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Preface

This text is for engineering students. It introduces the fundamental knowl-
edge used in vehicle dynamics. This knowledge can be utilized to develop
computer programs for analyzing the ride, handling, and optimization of
road vehicles.

Vehicle dynamics has been in the engineering curriculum for more than
a hundred years. Books on the subject are available, but most of them
are written for specialists and are not suitable for a classroom application.
A new student, engineer, or researcher would not know where and how
to start learning vehicle dynamics. So, there is a need for a textbook for
beginners. This textbook presents the fundamentals with a perspective on
future trends.

The study of classical vehicle dynamics has its roots in the work of
great scientists of the past four centuries and creative engineers in the
past century who established the methodology of dynamic systems. The
development of vehicle dynamics has moved toward modeling, analysis,
and optimization of multi-body dynamics supported by some compliant
members. Therefore, merging dynamics with optimization theory was an
expected development. The fast-growing capability of accurate positioning,
sensing, and calculations, along with intelligent computer programming are
the other important developments in vehicle dynamics. So, a textbook help
the reader to make a computer model of vehicles, which this book does.

Level of the Book

This book has evolved from nearly a decade of research in nonlinear
dynamic systems and teaching courses in vehicle dynamics. It is addressed
primarily to the last year of undergraduate study and the first year graduate
student in engineering. Hence, it is an intermediate textbook. It provides
both fundamental and advanced topics. The whole book can be covered
in two successive courses, however, it is possible to jump over some sec-
tions and cover the book in one course. Students are required to know the
fundamentals of kinematics and dynamics, as well as a basic knowledge of
numerical methods.

The contents of the book have been kept at a fairly theoretical-practical
level. Many concepts are deeply explained and their application empha-
sized, and most of the related theories and formal proofs have been ex-
plained. The book places a strong emphasis on the physical meaning and
applications of the concepts. Topics that have been selected are of high
interest in the field. An attempt has been made to expose students to a
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broad range of topics and approaches.

There are four special chapters that are indirectly related to vehicle dy-
namics: Applied Kinematics, Applied Mechanisms, Applied Dynamics, and
Applied Vibrations. These chapters provide the related background to un-
derstand vehicle dynamics and its subsystems.

Organization of the Book

The text is organized so it can be used for teaching or for self-study.
Chapter 1 “Fundamentals,” contains general preliminaries about tire and
rim with a brief review of road vehicle classifications.

Part I “One Dimensional Vehicle Dynamics,” presents forward vehicle
dynamics, tire dynamics, and driveline dynamics. Forward dynamics refers
to weight transfer, accelerating, braking, engine performance, and gear ratio
design.

Part I1 “Vehicle Kinematics,” presents a detailed discussion of vehicle
mechanical subsystems such as steering and suspensions.

Part 111 “Vehicle Dynamics,” employs Newton and Lagrange methods
to develop the maneuvering dynamics of vehicles.

Part IV “Vehicle Vibrations,” presents a detailed discussion of vehi-
cle vibrations. An attempt is made to review the basic approaches and
demonstrate how a vehicle can be modeled as a vibrating multiple degree-
of-freedom system. The concepts of the Newton-Euler dynamics and La-
grangian method are used equally for derivation of equations of motion.
The RMS optimization technique for suspension design of vehicles is intro-
duced and applied to vehicle suspensions. The outcome of the optimization
technique is the optimal stiffness and damping for a car or suspended equip-
ment.

Method of Presentation

This book uses a "fact-reason-application" structure. The "fact" is the
main subject we introduce in each section. Then the reason is given as a
"proof." The application of the fact is examined in some "examples." The
"examples" are a very important part of the book because they show how
to implement the "facts." They also cover some other facts that are needed
to expand the subject.

Prerequisites

Since the book is written for senior undergraduate and first-year graduate-
level students of engineering, the assumption is that users are familiar with
matrix algebra as well as basic dynamics. Prerequisites are the fundamen-
tals of kinematics, dynamics, vector analysis, and matrix theory. These
basics are usually taught in the first three undergraduate years.
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Unit System

The system of units adopted in this book is, unless otherwise stated, the
international system of units (SI). The units of degree (deg) or radian (rad)
are utilized for variables representing angular quantities.

Symbols

e Lowercase bold letters indicate a vector. Vectors may be expressed in
an n dimensional Euclidian space. Example:

r , s , d , a , b , c
p ) q ) v ) w ) y ) z
w ) a ) € ) 0 ) 6 ) d)

e Uppercase bold letters indicate a dynamic vector or a dynamic ma-
trix, such as force and moment. Example:

F M

e Lowercase letters with a hat indicate a unit vector. Unit vectors are
not bolded. Example:

e Lowercase letters with a tilde indicate a 3 x 3 skew symmetric matrix
associated to a vector. Example:

0 —as an al
a= as 0 —aq , a=| a9
—as al 0 as

e An arrow above two uppercase letters indicates the start and end
points of a position vector. Example:

—
ON = a position vector from point O to point N

e The length of a vector is indicated by a non-bold lowercase letter.
Example:

r=l[ , a=[a , b=l , s=]s

e Capital letter B is utilized to denote a body coordinate frame. Ex-
ample:
Bloxyz) , B(Ozyz) , Bi(oiziyr121)
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Capital letter G is utilized to denote a global, inertial, or fixed coor-
dinate frame. Example:

G , GXYZ) , GOXYZ)

Right subscript on a transformation matrix indicates the departure
frames. Example:

Rp = transformation matrix from frame B(oxyz)

Left superscript on a transformation matrix indicates the destination
frame. Example:

“Rp = transformation matrix from frame B(ozyz)
to frame G(OXY Z)

Capital letter R indicates rotation or a transformation matrix, if it
shows the beginning and destination coordinate frames. Example:

cosae —sina 0
CRp=| sina cosa 0
0 0 1

Whenever there is no sub or superscript, the matrices are shown in a
bracket. Example:

cosa —sina 0
[T]=| sina cosa O
0 0 1

Left superscript on a vector denotes the frame in which the vector
is expressed. That superscript indicates the frame that the vector
belongs to; so the vector is expressed using the unit vectors of that
frame. Example:

Sy = position vector expressed in frame G(OXY Z)

Right subscript on a vector denotes the tip point that the vector is
referred to. Example:

G

rp = position vector of point P

expressed in coordinate frame G(OXY Z)

Right subscript on an angular velocity vector indicates the frame that
the angular vector is referred to. Example:

wp = angular velocity of the body coordinate frame B(ozxyz)
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e Left subscript on an angular velocity vector indicates the frame that
the angular vector is measured with respect to. Example:

cwp = angular velocity of the body coordinate frame B(ozyz)
with respect to the global coordinate frame G(OXY Z)

e Left superscript on an angular velocity vector denotes the frame in
which the angular velocity is expressed. Example:

gzw B, = angular velocity of the body coordinate frame B

with respect to the global coordinate frame G,

and expressed in body coordinate frame Bs

Whenever the subscript and superscript of an angular velocity are
the same, we usually drop the left superscript. Example:

_ G
GWB = gWB

Also for position, velocity, and acceleration vectors, we drop the left
subscripts if it is the same as the left superscript. Example:

B — B
BVP = Vp

e Left superscript on derivative operators indicates the frame in which
the derivative of a variable is taken. Example:

Gq GdB BdG
Efﬂ s E rp , EBI'P

If the variable is a vector function, and also the frame in which the
vector is defined is the same frame in which a time derivative is taken,
we may use the following short notation,
G B
“d e G dp

Be
=7 , — T r
o P P ot = otr

and write equations simpler. Example:

Gd
GV = ﬁ Gr(t) = GI"

o If followed by angles, lowercase ¢ and s denote cos and sin functions
in mathematical equations. Example:

cao=cosa , Sp=siny
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e Capital bold letter I indicates a unit matrix, which, depending on
the dimension of the matrix equation, could be a 3 x 3 or a 4 x 4
unit matrix. I3 or I are also being used to clarify the dimension of
I. Example:

I=1; =

SO =
o = O
= o O

e An asterisk ¥ indicates a more advanced subject or example that is
not designed for undergraduate teaching and can be dropped in the
first reading.
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1

Tire and Rim Fundamentals

We introduce and review some topics about tires, wheels, roads, vehicles,
and their interactions. These subjects are needed to understand vehicle
dynamics better.

1.1 Tires and Sidewall Information

Pneumatic tires are the only means to transfer forces between the road and
the vehicle. Tires are required to produce the forces necessary to control
the vehicle, and hence, they are an important component of a vehicle.

Figure 1.1 illustrates a cross section view of a tire on a rim to show the
dimension parameters that are used to standard tires.

Tireprint width

A

Sidewall hr, Section height

Pan width

wr, Section width

.
- -

FIGURE 1.1. Cross section of a tire on a rim to show tire height and width.

The section height, tire height, or simply height, hr, is a number that
must be added to the rim radius to make the wheel radius. The section
width, or tire width, wr, is the widest dimension of a tire when the tire is
not loaded.

Tires are required to have certain information printed on the tire sidewall.
Figure 1.2 illustrates a side view of a sample tire to show the important
information printed on a tire sidewall.
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FIGURE 1.2. Side view of a tire and the most important information printed on
a tire sidewall.

The codes in Figure 1.2 are:

Size number.

Maximum allowed inflation pressure.

Type of tire construction.

M&S denotes a tire for mud and snow.

E-Mark is the Europe type approval mark and number.

US Department of Transport (DOT) identification numbers.

Country of manufacture.

(ool | Il | Kerl | N | US| O | NG |

Manufacturers, brand name, or commercial name.

The most important information on the sidewall of a tire is the size
number, indicated by . To see the format of the size number, an example
is shown in Figure 1.3 and their definitions are explained as follows.

Tire type. The first letter indicates the proper type of car that the

tire is made for. stands for passenger car. The first letter can also be

for special trailer, for temporary, and for light truck.
Tire width. This three-number code is the width of the unloaded
tire from sidewall to sidewall measured in [mm)].
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P 215/60R15 96 H

Passenger car

Tire width [mm)]

Aspect ratio [%]
Radial

Rl

Rim diameter [in]

Load rating

857

Speed rating

FIGURE 1.3. A sample of a tire size number and its meaning.

Aspect ratio. This two-number code is the ratio of the tire section
height to tire width, expressed as a percentage. Aspect ratio is shown by
ST.

h
s = —— x 100 (1.1)
wr
Generally speaking, tire aspect ratios range from 35, for race car tires, to
75 for tires used on utility vehicles.

Tire construction type. The letter indicates that the tire has
a radial construction. It may also be for bias belt or bias ply, and

IZI for diagonal.

Rim diameter. This is a number in [in] to indicate diameter of the
rim that the tire is designed to fit on.

Load rate or load index. Many tires come with a service description
at the end of the tire size. The service description is made of a two-digit
number (load index) and a letter (speed rating). The load index is a rep-
resentation of the maximum load each tire is designed to support.

Table 1.1 shows some of the most common load indices and their load-
carrying capacities. The load index is generally valid for speeds under
210km/h (=~ 130 mi/ h).

Speed rate. Speed rate indicates the maximum speed that the tire
can sustain for a ten minute endurance without breaking down.

Table 1.2 shows the most common speed rate indices and their meanings.

Example 1 Weight of a car and load index of its tire.

For a car that weighs 2tons = 2000 kg, we need a tire with a load index
higher than 84. This is because we have about 500kg per tire and it is in a
load index of 84.
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Table 1.1 - Maximum load-carrying capacity tire index.
Index | Maximum load | Index Maximum load
0 45kg ~ 99 1bf

- -~ 100 800 kg ~ 1764 1bf
71 | 345kg ~ 7611bf | 101 825 kg ~ 1819 Ibf
72 | 355kg ~ 7831bf | 102 850 kg ~ 1874 1bf
73 | 365kg ~ 8051bf | 103 875 kg ~ 1029 Ibf
74 | 375kg ~8271Ibf | 104 900 kg ~ 1084 Ibf
75 | 387kg ~ 8531bf | 105 925 kg ~ 2039 Ibf
76 | 400kg ~ 8821bf | 106 950 kg ~ 2094 Ibf
77 | 412kg ~ 9081bf | 107 975 kg ~ 2149 Ibf
78 | 425kg ~9371bf | 108 | 1000kg ~ 2205 1bf
79 | 437kg ~9631bf | 109 | 1030kg ~ 22711bf
80 | 450kg ~ 9921bf | 110 | 1060kg ~ 23371bf
81 | 462kg ~ 10191bf | 111 | 1090kg ~ 2403 1bf
82 | 475kg ~ 10471bf | 113 | 1120kg ~ 2469 1bf
83 | 487kg ~ 10741bf | 113 | 1150kg ~ 25811bf
84 | 500kg ~ 11021bf | 114 | 1180kg ~ 26011bf
85 | 5lbkg~ 11351bf | 115 | 1215kg ~ 26791bf
86 | 530kg ~ 11631bf | 116 | 1250kg ~ 2806 1bf
87 | 54bkg ~ 12011bf | 117 | 1285kg ~ 2833 1bf
8% | 560kg ~ 12351bf | 118 | 1320kg ~ 29101bf
89 | 580kg ~ 12791bf | 119 | 1360kg ~ 3074 1bf
90 | 600kg ~ 13231bf | 120 | 1400kg ~ 3086 Ibf
91 | 61bkg ~ 13561bf | 121 | 1450kg ~ 31971bf
92 | 630kg ~ I13801bf | 122 | 1500kg ~ 3368 1bf
93 | 650kg ~ 14331bf | 123 | 1550kg ~ 34171bf
94 | 670kg ~ 14771bf | 124 | 1600kg ~ 3527 1bf
95 | 690kg ~ I15211bf | 125 | 1650kg ~ 3690 1bf
96 | 7T10kg ~ 15651bf | 126 | 1700kg ~ 3748 1bf
97 | 730kg ~ 16001bf | 127 | 1750kg ~ 3858 1bf
98 | 750kg ~ 16531bf | 128 | 1800kg ~ 3968 Ibf
99 | 775 kg ~ 170910F | --- :

199 | 13600 kg =~ 30000 Ibf

Example 2 Height of a tire based on tire numbers.

A tire has the size number P215/60R15 96 H. The aspect ratio 60 means
the height of the tire is equal to 60% of the tire width. To calculate the tire
height in [mm)], we should multiply the first number (215) by the second

number (60) and divide by 100.
60
=21 —_— = .
hr 5 x 100 129 mm (1.2)

This is the tire height from rim to tread.
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Table 1.2 - Maximum speed tire index.

Index Maximum speed Index Maximum speed
50km/h ~ 31mi/h 150km/h ~ 93 mi/ h
60km/h ~ 37mi/h 160 km/ b ~ 100mi/h
65km/h ~ 40mi/h 170km/h =~ 106 mi/ h
70km/h ~ 43mi/h 180km/h = 112mi/ h
80km/h =~ 50mi/h 190km/h ~ 118 mi/ h
90km/h ~ 56 mi/h 200km/h ~ 124mi/ h
100km/h ~ 62mi/h 910km/h ~ 130 mi/h
110km/h ~ 68mi/h 240km/h ~ 150 mi/h
120km/h ~ 75mi/ h 270km/h ~ 163 mi/h
130km/h ~ 81mi/h 300km/h ~ 188mi/h
T40km/h ~ 87mi/h T240km/h ~ +149mi/ I

zl 2| = =] < Q| = ol Q|
N[~ = <]z | S| w| 0|~

Example 3 Alternative tire size indication.
If the load index is not indicated on the tire, then a tire with a size number
such as 255/50R17 100V may also be numbered by 255/50V R17.

Example 4 Tire and rim widths.

The dimensions of a tire are dependent on the rim on which it is mounted.
For tires with an aspect ratio of 50 and above, the rim width is approxi-
mately T0% of the tire’s width, rounded to the nearest 0.5in. As an example,
a P255/50R16 tire has a design width of 255 mm = 10.04in however, 70%
0f10.04in is 7.028 in, which rounded to the nearest 0.51n, is 7in. Therefore,
a P255/50R16 tire should be mounted on a 7 X 16 rim.

For tires with aspect ratio 45 and below, the rim width is 85% of the tire’s
section width, rounded to the nearest 0.5in. For example, a P255/45R17
tire with a section width of 255 mm = 10.041in, needs an 8.5in rim because
85% of 10.041in is 8.5341in = 8.5in. Therefore, a P255/45R17 tire should
be mounted on an 8% x 17 rim.

Example 5 Calculating tire diameter and radius.

We are able to calculate the overall diameter of a tire using the tire size
numbers. By multiplying the tire width and the aspect ratio, we get the tire
height. As an example, we use tire number P235/75R15.

hT = 235)(75%
= 176.25mm ~ 6.94in (1.3)

Then, we add twice the tire height hp to the rim diameter to determine the
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tire’s unloaded diameter D = 2R and radius R.

D = 2x694+15
— 28.88in ~ 733.8mm (1.4)
R = D/2=366.9mm (1.5)

Example 6 Speed rating code.

Two similar tires are coded as P235/70HR15 and P235/70R15 100H.
Both tires have code H = 210km/h for speed rating. However, the second
tire can sustain the coded speed only when it is loaded less than the specified
load indez, so it states 100H = 800kg210km/ h.

Speed ratings generally depend on the type of tire. Off road vehicles usu-
ally use Q-rated tires, passenger cars usually use R-rated tires for typical
street cars or T-rated for performance cars.

Example 7 Tire weight.

The average weight of a tire for passenger cars is 10 — 12kg. The weight
of a tire for light trucks is 14— 16 kg, and the average weight of commercial
truck tires is 135 — 180 kg.

Example 8 Effects of aspect ratio.

A higher aspect ratio provides a softer ride and an increase in deflection
under the load of the vehicle. However, lower aspect ratio tires are normally
used for higher performance vehicles. They have a wider road contact area
and a faster response. This results in less deflection under load, causing a
rougher ride to the vehicle.

