for example det(R) = 1.

Euler angles: Every rotation matrix can be represented by a sequence of three simple
rotations. Often the Euler convention is used for the simple rotations. Using Euler
convention, the first rotation is about the �e3-axis, then about the new �̃e1-axis and
the last rotation is about the new �̂e3-axis. One essential point is that the rotations
are about the new axes that result from the preceding rotation. There is one angle
of rotation for each rotation, which means that there are three angles and therefore
three parameters. An important point is that the first and last axes of rotation depend
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on each other, because the last axis of rotation is the first axis of rotation rotated by
the second rotational operation. To describe the sequence for the above-mentioned
rotation, we may write 3–1–3. Of course, other possibilities can be used, such as
3–2–3, 1–3–1, 1–2–1, 2–1–2, 2–3–2. One feature common to all these sequences is
that the last axis of rotation is the same axis of rotation as for the first operation, but
rotated by the second rotational operation. The whole rotation can be described by
three angles, for example ϕ, ϑ, ψ . Some conventions in the literature use modified
angles.

There is a singularity in this representation of rotation matrices. Consider the
sequence of angles with the second angle ϑ = π = 180

◦
or ϑ = 0. Every pair of

angles for the first rotation and for the third rotation with the same value ϕ − ψ or
ϕ + ψ, resp., yields the same rotation matrix independently of the individual values
for ϕ and ψ. The reason for this behaviour is that the first and last axes of rotation
coincide (the reason in mathematics is that only trigonometric functions with the
argument for ϕ − ψ or ϕ + ψ occur in the total rotational matrix).

An example of a rotation matrix for Euler angles is given in the following:⎛
⎜⎝

cos ψ cos ϕ − cos ϑ sin ϕ sin ψ cos ψ sin ϕ + cos ϑ cos ϕ sin ψ

− sin ψ cos ϕ − cosϑ sin ϕ cos ψ − sinψ sin ϕ + cosϑ cos ϕ cos ψ

sin ϑ sinϕ − sinϑ cos ϕ

sin ψ sin ϑ

cos ψ sin ϑ

cos ϑ

⎞
⎟⎠

Tait–Bryan angles: The main property of Euler angles is that the first and third rota-
tions are about the same local axis. In the definition of Tait–Bryan angles all axes
are different, for example the first rotation is about the �e1-axis (angle α), the sec-
ond rotation about the new �̃e2-axis (angle β) and the third rotation about �̂e3 (angle
γ). The angles α, β, and γ are called Tait–Bryan angles. Sometimes, especially
in the German literature, they are called Cardan angles, and in programmes they
are sometimes called 1–2–3-Euler angles. Similar to the Euler angle convention, a
singularity also exists here if the second angle is β = π/2 or β = 3π/2.

Euler parameter: Each rotation matrix has one eigenvalue 1. The eigenvector to this
eigenvalue can be interpreted as the axis of rotation; the corresponding angle is α,
which can be calculated with the trace of the rotation matrix R:

tr(R) = 1 + 2 cosα . (20.36)

Quaternions: Quaternions are an extension of the complex numbers. In complex
numbers, the imaginary unit j (j2 = −1; sometimes called i) is introduced to
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extend the real numbers to complex numbers. The set of quaternions together
with addition operations and noncommutative multiplication operations is called
non-commutative algebra. Each quaternion can be described (in a similar way to
complex numbers) by

α1 + α2 i + α3 j + α4 k , (20.37)

where i, j, k are introduced as equivalents to j in the extension of real numbers to
complex numbers. The additionally introduced elements i, j, k fulfil multiplication
rules such as the following (this list is not complete):

ijk = i2 = j2 = k2 = −1; (20.38)

ij = k . (20.39)

All quaternions with an absolute value of 1 are equivalent to the set of rotations,
and Euler angles, for example, can be mapped to the quaternions.

Fields of application for quaternions include the programming of computer
graphics and robots.

Caley–Klein parameters: Another means of representing rotations involves using
complex matrices of the form

Q =
(

α β

γ δ

)
. (20.40)

If the components fulfil the following equations (the bar is the complex conjuga-
tion)

α = δ , (20.41)

γ = β , (20.42)

the matrices are a representation of the above-mentioned quaternions. With the
additional condition

αδ − βγ = 1, (20.43)

the matrices are a representation of the quaternions with an absolute value of 1 and
therefore a representation of rotations. The parameters α, β, γ and δ are usually
called the Caley–Klein parameters.