Changing to a tire with a different aspect ratio will result in a different
contact area, therefore changing the load capacity of the tire.

Example 9 % BMW tire size code.

BMW, a European car, uses the metric system for sizing its tires. As
an example, TD230/55Z R390 is a metric tire size code. T'D indicates the
BMW TD model, 230 is the section width in [mm], 55 is the aspect ratio in
percent, Z is the speed rating, R means radial, and 390 is the rim diameter
in [mm)].

Example 10 % "MS," "M + S," "M/S," and "M&S" signs.

The sign "M S,"and "M + S," and "M/S," and "M&S" indicate that
the tire has some mud and snow capability. Most radial tires have one of
these signs.

Example 11 % U.S. DOT tire identification number.

The US tire identification number is in the format "DOT DNZE ABCD
1309. " It begins with the letters DOT to indicate that the tire meets US fed-
eral standards. DOT stands for Department of Transportation. The next
two characters, DN, after DOT is the plant code, which refers to the man-
ufacturer and the factory location at which the tire was made.
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The next two characters, ZE, are a letter-number combination that refers
to the specific mold used for forming the tire. It is an internal factory code
and is not usually a useful code for customers.

The last four numbers, 1309, represents the week and year the tire was
built. The other numbers, ABCD, are marketing codes used by the man-
ufacturer or at the manufacturer’s instruction. An example is shown in
Figure 1.4.

DOT DNZE ABCD 1309

FIGURE 1.4. An example of a US DOT tire identification number.

DN is the plant code for Goodyear-Dunlop Tire located in Wittlich, Ger-
many. ZE is the tire’s mold size, ABCD is the compound structure code,
13 indicates the 13th week of the year, and 09 indicates year 2009. So, the
tire is manufactured in the 13th week of 2009 at Goodyear-Dunlop Tire in
Wittlich, Germany.

Example 12 s Canadian tires identification number.
In Canada, all tires should have an identification number on the sidewall.
An example is shown in Figure 1.5.

DOT B3CD Es52x 2112 [jwj}

FIGURE 1.5. An example of a Canadian DOT tire identification number.

This identification number provides the manufacturer, time, and place
that the tire was made. The first two characters following DOT indicate
the manufacturer and plant code. In this case, B3 indicates Group Michelin
located at Bridgewater, Nova Scotia, Canada. The third and fourth charac-
ters, CD, are the tire’s mold size code. The fifth, sixzth, seventh, and eighth
characters, E52X , are optional and are used by the manufacturer. The final
four numbers, 2112, indicates the manufacturing date. For example, 2112
indicate the twenty first week of year 2012. Finally, the maple leaf sign
or the flag sign following the identification number indicates that the tire
is manufactured in Canada. It also certifies that the tire meets Transport
Canada requirements.

Example 13 % E-Mark and international codes.

All tires sold in Europe after July 1997 must carry an E-mark. An ex-
ample is shown by in Figure 1.2. The mark itself is either an upper
or lower case "E" followed by a number in a circle or rectangle, followed
by a further number. An "E" indicates that the tire is certified to com-
ply with the dimensional, performance and marking requirements of ECE
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regulation. ECE or UNECE stands for the united nations economic com-
mission for Furope. The number in the circle or rectangle is the country
code. Example: 11 is the UK. The first two digits outside the circle or
rectangle indicate the regulation series under which the tire was approved.
Ezxample: "02" is for ECE regulation 30 governing passenger tires, and
"00" is for EC'E regulation 54 governing commercial vehicle tires. The re-
maining numbers represent the EC'E mark type approval numbers. Tires
may have also been tested and met the required noise limits. These tires
may have a second ECE branding followed by an "—s" for sound.

Table 1.3 indicates the Furopean country codes for tire manufacturing.

Besides the DOT and ECE codes for US and Europe, we may also see
the other country codes such as: SO —9001 for international standards or-
ganization, C.C.C for China compulsory product certification, JI.S D 4230
for Japanese industrial standard.

Table 1.3 - FEuropean county codes for tire manufacturing.

Code | Country Code | Country
E1 Germany E14 | Switzerland
E2 France E15 | Norway
E3 Ttaly E16 | Finland
F4 Netherlands E17 | Denmark
E5 Sweden E18 | Romania
E6 Belgium E19 | Poland
E7 Hungary E20 | Portugal
ES8 Czech Republic E21 | Russia
E9 Spain E22 | Greece
E10 | Yugoslavia E23 | Ireland
FE11 | United Kingdom | E24 | Croatia
E12 | Austria E25 | Slovenia
E13 | Luxembourg E26 | Slovakia

Example 14 % Light truck tires.
The tire sizes for a light truck may be shown in two formats:

LT245/70R16

or
32 x 11.50R16LT

In the first format, LT =light truck, 245 =tire width in millimeters,
70 =aspect ratio in percent, R =radial structure, and 16 =rim diameter in
inches.

In the second format, 32 =tire diameter in inches, 11.50 =tire width in
inches, R =radial structure, 16 =rim diameter in inches, and LT =light
truck.
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Example 15 % UTQG ratings.

Tire manufacturers may put some other symbols, numbers, and letters
on their tires supposedly rating their products for wear, wet traction, and
heat resistance. These characters are referred to as UTQG (Uniform Tire
Quality Grading), although there is no uniformity and standard in how they
appear. There is an index for wear to show the average wearing life time
in mileage. The higher the wear number, the longer the tire lifetime. An
index of 100 is equivalent to approzimately 20000 miles or 30000 km. Other
numbers are indicated in Table 1.4.

Table 1.4 - Tread wear rating index.
Index | Life (Approximate)
100 32000km | 20000 mi
150 48000km | 30000 mi
200 64000 km | 40000 mi
250 80000km | 50000 mi
300 96000 km | 60000 mi
400 | 129000km | 80000 mi
500 [ 161000 km | 100000 mi

The UTQG also rates tires for wet traction and heat resistance. These
are rated in letters between "A" to "C," where "A" is the best, "B" is
intermediate and "C'" is acceptable. An "A" wet traction rating is typically
an indication that the tire has a deep open tread pattern with lots of sipping,
which are the fine lines in the tread blocks.

An "A" heat resistance rating indicates two things: First, low rolling re-
sistance due to stiffer tread belts, stiffer sidewalls, or harder compounds;
second, thinner sidewalls, more stable blocks in the tread pattern. Temper-
ature rating is also indicated by a letter between "A" to "CM," where "A"
is the best, "B" is intermediate, and "C'" is acceptable.

There might also be a traction rating to indicate how well a tire grips
the road surface. This is an overall rating for both dry and wet conditions.
Tires are rated as: "AA" for the best, "A" for better, "B" for good, and
"C'" for acceptable.

Example 16 % Tire sidewall additional marks.

TL = Tubeless

TT = Tube type, tire with an inner-tube

Made in Country = Name of the manufacturing country

C = Commercial tires made for commercial trucks; Example: 185 R14C

B = Bias ply

SFI = Side facing inwards

SFO = Side facing outwards

TWI = Tire wear index

It is an indicator in the main tire profile, which shows when the tire is
worn down and needs to be replaced.
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151in 16 in 17 in

205 mm 225 mm 245 mm

205/65 R15 225/55 R16 245/45 R17

FIGURE 1.6. The plus one (+1) concept is a rule to find the tire to a rim with
a 1 inch increase in diameter.

SL = Standard load; Tire for normal usage and loads

XL = Extra load; Tire for heavy loads

rf = Reinforced tires

Arrow = Direction of rotation

Some tread patterns are designed to perform better when driven in a
specific direction. Such tires will have an arrow showing which way the tire
should rotate when the vehicle is moving forwards.

Example 17 % Plus one (+1) concept.

The plus one (+1) concept describes the sizing up of a rim and matching
it to a proper tire. Generally speaking, each time we add 1in to the rim
diameter, we should add 20mm to the tire width and subtract 10% from
the aspect ratio. This compensates the increases in rim width and diameter,
and provides the same overall tire radius. Figure 1.6 illustrates the idea.

By using a tire with a shorter sidewall, we get a quicker steering response
and better lateral stability. However, we will have a stiffer ride.

Example 18 s Under- and over-inflated tire.

Overheat caused by improper inflation of tires is a common tire failure.
An under-inflated tire will support less of the vehicle weight with the air
pressure in the tire; therefore, more of the vehicle weight will be supported
by the tire. This tire load increase causes the tire to have a larger tireprint
that creates more friction and more heat.

In an over-inflated tire, too much of the vehicle weight is supported by the
tire air pressure. The vehicle will be bouncy and hard to steer because the
tireprint is small and only the center portion of the tireprint is contacting
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Bead bundle

FIGURE 1.7. lllustration of a sample radial tire interior components and arrange-
ment.

the road surface.

In a properly-inflated tire, approzimately 95% of the vehicle weight is
supported by the air pressure in the tire and 5% is supported by the tire
wall.

1.2 Tire Components

A tire is an advanced engineering product made of rubber and a series
of synthetic materials cooked together. Fiber, textile, and steel cords are
some of the components that go into the tire’s inner liner, body plies, bead
bundle, belts, sidewalls, and tread. Figure 1.7 illustrates a sample of tire
interior components and their arrangement.

The main components of a tire are explained below.

Bead or bead bundle is a loop of high strength steel cable coated with
rubber. It gives the tire the strength it needs to stay seated on the wheel
rim and to transfer the tire forces to the rim.

Inner layers are made up of different fabrics, called plies. The most
common ply fabric is polyester cord. The top layers are also called cap
plies. Cap plies are polyesteric fabric that help hold everything in place.
Cap plies are not found on all tires; they are mostly used on tires with higher
speed ratings to help all the components stay in place at high speeds.

An inner liner is a specially compounded rubber that forms the inside
of a tubeless tire. It inhibits loss of air pressure.
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Belts or belt buffers are one or more rubber-coated layers of steel, poly-
ester, nylon, Kevlar or other materials running circumferentially around
the tire under the tread. They are designed to reinforce body plies to hold
the tread flat on the road and make the best contact with the road. Belts
reduce squirm to improve tread wear and resist damage from impacts and
penetration.

The carcass or body plies are the main part in supporting the tension
forces generated by tire air pressure. The carcass is made of rubber-coated
steel or other high strength cords tied to bead bundles. The cords in a
radial tire, as shown in Figure 1.7, run perpendicular to the tread. The
plies are coated with rubber to help them bond with the other components
and to seal in the air.

A tire’s strength is often described by the number of carcass plies. Most
car tires have two carcass plies. By comparison, large commercial jetliners
often have tires with 30 or more carcass plies.

The sidewall provides lateral stability for the tire, protects the body
plies, and helps to keep the air from escaping from the tire. It may contain
additional components to help increase the lateral stability.

The tread is the portion of the tire that comes in contact with the road.
Tread designs vary widely depending on the specific purpose of the tire. The
tread is made from a mixture of different kinds of natural and synthetic
rubbers. The outer perimeter of a tire is also called the crown.

The tread groove is the space or area between two tread rows or blocks.
The tread groove gives the tire traction and is especially useful during rain
or Snow.

Example 19 Tire rubber main material.

There are two magor ingredients in a Tubber compound: the rubber and the
filler. They are combined in such a way to achieve different objectives. The
objective may be performance optimization, traction mazimization, or better
rolling resistance. The most common fillers are different types of carbon
black and silica. The other tire ingredients are antioxidants, antiozonant,
and anti-aging agents.

Tires are combined with several components and cooked with a heat treat-
ment. The components must be formed, combined, assembled, and cured to-
gether. Tire quality depends on the ability to blend all of the separate com-
ponents into a cohesive product that satisfies the driver’s needs. A modern
tire is a mizture of steel, fabric, and rubber. Generally speaking, the weight
percentage of the components of a tire are:

1— Reinforcements: steel, rayon, nylon, 16%

2— Rubber: natural/synthetic, 38%

3— Compounds: carbon, silica, chalk, 30%

4— Softener: oil, resin, 10%

5— Vulcanization: sulfur, zinc oxide, 4%

6— Miscellaneous, 2%
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Example 20 Tire cords.

Because tires have to carry heavy loads, steel and fabric cords are used in
their construction to reinforce the rubber compound and provide strength.
The most common materials suitable for the tire application are cotton,
rayon, polyester, steel, fiberglass, and aramid.

Example 21 Bead components and preparation.

The bead component of tires is a non-extensible composite loop that an-
chors the carcass and locks the tire into the rim. The tire bead components
include the steel wire loop and apex or bead filler. The bead wire loop is
made from a steel wire covered by rubber and wound around the tire with
several continuous loops. The bead filler is made from a very hard rubber
compound, which is extruded to form a wedge.

Example 22 Tire ply construction.

The number of plies and cords indicates the number of layers of rubber-
coated fabric or steel cords in the tire. In general, the greater the number of
plies, the more weight a tire can support. Tire manufacturers also indicate
the number and type of cords used in the tire.

Example 23 % Tire tread extrusion.

Tire tread, or the portion of the tire that comes in contact with the road,
consists of the tread, tread shoulder, and tread base. Since there are at least
three different rubber compounds used in forming the tread profile, three
rubber compounds are extruded simultaneously into a shared extruder head.

Example 24 % Different rubber types used in tires.

There are five magjor rubbers used in tire production: natural rubber,
styrene-butadiene rubber (SBR), polybutadiene rubber (BR), butyl rubber,
and halogenated butyl rubber. The first three are primarily used for tread
and sidewall compounds, while butyl rubber and halogenated butyl rubber
are primarily used for the inner liner and the inside portion that holds the
compressed air inside the tire.

Example 25 % History of rubber.

About 2500 years ago, people living in Central and South America used
the sap and latex of a local tree to waterproof their shoes, and clothes. This
material was introduced to the first pilgrim travelers in the 17th century.
The first application of this new material was discovered by the English as
an eraser. This application supports the name rubber, because it was used
for rubbing out pencil marks. The rubber pneumatic tires were invented in
1845 and its production began in 1888.

The natural rubber is a mizture of polymers and isomers. The main rub-
ber isomer is shown in Figure 1.8 and is called isoprene. The natural
rubber may be vulcanized to make longer and stronger polyisopren, suitable
for tire production. Vulcanization is usually done by sulfur as cross-links.
Figure 1.9 illustrates a vulcanized rubber polymer.
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FIGURE 1.8. Illustration of the monomer unit of natural rubber.
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FIGURE 1.9. Illustration of a vulcanized rubber.

Example 26 % A world without rubber.

Rubber is the main material used to make a tire compliant. A compliant
tire can stick to the road surface while it goes out of shape and provides
distortion to move in another direction. The elastic characteristic of a tire
allows the tire to be pointed in a direction different than the direction the
car is pointed. There is no way for a vehicle to turn without rubber tires,
unless it moves at a very low speed. If vehicles were equipped with only
noncompliant wheels then trains moving on railroads would be the main
travelling vehicles. People could not live too far from the railways and there
would not be much use for bicycles and motorcycles.

1.3 Radial and Non-Radial Tires

Tires are divided in two classes: radial and non-radial, depending on the
angle between carcass metallic cords and the tire-plane. Each type of tire
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FIGURE 1.10. Examples of a non-radial tire’s interior components and arrange-
ment.

construction has its own set of characteristics that are the key to its per-
formance.

The radial tire is constructed with reinforcing steel cable belts that are
assembled in parallel and run side to side, from one bead to another bead at
an angle of 90 deg to the circumferential centerline of the tire. This makes
the tire more flexible radially, which reduces rolling resistance and improves
cornering capability. Figure 1.7 shows the interior structure and the carcass
arrangement of a radial tire.

The non-radial tires are also called bias-ply and cross-ply tires. The plies
are layered diagonal from one bead to the other bead at about a 30deg
angle, although any other angles may also be applied. One ply is set on
a bias in one direction as succeeding plies are set alternately in opposing
directions as they cross each other. The ends of the plies are wrapped
around the bead wires, anchoring them to the rim of the wheel. Figure
1.10 shows the interior structure and the carcass arrangement of a non-
radial tire.

The most important difference in the dynamics of radial and non-radial
tires is their different ground sticking behavior when a lateral force is ap-
plied on the wheel. This behavior is shown in Figure 1.11. The radial tire,
shown in Figure 1.11(a), flexes mostly in the sidewall and keeps the tread
flat on the road. The bias-ply tire, shown in Figure 1.11(b) has less contact
with the road as both tread and sidewalls distort under a lateral load.

The radial arrangement of carcass in a radial tire allows the tread and
sidewall act independently. The sidewall flexes more easily under the weight
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(a) Radial tire (b) Non-Radial tire

FIGURE 1.11. Ground-sticking behavior of radial and non-radial tires in the
presence of a lateral force.

of the vehicle. So, more vertical deflection is achieved with radial tires. As
the sidewall flexes under the load, the belts hold the tread firmly and
evenly on the ground and reduces tread scrub. In a cornering maneuver,
the independent action of the tread and sidewalls keeps the tread flat on
the road. This allows the tire to hold its path. Radial tires are the preferred
tire in most applications today.

The cross arrangement of carcass in bias-ply tires allows it act as a unit.
When the sidewalls deflect or bend under load, the tread squeezes in and
distorts. This distortion affects the tireprint and decrease traction. Because
of the bias-ply inherent construction, sidewall strength is less than that of
a radial tire’s construction and cornering is less effective.

Example 27 Increasing the strength of tires.

The strength of bias-ply tires increases by increasing the number of plies
and bead wires. However, more plies means more mass, which increases heat
and reduces tire life. To increase a radial tire’s strength, larger diameter
steel cables are used in the tire’s carcass.

Example 28 Tubeless and tube-type tire construction.

A tubeless tire is similar in construction to a tube-type tire, except that a
thin layer of air and moisture-resistant rubber is used on the inside of the
tubeless tire from bead to bead to obtain an internal seal of the casing. This
eliminates the need for a tube and flap. Both tires, in equivalent sizes, can
carry the same load at the same inflation pressure.

Example 29 % New shallow tires.

Low aspect ratio tires are radial tubeless tires that have a section width
wider than their section height. The aspect ratio of these tires is between
50% to 30%. Therefore, shallow tires have shorter sidewall heights and
wider tread widths. This feature improves stability and handling from a
higher lateral spring rates.
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Example 30 % Tire function.

A tire is a pneumatic system to support a vehicle’s load. Tires support
a vehicle’s load by using compressed air to create tension in the carcass
plies. Tire carcass are a series of cords that have a high tension strength,
and almost no compression strength. So, it is the air pressure that creates
tension in the carcass and carries the load. In an inflated and unloaded tire,
the cords pull equally on the bead wire all around the tire. When the tire is
loaded, the tension in the cords between the rim and the ground is relieved
while the tension in other cords is unchanged. Therefore, the cords opposite
the ground pull the bead upwards. This is how pressure is transmitted from
the ground to the rim.

Besides vertical load carrying, o tire must transmit acceleration, braking,
and cornering forces to the road. These forces are transmitted to the rim
in a similar manner. Acceleration and braking forces also depend on the
friction between the rim and the bead. A tire also acts as a spring between
the rim and the road.

1.4 Tread

The tread pattern is made up of tread lugs and tread wvoids. The lugs are
the sections of rubber that make contact with the road and voids are the
spaces that are located between the lugs. Lugs are also called slots or blocks,
and voids are also called grooves. The tire tread pattern of block-groove
configurations affect the tire’s traction and noise level. Wide and straight
grooves running circumferentially have a lower noise level and high lateral
friction. More lateral grooves running from side to side increase traction
and noise levels. A sample of a tire tread is shown in Figure 1.12.

Tires need both circumferential and lateral grooves. The water on the
road is compressed into the grooves by the vehicle’s weight and is evacuated
from the tireprint region, providing better traction at the tireprint contact.
Without such grooves, the water would not be able to escape out to the
sides of the wheel. This would causes a thin layer of water to remain between
the road and the tire, which causes a loss of friction with the road surface.
Therefore, the grooves in the tread provide an escape path for water.

On a dry road, the tire treads reduce grip because they reduce the contact
area between the rubber and the road. This is the reason for using treadless
or slick tires at smooth and dry race tracks.

The mud-terrain tire pattern is characterized by large lugs and large
voids. The large lugs provide large bites in poor traction conditions and
the large voids allow the tire to clean itself by releasing and expelling the
mud and dirt. The all-terrain tire pattern is characterized by smaller voids
and lugs when compared to the mud terrain tire. A denser pattern of lugs
and smaller voids make all-terrain tires quieter on the street. However,
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FIGURE 1.12. A sample of tire tread to show lugs and voids.

smaller voids cannot clean themselves easily and if the voids fill up with
mud, the tire loses some of it’s traction. The all-terrain tire is good for
highway driving.

Example 31 Asymmetrical and directional tread design.

The design of the tread pattern may be asymmetric and change from one
side to the other. Asymmetric patterns are designed to have two or more
different functions and provide a better overall performance.

A directional tire is designed to rotate in only one direction for mazimum
performance. Directional tread pattern is especially designed for driving on
wet, snowy, or muddy roads. A non-directional tread pattern is designed to
rotate in either direction without sacrificing in performance.

Example 32 Self-cleaning.

Self-cleaning is the ability of a tire’s tread pattern to release mud or
material from the voids of tread. This ability provides good bite on every
rotation of the tire. A better mud tire releases the mud or material easily
from the tread voids.

1.5 % Hydroplaning

Hydroplaning is sliding of a tire on a film of water. Hydroplaning can occur
when a car drives through standing water and the water cannot totally
escape out from under the tire. This causes the tire to lift off the ground
and slide on the water. The hydroplaning tire will have little traction and
therefore, the car will not obey the driver’s command.



1. Tire and Rim Fundamentals 19

Tire

Water film

Ground plane

FIGURE 1.13. Illustration of hydroplaning phnomena.

Deep grooves running from the center front edge of the tireprint to the
corners of the back edges, along with a wide central channel help water
to escape from under the tire. Figure 1.13 illustrates the hydroplaning
phenomena when the tire is riding over a water layer.

There are three types of hydroplaning: dynamic, viscous, and rubber
hydroplaning. Dynamic hydroplaning occurs when standing water on a wet
road is not displaced from under the tires fast enough to allow the tire to
make pavement contact over the total tireprint. The tire rides on a wedge of
water and loses its contact with the road. The speed at which hydroplaning
happens is called hydroplaning speed.

Viscous hydroplaning occurs when the wet road is covered with a layer
of oil, grease, or dust. Viscous hydroplaning happens with less water depth
and at a lower speed than dynamic hydroplaning.

Rubber hydroplaning is generated by superheated steam at high pressure
in the tireprint, which is caused by the friction-generated heat in a hard
braking.

Example 33 Aeronautic hydroplaning speed.
In aerospace engineering the hydroplaning speed is estimated in [knots]

by
vi = 9P (1.6)

where, p is tire inflation pressure in [psi).
For main wheels of a BT57 aircraft, the hydroplaning speed would be

op = 9144
108 knots = 55.5m/ s.

Equation (1.6) for a metric system would be
v, = 5.5753 x 1072/p (1.7)

where vy is in [m/s] and p is in [Pa]. As an exzample, the hydroplaning
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A

7

Tireprint

FIGURE 1.14. A tireprint.

speed of a car using tires with pressure 28psi ~ 193053 Pa is

5.5753 x 1072v/193053

24.5m/ s (1.8)
47.6knots ~ 88.2km/h &~ 54.8 mi/ h.

Vg

Q

1.6 Tireprint

The contact area between a tire and the road is called the tireprint and is
shown by Ap. At any point of a tireprint, the normal and friction forces are
transmitted between the road and tire. The effect of the contact forces can
be described by a resulting force system including force and torque vectors
applied at the center of the tireprint.

The tireprint is also called contact patch, contact region, or tire footprint.
A simplified model of tireprint is shown in Figure 1.14.

The area of the tireprint is inversely proportional to the tire pressure.
Lowering the tire pressure is a technique used for off-road vehicles in sandy,
muddy, or snowy areas, and for drag racing. Decreasing the tire pressure
causes the tire to slump so more of the tire is in contact with the surface,
giving better traction in low friction conditions. It also helps the tire grip
small obstacles as the tire conforms more to the shape of the obstacle, and
makes contact with the object in more places. Low tire pressure increases
fuel consumption, tire wear, and tire temperature.

Example 34 Uneven wear in front and rear tires.

In most vehicles, the front and rear tires will wear at different rates. So,
it is advised to swap the front and rear tires as they wear down to even out
the wear patterns. This is called rotating the tires.
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FIGURE 1.15. Illustration of a wheel and its dimensions.

Front tires, especially on front-wheel drive vehicles, wear out more quickly
than rear tires.

1.7 Wheel and Rim

When a tire is installed on a rim and is inflated, it is called a wheel. A wheel
is a combined tire and rim. The rim is the metallic cylindrical part where
the tire is installed. Most passenger cars are equipped with steel rims. The
steel rim is made by welding a disk to a shell. However, light alloy rims
made with light metals such as aluminium and magnesium are also popular.
Figure 1.15 illustrates a wheel and the most important dimensional names.

A rim has two main parts: flange and spider. The flange or hub is the ring
or shell on which the tire is mounted. The spider or center section is the
disc section that is attached to the hub. The rim width is also called pan
width and measured from inside to inside of the bead seats of the flange.
Flange provides lateral support to the tire. A flange has two bead seats
providing radial support to the tire. The well is the middle part between
the bead seats with sufficient depth and width to enable the tire beads to
be mounted and demounted on the rim. The rim hole or valve aperture is
the hole or slot in the rim that accommodates the valve for tire inflation.

There are two main rim shapes: 1— drop center rim (DC) and, 2— wide
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Rim width Rim width
Rim diameter Rim diameter
DC rim WDC rim
Rim width >
Hump

Rim diameter
WDCH rim

FIGURE 1.16. Illustration of DC, WDC, and WDCH rims and their geometry.

7%2-JJX15 55 5-1143

71/2 Rim width [in]
Flange shape code
Rim diameter [in]

Offset [mm]

Q| =

Number of bolts
11

~

.3 Pitch circle diameter

FIGURE 1.17. A sample rim number.

drop center rim (WDC). The WDC may also come with a hump. The
humped W DC' may be called W DCH. Their cross sections are illustrated
in Figure 1.16.

Drop center (DC) rims usually are symmetric with a well between the
bead seats. The well is built to make mounting and demounting the tire
easy. The bead seats are around 5deg tapered. Wide drop center rims
(WDC) are wider than DC rims and are built for low aspect ratio tires.
The well of WDC rims are shallower and wider. Today, most passenger
cars are equipped with W DC' rims. The W DC' rims may be manufactured
with a hump behind the bead seat area to prevent the bead from slipping
down.

A sample of rim numbering and its meaning is shown in Figure 1.17.
Rim width, rim diameter, and offset are shown in Figure 1.15. Offset is
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Rim

Spindle

FIGURE 1.18. lllustration of a wheel attched to the spindle axle.

the distance between the inner plane and the center plane of the rim. A
rim may be designed with a negative, zero, or positive offset. A rim has a
positive offset if the spider is outward from the center plane.

The flange shape code signifies the tire-side profile of the rim and can be
B,C,D,E F,G,J,JJ, JK, and K. Usually the profile code follows the
nominal rim width but different arrangements are also used. Figure 1.18
illustrates how a wheel is attached to the spindle axle.

Example 35 Wire spoke wheel.

A rim that uses wires to connect the center part to the exterior flange
is called a wire spoke wheel, or simply a wire wheel. The wires are called
spokes. This type of wheel is usually used on classic vehicles. The high-
power cars do not use wire wheels because of safety. Figure 1.19 depicts
two examples of wire spoke wheels.

Example 36 Light alloy rim material.

Metal is the main material for manufacturing, rims, however, new com-
posite materials are also used for rims occasionally. Composite material
rims are usually thermoplastic resin with glass fiber reinforcement, devel-
oped mainly for low weight. Their strength and heat resistance still need
improvement before being a proper substitute for metallic rims.

Other than steel and composite materials, light alloys such as aluminum,
magnesium, and titanium are used for manufacturing rims.

Aluminum is very good for its weight, thermal conductivity, corrosion re-
sistance, easy casting, low temperature, easy machine processing, and recy-
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Center line Center line

FIGURE 1.19. Two samples of wire spoke wheel.

Ground plane Magnesium rim  Aluminum rim Steel rim

FIGURE 1.20. The difference between aluminum, magnesium, and steel rims in
regaining road contact after a jump.

cling. Magnesium is about 30% lighter than aluminum, and is excellent for
size stability and impact resistance. However, magnesium is more expensive
and it is used mainly for luxury or racing cars. The corrosion resistance of
magnesium s not as good as aluminum. Titanium is much stronger than
aluminum with excellent corrosion resistance. However, titanium is expen-
sive and hard to be machine processed.

The difference between aluminum, magnesium, and steel rims is illus-
trated in Figure 1.20. Light weight wheels regain contact with the ground
quicker than heavier wheels.

Example 37 Spare tire.

Road vehicles typically carry a spare tire, which is already mounted on a
rim ready to use in the event of flat tire. After 1980, some cars have been
equipped with spare tires that are smaller than normal size. These spare
tires are called doughnuts or space-saver spare tires. Although the doughnut
spare tire is not very useful or popular, it can help to save a little space,
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weight, cost, and gas mileage. Doughnut spare tires can not be driven far
or fast.

Example 38 Wheel history.

Stone and wooden wheels were invented and used somewhere in the Mid-
dle Fast about 5000 years ago. Hard wheels have some inefficient character-
istics namely poor traction, low friction, harsh ride, and poor load carrying
capacity.

Solid rubber tires and air tube tires began to be used in the late nineteen
and early twentieth century.

1.8 Vehicle Classifications

Road vehicles are usually classified based on their size and number of axles.
Although there is no standard or universally accepted classification method,
there are a few important and applied vehicle classifications.

1.8.1 1SO and FHWA Classification
ISO3833 classifies ground vehicles in 7 groups:

1— Motorcycles

2— Passenger cars

3— Busses

4— Trucks

5— Agricultural tractors

6— Passenger cars with trailer

7— Truck trailer/semi trailer road trains

The Federal Highway Administration (FHWA) classifies road vehicles
based on size and application. All road vehicles are classified in 13 classes
as described below:

1— Motorcycles

2— Passenger cars, including cars with a one-axle or two-axle trailer

3— Other two-axle vehicles, including: pickups, and vans, with a one-axle
or two-axle trailer

4— Buses

5— Two axle, six-tire single units

6— Three-axle single units

7— Four or more axle single units

8— Four or fewer axle single trailers

9— Five-axle single trailers

10— Six or more axle single trailers

11— Five or less axle multi-trailers
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12— Six-axle multi-trailers
13— Seven or more axle multi-trailers

Figure 1.21 illustrates the FHWA classification. The definition of FHWA
classes follow.

Motorcycles: Any motorvehicle having a seat or saddle and no more
than three wheels that touch the ground is a motorcycle. Motorcycles,
motor scooters, mopeds, motor-powered or motor-assisted bicycles, and
three-wheel motorcycles are in this class. Motorcycles are usually, but not
necessarily, steered by handlebars. Figure 1.22 depicts a three-wheel mo-
torcycle.

Passenger Cars: Street cars, including sedans, coupes, and station wag-
ons manufactured primarily for carrying passengers, are in this class. Fig-
ure 1.23 illustrates a two-door passenger car. Passenger cars are also called
street cars, automobiles, or autos.

Other Two-Azle, Four-Tire Single-Unit Vehicles: All two-axle, four-tire
vehicles other than passenger cars make up this class. This class includes
pickups, panels, vans, campers, motor homes, ambulances, hearses, car-
ryalls, and minibuses. Other two-axle, four-tire single-unit vehicles pulling
recreational or light trailers are also included in this class. Distinguishing
class 3 from class 2 is not clear, so these two classes may sometimes be
combined into class 2.

Buses: A motor vehicle able to carry more than ten persons is a bus.
Buses are manufactured as traditional passenger-carrying vehicles with two
axles and six tires. However, buses with three or more axles are also man-
ufactured.

Two-Azxle, Siz-Tire, Single-Unit Trucks: Vehicles on a single frame in-
cluding trucks, camping and recreational vehicles, motor homes with two
axles, and dual rear wheels are in this class.

Three-Axle Single-Unit Trucks: Vehicles having a single frame including
trucks, camping, recreational vehicles, and motor homes with three axles
are in this class.

Four-or-More-Azxle-Single- Unit Trucks: All trucks on a single frame with
four or more axles make up this class.

Four-or-Fewer-Azxle Single-Trailer Trucks: Vehicles with four or fewer
axles consisting of two units, one of which is a tractor or straight truck
power unit, are in this class.

Five-Azle Single- Trailer Trucks: Five-axle vehicles consisting of two units,
one of which is a tractor or straight truck power unit, are in this class.

Six-or-More-Axle Single-Trailer Trucks: Vehicles with six or more axles
consisting of two units, one of which is a tractor or straight truck power
unit, are in this class.

Five-or-Fewer-Azle Multi- Trailer Trucks: Vehicles with five or fewer axles
consisting of three or more units, one of which is a tractor or straight truck
power unit, are in this class.
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FIGURE 1.21. The FHWA vehicle classification.
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FIGURE 1.23. A two-door passenger car.

Siz-Axle Multi-Trailer Trucks: Six-axle vehicles consisting of three or
more units, one of which is a tractor or straight truck power unit, are in
this class.

Seven or More Axle Multi-Trailer Trucks: Vehicles with seven or more
axles consisting of three or more units, one of which is a tractor or straight
truck power unit are in this class.

The classes 6 to 13 are also called truck. A truck is a motor vehicle
designed primarily for carrying load and/or property.

1.8.2  Passenger Car Classifications

A passenger car or automobile is a motorvehicle designed for carrying ten
or fewer persons. Automobiles may be classified based on their size and
weight. Size classification is based on wheelbase, the distance between front
and rear axles. Weight classification is based on curb weight, the weight of
an automobile with standard equipment, and a full complement of fuel
and other fluids, but with no load, persons, or property. The wheelbase is
rounded to the nearest inch and the curb weight to the nearest 1001b ~
50 kg before classification.

For a size classification, passenger car may be classified as a small, mid-
size, and large car. Small cars have a wheelbase of less than 99in ~ 2.5 m,
midsize cars have a wheelbase of less than 109in ~ 2.8 m and greater than
100in ~ 2.5 m, and large cars have a wheelbase of more than 110in ~ 2.8 m.
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Each class may also be divided further.

For a weight classification, passenger car may be classified as light, mid-
weight, and heavy. Light weight cars have a curb weight of less than 24001b ~
1100 kg, midweight cars have a curb weight of less than 34001b = 1550 kg
and more than 25001b =~ 1150kg, and heavy cars have a curb weight of
more than 35001b ~ 1600 kg. Each class may also be divided in some sub-
divisions.

Dynamically, passenger cars may be classified by their type of suspension,
engine, driveline arrangement, weight distribution, or any other parameters
that affect the dynamics of a car. However, in the market, passenger cars
are usually divided into the following classes according to the number of
passengers and load capacity.

1— Economy

2— Compact

3— Intermediate

4— Standard Size
5— Full Size

6— Premium Luxury
7— Convertible Premium
8— Convertible

9— Minivan

10— Midsize

11- SUV

In another classification, cars are divided according to size and shape.
However, using size and shape to classify passenger cars is not clear-cut;
many vehicles fall in between classes. Also, not all are sold in all countries,
and sometimes their names differ between countries. Common entries in the
shape classification are the sedan, coupe, convertible, minivan/van, wagon,
and SUV.

A sedan is a car with a four-door body configuration and a conventional
trunk or a sloping back with a hinged rear cargo hatch that opens upward.