Axis system: This possibility of defining rotations is very simple and easy for users.
The idea is to define the axis system by three points: the first point, N1, is the origin
of the axis system, the second point, N2, defines the direction of the �e1-vector (cf.
Figure 20.9). The third point, N3, defines a plane with N1 and N2. There are two
vectors in this plane, which are perpendicular to �e1. The vector �e2 is chosen in such
a way that the point N3 is an element of the quadrant defined by the first two vectors
�e1 and �e2 (the dashed vector in the figure does not fulfil this condition, but the solid
vector does).

The third vector is defined by the cross product �e3 = �e1 × �e2.
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N3

e1

e2

e3

Figure 20.9 Definition of rotational matrices by axis systems

20.5 Derivation and Solution of the Equations

This section describes the principal methods for deriving the equations of motion in
the first subsection, while the second subsection describes numerical algorithms for
solving these equations.

20.5.1 Derivation of the Equations

In order to derive the equations of motion automatically, the computer needs a
systematic description of how the different parts of an MBS are joined or connected
to each other. Different possibilities of achieving this exist, with one example
involving the use of graphs to describe the interconnection.

A graph is a set of vertices V = {vj, j = 1, . . . , N} where each vertex represents
a rigid body of the system and a set B of branches connecting the vertices. A branch
is a pair of two vertices. This pair (vj , vk) stands for an interaction between the two
bodies vj and vk. This interaction can be a result of a joint, but not of a force element.

An important property of the graph is whether or not a circuit exists. A circuit is
a sequence of branches {vi1, vi2}, {vi2, vi3}, . . . , {vik−1, vik} with vi1 = vik, which
means that these branches form a closed loop. The algorithms for numerical solutions
of the equations of motion differ according to whether circuits exist or not. MBS
without circuits can be described by a simple set of ordinary differential equations,
an MBS with a circuit has to be described by a system of so-called differential alge-
braic equations (DAE). The numerical algorithms for solving DAE are much more
complicated than those for solving a system of differential equations.

Two main approaches exist to establish the equations of motion. The first is called
the Eulerian approach. This method starts with the equations of motion by Euler and
Newton for each of the N rigid bodies. If Euler’s and Newton’s equations of motion
are written in the form of first-order differential equations, 12 equations exist for
each body, which means 12 N equations for the whole system. One set of unknown
quantities is the displacements (e.g. of the centres of gravity) and rotational angles
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(e.g. Euler angles) and their first derivatives with respect to the time, so that there
are 12 unknowns for each rigid body. Furthermore, there are unknown forces and
torques from the constraints, and, altogether, there are more unknowns than there are
equations. Additional information comes from constraint equations and some princi-
ples of dynamics (Roberson and Schwertassek 1988). In one procedure of establishing
equations of motion, the 12 N variables have to be reduced and the forces from the
constraints have to be eliminated. This is the reason why this is called an elimination
method. Another possible procedure is to introduce additional variables, the so-called
Lagrange multipliers, for the unknown constraint forces and moments. As the number
of unknowns grows in this procedure, this method is called an augmentation method.

Other ways of obtaining the equations of motion involve the application of Lan-
grange’s or Hamilton’s equations.

One difficulty in all the methods is found in closed kinematic chains, as the variables
describing the motion of the bodies depend on each other and they have to fulfil the
kinematic consistency condition.

20.5.2 Solution of Equations

The equations of motion are ordinary differential equations in the case of a tree con-
figuration of the MBS and differential algebraic equations in the case of an MBS with
closed kinematic chains. The solution algorithm differs for the two types of equations.

We restrict our considerations to the easier way of ordinary differential equations
without algebraic parts. The equations can be written in the simple form

ẏ = f(t, y) where y(t0) = y0 . (20.44)

The tuple y comprises the state variables after elimination of constraint forces and
torques (elimination method) or the tuple comprises all 12 N variables of all N bodies
and, in addition, the Lagrangian multipliers for the constraint forces and torques. One
of the simplest and most illustrative methods is the first-order explicit Euler method
shown in Figure 20.10. In this method a polygon is computed stepwise, where the step
size, h, can be variable. The local convergence rate is quadratic.

y

t

Figure 20.10 Explicit Euler method
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In general, the solution procedures can be classified as explicit and implicit meth-
ods, on the one hand, and as single-step and multiple-step methods on the other hand.