A coupe is a two-door car.

A convertible is a car with a removable or retractable top.

A minivan/van is a vehicle with a box-shaped body enclosing a large
cargo or passenger area. The identified gross weight of a van is less than
100001b ~ 4500 kg. Vans can be identifiable by their enclosed cargo or pas-
senger area, short hood, and box shape. Vans can be divided into mini van,
small van, midsize van, full-size van, and large van. The van subdivision
has the same specifications as SUV subdivisions.

A wagon is a car with an extended body and a roofline that extends past
the rear doors.

An SUV (sport utility vehicle) is a vehicle with off-road capability. SUV
is designed for carrying ten or fewer persons, and generally considered a
multi-purpose vehicle. Most SUVs are four-wheel-drive with and increased
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ground clearance. The SUV is also known as 4-by-4, 4W D, 4 x 4 or 4z4.
SUVs can be divided into mini, small, midsize, full-size, and large SUV.

Mini SUVs are those with a wheelbase of less than or equal to 88in ~
224cm. A mini SUV is typically a microcar with a high clearance, and
off-road capability. Small SUVs have a wheelbase of greater than 88in ~
224 cm with an overall width of less than 66in ~ 168cm. Small SUVs
are short and narrow 4 x 4 multi-purpose vehicles. Midsize SUVs have a
wheelbase of greater than 88in ~ 224 cm with an overall width greater
than 66 in ~ 168 cm, but less than 75in &~ 190 cm. Midsize SUVs are 4 x 4
multi-purpose vehicles designed around a shortened pickup truck chassis.
Full-size SUVs are made with a wheelbase greater than 88in ~ 224 cm and
a width between 75in ~ 190 cm and 80 in ~ 203 cm. Full-size SUVs are 4 x4
multi-purpose vehicles designed around an enlarged pickup truck chassis.
Large SUVs are made with a wheelbase of greater than 88in ~ 224 cm and
a width more than 80in ~ 203 cm.

Because of better performance, the vehicle manufacturing companies are
going to make more cars four-wheel-drive. So, four-wheel-drive does not
refer to a specific class of cars anymore.

A truck is a vehicle with two or four doors and an exposed cargo box. A
light truck has a gross weight of less than 100001b ~ 4500 kg. A medium
truck has a gross weight from 100001b ~ 4 500 kg to 26 0001b ~ 12 000 kg.
A heavy truck is a truck with a gross weight of more than 26 0001b ~
12000 kg.

1.8.8 Passenger Car Body Styles

Passenger cars are manufactured in so many different styles and shapes.
Not all of those classes are made today, and some have new shapes and still
carry the same old names. Some of them are as follows:

Convertible or cabriolet cars are automobiles with removable or retractable
rooves. There are also the subdivisions cabrio coach or semi-convertible
with partially retractable rooves.

Coupé or coupe are two-door automobiles with two or four seats and a
fixed roof. In cases where the rear seats are smaller than regular size, it is
called a two-plus-two or 2 + 2. Coupé cars may also be convertible.

Crossover SUV or XUV cars are smaller sport utility vehicles based on
a car platform rather than truck chassis. Crossover cars are a mix of SUV,
minivan, and wagon to encompass some of the advantages of each.

Estate car or just estate is the British/English term for what North
Americans call a station wagon.

Hardtop cars are those having a removable solid roof on a convertible car.
However, today a fixed-roof car whose doors have no fixed window frame
are also called a hardtops.

Hatchback cars are identified by a rear door, including the back window
that opens to access a storage area that is not separated from the rest of
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the passenger compartment. A hatchback car may have two or four doors
and two or four seats. They are also called three-door, or five-door cars. A
hatchback car is called a liftback when the opening area is very sloped and
is lifted up to open.

A limousine is a chauffeur-driven car with a glass-window dividing the
front seats from the rear. Limousines are usually an extended version of a
luxury car.

Minivans are boxy wagon cars usually containing three rows of seats,
with a capacity of six or more passengers and extra luggage space.

An MPV (multi-purpose vehicle) is designed as large cars or small buses
having off-road capability and easy loading of goods. However, the idea
for a car with a multi-purpose application can be seen in other classes,
especially SUVs.

Notchback cars are something between the hatchback and sedan. Notch-
back is a sedan with a separate trunk compartment.

A pickup truck (or simply pickup) is a small or medium-sized truck with
a separate cabin and rear cargo area. Pickups are made to act as a personal
truck, however they might also be used as light commercial vehicles.

Sedan is the most common body style that are cars with four or more
seats and a fixed roof that is full-height up to the rear window. Sedans can
have two or four doors.

Station wagon or wagon is a car with a full-height body all the way to the
rear; the load-carrying space created is accessed via a rear door or doors.

1.9 Summary

Tires are the only component of a vehicle to transfer forces between the road
and the vehicle. Tire classification parameters are indicated on the sidewall,
such as dimensions, maximum load-carrying capacity, and maximum speed
index. A sample of tire size and performance code is shown in Figure 1.24
and their definitions are explained as follows:

P 215/60R15 96 H

FIGURE 1.24. A sample of tire size.

stands for passenger car. is the unloaded tire width, in [mm].

is the aspect ratio of the tire, sp = Z—? x 100, which is the section
height to tire width, expressed as a percentage. stands for radial.

is the rim diameter that the tire is designed to fit in [in]. is the

load index, and is the speed rate index.
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Road vehicles are usually classified based on their size and number of
axles. There is no universally accepted standard classification, however,
ISO and FHWA present two important classifications in North America.
ISO3833 classifies ground vehicles into seven groups:

1- Motorcycles

2- Passenger cars

3- Busses

4- Trucks

5- Agricultural tractors

6- Passenger cars with trailer

7- Truck trailer /semitrailer road trains

FHWA classifies all road vehicles into 13 classes:Motorcycles

1- Motorcycles

2- Passenger cars with one or two axles trailer
3- Other two-axle four-wheel single units
4- Buses

5- Two-axle six-wheel single units

6- Three-axle single units

7- Four-or-more-axle single units
8-Four-or-less-axle single trailers
9-Five-axle single trailers
10-Six-or-more-axle single trailers
11-Five-or-less-axle multi-trailers
12-Six-axle-multi-trailers
13-Seven-or-more-axle multi-trailers
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tireprint area

bias ply tire

tire diameter

diagonal

drop center rim

Department of Transportation
Federal Highway Administration
section height

speed rate

humped wide drop center rim
light truck

mud and snow

tire inflation pressure
passenger car

radial tire

aspect ratio

special trailer

temporary tire

hydroplaning speed

forward velocity of vehicle
tire width

wide drop center rim
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Exercises

1. Problem of tire beads.

Explain what would be the possible problem for a tire that has tight
or loose beads.

2. Tire size codes.

Explain the meaning of the following tire size codes:

10.00R20 14(G)

(b)
18.4R46
(c)
480/80R46155A8

(d)

18.4 — 38(10)
(e)

76 x 50.00B32 = 1250/45B32

(f)

LT255/85B16
(8)

33212.50R15LT

3. Tire height and diameter.
Find the tire height A7 and diameter D for the following tires.

(a)
480/80R46 155A8

(b)
P215/65R15 96 H
4. % Plus one.
Increase 1in to the diameter of the rim of the following tires and find

a proper tire for the new rim.

P215/65R15 96 H
P215/60R15 96 H
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. Tire of Porsche 911 turbo®™ .

A model of Porsche 911 turbo? uses the following tires.

front 235/35ZR19
rear 305/30ZR19

Determine and compare hr, and D for the front and rear tires.

. Tire of Porsche Cayenne turbo’™.

A model of Porsche Cayenne turbo”™ is an all-wheel-drive that uses
the following tire.
255/55R18

What is the angular velocity of its tires when it is moving at the top
speed v = 171mi/ h ~ 275km/h?

. Tire of Ferrari P 4/5 by Pininfarina”™.

A model of Ferrari P 4/5 by Pininfarina’™ is a rear-wheel-drive sport
car that uses the following tires.

front 255/35ZR20
rear 335/30ZR20

What is the angular velocity of its tires when it is moving at the top
speed v = 225mi/h & 362km/h?

. Tire of Mercedes-Benz SLR 722 Edition™™.

A model of Mercedes-Benz SLR 722 Edition” uses the following
tires.

front 255/35R19

rear 295/30R19

What is the speed of this car if its rear tires are turning at
w = 2000 rmp.
At that speed, what would be the angular velocity of the front tires?

. Tire of Chevrolet Corvette Z067M

A model of Chevrolet Corvette Z067™ uses the following tires.

front 275/35ZR18
rear 325/30ZR19

What is the speed of this car if its rear tires are turning at
w = 2000 rmp.

At that speed, what would be the angular velocity of the front tires?
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10. Tire of Koenigsegg CCXTM,
Koenigsegg CCX™™ is a sport car, equipped with the following tires.

front 255/35R19
rear  335/30R20

What is the angular speed ratio of the rear tire to the front tire?
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Forward Vehicle Dynamics

Straight motion of an ideal rigid vehicle is the subject of this chapter.
We ignore air friction and examine the load variation under the tires to
determine the vehicle’s limits of acceleration, road grade, and kinematic
capabilities.

2.1 Parked Car on a Level Road

When a car is parked on level pavement, the normal force, F,, under each
of the front and rear wheels, F,,, F,,, are

mg— (2.1)
mg— (2.2)

where, a7 is the distance of the car’s mass center, C', from the front axle,
as is the distance of C' from the rear axle, and [ is the wheel base.

l=a;+ a9 (2.3)
z
A
ar aj

\j
2F22 mg 2Fz]

FIGURE 2.1. A parked car on level pavement.
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Proof. Consider a longitudinally symmetrical car as shown in Figure 2.1.
It can be modeled as a two-axel vehicle. A symmetric two-axel vehicle is
equivalent to a rigid beam having two supports. The vertical force under
the front and rear wheels can be determined using planar static equilibrium
equations.

> F.=0 (2.4)
> M, =0 (2.5)
Applying the equilibrium equations

2F,, +2F,, —mg=0 (2.6)
—2lea1 + 2F22a2 =0 (27)

provide the reaction forces under the front and rear tires.

1 a
Fa = 7™M a +2a2
= %mg% (2.8)
1 a
Fo = 7™M a +1612
= %mg% (2.9)

Example 39 Reaction forces under wheels.
A car has 890kg mass. Its mass center, C, is T8 cm behind the front
wheel axis, and it has a 235 cm wheel base.

a; =0.78m (2.10)
[=2.35m (2.11)
m = 890kg (2.12)

The force under each front wheel is

1 a9
le = §mgT
1 2.35 —0.78
= 5890 x 9.81 x —o3 = 2916.5N (2.13)
and the force under each rear wheel is
1 aq
F22 = §mgT
1 0.78
= 5890 x 9.81 x 235 = 1449 N. (2.14)
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Example 40 Mass center position.
Equations (2.1) and (2.2) can be rearranged to calculate the position of
mass center.

21

a = m_gF22 (2.15)
21
g = m_ngl (216)

Reaction forces under the front and rear wheels of a horizontally parked
car, with a wheel base | = 2.34m, are:

F., = 2000N (2.17)
F., = 1800N (2.18)

Therefore, the longitudinal position of the car’s mass center is at

a; = _Fzz

2.34
—o =% 1800 = 1.1084 2.19
2 (2000 + 1800) m (2.19)

2.34
—2 =% 9000 = 1.2316m. 2.2
5(2000 + 1800) 2000 =1.2316m (2:20)

Example 41 Longitudinal mass center determination.

The position of mass center C' can be determined experimentally. To
determine the longitudinal position of C', we should measure the total weight
of the car as well as the force under the front or the rear wheels. Figure 2.2
illustrates a situation in which we measure the force under the front wheels.

Assuming the force under the front wheels is 2F,,, the position of the
mass center is calculated by static equilibrium conditions

Y F.=0 (2.21)
> M, =o. (2.22)
Applying the equilibrium equations

2F,, +2F,, —mg =0 (2.23)
—2F. a1 + 2F.,a5 = 0 (2.24)
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FIGURE 2.2. Measuring the force under the front wheels.

provide the longitudinal position of C and the reaction forces under the rear
wheels.

2
[ —F‘Z2
mg
2L (g — 2F..) (2.95)
= — (mg — 2F, .
mg g 1
1
F,, = B (mg — 2F.,) (2.26)

Example 42 Lateral mass center determination.

Most cars are approximately symmetrical about the longitudinal center
plane passing the middle of the wheels, and therefore, the lateral position of
the mass center C' is close to the center plane. However, the lateral position
of C' may be calculated by weighing one side of the car.

Example 43 Height mass center determination.

To determine the height of mass center C, we should measure the force
under the front or rear wheels while the car is on an inclined surface. Fx-
perimentally, we use a device such as ts shown in Figure 2.3. The car is
parked on a level surface such that the front wheels are on a scale jack. The
front wheels will be locked and anchored to the jack, while the rear wheels
will be left free to turn. The jack lifts the front wheels and the required
vertical force applied by the jacks is measured by a load cell.

Assume that we have the longitudinal position of C' and the jack is lifted
such that the car makes an angle ¢ with the horizontal plane. The slope
angle ¢ 1is measurable using level meters. Assuming the force under the
front wheels is 2F,,, the height of the mass center can be calculated by
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FIGURE 2.3. Measuring the force under the wheels to find the height of the mass
center.

static equilibrium conditions

> Fz=0 (2.27)
> M, =o0. (2.28)

Applying the equilibrium equations

2F,, +2F,, —mg = 0 (2.29)
—2F,, (a1 cos¢ — (h — R)sin¢)
+2F., (azcos¢p+ (h— R)sing) = 0 (2.30)

provides the vertical position of C' and the reaction forces under the rear
wheels.

1
F,, = 3mg — F,, (2.31)
o F,, (Rsin¢ + ay cos @) + F, (Rsin ¢ — ag cos ¢)
mgsin ¢
Fz - Fz
=R+ o e B ) cot ¢
mg

=R+ (2 Fey l— a2> cot ¢ (2.32)
mg
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A car with the following specifications

m = 2000kg
2F,, = 18000N
¢ = 30deg =~ 0.5236 rad (2.33)
ap = 110cm
I = 230cm
R = 30cm
has a C at height h.
h=34cm (2.34)

There are three assumptions in this calculation: 1— the tires are assumed
to be rigid disks with radius R, 2— fluid shift, such as fuel, coolant, and oil,
are ignored, and 3— suspension deflections are assumed to be zero.

Suspension deflection generates the mazimum effect on height determi-
nation error. To eliminate the suspension deflection, we should lock the
suspension, usually by replacing the shock absorbers with rigid rods to keep
the vehicle at its ride height.

Example 44 Different front and rear tires.

Depending on the application, it is sometimes necessary to use different
type of tires and wheels for front and rear axles. When the longitudinal
position of C' for a symmetric vehicle is determined, we can find the height
of C by measuring the load on only one axle. As an example, consider the
motorcycle in Figure 2.4. It has different front and rear tires.

Assume the load under the rear wheel of the motorcycle F, is known.
The height h of C can be found by taking a moment of the forces about the
tireprint of the front tire.

F, Lo H R R,
M — al coSs (Sln 1 ) + f + (2.35)
mg a1 + as 2

Example 45 Statically indeterminate.

A wehicle with more than three wheels is statically indeterminate. To
determine the vertical force under each tire, we need to know the mechanical
properties and conditions of the tires, such as the value of deflection at the
center of the tire, and its vertical stiffness.

h:

2.2 Parked Car on an Inclined Road

When a car is parked on an inclined pavement as shown in Figure 2.5, the
normal force, F},, under each of the front and rear wheels, F},, F,, is:
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FIGURE 2.4. A motorcycle with different front and rear tires.

1 1 h
F,, = Emg% cos ¢ + M7 sin ¢ (2.36)
1 1 h
F., = —mgﬂ cos ¢ — =mg—sin ¢ (2.37)
2 l 2 l
= a1+ as

where, ¢ is the angle of the road with the horizon. The horizon is perpen-
dicular to the gravitational acceleration g.

Proof. Consider the car shown in Figure 2.5. Let us assume the parking
brake forces are applied on only the rear tires. It means the front tires are
free to spin. Applying the planar static equilibrium equations

> F.=0 (2.38)
Y F.=0 (2.39)
> M, =0 (2.40)
shows that
2F,, —mgsing =0 (2.41)

2F., + 2F., — mgcos$ = 0 (2.42)
—2F., a1 + 2F.,a3 — 2F,,h = 0. (2.43)
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FIGURE 2.5. A parked car on inclined pavement.

These equations provide the brake force and reaction forces under the front
and rear tires.

1 a2 1 h .

F, = gmg - cos o — 5mg sin 10) (2.44)
1 1 h

F,, = —mgﬂ cos ¢ + —mg— sin ¢ (2.45)
2 l 2 71
1

F,, = —mgsin¢ (2.46)

2
|

Example 46 Increasing the inclination angle.

When ¢ = 0, Equations (2.36) and (2.37) reduce to (2.1) and (2.2). By
increasing the inclination angle, the normal force under the front tires of
a parked car decreases and the normal force and braking force under the
rear tires increase. The limit for increasing ¢ is where the weight vector
mg goes through the contact point of the rear tire with the ground. Such an
angle is called a tilting angle.

Example 47 Maximum inclination angle.

The required braking force F, increases by the inclination angle. Be-
cause Fy, is equal to the friction force between the tire and pavement, its
mazimum depends on the tire and pavement conditions. There is a specific
angle ¢,; at which the braking force Fy, will saturate and cannot increase
any more. At this mazimum angle, the braking force is proportional to the
normal force F,

Fyy = M:chzz (2'47)
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where, the coefficient ., is the x-direction friction coefficient for the rear
wheel. At ¢ = ¢y, the equilibrium equations will reduce to

24, F., —mgsing,, =0 (2.48)
2F,, + 2F., —mgcos ¢, =0 (2.49)
2F. a1 — 2F.,a2 +2p,, F.,h = 0. (2.50)
These equations provide
1 1 h
F,, = amg% cos o, — 3™MIT sin ¢, (2.51)
1 1 h
F,, = amg% cos s + 3™MIT sin ¢, (2.52)
Q1 oy
t = T2 2.53
an ¢y 1= p,h ( )

showing that there is a relation between the friction coefficient ,,, maz-
imum inclination ¢, and the geometrical position of the mass center C.
The angle ¢,, increases by decreasing h.

For a car having the specifications

oy = 1
a; = 110cm (2.54)
[ = 230cm
h = 35cm
the tilting angle is
¢ ~ 0.514rad ~ 29.43 deg . (2.55)

Example 48 Front wheel braking.
When the front wheels are the only braking wheels F,, =0 and F,, # 0.
In this case, the equilibrium equations will be

2F,, —mgsing =0 (2.56)
2F,, +2F,, —mgcos¢ =0 (2.57)
“9F, ay +2F.,as — 2F,, h = 0. (2.58)

These equations provide the brake force and reaction forces under the front
and rear tires.

1 as 1 h .

F, = gmg— cos o — oMy sin 1) (2.59)
1 1 h

F,, = —mgﬂ cos ¢ + —mg— sin ¢ (2.60)
2 l 2 71
1

F,, = —mgsing (2.61)

2
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At the ultimate angle ¢ = ¢,

Foy = pg, Fry (2.62)
and
2, F., —mgsing,, =0 (2.63)
2F,, + 2F., —mgcos ¢, =0 (2.64)
2F. a1 — 2F.,a2 +2p, F. h = 0. (2.65)
These equations provide
1 1 h
F,, = §mg% Cos Ppy — M9 sin ¢, (2.66)
1 1 h
F,, = §mg% cos ¢y + M7 sin ¢, (2.67)
a’2ul’1
t = —. 2.68
an ¢y 1= b ( )

Let’s name the ultimate angle for the front wheel brake in Equation (2.53)
as ngf, and the ultimate angle for the rear wheel brake in Equation (2.68)
as ¢M‘r' Comparing ¢Mf and ¢y shows that

¢Mf A1fg, (l — Ml’lh)

Srt, e, (1= pirgh)’ (269
We may assume the front and rear tires are the same and so,
fay = o, (2.70)
therefore,
Z—Zi = Z—; (2.71)

Hence, if a1 < as then quf < ¢py, and therefore, a rear brake is more
effective than a front brake on uphill parking as long as ¢, is less than the
tilting angle, ¢y < tan~1 F. At the tilting angle, the weight vector passes
through the contact point of the rear wheel with the ground.

Similarly we may conclude that when parked on a downhill road, the front

brake is more effective than the rear brake.

Example 49 Four-wheel braking.

Consider a four-wheel brake car, parked uphill as shown in Figure 2.6.
In these conditions, there will be two brake forces Fy, on the front wheels
and two brake forces Fy, on the rear wheels.
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FIGURE 2.6. A four wheel brake car, parked uphill.

The equilibrium equations for this car are

2F,, +2F,, —mgsing =0 (2.72)
2F,, +2F,, —mgcos¢ =0 (2.73)
_9F, a1 +2F.,as — (2Fy, + 2F,,) h = 0. (2.74)

These equations provide the brake force and reaction forces under the front
and rear tires.

1 as 1 h .
F, = M9~ cos¢ — M9 sin ¢ (2.75)
1 1 h
F,, = —mgﬂ cos ¢ + —mg—sin ¢ (2.76)
2 l 2 l
1
F,, +F,, = 3™mg sin ¢ (2.77)

At the ultimate angle ¢ = ¢y, all wheels will begin to slide simultaneously
and therefore,

Fe, = Mwlel (278)
Fop = iy, Fu. (2.79)

The equilibrium equations show that

2y, Foy 424, Foy —mgsing,, =0 (2.80)
2F,, +2F,, —mgcos¢,, =0 (2.81)
—9F, a1+ 2F. a5 — (21, Fuy + 21, Foy) b = 0. (2.82)
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FIGURE 2.7. An accelerating car on a level pavement.
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=

Assuming
[y, = fhy, = fiy (2.83)
will provide
1 1
F, = §mg% cos Ppy — §m97 sin @ (2.84)
1 1 A
F,, = §mg% cos ¢ + §m97 sin ¢y (2.85)
tan gy = ;. (2.86)

2.3 Accelerating Car on a Level Road

When a car is speeding with acceleration a on a level road as shown in
Figure 2.7, the vertical forces under the front and rear wheels are

1 az 1 ha
F., = -mg=2—-mg-— 2.8
. 29T T (2.87)
1 a; 1 ha
F, = -mg2t+-mg=-2. 2.
. 579 ;i + ngl p (2.88)

The first terms, %mg“l—2 and %mg%, are called static parts, and the second

terms :I:%mg%% are called dynamic parts of the normal forces.

Proof. The vehicle is considered as a rigid body that moves along a hor-
izontal road. The force at the tireprint of each tire may be decomposed
to a normal and a longitudinal force. The equations of motion for the ac-
celerating car come from Newton’s equation in z-direction and two static
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equilibrium equations.

> F,=ma (2.89)
Y F.=0 (2.90)
> M, =o0. (2.91)

Expanding the equations of motion produces three equations for four
unknowns F,,, Fy,, F.,, F.,.

2F,, +2F,, = ma (2.92)
2F,, +2F,, —mg=0 (2.93)
“9F, a1 +2F. a5 — 2(Fy, + Fo,)h =0 (2.94)

However, it is possible to eliminate (F;, + F,) between the first and third
equations, and solve for the normal forces F;,, F,.

le = (FZ1)st + (F21)dyn
1 as 1 ha
= —ma—2 — Zmg—— 2.
ng 7 2mgl p (2.95)
Fzg = (FZ2)st + (FZ2)dyn
1 al 1 ha
_ I Zma—= 2.96
59 + 597 ; (2.96)
The static parts
1 a2
(Fa)s = gmo (2.97)
1 a
Fal = g (299

are weight distribution for a stationary car and depend on the horizontal
position of the mass center. However, the dynamic parts

1 ha
1 ha

indicate the weight distribution according to horizontal acceleration, and
depend on the vertical position of the mass center.

When accelerating a > 0, the normal forces under the front tires are less
than the static load, and under the rear tires are more than the static load.
[
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Example 50 Front-wheel-drive accelerating on a level road.

When the car is front-wheel-drive, F,, = 0. Equations (2.92) to (2.88)
will provide the same vertical tireprint forces as (2.87) and (2.88). However,
the required horizontal force to achieve the same acceleration, a, must be
provided by solely the front wheels.

Example 51 Rear-wheel drive accelerating on a level road.

If a car is rear-wheel drive then, Fy, = 0 and the required force to achieve
the acceleration, a, must be provided only by the rear wheels. The vertical
force under the wheels will still be the same as (2.87) and (2.88).

Example 52 Maximum acceleration on a level road.

The mazimum acceleration of a car is proportional to the friction under
its tires. We assume the friction coefficients at the front and rear tires are
equal and all tires reach their maximum tractions at the same time.

Fy, = +p,F., (2.101)
F,, = =+u,F., (2.102)

Newton’s equation (2.92) can now be written as
ma = +2u, (F., + F.,). (2.103)
Substituting F,, and F,, from (2.93) and (2.94) results in
a==+p,g. (2.104)

Therefore, the maximum acceleration and deceleration depend directly on
the friction coefficient.

Example 53 Maximum acceleration for a single-azle drive car.

The mazimum acceleration ar,q for a rear-wheel-drive car is achieved
when we substitute Fy, = 0, Fy, = p,F., in Equation (2.92) and use
Equation (2.88)

Mg (ﬂ + h arwd) = Marywd (2.105)
l l g
and therefore,
Arwd _ (1Hg
g l—hy,
- Lh% (2.106)
L=p,7

The front wheels can leave the ground when F,, = 0. Substituting F,, =0
in Equation (2.88) provides the mazimum acceleration at which the front
wheels are still on the road.
Qrwd
g

as
< = 2.107
< (2.107)
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FIGURE 2.8. Effect of mass center position on the maximum achievable acceler-
ation of a front- and a rear-wheel drive car.

Therefore, the maximum attainable acceleration would be the less value of
Equation (2.106) or (2.107).

Similarly, the mazimum acceleration aywa for a front-wheel drive car is
achieved when we substitute F,, =0, F,, = p, F., in Equation (2.92) and
use Equation (2.87).

Q fwd _ az i,
g L+ hys,
= B (1 - %) (2.108)

To see the effect of changing the position of mass center on the mazximum
achievable acceleration, we plot Figure 2.8 for a sample car with

py = 1
h = 0.56m (2.109)
[ = 2.6m.

Passenger cars are usually in the range 0.4 < (a1/g) < 0.6, with (a1/g) —
0.4 for front-wheel-drive cars, and (a1/g) — 0.6 for rear-wheel-drive cars.
In this range, (arwd/g) > (afwd/g) and therefore rear-wheel-drive cars can
reach higher forward acceleration than front-wheel-drive cars. It is an im-
portant applied fact, especially for race cars.

The maximum acceleration may also be limited by the tilting condition

anr a2
e 2.110
o< (2110)
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Example 54 Minimum time for 0 — 100km/h on a level road.
Consider a car with the following characteristics:

length = 4245 mm
width = 1795 mm
height = 1285 mm
wheel base = 2272mm
front track = 1411mm (2.111)
rear track = 1504 mm
net weight = 1500kg
h = 220mm
py = 1
a; = as

Assume the car is rear-wheel-drive and its engine can provide the mazimum
traction supported by friction. Equation (2.88) determines the load on the
rear wheels and therefore, the forward equation of motion is

2F, = 2, F,
a1
T
= ma. (2.112)

h1
/'l’wmg + :u’wmgj_a‘
g

Rearrangement provides the following differential equation to calculate ve-
locity and displacement:

ai
S |
1_%975
ax
= 2.113
e (2.113)

Taking an integral

27.78 ¢
/ dv = / adt (2.114)
0 0

between v = 0 and v = 100km/h =~ 27.78 m/s shows that the minimum
time for 0 — 100km/h on a level road is

27.
t= 7—281 ~5.11s (2.115)

iy,
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If the same car was front-wheel-drive, then the traction force would be

20, = 2p, F
a9 hl
= MMy Uxmgjga
= ma. (2.116)

and the equation of motion would reduce to

az
ngT
h1l
Lt pog7
g

a3

a = I=

(2.117)

The minimum time for 0 — 100km/h on a level road for this front-wheel-

drive car is
27.78

az

Now consider the same car to be four-wheel-drive. Then, the traction
force is

t= ~6.21s. (2.118)

2Fy, +2F,, = 2pu, (F,, +F,)
= gm(al—i—ag)

l
= ma. (2.119)

and the minimum time for 0—100km/ h on a level road for this four-wheel-
drive car can theoretically be reduced to

27.78
t=2""1"~283s. (2.120)
g

2.4 Accelerating Car on an Inclined Road

When a car is accelerating on an inclined pavement with angle ¢ as shown
in Figure 2.9, the normal force under each of the front and rear wheels,
F,, , F,,, would be:

1 as h . 1

F, = 5mg <T cos ¢ — 7 sin ¢> —zmay (2.121)
1 . 1

F,, = §mg <T cos ¢ + 7 sin ¢> + —ma— (2.122)
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FIGURE 2.9. An accelerating car on inclined pavement.

The dynamic parts, j:%mg%%, depend on acceleration a and height h of
mass center C' and remain unchanged, while the static parts are influenced
by the slope angle ¢ and height h of mass center.

Proof. The Newton’s equation in z-direction and two static equilibrium
equations, must be examined to find the equation of motion and ground
reaction forces.

> F,=ma (2.123)
> F.=0 (2.124)
> M, =o0. (2.125)

Expanding these equations produces three equations for four unknowns
le’ FI27 le ’ FZ2 °

2F,, + 2F,, — mgsin¢ = ma (2.126)
2F,, +2F,, —mgcos¢p =0 (2.127)
9F. a1 — 2F. a5 + 2 (Fy, + Fy,)h =0 (2.128)

It is possible to eliminate (F,, + F.,) between the first and third equations,
and solve for the normal forces F,,, F,.

FZl = (le)st + (le)dyn

o 1 a9 h . 1 h
= 5mg <T cos ¢ — 7 sin gb) —zmay (2.129)
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FZQ = (FZ2)st + (Fzz)dyn
1 a1 h . 1 h
= 3mg <T cos ¢ + 7 sin ¢> + 5maT (2.130)

Example 55 Front-wheel-drive car, accelerating on inclined road.

For a front-wheel-drive car, we may substitute F,, = 0 in Equations
(2.126) and (2.128) to have the governing equations. However, it does not
affect the ground reaction forces under the tires (2.129 and 2.130) as long
as the car is driven under its limit conditions.

Example 56 Rear-wheel-drive car, accelerating on inclined road.

Substituting F, = 0 in Equations (2.126) and (2.128) and solving for the
normal reaction forces under each tire provides the same results as (2.129)
and (2.130). Hence, the normal forces applied on the tires do not sense if
the car is front-, rear-, or all-wheel drive. As long as we drive in a straight
path at low acceleration, the drive wheels can be the front or the rear ones.
However, the advantages and disadvantages of front-, rear-, or all-wheel
drive cars appear in maneuvering, slippery roads, or when the maximum
acceleration is required.

Example 57 Maximum acceleration on an inclined road.

The maximum acceleration depends on the friction under the tires. Let’s
assume the friction coefficients at the front and rear tires are equal. Then,
the front and rear traction forces are

F,, < p,F. (2.131)

Fo, < p,F.,. (2.132)
If we assume the front and rear wheels reach their traction limits at the
same time, then

F., = +u,F., (2.133)
F,, = +u,F., (2.134)

and we may rewrite Newton’s equation (2.123) as
map = 2, (Fy, + F.,) — mgsin ¢ (2.135)

where, aps is the mazimum achievable acceleration.
Now substituting F,, and F,, from (2.129) and (2.130) results in
CL?M = 441, cOS G — sin &, (2.136)

Accelerating on an uphill road (a > 0,¢ > 0) and braking on a downhill
road (a < 0,¢ < 0) are the extreme cases in which the car can stall. In
these cases, the car can move as long as

Wy > |[tan @ . (2.137)
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Example 58 Limits of acceleration and inclination angle.
Assuming F,, > 0 and F,, > 0, we can write Equations (2.121) and
(2.122) as

IN

a—h2 cos ¢ —sin ¢ (2.138)

Qliewle
Y

—a—hl cos ¢ — sin ¢. (2.139)

Hence, the mazimum achievable acceleration (a > 0) is limited by as, h, ¢;
while the mazimum deceleration (a < 0) is limited by a1, h, ¢. These two
equations can be combined to result in

—% cos ¢ < g +sing < a—}fcosdx (2.140)
If a — 0, then the limits of the inclination angle would be

f% < tang < % (2.141)

This is the mazimum and minimum road inclination angles that the car
can stay on without tilting and falling.

Example 59 Maximum deceleration for a single-axle-brake car.

We can find the mazimum braking deceleration ag.y of a front-wheel-
brake car on a horizontal road by substituting ¢ = 0, Fp, = 0, Fy, =
—p, Fy, in Equation (2.126) and using Equation (2.121)

h Tw
—p,mg (% — Tag b) = Mafuwb (2.142)
therefore,
Grub My (1 - ﬂ) , (2.143)
g h l

Similarly, the mazimum braking deceleration a., of a front-wheel-brake
car can be achieved when we substitute Fyp, =0, Fy, = p F, .
Arb o /Lx aq

p RT (2.144)
=7

1+p

The effect of changing the position of the mass center on the mazximum
achievable braking deceleration is shown in Figure 2.10 for a sample car
with

py = 1
h = 0.56m (2.145)
[ = 2.6m.
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FIGURE 2.10. Effect of mass center position on the maximum achievable deccel-
eration of a front-wheel and a rear-wheel-drive car.

Passenger cars are usually in the range 0.4 < (a1 /1) < 0.6. In this range,
(afuwp/g) < (arwv/g) and therefore, front-wheel-brake cars can reach better
forward deceleration than rear-wheel-brake cars. Hence, front brakes are
much more tmportant than the rear brakes.

Example 60 % A car with a trailer.

Figure 2.11 depicts a car moving on an inclined road and pulling a trailer.
To analyze the car-trailer motion, we need to separate the car and trailer
to see the forces at the hinge, as shown in Figure 2.12. We assume the
mass center of the trailer Cy is at distance by in front of the only axle of
the trailer. If Cy is behind the trailer azle, then bs should be negative in the
following equations.

For an ideal hinge between a car and o trailer moving in a straight path,
there must be a horizontal force Fy, and a vertical force F,.

Writing the Newton’s equation in x-direction and two static equilibrium
equations for both the trailer and the vehicle

> F,=ma (2.146)
Y F.=0 (2.147)
> M, = (2.148)

we find the following set of equations:
F,, —migsing =mza (2.149)
2F,, — F,, —mygcos¢ =0 (2.150)
2F,,bs — Fl,by — Fy, (hy — hy) =0 (2.151)
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FIGURE 2.11. A car moving on an inclined road and pulling a trailer.