The starting point is the initial value Y 0 for the time t = t0. From this, an iterative
process yields the approximations Y n of the function y at distinct times t = tn. The
general classes can be described by one formula:

Yn+1 = ψ(Yn) explicit single-step method , (20.45)

Yn+1 = ψ(Yn+1, Yn) implicit single-step method , (20.46)

Yn+1 = ψ(Yn, . . . , Yn−(k−1)) explicit k-step method , (20.47)

Yn+1 = ψ(Yn+1, . . . , Yn−(k−1)) implicit k-step method . (20.48)

In all these procedures, the distances hn = tn − tn−1 enters in the iteration formu-
lae. If we assume constant step sizes h0 = h1 = h2 = · · · and if we use h to denote
this step size, we can then consider the local and the global truncation error of the
procedures.

Assuming that Y n = y(tn) is an exact solution, then the local truncation error is of
the order p if

|Yn+1 − y(tn+1)| ≤ Mhp+1 for p ≥ 1 . (20.49)

The global truncation error is of the order p for Y n, where Y 0 = y(t0) if

|Yn − y(tn)| ≤ M̃hp for p ≥ 1 . (20.50)

Under certain conditions it is possible to deduce a global truncation error of order
p from a local truncation error of order p.

20.6 Applications of MBS

Several applications for MBS exist in the area of vehicle dynamics.
One part of these applications concerns the engine and the powertrain. Figure 20.11

shows an example with a rocker arm valve drive for an internal combustion engine.
In this application, for example, the forces between the cam lobe and the pushrod
can be calculated using an MBS. Another example involves calculating the dynamic
behaviour of the powertrain, as shown in Figure 20.12. Torques play an important role
in this application, especially for dynamic manoeuvres. If compliances are introduced
in the model, torsional vibrations can be investigated as well.

Vehicle dynamics investigates several aspects of the behaviour of the whole vehicle,
for example

• understeering/oversteering;
• the influence of changing the engine torque during cornering;
• the influence of braking during cornering;
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• the investigation of design space taking into consideration dynamic loads and rela-
tive displacements of the components;

• the kinematics and compliances of suspensions.

Figure 20.13 shows typical components of a McPherson front suspension. The rigid
bodies are, for example, the wheel carrier, the wheel or the A-arm. The lower parts of
the McPherson struts are not extra single bodies, because they are firmly connected to
the wheel carrier. An additional rigid body is the subframe. The A-arms are connected
with the subframe by rubber bushings, and the subframe itself is connected to the
chassis with rubber bushings, too. Furthermore, the steering is shown in the figure as
are the drive shafts. The powerplant is of course part of the MBS, but not depicted in
Figure 20.13, but the two mounts for the powerplant and the roll restrictor are shown.

The main rigid body is not shown in full detail but only as a small sphere, which
stands for the centre of mass and the inertia properties. Not visible, but included in
the model, are the joints, for example, between the A-arm and the wheel carrier. As

Cam lobe

Pushrod

Rocker arm

Camshaft

Valve

Figure 20.11 Rocker arm valve drive (example from the MBS software ADAMS)

Figure 20.12 Rear-driven powertrain (example from the MBS software ADAMS)
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Centre of mass

McPherson strutSpring
Shock absorber

Drive shaft

Rubber
bushings

Mount of the
powerplant

Subframe

A-arm

Mounts of the
roll restrictor

Figure 20.13 McPherson front axle in an MBS model

described above, many rigid bodies are not linked to each other by ideal rigid joints
but by elastic bushings.

Some of the elements (e.g. springs, shock absorbers, bushings, mounts) are not
described by a physical model but by characteristic curves. A simple example is a
force–displacement curve for a spring, or a force–velocity curve for a shock absorber.
The curves or maps become more complicated for multi-axial loaded mounts, such as
hydromounts for the connection between the powerplant and body.

The tyres play a crucial role in MBS for automotive applications concerning the
whole vehicle, for which a large number of models are available. The models can be
classified using different characteristics, such as amplitude and frequency, complexity
or underlying mathematical description.