2F,, +2F,, — F,, —mgsin¢ = ma (2.152)

2F,, +2F,, — F,, —mgcos¢ =0 (2.153)
9F. a1 — 2F. a5 + 2 (Fy, + Fu,) h

—Fy, (h—hy)+ F., (b1 +as) =0 (2.154)

If the value of traction forces Fy, and F,, are given, then these are six equa-
tions for six unknowns: a, Fy,, F,,, F,,, F,,, F,,. Solving these equations
provide the following solutions:

2 .
o = o (Fypy + Fy,) —gsing (2.155)
th
= e (Fu 4+ ) (2.156)
hl — h2 th b3
F = F, F, 5 2.157
zt bg—b3m+mt( 31?17L 12)+b2_b3mtgcos¢ ( )

bs (2a3 —b
F,, = i(ﬁmt—i—g—jm) g cos @
2@2—[)1 Fw +Fa:
——— (b1 —h —h —hm| ——= 2.158
{@@(1 2)my = hamy 4lm+mg (2.158)
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FIGURE 2.12. Free-body-diagram of a car and the trailer when moving on an
uphill road.

bs (a1 —as + by a
P = g (M jem) geoso
a1 —as + by Fp, +F,
——(h1—h h h —L =z (2159
|: b2—b3 ( 1 2>mt+ 1mt+ m:| l(m+mt) ( )
1 by hi—hy  my
F., = = 3 F, F, 2.160
3 2b2—b3mthOb¢+ bg—bgm-i-mt( T 2) ( )
| = a1 + asz. (2161)

However, if the value of acceleration a is known, then unknowns are: Fy, +

Fx27 Fx” th7 le; F227 FZg'
1 .
F, + Fy, 3 (m+my) (a+ gsin @) (2.162)
F,, = mi(a+gsing) (2.163)
hi —h
F., = L 2 (a+ gsing) + ——my gcos (2.164)
by — bs by — bs
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bs [ 2as — by az
Fo- b a2 2.1
. 5] ( - my + bgm) gcos @ (2.165)
1 |2as —
— az—bl(hl—hg)mt—hlmt—hm (a+ gsin¢)
20 | by — b3
b3 (a1 —ax+ by ax
F, = 5 < — me + 5 m> gcos o (2.166)
1 — b
+= w(fh — h2) my + hymy + hm| (a + gsin ¢)
21 by — b3
1 mye .
F, = - (bagcosd + (h1 — h2) (a+ gsing)) (2.167)
2 by — b
I = a1+ as.

Example 61 % Mazimum inclination angle for a car with a trailer.

For a car and trailer as shown in Figure 2.11, the mazximum inclina-
tion angle ¢y, is the angle at which the car cannot accelerate the vehicle.
Substituting a = 0 and ¢ = ¢, in Equation (2.155) shows that

sing,, = ( 2

——— (Fo, + Fay). 2.1
g et Fe) (2.169)

The value of mazimum inclination angle ¢,; increases by decreasing the
total weight of the vehicle and trailer (m 4+ my) g or increasing the traction
force Fp, + Fy,.

The traction force is limited by the maximum torque on the drive wheel
and the friction under the drive tire. Let’s assume the vehicle is four-wheel-
drive and friction coefficients at the front and rear tires are equal. Then,
the front and rear traction forces are

F,, < pFy (2.169)

F., < p,F.,. (2.170)
If we assume the front and rear wheels reach their traction limits at the
same time, then

Fy, = p,F. (2.171)
Fy, = p,F., (2.172)

and we may rewrite the Equation (2.168) as

sindy = 7 e (g 4 F). (2.173)

m+myg)g

Now substituting F,, and F,, from (2.158) and (2.159) results in

(mbs — mby — mybs) i, cos Py + (ba — bz) (M + my) sin @y,
my (hy — ha)

e (P Fra). (2.174)

= 2Mx
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If we arrange Equation (2.174) as
Acos¢y, + Bsing,; =C (2.175)
then

C / C?
¢]W = atan?(\/ﬁ, +4/1— m) — atanQ(A, B) (2176)
d

an
Oy = atan2(\/%, +vV A% + B2 — C?) — atan2(4, B) (2.177)
where
A (mbs — mbg — mybs) (2.178)
my (hy — ha)
= o MMM p LR, 2.1
¢ = oM (1 ) (2150)

For a rear-wheel-drive car pulling a trailer with the following character-
1stics:

I = 2272mm
w = 1457mm
h = 230mm
a1 = ao
hy = 310mm
by = 680mm
by = 610mm
by = 120mm (2.181)
hey = 560mm
m = 1500kg
my = 150kg
pp = 1
¢ = 10deg
a = 1m/s?
we find
F, = 3441.78N
F,, = 3877.93N
F,, = T798.57N
F,, = 147.99N (2.182)
F,, = 40552N
F,, = 2230.37TN.
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To check if the required traction force F, is applicable, we should compare
it to the mazimum available friction force pF,, and it must be

Fp, < ukb,. (2.183)

Example 62 s Solution of equation acosf + bsinf = c.
The first type of trigonometric equation is

acosf + bsinf = c. (2.184)

It can be solved by introducing two new variables r and n such that
a = rsiny (2.185)
b = rcosny (2.186)

and therefore,

ro= a2+ (2.187)

n = atan2(a,b). (2.188)

Substituting the new variables show that

sin(n+0) = ; (2.189)
2
cos(n+6) = £4/1— o (2.190)
Hence, the solutions of the problem are
c c?
¢ = atan2(—, +/1 — —) — atan2(a, b) (2.191)
T r
and c
0 = atan2(—, £+/r? — ¢2) — atan2(a, b). (2.192)

9
,
Therefore, the equation acos@ + bsin® = ¢ has two solutions if r> =
a? 4+ b2 > 2, one solution if r? = ¢, and no solution if r*> < c2.

Example 63 % The function tan, ' 4 = atan2(y, ).

There are many situations in kinematics calculation in which we need
to find an angle based on the sin and cos functions of an angle. However,
tan~! cannot show the effect of the individual sign for the numerator and
denominator. It always represents an angle in the first or fourth quadrant.
To overcome this problem and determine the angle in the correct quadrant,
the atan2 function is introduced as below.

tan—1 £ if y>0
x
atan2(y,z) = { tan~! % +msigny if y<O0 (2.193)

gsignx if y=0
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In this text, whether it has been mentioned or not, wherever tan™" 4 s
used, it must be calculated based on atan2(y, x).

Example 64 Zero vertical force at the hinge.
We can make the vertical force at the hinge equal to zero by eramining
Equation (2.157) for the hinge vertical force F,.

- hl — hg 2mt

F,, =
by — b3 m 4+ my

(Fo, + Fpy) + My g COS ¢ (2.194)

bs
¢ ba — b3
To make F,, =0, it is enough to adjust the position of trailer mass center
Ct exactly on top of the trailer axle and at the same height as the hinge. In

these conditions we have

hi = ho (2.195)

b3 = 0 (2.196)
that makes

F,, =0 (2.197)

Howewver, to increase safety, the load should be distributed evenly through-
out the trailer. Heavy items should be loaded as low as possible, mainly over
the axle. Bulkier and lighter items should be distributed to give a little pos-
itive bs. Such a trailer is called nose weight at the towing coupling.

2.5 Parked Car on a Banked Road

Figure 2.13 depicts the effect of a bank angle ¢ on the load distribution of
a vehicle. A bank causes the load on the lower tires to increase, and the
load on the upper tires to decrease. The tire reaction forces are:

F, = %@ (bg cos ¢ — hsin @) (2.198)
w
1
F,, = 5% (b1 cos @ + hsin @) (2.199)

Proof. Starting with equilibrium equations

Y F, = (2.201)
Y F.=0 (2.202)
> M, =0. (2.203)
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FIGURE 2.13. Normal force under the uphill and downhill tires of a vehicle,
parked on banked road.

we can write

2F,, +2F,, —mgsing =0 (2.204)
2F,, +2F,, —mgcos¢ =0 (2.205)
2F. by — 2F.,by + 2 (F,, + Fyy) h = 0. (2.206)

We assumed the force under the lower tires, front and rear, are equal, and
also the forces under the upper tires, front and rear are equal. To calculate
the reaction forces under each tire, we may assume the overall lateral force
F, +F,, as an unknown. The solution of these equations provide the lateral
and reaction forces under the upper and lower tires.

1 by 1 h .
F., = 3mg— cos ¢ — 3mI— sin ¢ (2.207)
1 by 1 h .
F,= 3mg— cos ¢ + M9 sin ¢ (2.208)
1
Fy1 + Fy2 = §mg sin ¢ (2.209)

At the ultimate angle ¢ = ¢,,, all wheels will begin to slide simultane-
ously and therefore,

Fy = p,F, (2.210)
Fy = py,F.,. (2.211)
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24ty Foy + 240, ., — mgsing =0 (2.212)
2F,, +2F,, —mgcos¢ =0 (2.213)
2F, by — 2F.,bs +2 (1, Fuy + 1, Foy) b = 0. (2.214)
Assuming
Fyy = Hy, = Hy (2'215)
will provide
1 b 1 h
F,, = §mga2 cos ¢ — 3mg sin ¢, (2.216)
1 b 1 h
F,, = §mga1 cos ¢y + M9 sin ¢, (2.217)
tan ¢y, = pu,. (2.218)
These calculations are correct as long as
bo
tang,, < 7 (2.219)
b
p, < f (2.220)

If the lateral friction u,, is higher than by/h then the car will roll downhill.
To increase the capability of a car moving on a banked road, the car should
be as wide as possible with a mass center as low as possible. m

Example 65 Tire forces of a parked car in a banked road.

A car having

g > 3
I

by

980 kg
0.6m
1.52m
ba

(2.221)

is parked on a banked road with ¢ = 4deg. The forces under the lower and

upper tires of the car are:
F,,
F,,
Fyl + Fyz

The ratio of the uphill force F,
the mass center position.

F,,  bycos¢— hsing
F., bicos¢+ hsing

= 2265.2N
= 25299N

(2.222)
335.3N

to downhill force F,, depends on only

(2.223)
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1 h=0.6 m
w=1.52m
0.8- b,=b,
F. 06 Rolling down angle
FZZ
0.4+
0.27
0 T T T T \
0.2 04 0.6 08 d)[rad]\l
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FIGURE 2.14. Tllustration of the force ratio F%, /F%, as a function of road bank
angle ¢.

Assuming a symmetric car with by = by = w/2 simplifies the equation to

F,,  wcos¢p—2hsing
F., wcos¢+2hsing’

(2.224)

Figure 2.14 illustrates the behavior of force ratio F., /F,, as a function of ¢
for h =0.6m and w = 1.52m. The rolling down angle ¢,; = tan=! (b /h) =
51.71 deg indicates the bank angle at which the force under the uphill wheels
become zero and the car rolls down. The negative part of the curve indicates
the required force to keep the car on the road, which is not applicable in real
situations.

2.6 % Optimal Drive and Brake Force Distribution

A certain acceleration a can be achieved by adjusting and controlling the
longitudinal forces F,, and F,,. The optimal longitudinal forces under the
front and rear tires to achieve the maximum acceleration are

By _ _1h(a)’ laa
mg 21 \g 21g
1 2@ 1 a

= = —p, 2 2.22
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Fop _ 1h(a)’ laa
mg 21 \yg 21g
1 2h 1 [25]
= —U,—+-p,—. 2.226

Proof. The longitudinal equation of motion for a car on a horizontal road
is

2F,, +2F,, =ma (2.227)
and the maximum traction forces under each tire is a function of normal
force and the friction coefficient.

F,, < +p,F. (2.228)
F,, < +u,F., (2.229)

However, the normal forces are a function of the car’s acceleration and
geometry.

1 ay 1 ha
F., = -mg=2—-mg-=- 2.230
. 29T T M7y (2.230)

1 a; 1 ha
F, = -mg—=+-mg-— 2.231
, 59 ] + 2mgl p (2.231)

We may generalize the equations by making them dimensionless. Under
the best conditions, we should adjust the traction forces to their maximum

le 1 a9 ha

= o, (2222 2.232
mg 2'% <l lg) ( )
Fzg 1 aq ha

= o, (&4 22 2.2
== g (F10) (2.233)

and therefore, the longitudinal equation of motion (2.227) becomes

a
2oy, 2.234
7 (2.234)
Substituting this result back into Equations (2.232) and (2.233) shows that
F 1 !
no_ _lhfa) laa (2.235)
mg 21 \yg 21 g
F., 1h fa\?> 1 aia
= -=(2) +222 2.236
mg 21 (g) * 21y ( )

Depending on the geometry of the car (h,a1,as), and the acceleration a >
0, these two equations determine how much the front and rear driving
forces must be. The same equations are applied for deceleration a < 0, to
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1 F.,/mg
F./mg
a 0.5
——L FxI /mg

= 1 R
F.,/mg al/g %

0.5

Fxl /mg -1

FIGURE 2.15. Optimal driving and braking forces for a sample car.

determine the value of optimal front and rear braking forces. Figure 2.15
represents a graphical illustration of the optimal driving and braking forces
for a sample car using the following data:

py = 1

h 0.56

—_ = —_—= .2]_ 2.2

l 56 0.21538 (2.237)
a _ a1

[ D

When accelerating a > 0, the optimal driving force on the rear tire grows
rapidly while the optimal driving force on the front tire drops after a max-
imum. The value (a/g) = (ag/h) is the maximum possible acceleration
at which the front tires lose their contact with the ground. The accelera-
tion at which front (or rear) tires lose their ground contact is called tilting
acceleration.

The opposite phenomenon happens when decelerating. For a < 0, the
optimal front brake force increases rapidly and the rear brake force goes to
zero after a minimum. The deceleration (a/g) = — (a1/h) is the maximum
possible deceleration at which the rear tires lose their ground contact.

The graphical representation of the optimal driving and braking forces
can be shown better by plotting F, / (mg) versus F,/(mg) using (a/g)
as a parameter.

ag — Eh,

R, = —%F, (2.238)
ap + —

F, az — ph

= BT (2.239)
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FIGURE 2.16. Optimal traction and braking force distribution between the front
and rear wheels.

Such a plot is shown in Figure 2.16. This is a design curve describing the
relationship between forces under the front and rear wheels to achieve the
maximum acceleration or deceleration.

Adjusting the optimal force distribution is not an automatic procedure
and needs a force distributor control system to measure and adjust the
forces. m

Example 66 % Slope at zero.
The initial optimal traction force distribution is the slope of the optimal

curve (Fy, / (mg), Fy,/ (mg)) at zero.

pras _Lh <2) Lara
mg o _ oy 21 \yg 21y
szz a=0 1h (a laja
mg 210 \g 21lg
a2
= = 2.240
- (2:210)

Therefore, the initial traction force distribution depends on only the position
of mass center C.

Example 67 % Brake balance and ABS.

When braking, a car is stable if the rear wheels do not lock. Thus, the
rear brake forces must be less than the mazimum possible braking force at
all time. This means the brake force distribution should always be in the
shaded area of Figure 2.17, and below the optimal curve. This restricts the
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F. /mg
A

—0—> Fxg/mg

0.2

Braking

FIGURE 2.17. Optimal braking force distribution between the front and rear
wheels, along with a thre-line under estimation.

achievable deceleration, especially at low friction values, but increases the
stability of the car.

Whenever it is easier for a force distributor to follow a line, the optimal
brake curve is underestimated using two or three lines, and a control system
adjusts the force ratio Fy, /F,,. A sample of three-line approximation is
shown in Figure 2.17.

Distribution of the brake force between the front and rear wheels is called
brake balance. Brake balance varies with deceleration. The higher the stop,
the more load will transfer to the front wheels and the more braking effort
they can support. Meanwhile the rear wheels are unloaded and they must
have less braking force.

Example 68 % Best race car.

Racecars always work at the maximum achievable acceleration to finish
their race in minimum time. They are usually designed with rear-wheel-
drive and all-wheel-brake. However, if an all-wheel-drive race car is reason-
able to build, then a force distributor, to follow the curve shown in Figure
2.18, is what it needs to race better.

Example 69 % Effect of C' location on braking.

Load is transferred from the rear wheels to the front when the brakes are
applied. The higher the C, the more load transfer. So, to improve braking,
the mass center C should be as low as possible and as back as possible.
This is not feasible for every wvehicle, especially for forward-wheel drive
street cars. However, this fact should be taken into account when a car is
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02 Driving
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FIGURE 2.18. Optimal traction force distribution between the front and rear
wheels.

FIGURE 2.19. 180 deg sliding rotation of a rear-wheel-locked car.

being designed for better braking performance.

Example 70 % Front and rear wheel locking.

The optimal brake force distribution is according to Equation (2.239) for
an ideal Fy, | Fy, ratio. However, if the brake force distribution is not ideal,
then either the front or the rear wheels will lock up first. Locking the rear
wheels makes the vehicle unstable, and it loses directional stability. When
the rear wheels lock, they slide on the road and they lose their capacity to
support lateral force. The resultant shear force at the tireprint of the rear
wheels reduces to a dynamic friction force in the opposite direction of the
sliding.

A slight lateral motion of the rear wheels, by any disturbance, develops
a yaw motion because of unbalanced lateral forces on the front and rear
wheels. The yaw moment turns the vehicle about the z-axis until the rear
end leads the front end and the vehicle turns 180 deg. Figure 2.19 illustrates
a 180 deg sliding rotation of a rear-wheel-locked car.
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The lock-up of the front tires does not cause a directional instability,
although the car would not be steerable and the driver would lose control.

2.7 Y Vehicles With More Than Two Axles

If a vehicle has more than two axles, such as the three-axle car shown
in Figure 2.20, then the vehicle will be statically indeterminate and the
normal forces under the tires cannot be determined by static equilibrium
equations. We need to consider the suspensions’ deflection to determine
their applied forces.

The n normal forces F,, under the tires can be calculated using the
following n algebraic equations.

23 F.,—mgcos¢ =0 (2.241)
i=1
n
23 F.xi+ h(a+mgsing) =0 (2.242)
=1

FZ‘ T; — I Fz le le .
i n _ —ZE 0 for i=23,,n—1
k; xn—x1<kn kr kr or T AS T
(2.243)

where F,, and F},, are the longitudinal and normal forces under the tires
attached to the axle number i, and x; is the distance of mass center C
from the axle number i. The distance x; is positive for axles in front of C,
and is negative for the axles in back of C'. The parameter k; is the vertical
stiffness of the suspension at axle 1.

Proof. For a multiple-axle vehicle, the following equations

> F,=ma (2.244)
> F.=0 (2.245)
> M, =0 (2.246)
provide the same sort of equations as (2.126)-(2.128). However, if the total

number of axles are n, then the individual forces can be substituted by a
summation.

QZin —mgsin¢ = ma (2.247)
i=1

2Y F.,—mgcos¢ =0 (2.248)
i=1
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FIGURE 2.20. A three-axle car moving on an inclined road.

2Y F.ai+2hy Fp =0 (2.249)
=1 =1

The overall forward force F, = 2> | F};, can be eliminated between
Equations (2.247) and (2.249) to make Equation (2.242). Then, there re-
main two equations (2.241) and (2.242) for n unknowns F,,, i =1,2,--- ,n.
Hence, we need n — 2 extra equations to be able to find the wheel loads.
The extra equations come from the compatibility among the suspensions’
deflection.

We ignore the tires’ compliance, and use z to indicate the static vertical
displacement of the car at C'. Then, if z; is the suspension deflection at the
center of axle ¢, and k; is the vertical stiffness of the suspension at axle i,
the deflections are

F,.
s = 2.250
n= g (2250)
For a flat road, and a rigid vehicle, we must have
STEL A g =23 m—1 (2.251)

Ty —T1 Tn — L1

which, after substituting with (2.250), reduces to Equation (2.243). The
n — 2 equations (2.251) along with the two equations (2.241) and (2.242)
are enough to calculate the normal load under each tire. The resultant set
of equations is linear and may be arranged in a matrix form

[A] [X] = [B] (2.252)
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where
T
X|=[F, F, F, - F.,] (2.253)
I 2 2 9 1
2.’1:1 2;172 2xn
Tn — X2 i Lo — T1
kal k2 Fonl
(4] = £, — 1 oz | (2:254)
kll kz k'nl
Ly — Tp—1 1 Tp—1 — T
- kll knfl k‘nl 1
= o2 (2.255)
[B]=[ mgcos¢ —h(a+mgsing) 0 --- 0 ]T. (2.256)
[ ]

Example 71 % Wheel reactions for a three-axle car.

Figure 2.20 illustrates a three-azle car moving on an inclined road. We
start counting the azles of a multiple-axle vehicle from the front axle as
azle-1, and move sequentially to the back as shown in the figure.

The set of equations for the three-azle car, as seen in Figure 2.20, is

2F,, +2F,, +2F,, —mgsing = ma (2.257)

2F,, +2F,, +2F,, —mgcos¢ = 0 (2.258)

OF, a1 + 2F., 09 + 2F., x5 + 2h (Fy, + Fyy + Fy)) = 0 (2.259)

1 F,, F,, 1 F,, F,,
SZa) o (Zm om0 (2260
$2—$1(k2 kl) $3—$1</€3 ky ( )
which can be simplified to

9F, +2F,, +2F,, —mgcos¢ = 0  (2.261)

2F, 21 + 2F,,x0 + 2F, ;a3 + hm(a + gsing) = 0 (2.262)
(xokaks — xskaks) Fyy + (v1k1ke — x2k1ke) Fiy

- (1‘1/€1k3 — ZEgklkg) FZQ = 0. (2263)

The set of equations for wheel loads is linear and may be rearranged in a
matriz form

[A] [X] = [B] (2.264)
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i 2

[A] = 2IE1
L

[X] = F,
| P
[ mg cos ¢

[B] = —hm (a + gsin @)

0
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2 2
2:[22 21‘3

koks (502 - $3) kiks (1”3 - 1”1) k1ks (121 - $2)

The unknown vector may be found using matrixz inversion

[X]=[4]""[B].

The solution of the equations are

1

where,

Zo = —4/€1k2 ({,131 — $2)2—4k2]€3 (LL'Q — .’,U3)2—4k‘1/€3 (5133 — 5131)2

Zy = g(xaky — x1ks — x1ky 4 x3k3) hsing
+a (.’Egk‘g — 1k — x1ko + 5133k‘3) h

+g (kgxg — z1koxo + kgiﬂ?)) — xlkgxg) cos ¢

Zy = g(x1k1 — wok1 — xoks + x3ks) hsin¢
+a (z1ky — 22k — x2k3 + x3k3) h

+g (kle — zokix1 + k3$:2)) — xgkgarg) cos ¢

Zs = g(xik1 + xoky — x3ky — x3ky) hsin g
+a (z1k1 + x2ks — x3ky — x3k2) h

+g (kle — x3ki1x1 + kgx% — .’,nggl'g) cos ¢

T, =

T2

T3 =

ai
—as

—as.

(2.265)

(2.266)

(2.267)

(2.268)

(2.269)
(2.270)

(2.271)

(2.272)

(2.273)

(2.274)

(2.275)

(2.276)
(2.277)
(2.278)
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FIGURE 2.21. A cresting vehicle at a point where the hill has a radius of curvature
Rp.

2.8 Y Vehicles on a Crest and Dip

When a road has an outward or inward curvature, we call the road is a
crest or a dip. The curvature can decrease or increase the normal forces
under the wheels.

2.8.1 Y Vehicles on a Crest

Moving on the convex curve of a hill is called cresting. The normal force
under the wheels of a cresting vehicle is less than the force on a flat in-
clined road with the same slope, because of the developed centrifugal force
mv? /Ry in the —z-direction.

Figure 2.21 illustrates a cresting vehicle at the point on the hill with a
radius of curvature Ry. The traction and normal forces under its tires are
approximately equal to

1
F,, +F, = §m(a+gsin¢) (2.279)
1 h
F,, = §mg {(%COS(ﬁ-ﬁ-TSin(ﬁ)}
1 h 1 02 a9
——ma— — =Mm——— 2.2
57 2mRH i (2.280)
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1 ay h .
F,, 3 [(T Ccos ¢ — Tsmgbﬂ

~ —mg
el L (2.281)
2T TRy T '
Il = ay+as. (2282)

Proof. For the cresting car shown in Figure 2.21, the normal and tangential
directions are equivalent to the —z and x directions respectively. Hence, the
governing equation of motion for the car is

> F,=ma (2.283)
N Fo=m—— (2.284)

> M, =o. (2.285)

Expanding these equations produces the following equations:

2F,, cosf + 2F,, cosf — mgsin ¢ = ma (2.286)
2

—2F,, cosf — 2F,, cos +mgcos ¢ = m;%}— (2.287)
H

2F, ajcos — 2F, ascos0 + 2 (F,, + Fy,) hcosf
+2F, a18in0 — 2F,,as8in0 — 2 (Fy, + Fy,) hsinf = 0. (2.288)
We may eliminate (F,, + Fy,) between the first and third equations, and

solve for the total traction force F,, + F,, and wheel normal forces F,,,
F,,.

ma + mgsin ¢

1 [/ a2 h(1—sin26) . 1
P, o= - At
! 2" _(lcos@cosd)—'_ I cos 6 cos 20 sin ¢ |

1  h(l-sin20) 1 v? ay

—— — —m—= 2.290
ma l cos 6 cos 20 2mRH lcos@ ( )
1 [/ a h (1 —sin20) . |
F, = = jp_ hU —sin20)
: 9" _(lcos@cosqj [ cos 6 cos 20 sin g |
i 2
+lmaw _1. v %1 (2.291)

2 l cos 0 cos 20 §mR_HZCOSGCOSH

If the car’s wheel base is much smaller than the radius of curvature, | <
Ry, then the slope angle 0 is too small, and we may use the following
trigonometric approximations.

cosf =~ cos20~1 (2.292)
sin 20 =~ 0 (2.293)

Q

sin 6
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Substituting these approximations in Equations (2.289)-(2.291) produces

the following approximate results:

1
le +Fl’2 ~ §m(a‘+951n¢)

%

F, %mg {(% cos ¢ + %singﬁ)}

1 h 1 22 ay
m

Q

1
F,, —-mg [(ﬂ cos ¢ — Esin(ﬁ

2 l l

Lol e
2 l 2 Ryl
| ]

Example 72 3 Wheel loads of a cresting car.
Consider a car with the following specifications:

[ = 2272mm
w = 1457mm
m = 1500kg

h = 230mm
a1 = ao

v = 15m/s

a = 1lm/s?

which is cresting a hill at a point where the road has

RH = 40m
¢ = 30deg
0 = 25deg.

The force information on the car is:

Fp, +F,, = 443297TN
F,, = 666.33N
F,, = 1488.75N
mg = 14715N
F,,+F,, = 2155.08N
02
m—— = 8437.5N

)

(2.294)

(2.295)

(2.296)

(2.297)

(2.298)

(2.299)
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If we simplifying the results by assuming small 8, the approximate values
of the forces are

Fy +F,, = 4428.75N
F., ~ 628.18N
F,, ~ 1524.85N

mg = 14715N (2.300)
F., +F, 2153.03N
02
— = 8437.5N.
e

Example 73 % Losing the road contact in a crest.
When a car goes too fast, it can lose its road contact. Such a car is called
a flying car. The condition to have a flying car is F,, =0 and F,, = 0.
Assuming a symmetric car a; = az = /2 with no acceleration, and using
the approximate Equations (2.280) and (2.281)

1 as h . 1 v?ay

59 |:<T cos ¢ + TSIH¢>:| - §mET =0 (2.301)
2

%mg K% cos ¢ — %Sinqbﬂ - %m;—H% =0 (2.302)

we can find the critical minimum speed v, to start flying. There are two
critical speeds ve, and ve, for losing the contact of the front and rear wheels
respectively.

1
vey = \/ 2Ry (% sing +  cos ¢> (2.303)

Ve,

\/—QgRH (% sin ¢ — % cos ¢> (2.304)

For any car, the critical speeds v., and v., are functions of the hill’s
radius of curvature Ry and the angular position on the hill, indicated by ¢.
The angle ¢ cannot be out of the tilting angles given by Equation (2.141).

—% <tang < %2 (2.305)

Figure 2.22 illustrates a cresting car over a circular hill, and Figure 2.23
depicts the critical speeds v., and v., at a different angle ¢ for —1.371rad <
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FIGURE 2.22. A cresting car over a circular hill.

¢ < 1.371rad. The specifications of the car and the hill are:

[ = 2272mm
h = 230mm
a1 = ao
a = 0m/s?
Ry = 100m.

At the mazimum uphill slope ¢ = 1.371rad ~ 78.5deg, the front wheels
can leave the ground at zero speed while the rear wheels are on the ground.
When the car moves over the hill and reaches the maximum downhill slope
¢ = —1.371rad =~ —78.5deg the rear wheels can leave the ground at zero
speed while the front wheels are on the ground. As long as the car is moving
uphill, the front wheels can leave the ground at a lower speed while going
downhill the rear wheels leave the ground at a lower speed. Hence, at each
slope angle ¢ the lower curve determines the critical speed v..

To have a general image of the critical speed, we may plot the lower
values of v. as a function of ¢ using Ry or h/l as a parameter. Figure
2.24 shows the effect of hill radius of curvature Ry on the critical speed
Ve for a car with h/l = 0.10123 mm/ mm and Figure 2.25 shows the effect
of a car’s high factor h/l on the critical speed v. for a circular hill with
Ry =100m.

2.8.2 % Vehicles on a Dip

Moving on the concave curve of a hill is called dipping. The normal force
under the wheels of a dipping vehicle is more than the force on a flat
inclined road with the same slope, because of the developed centrifugal
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FIGURE 2.23. Critical speeds ve, and v., at different angle ¢ for a specific car
and hill.
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FIGURE 2.24. Effect of hill radius of curvature R, on the critical speed v. for a
car.
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FIGURE 2.25. Effect of a car’s height factor h/l on the critical speed v. for a
circular hill.

force mv? /Ry in the z-direction.

Figure 2.26 illustrates a dipping vehicle at a point where the hill has a
radius of curvature Ry. The traction and normal forces under the tires of
the vehicle are approximately equal to

1
F,, +F,, =~ 3m (a+ gsin o) (2.306)
1 [ h |
F, =~ -mg %COS¢+—Sin¢
2 L\ ! l |
1 h 1 22 ay
——ma— + —m——— 2.
Qmal + 2mRH ;i (2.307)
1 [ aq h . T
F, = §mg_(Tcos¢—7s1n¢>_
1 h 1 2
—ma— + —m——— 2.
+2mal + 2mRH i (2.308)
Il = a1 +ao. (2.309)

Proof. To develop the equations for the traction and normal forces under
the tires of a dipping car, we follow the same procedure as a cresting car.
The normal and tangential directions of a dipping car, shown in Figure 2.21,
are equivalent to the z and z directions respectively. Hence, the governing
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FIGURE 2.26. A dipping vehicle at a point where the hill has a radius of curvature

Ry.

equations of motion for the car are

ZFm:ma

Expanding these equations produces the following equations:

2Fy, cosf 4+ 2F,, cosf —mgsin ¢ = ma
2
—2F,, cos® — 2F,, cosf + mgcos ¢ = m——
Ry
2F, aycos6 — 2F,,azcos0 + 2 (Fy, + Fy,) hcosf

+2F, a18inf — 2F,,assinf — 2 (F,, + F,,) hsinf = 0.

(2.310)
(2.311)

(2.312)

(2.313)

(2.314)

(2.315)

The total traction force (F,, + F,,) may be eliminated between the first
and third equations. Then, the resultant equations provide the following
forces for the total traction force F,, + F,, and wheel normal forces F,,,

F,,:

ma + mgsin ¢

Fou 4 Py = 2cos

(2.316)
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F,, =
1 h(1l—sin20)
m [ cos 6 cos 20
1 [ al
B = §mg_(lcosﬂcos¢_
1 h (1 — sin 20)

+—=ma

2 { cos 6 cos 20

1 [ 1—sin2 |
2 |\ lcosd |

l cos 0 cos 20
1 v? as
QmRH lcosf

h(1—sin26) . i
lcos B cos 26 sm¢>
1,00 a
QmRchosecose

Assuming 0 < 1, these forces can be approximated to

Fx1+Fzz ~ §m(a+981n¢)
F,, = 1 —2005¢+—sin¢
z1 ~ 9 g 1 1
LG L v a
2 Il 2 Rygl

Q

F,, lmg K% cos ¢ — %sinqﬁ)}

2
1 h

1 2w

+-ma- + sm—m——

2 1

2 Ry I~

Example 74 % Wheel loads of a dipping car.
Consider a car with the following specifications:

[ = 2272mm
w = 1457 mm
m = 1500kg

h = 230mm
ap = a

v = 15m/s

a = 1m/s?

that is dipping on a hill at a point where the road has

Ry =
d) =
9 =

40m
30 deg
2.5deg.

(2.317)

(2.318)

(2.319)

(2.320)

(2.321)

(2.322)

(2.323)
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The force information of the car is:

Fl’l +FCEQ
F,,

If we ignore the effect of 8 by
value of the forces are

2.9 Summary

4432.97N
4889.1N
5711.52N
14715 N
10600.62 N

(2.324)

8437.5N

assuming 0 < 1, then the approzimate

4428.75 N
4846.93 N
1524.85N
5743.6 N
10590.53 N

(2.325)

8437.5N.

For straight motion of a symmetric rigid vehicle, we may assume the forces
on the left wheel are equal to the forces on the right wheel, and simplify
the tire force calculation.

When a car is accelerating on an inclined road with angle ¢, the normal
forces under the front and rear wheels, F},, F,,, are:

1 1
F, = 5™mg <% cos ¢ — — sin ¢> —gmag (2.326)
1 h 1
F,, = >mg | T cos ¢ + 7 sing | + —ma— (2.327)
l=a; +as (2328)
where, %mg (%’- cos ¢ + %Sin (;5) is the static part and :I:%mg%% is the dy-

namic part, because it depends on the acceleration a.
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2.10 Key Symbols

a=z
Q fwd
Qrywd
a

a2

a;

anm

8
(ol

A, B,C

o> o
[y

N

= o~

N

w
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S
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acceleration

front wheel drive acceleration

rear wheel drive acceleration

distance of first axle from mass center
distance of second axle from mass center
distance of axle number 7 from mass center
maximum acceleration

arguments for atan2(a,b)

constant parameters

distance of left wheels from mass center
distance of hinge point from rear axle
distance of right wheels from mass center
distance of hinge point from trailer mass center
distance of trailer axle from trailer mass center
mass center of vehicle

mass center of trailer

force

traction or brake force under a wheel
traction or brake force under front wheels
traction or brake force under rear wheels
horizontal force at hinge

normal force under a wheel

normal force under front wheels

normal force under rear wheels

normal force under trailer wheels

normal force at hinge

gravitational acceleration

height of C'

height

mass moment of inertia

vertical stiffness of suspension at axle number i
wheel base

car mass

trailer mass

moment

tire radius

front tire radius

rear tire radius

radius of curvature

time

velocity

critical velocity
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track

deflection of axil number ¢
vehicle coordinate axes
global coordinate axes

road slope

road angle with horizon
maximum slope angle
friction coefficient

dynamic

front
front-wheel-drive
maximum

rear
rear-wheel-drive
statics

89



90 2. Forward Vehicle Dynamics
Exercises

1. Axle load.

Consider a car with the following specifications that is parked on a
level road. Find the load on the front and rear axles.

m = 1765kg
Il = 284m
ar = 1.22m
az = 1.62m
2. Axle load.
Consider a car with the following specification, and find the axles
load.
m = 1245kg
ar = 1100mm
as = 1323mm

3. Mass center distance ratio.

Peugeot 907 Concept”™ approximately has the following specifica-
tions.

m = 1400kg
[l = 97.5in
Assume a; /as = 1.131 and determine the axles load.

4. Axle load ratio.

Jeep Commander XK™M approximately has the following specifica-
tions.

mg = 50911b
[ = 109.5in

Assume F,, /F., ~ 1.22 and determine the axles load.