Many investigations have been carried out with the aid of these models. One
example is stationary cornering on a circle or step steer manoeuvre. The result of the
latter is shown in Figure 20.14.

This figures shows the important dynamic quantities of the vehicle, such as yaw
rate, steering angle and lateral acceleration (vertical axes from left to right). Another
example is shown in Figure 20.15, in which the steering angle is shown as a function
of the lateral acceleration.

The assumption that only rigid bodies are present is, of course, a simplification. In
reality, bodies are never rigid. The error from assuming rigidity may be small, but
in some cases deformation cannot be neglected or in some cases the deformations of
rigid bodies should be calculated.

For instance, in some cases we may want to know the stresses in the chassis in order
to assess reliability or durability. In other cases, the deformation may have an impact
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Figure 20.15 Quasi-steady-state cornering (for small lateral acceleration with some initial
oscillations)

on the results; for example, the deformation of the subframe may influence kinematics
and compliance of the suspension.

As stresses and strains are essential for predicting fatigue, such investigations can
only be performed by considering deformations of the chassis.

Several methods exist for describing flexible bodies. Here we roughly outline one
of them, similar to the Craig–Bampton method (or the fixed interface method)2. We
briefly describe the free interface method using the example depicted in Figure 20.16,
which shows a body (a rectangular plate) connected at three points by spherical joints
to neighbouring rigid bodies. The spherical joints have three rotational degrees of
freedom, which means that relative translations between the plate and the bodies are
not possible. Describing the flexibility of the plate in an MBS first involves modelling

2 The outlined method here is indicated as a free interface method and it is described in one of the first publications
by MacNeal 1971; it is a generalization of the Craig–Bampton method, cf. Craig and Bampton 1968.
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Figure 20.16 Modes for the free interface method

the plate in a finite element programme (using solid or shell elements). For each locked
degree of freedom of the joints, this degree of freedom is unlocked and a unit force
(for translational degrees of freedom) is introduced. If a rotational degree of freedom
is unlocked, a unit moment is introduced in the FE model. With these unit quantities
(forces or moments), the static deformations (or static modes) are calculated in the FE
programme. In the example depicted there are nine static modes.

After this step of determining the static modes, all joints are deleted and an eigen-
mode investigation is carried out for the plate. This results in a number of eigenvalues
and eigenmodes (or natural modes) which we call the dynamic modes. Both the static
and the dynamic modes are now used to establish the equation of motion. We call
the static mode usi = usi(x, y, z) and the dynamic modes udi = udi(x, y, z). We can
then approximate the deformation u of the plate using these functions:

u =
Ns∑
i=1

αsiusi +
Nd∑
i=1

αdiudi . (20.51)

This formula allows us to establish an expression for the kinetic and potential energy
by integration with respect to the volume of the flexible body. As we have one static
deformation mode for each locked degree of freedom, each configuration of the neigh-
bouring body can be exactly described by the static modes. The dynamic modes
describe the dynamic behaviour. In eigenvalue analysis, there is usually no limit to
the number of eigenvalues (in FE eigenvalue analysis the limit is given by the degrees
of freedom of all nodes). Consequently, the number of dynamic modes is usually
restricted by a frequency bound.

The kinetic and potential energy terms contain the time-dependent coefficients αsi

and αdi, which are now additional degrees of freedom of the system. The kinetic and
potential energy can be used to establish the equations of motion for the whole system,
for example using Lagrange’s formalism.
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20.7 Questions and Exercises
Remembering

1. Which components can be defined in MBS?
2. How many parameters are needed for the description of a rotation?
3. How many parameters are needed for the description of a translation?
4. Which algorithms for the solution of ordinary differential equations you know?

Understanding

1. Explain Euler and Tait–Bryan angles.
2. Explain a method for the consideration of flexible bodies in MBS.
3. Consider a system of two bodies, which are joined by a revolute (translational,

cylindrical, spherical, cardanic) joint: How many degrees of freedom this system
has?

4. How many static modes do you have to calculate in the free interface method for
one revolute (translational, cylindrical, spherical, cardanic) joint?

5. Which static modes do you have to calculate in the free interface method for one
revolute (translational, cylindrical, spherical, cardanic) joint?
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Acceleration resistance Another resistance is due to d’Alembert’s inertial forces.
These inertial forces (from translational and rotational motions) are combined and are
referred to as the acceleration (or inertial) resistance Fi. The acceleration resistance
not only take into account the forces due to the translatory acceleration, but also take
into account the forces in the longitudinal direction, which arise due to the angular
acceleration of the rotating masses, 30

Ackermann steer angle As described for the vehicle sideslip angle and the steering
wheel angle, we introduce the front wheel angle δ10 for diminishing velocities:

δ10 = lim
v→0

δ1 =
�

ρcc
.

We call this angle δ10 the Ackermann steer angle, 198

Aerodynamics drag force On a vehicle with projected frontal area, A, while travel-
ling at a speed vv in the longitudinal direction, a longitudinal force, Fa, the so-called
aerodynamic drag force, acts as follows (wind velocity va = 0):

Fa = cdA
ρa

2
v2

v .

Here cd is the coefficient of aerodynamic drag. The coefficient cd of modern passenger
cars is about 0.2 to 0.3. A typical size for the area A is 2 m2, 29

Camber This is the angle between the wheel�ewx-�ewz-plane and the vertical �eiz-axis.
The constructive Camber angle γ is positive when the wheel is inclined towards the
outside of the vehicle and negative if it is inclined to its inside, 229

Caster The point of application of the force Fy does not lie in the symmetry plane
of the tyre, but is shifted against ntc in the xw-direction. We call ntc the tyre caster
trail (see Figure 11.7(b)), 177
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Circle of curvature The circle of curvature is a purely geometric object, which
approximates the trajectory locally at one point. That is, the circle of curvature exists
even when there is no vehicle moving along the trajectory; it is a characteristic of the
trajectory, 170

Contact patch This is the contact area, wherein the tyre and the road are in contact.
The size of the contact patch depends on the geometry and design of the tyre, the
internal pressure and the wheel load. The order of magnitude for a passenger car tyre
has a postcard format. (The contact area of the wheel-track contact is of the order of
a thumb nail), 11

Cornering stiffness For small slip angles (approx. α < 4◦) the lateral force FY can
approximated by a linearized law

Fy = cαα .

The coefficient cα is called the lateral force coefficient or the cornering stiffness, 180

Frame System A quadruple (A,�ex, �ey, �ez) is a frame system of an affine space.
Here, A is a point (the origin) and �ex, �ey, �ez is a Cartesian tripod (the axis system).
To describe the position of a point P with respect to A, three coordinates x, y, z are
sufficient: −−→

AP = x�ex + y�ey + z�ez .

The point A can be defined fixed in space (or in an inertial frame). This is called an
inertial frame system (sometimes called earth or world coordinate system). If the point
A and the tripod �ex, �ey, �ez are fixed to a body and continues to be firmly connected to
the body then the result is called a body-fixed coordinate system, 6

Quarter-vehicle model The quarter-vehicle model (two-mass substitute system,
Figure 10.1) is the simplest substitute system that already exhibits essential features
of a vehicle in terms of vertical dynamics. The substitute system consists of the two
masses, mb (in this case mb is one quarter of the body mass) and mw (this is the
wheel mass). The body springs and shock absorbers are located between the masses.
(Spring stiffness kb, damping constant bb). A spring–damper system (stiffness kw,
damping constant bw) also acts between the wheel mass, mw, and the uneven road
surface. Dividing the wheel into the components of wheel mass, mw, wheel stiffness,
kw, and wheel damping, bw, is a simplified model that permits a good reproduction
of the wheel properties, 155

Driving performance diagrams A driving performance diagram comprises
1. the (real) supply characteristic maps of the engine converted to forces and power

at the wheels as a function of the driving speed and in the same diagram
2. the required tractive effort (the driving resistances) or the effort for the power.

With the help of these diagrams, one can for example determine, the maximum speed
without grading, the climbing ability in any gear and the acceleration capability, 57



Glossary 325

Grading resistance The grading resistance (or climbing resistance) Fg is the portion
of the weight of the vehicle which acts parallel to the road:

Fg = mtotg sinα

, 29

Instantaneous center of rotation The instantaneous center of rotation is an imagi-
nary point. The vehicle rotates around this point at a particular moment. If one imag-
ines an imaginary infinite very large rigid plate which is fixed to the vehicle and which
is parallel to the road, the instantaneous center or rotation is that point, which do not
moves, i.e. the velocity of this point vanishes. The instantaneous center of rotation
Mcr is the intersection of two normals of two arbitrary velocity vectors in two different
points of the vehicle, 174

Progression ratio The progressive ratio αgz denotes the ratio (quotient) of the trans-
mission ratios of two adjacent gears.

αgz =
iz−1

iz
z = 1, . . . , Nz max

, 48

Rolling resistance coefficient The rolling resistance coefficient fr is the ratio of the
rolling resistance Fr to the resulting normal force FZ in the contact patch

fr =
Fr

Fz

, 16

Rolling resistance If a wheel is rolling on a road, an asymmetric normal stress dis-
tribution occurs between road and wheel in the contact patch (Figure 2.2). The line
of action of the resultant force Fz of the asymmetric normal stress distribution does
not intersects the center of the wheel, but is shifted in the rolling direction. The dis-
tance between the wheel center and the line of action of Fz is the eccentricity ew. This
results in a moment Mw = ewFz . To overcome this moment, a tractive torque in the
case of a driven wheel or a tractive force Fr in the case of a towed wheel is necessary.
This force Fr is called the rolling resistance. It can be derived by solving the sum of
moment 0 = rwstFr − ewFz for Fr:

Fr =
ew

rwst

Fz .

In the case of a driven wheel the rolling resistance is

Fr =
Mw

rwst

, 15



326 Glossary

Self-steering coefficient The following coefficient:

1
is�

∂(δs − δs0)
∂(v2/ρcc)

is called the self-steering coefficient of the vehicle. Likewise, the term

∂(δ1 − δ10)/(∂(v2/ρ))

is common, which is the self-steering coefficient without considering the steering stiff-
ness, 202

Single-track model The single-track model is a key model in the lateral dynamics
of a vehicle, which allows to consider important parameter dependences and to draw
conclusions in the lateral dynamics. The single track model often forms the basis of
simple ESP systems. Important assumption of the single track model is that the center
of mass of the vehicle is on the road, which means that the distance of the center of
mass to the road plane is zero: hcm = 0. From this simplification, the limitation of the
applicability of the single-track model results, 170

Slip For a driven wheel, slip is defined as the difference between the circumferential
speed, vc = Rw0ω and the driving speed vv divided by the circumferential speed vc .

S =
vc − vv

vc

.

The slip of a braked wheel is defined as

S =
vv − vc

vv

.

The slip is often given as a percentage, 21

Tyre Slip angle Lateral slip occurs in a tyre when the xw-direction (i.e. the longitu-
dinal direction in the tyre coordinate system) does not coincide with the direction of
motion (�vw direction in Figure 11.7(b)). One calls this angle between the xw-direction
and �vw-direction the slip angle α, 177

Toe The toe angle describes a static rotation of the wheel about the �ewz-axis. We
refer to toe-in when the wheels are turned inwards (cf. Figure 15.1(a)), and toe-out,
when the wheels are turned outwards (Figure 15.1(b)). The angle δ10 is positive for
toe-in and negative for toe-out, 229

Transmission ratio The transmission ratio iz is the ratio (the quotient) between the
input speed niz to the output speed noz of a transmission or gear:

iz =
niz

noz

z = 1, . . . , Nz max .

The index z indicates the stage of transmission with Nz max gears. The transmission
ratio iz is independent of the speed, 48
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Tyre long. force coeff. A tangential force Fx arises at the driven or the braked wheel,
depending on the slip and the normal force Fz:

Fx = μ(S)Fz .

The value μ is referred to as the tyre longitudinal force coefficient. This is a function
of the slip S. The functions μb(S) for braking and μd(S) for driving is approximately
equal: μ(S) ≈ μb(S) ≈ μd(S), 21

Oversteer If v2
ch < 0, this means that an increase in vehicle speed, v, (on a circle with

radius ρcc) requires an decrease in the steering wheel angle. We call this behaviour
oversteer, 201

Understeer If v2
ch > 0, this means that an increase in vehicle speed, v, (on a circle

with radius ρcc) requires an increase in the steering wheel angle. We call this behaviour
of the vehicle understeer, 201

Vehicle sideslip angle The angle between the direction of motion of the vehicle’s
center of mass and the vehicle’s longitudinal axis is called the vehicle sideslip angle
β. The sum of the yaw angle and the vehicle sideslip angle is the course angle, 170
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A-arm suspension, 236
ABS, 283

build-up delay of yaw moment, 290
hydraulic unit, 296

ACC, 107
acceleration limits, 109, 110
approach ability, 117
control, 108
tracking, 116

Acceleration
optimum upshift point, 62

Acceleration capability, 61
Acceleration resistance, 29
Acceleration resistance, 33
Ackermann angle, 198, 199
Ackermann steer angle, 198
Active anti-roll, 227
Active front steering, 297
Adaptive cruise control, 107

acceleration limits, 109, 110
approach ability, 117
control, 108
tracking, 116

Adhesion
coefficient of, 21, 37, 83, 84, 188,

286
Aerodynamic drag force, 28
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AFS, 297
Air spring, 272
Anti-lock braking system, 283
Anti-roll bar, 225

active, 227
understeer/oversteer, 227

Anti-slip regulation, 293
Aquaplaning, 18
ASR, 190, 293

Bearing resistance, 19
Braking

regenerative, 101

Camber, 230, 232, 237
Camber, 229
Cardanic joint, 311
Caster, 177
Caster angle, 181
CDC, 262, 270
Center of rotation, 175
Centrifugal pendulum vibration

absorbers, 144, 147, 251, 253
Centripetal acceleration, 172
Characteristic velocity, 197, 201
Circle of curvature, 170
Clothoid, 171
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Clutch, 45–47, 247
efficiency, 47
input/output moments, 45
input/output power, 47

Clutch disc, 251, 252
Coefficient of adhesion, 21, 37, 83, 84,

188, 286
Coefficient of rolling resistance, 16
Coefficient of sliding, 22
Coil spring, 270
Comfort, 124
Conflict between safety and comfort,

132, 142, 143
Contact patch, 11
Continous Damping Control, 270
Converter, 43

efficiency, 58
Converters, 247
Cornering stiffness, 203
Cornering stiffness, 180
Coupling mass, 162
CPVA, 144, 147, 251, 253
Crosswind behaviour, 213
Curvature, 171
CVT, 256
Cylindrical joint, 310

Differential
cornering, 189

Disturbing force lever arm radius, 184,
242, 279

Double wishbone suspension, 236
Driving performance diagram, 52, 53,

58
regenerative braking, 102

Driving performance diagrams, 57
DSC, 294
Dual clutch, 248, 249
Duffing oscillator, 165
Dynamic wheel radius, 20

Eccentricity, 12
Elasto-kinematic axis, 242

Elasto-kinematic point, 243
Electronic Stability Programme, 294
ESP, 294

hydraulic unit, 296
Euler angles, 312
Euler parameter, 313
Evaluation function, 134, 138

Five-link suspension, 243
FMCW, 112
Force

total, 34
Frame

body fixed, 303
inertial, 6
vehicle fixed, 6
wheel fixed, 7

Frame system, 6
frequency modulated continuous

wave, 112
Fuel consumption, 1, 63, 64, 66, 68, 94

NEDC, 68, 69
Test Procedures, 68, 104
WLTP, 68, 69

Fundamental equation of longitudinal
dynamics, 33, 107

Gearbox, 252
Gradeability, 61

optimum upshift point, 63
Gradient

maximum, 61
Gradient resistance, 29

Hybrid powertrain, 93
boost mode, 97
components, 102
hybrid levels, 98
idea, 94
parallel, 93, 94, 99
power–split, 101
purely electric mode, 97
regenerative braking, 96
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serial, 100
serial–parallel, 100
split of power, 95
topologies, 99

Hydropneumatic spring, 274
Hyperbola

traction, 37

Ideal active suspension, 264
Ideal delivery characteristic map, 43,

48, 51–53
Ideal engine delivery map, 36–38,

43
coefficient of adhesion, 37
Maximum power, 36
Maximum speed, 37

Inclination angle, 11, 29
Instantaneous centre of rotation, 174

Joints, 308–311
cardanic, 311
cylindrical, 310
prismatic, 310
revolute, 310
spherical, 311
translational, 310

Kamm’s circle, 189
Kinematic caster trail, 182
King pin inclination angle, 181

Lateral force, 181
Leaf spring, 270
Longitudinal force moment-arm, 184
Lower heating value, 64

Maximum speed, 60
MBS, 301

applications, 317
Derivation of the equations, 315
joints, 308–311

orientation of rigid bodies, 312
Solution of equations, 316

McPherson front axle suspension, 240
Monotube shock absorber, 260
Multi-body systems, 301

NEDC, 68, 69
New european drive cycle, 68, 69
Non-linear characteristic curves, 165

Oscillations of powertrains, 144
Oversteer, 209

Performance, 34
Power

basic demand of, 34
demand of, 34, 36
total, 34

Prismatic joint, 310
Progression ratio, 48

Quarter-car model
natural frequencies, 157

Quarter-vehicle, 135
Quarter-vehicle model, 155

Radial acceleration, 172
Radius

dynamic, of the wheel, 20
static, of the wheel, 11

Radius of the circle of curvature, 176
Real delivery characteristic map, 48,

51–53
Real engine delivery map, 37
Regenerative braking, 101

NEDC, 104
Resistance

acceleration, 29, 30, 33
aerodynamic, 27
aquaplaning, 18
bearing, 19
gradient, 29



334 Index

Resistance (continued)
rolling, 14, 15
Toe-in/toe-out, 19
wheel, 14

Revolute joint, 310
Ride dynamics, 121
Road irregularities, 131
Roll axis, 221
Roll stiffness, 224, 225
Rolling resistance, 15
Rolling resistance, 15
Rolling resistance coefficient, 15
Rotation matrix, 312
Rotational mass factor, 33, 61
Rotational speed converter, 45–47

efficiency, 47
input/output moments, 45
input/output power, 47

Roughness
coefficient of, 131

Scrub radius, 183, 186, 242, 279
Self-steering coefficient, 202
Shock absorber, 259

monotube, 260
twin-tube, 262

single-track excitation, 158
Single-track model, 169, 170

crosswind behaviour, 214
equations of motion, 172
free body diagram, 173
geometric aspects, 197
linearized equations of motion, 185,

187
Single-track model, 170
Skyhook damper, 267
Sliding

coefficient of, 22
Slip, 21
Slip angle, 177, 181

tangential stress, 178
Slip angle, 177
Solid axle, 238

Spectral density of the road, 131, 137
Speed converter, 45–47

efficiency, 47
input/output moments, 45
input/output power, 47

Speed Converters, 247
Spherical joint, 311
SSF, 220
Stability

steady-state cornering, 207, 209
Static stabilityfactor, 220
Static wheel radius, 11
Steady-state cornering, 193

angle of the front wheels, 197
steering wheel angle, 196
Steering wheel torque, 197
vehicle sideslip angle, 195

Steering, 181
rack and pinion, 182

Steering behaviour, 210
Step steering, 210, 213
Stochastic irregularities, 130
Suspension

active, 264
Suspension spring

air spring, 272
hydropneumatic spring, 272

Suspension springs, 269
coil spring, 270
leaf spring, 270

Suspension systems, 235, 236

Tait–Bryan angles, 313
Tilt condition, 220
Toe, 230, 237
Toe, 229
Torque converter, 48

efficiency, 49
geometric design, 49, 52, 53
input/output moments, 49
input/output power, 49
progressive design, 50, 52, 53

Torque Converters, 247
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Torsional oscillators, 144
Traction hyperbola, 37
Tractive force

demand of, 35, 37
Transfer function, 126
Translational joint, 310
Transmission, 48, 252

automatic, 255
CVT, 256
efficiency, 49
geometric design, 49, 52, 53
input/output moments, 49
input/output power, 49
progressive design, 50, 52, 53
two-stage countershaft, 254

Transmission ratio, 48
differential, 44
total, 58

Transmission ratio, 48
Trilok converter, 256, 257
Twin-tube shock absorber, 262

Tyre caster trail, 182
Tyre longitudinal force coefficient, 287
Tyre longitudinal force coefficient, 21

Understeer, 201
Understeering, 201, 209
Unevenness

coefficient of, 131

Vehicle sideslip angle, 203
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Wheel Resistance, 14
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