5. Axle load and mass center distance ratio.
The wheelbase of the 1981 DeLorean Sportscar’ ™ is

{ = 94.891n.
Find the axles load if we assume

a1/as =~ 0.831
mg = 30001b.
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6. Mass center height.
McLaren SLR 722 Sportscar”™ has the following specifications.
front tire 255/35ZR19
rear tire  295/30ZR19

m = 1649kg
[ = 2700 mm
When the front axle is lifted H = 540 mm, assume that

a; = a2
F,, = 0.68mg.

What is the height h of the mass center?

7. A parked car on an uphill road.

Specifications of Lamborghini Gallardo™ are

m = 1430kg
[ = 2560mm.
Assume
a; = Qa2
h = 520mm

and determine the forces F,, F.,, and F}, if the car is parked on an
uphill with ¢ = 30deg and the hand brake is connected to the rear
wheels.

What would be the maximum road grade ¢,,, that the car can be
parked, if p,, = 1.
8. Parked on an uphill road.

Rolls-Royce Phantom”™ has the following specifications

m = 2495kg
I = 3570mm
F,, = 0.499mg.

Assume the car is parked on an uphill road and

a; = a2
h = 670mm
¢ = 30deg.

Determine the forces under the wheels if the car is
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9.

10.

11.

12.

2. Forward Vehicle Dynamics

(a) front wheel braking
(b) rear wheel braking
(¢) four wheel braking.

A parked car on an downhill road.

Solve Exercise 7 if the car is parked on a downhill road.

Maximum acceleration.

Honda CR-VTM is a midsize SUV car with the following specifica-
tions.

m = 1550kg
[ = 2620mm
Assume
a; = a2
h = 720mm
b, = 0.8

and determine the maximum acceleration of the car if

(a) the car is rear-wheel drive
(b) the car is front-wheel drive

(c) the car is four-wheel drive.

Minimum time for 0 — 100km/ h.

RoadRazer™ is a light weight rear-wheel drive sportscar with

m = 300kg
[ = 2286 mm
h = 260mm.

Assume a; = ag. If the car can reach the speed 0 — 100km/h in
t = 3.2s, what would be the minimum friction coefficient?

Axle load of an all-wheel drive car.

Acura Courage™ is an all-wheel drive car with

m = 2058.9kg
[ = 2750.8mm.

Assume a; = ay and h = 760 mm. Determine the axles load if the car
is accelerating at a = 1.7m/ s?.



13.

14.

15.

16.

A car with a trailer.
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Volkswagen Touareg’™ is an all-wheel drive car with

m = 2268kg
[ = 2855mm.

Assume a; = ag and the car is pulling a trailer with

my = 600kg
by = 855mm
b, = 1350mm
by = 150mm
hi = ho.

If the car is accelerating on a level road with acceleration a = 2m/ s?,

what would be the forces at the hinge.

A parked car on a banked road.
Cadillac Escalade™ is a SUV car with

m = 2569.6kg

I = 2946.4 mm
wy = 1732.3mm
w, = 1701.8 mm.

Assume by = by, h = 940 mm, and use an average track to determine
the wheels load when the car is parked on a banked road with ¢ =

12 deg.

% A parked car on a banked road with wy # w;..

Determine the wheels load of a parked car on a banked road, if the

front and rear tracks of the car are different.

Optimal traction force.

Mitsubishi Outlander™ is an all-wheel drive SUV car with the fol-

lowing specifications.

m = 1599.8kg
[ = 2669.6 mm
w = 1539.3mm.
Assume
a; = Qa2
h = 760mm

p, = 0.75
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and find the optimal traction force ratio F, /F,, to reach the maxi-

mum acceleration.

17. % A three-axle car.

Citroén Cruise Crosser’™

m
ay
as
as
ky
ko
k3

is a three-axle off-road pick-up car. Assume

1800 kg
1100 mm
1240 mm
1500 mm
12800 N/ m
14000N/ m
14000N/m

and find the axles load on a level road when the car is moving with

no acceleration.
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Tire Dynamics

The tire is the main component interacting with the road. The performance
of a vehicle is mainly influenced by the characteristics of its tires. Tires
affect a vehicle’s handling, traction, ride comfort, and fuel consumption.
To understand its importance, it is enough to remember that a vehicle can
maneuver only by longitudinal, vertical, and lateral force systems generated
under the tires.

’.’.’
e 7
e, oY =
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N N
\ ==
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FIGURE 3.1. A vertically loaded stationary tire.

Figure 3.1 illustrates a model of a vertically loaded stationary tire. To
model the tire-road interactions, we determine the tireprint and describe
the forces distributed on the tireprint.

3.1 Tire Coordinate Frame and Tire Force System

To describe the tire-road interaction and force system, we attach a Carte-
sian coordinate frame at the center of the tireprint, as shown in Figure
3.2, assuming a flat and horizontal ground. The z-axis is along the inter-
section line of the tire-plane and the ground. Tire plane is the plane made
by narrowing the tire to a flat disk. The z-axis is perpendicular to the
ground, opposite to the gravitational acceleration g, and the y-axis makes
the coordinate system a right-hand triad.

To show the tire orientation, we use two angles: camber angle v and
sideslip angle a. The camber angle is the angle between the tire-plane and
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FIGURE 3.2. Tire coordinate system.

the vertical plane measured about the x-axis. The camber angle can be
recognized better in a front view as shown in Figure 3.3. The sideslip angle
«, or simply sideslip, is the angle between the velocity vector v and the
x-axis measured about the z-axis. The sideslip can be recognized better in
a top view, as shown in Figure 3.4.

The force system that a tire receives from the ground is assumed to be
located at the center of the tireprint and can be decomposed along x, vy,
and z axes. Therefore, the interaction of a tire with the road generates a 3D
force system including three forces and three moments, as shown in Figure
3.2.

1. Longitudinal force F,. It is a force acting along the x-axis. The resul-
tant longitudinal force F, > 0 if the car is accelerating, and F, < 0
if the car is braking. Longitudinal force is also called forward force.

2. Normal force F,. It is a vertical force, normal to the ground plane.
The resultant normal force F, > 0 if it is upward. Normal force is
also called wvertical force or wheel load.

3. Lateral force Fy. It is a force, tangent to the ground and orthogonal
to both F, and F,. The resultant lateral force F,, > 0 if it is in the
y-direction.

4. Roll moment M. It is a longitudinal moment about the z-axis. The
resultant roll moment M, > 0 if it tends to turn the tire about the
z-axis. The roll moment is also called the bank moment, tilting torque,
or overturning moment.
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FIGURE 3.3. Front view of a tire and measurment of the camber angle.

FIGURE 3.4. Top view of a tire and measurment of the side slip angle.
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5. Pitch moment M,. It is a lateral moment about the y-axis. The resul-
tant pitch moment M, > 0 if it tends to turn the tire about the y-axis
and move forward. The pitch moment is also called rolling resistance
torque.

6. Yaw moment M,. It is an upward moment about the z-axis. The
resultant yaw moment M, > 0 if it tends to turn the tire about
the z-axis. The yaw moment is also called the aligning moment, self
aligning moment, or bore torque.

The moment applied to the tire from the vehicle about the tire axis is
called wheel torque T'.

Example 75 Origin of tire coordinate frame.

For a cambered tire, it is not always possible to find or define a center
point for the tireprint to be used as the origin of the tire coordinate frame.
It is more practical to set the origin of the tire coordinate frame at the
center of the intersection line between the tire-plane and the ground. So,
the origin of the tire coordinate frame is at the center of the tireprint when
the tire is standing upright and stationary on a flat road.

Example 76 SAFE tire coordinate system.

The tire coordinate system adopted by the Society of Automotive Engi-
neers (SAE) is shown in Figure 8.5. The origin of the coordinate system
is at the center of the tireprint when the tire is standing stationary. The
x-axis is at the intersection of the tire-plane and the ground plane. The
z-axis is downward and perpendicular to the tireprint. The y-axis is on the
ground plane and goes to the right to make the coordinate frame a right-
hand frame.

The sideslip angle a is considered positive if the tire is slipping to the
right, and the camber angle v is positive when the tire leans to the right.

The SAE coordinate system is as good as the coordinate system in Fig-
ure 3.2 and may be used alternatively. However, having the z-azis directed
downward is sometimes inefficient and confusing. Furthermore, in SAE
convention, the camber angle for the left and right tires of a vehicle have
opposite signs. So, the camber angle of the left tire is positive when the tire
leans to the right and the camber angle of the right tire is positive when the
tire leans to the left.

3.2 Tire Stiffness

As an applied approximation, the vertical tire force F, can be calculated
as a linear function of the normal tire deflection Az measured at the tire
center.

F, =k, Az (3.1)
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Camber angle Y

FIGURE 3.5. SAE tire coordinate system.

The coefficient k, is called tire stiffness in the z-direction. Similarly, the
reaction of a tire to a lateral and a longitudinal force can be approximated
by

F, = k,Ax (3.2)
F, = kyAy (3.3)

where the coefficient k, and k, are called tire stiffness in the z and y
directions.

Proof. The deformation behavior of tires to the applied forces in any three
directions x, y, and z are the first important tire characteristics in tire
dynamics. Calculating the tire stiffness is generally based on experiment
and therefore, they are dependent on the tire’s mechanical properties, as
well as environmental characteristics.

Consider a vertically loaded tire on a stiff and flat ground as shown in
Figure 3.6. The tire will deflect under the load and generate a pressurized
contact area to balance the vertical load.

Figure 3.7 depicts a sample of experimental stiffness curve in the (F}, Az)
plane. The curve can be expressed by a mathematical function

F, = f(Az) (3.4)

however, we may use a linear approximation for the range of the usual
application.

(3.5)
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FIGURE 3.6. Vertically loaded tire at zero camber.
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FIGURE 3.7. A sample tire vertical stiffness curve.
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FIGURE 3.8. Vertical, longitudinal, and lateral stiffness curves.

The coefficient % is the slope of the experimental stiffness curve at zero

and is shown by a stiffness coefficient &,

k., =tanf = lim of

Nz—0 O (AZ) ’ <36)

Therefore, the normal tire deflection Az remains proportional to the ver-
tical tire force F,.

F, =k, Az (3.7)

The tire can apply only pressure forces to the road, so normal force is
restricted to F, > 0.

The stiffness curve can be influenced by many parameters. The most
effective one is the tire inflation pressure.

Lateral and longitudinal force/deflection behavior is also determined ex-
perimentally by applying a force in the appropriate direction. The lateral
and longitudinal forces are limited by the sliding force when the tire is
vertically loaded. Figure 3.8 depicts a sample of longitudinal and lateral
stiffness curves compared to a vertical stiffness curve.

The practical part of a tire’s longitudinal and lateral stiffness curves is
the linear part and may be estimated by linear equations.

Fy = kgl (3.8)
F, = kyAy (3.9)

The coefficients &, and k, are called the tire stiffness in the x and y direc-
tions. They are measured by the slope of the experimental stiffness curves
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FIGURE 3.9. Illustration of laterally and longitudinally tire deformation.

in the (F,, Az) and (F,, Ay) planes.

. of

ke = Mmoo A (3.10)
- of

Ry = dm Sy (31

When the longitudinal and lateral forces increase, parts of the tireprint
creep and slide on the ground until the whole tireprint starts sliding. At
this point, the applied force saturates and reaches its maximum supportable
value.

Generally, a tire is most stiff in the longitudinal direction and least stiff
in the lateral direction.

ke >k, > ky (3.12)
Figure 3.9 illustrates tire deformation under a lateral and a longitudinal

force. m

Example 77 % Nonlinear tire stiffness.
In a better modeling, the vertical tire force F, is a function of the normal
tire deflection Nz, and deflection velocity NZ.

F, = F,(Az A% (3.13)

= F._ +F, (3.14)

In a first approximation we may assume F, is a combination of a static

and a dynamic part. The static part is a nonlinear function of the vertical

tire deflection and the dynamic part is proportional to the vertical speed of
the tire.

F., = kiDz+4ky (Az) (3.15)

F,, = ksz (3.16)
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The constants k1 and ko are calculated from the first and second slopes of
the experimental stiffness curve in the (F,,Az) plane, and ks is the first
slope of the curve in the (F,,2) plane, which indicates the tire damping.

OF,
ky = = 3.17
! 0AZ| ALy (3.17)
2
ko = 187% (3.18)
20 (Az2) P
OF,
= — 1
ks 9% |, (3.19)

The value of k; = 200000 N/ m is a good approximation for a 205/50R15
passenger car tire, and k; = 1200000N/m is a good approzimation for a
X31580R22.5 truck tire.

Tires with a larger number of plies have higher damping, because the
plies’ internal friction generates the damping. Tire damping decreases by
increasing speeds.

Example 78 % Hysteresis effect.

Because tires are made from rubber, which is a viscoelastic material, the
loading and unloading stiffness curves are not exactly the same. They are
similar to those in Figure 3.10, which make a loop with the unloading curve
below the loading. The area within the loop is the amount of dissipated en-
ergy during loading and unloading. As a tire rotates under the weight of a
vehicle, it experiences repeated cycles of deformation and recovery, and it
dissipates energy loss as heat. Such a behavior is a common property of hys-
teretic material and is called hysteresis. So, hysteresis is a characteristic
of a deformable material such as rubber, that the energy of deformation is
greater than the energy of recovery. The amount of dissipated energy de-
pends on the mechanical characteristics of the tire. Hysteretic energy loss
in rubber decreases as temperature increases.

The hysteresis effect causes a loaded rubber not to rebound fully after load
removal. Consider a high hysteresis race car tire turning over road irreg-
ularities. The deformed tire recovers slowly, and therefore, it cannot push
the tireprint tail on the road as hard as the tireprint head. The difference
in head and tail pressures causes a resistance force, which is called rolling
resistance.

Race cars have high hysteresis tires to increase friction and limit traction.
Street cars have low hysteresis tires to reduce the rolling resistance and low
operating temperature. Hysteresis level of tires inversely affect the stopping
distance. A high hysteresis tire makes the stopping shorter, however, it
wears rapidly and has a shorter life time.
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FIGURE 3.10. Histeresis loop in a vertically loading and unloading tire.

3.3 Tireprint Forces

The force per unit area applied on a tire in a tireprint can be decomposed
into a component normal to the ground and a tangential component on
the ground. The normal component is the contact pressure o,, while the
tangential component can be further decomposed in the z and y directions
to make the longitudinal and lateral shear stresses 7, and 7. For a station-
ary tire under normal load, the tireprint is symmetrical. Due to equilibrium
conditions, the overall integral of the normal stress over the tireprint area
Ap must be equal to the normal load F,, and the integral of shear stresses
must be equal to zero.

/ o.(z,y)dA=F, (3.20)

Ap

/ 7o(2,y) dA =0 (3.21)
Ap

/ 7 (@) dA =0 (3.22)
Ap

3.3.1 Static Tire, Normal Stress

Figure 3.11 illustrates a stationary tire under a normal load F. along with
the generated normal stress o, applied on the ground. The applied loads on
the tire are illustrated in the side view shown in Figure 3.12. For a station-
ary tire, the shape of normal stress o (z,y) over the tireprint area depends
on tire and load conditions, however its distribution over the tireprint is
generally in the shape shown in Figure 3.13.
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Stationary
loaded tire
Ground surface
o. Normal stress
V4
distribution

FIGURE 3.11. Normal stress o, applied on the round because of a stationary
tire under a normal load F;.

Ground plane

FIGURE 3.12. Side view of a normal force F’, and stress o applied on a stationary
tire.



106 3. Tire Dynamics

>
o<
oo
et e
-
s TSSS

A

(X
0
X0

)
)

&
Y

FIGURE 3.13. A model of normal stress o.(z,y) in the tireprint area for a sta-
tionary tire.

The normal stress o,(x,y) may be approximated by the function

6 6

T Y
o.(z,y) =02y, (1 — 5 b_ﬁ) (3.23)
where a and b indicate the dimensions of the tireprint, as shown in Figure
3.14. The tireprints may approximately be modeled by a mathematical

function
2n

8

2n
Y
a2n + b2—n =1 n € N. (324)

For radial tires, n = 3 or n = 2 may be used,

1‘6 y6
<t =1 (3.25)

while for non-radial tires n = 1 is a better approximation.

x

L (3.26)
Example 79 Normal stress in tireprint.

A car weighs 800kg. If the tireprint of each radial tire is Ap = 4xaxb =
4 x 5em x 12cm, then the normal stress distribution under each tire, o,
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Tireprint
FIGURE 3.14. A mode for tireprint of stationary radial tires under normal load

must satisfy the equilibrium equation.

F, = l800 %X 9.81
4
:/ Uz(l'7y)dA

0.05 0.12 6 6
x Y
o, - — - | dy dx
/005/012 M ( 0.059 0-126> Y
=1.7143 x 10~ %0, (3.27)
Therefore, the mazimum normal stress is
F
- = 1.1445 x 10° Pa (3.28)

Tem = 17143 % 10-2

and the stress distribution over the tireprint is
6 6
x
Y ) Pa. (3.29)

_ 5
o.(z,y) = 1.1445 x 10 (1 ~ S0E T o1

Example 80 Normal stress in tireprint for n = 2.
The maximum normal stress o,,, for an 800kg car having an Ap =

4xaxb=4xbcm x 12cm, can be found for n =2 as

F, = 3800 x 9.81

=/ ox(z,y)dA

0.05 £0.12 4
x y
/ / Tan ( 0.051 0.124> ay d

0.05 0.12
=1.44 x 10 %0,

(3.30)
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FIGURE 3.15. Direction of tangential stresses on the tireprint of a stationary
vertically loaded tire.

F,
75 T T4 % 102
Comparing o.,, = 1.3625 x 10° Pa for n = 2 to 0,,, = 1.1445 x 10° Pa
for n = 3 shows that mazimum stress forn = 2 is (1 — %) x 100 = 16%
more than n = 3.

= 1.3625 x 10° Pa. (3.31)

3.8.2  Static Tire, Tangential Stresses

Because of geometry changes to a circular tire in contact with the ground, a
three-dimensional stress distribution will appear in the tireprint even for a
stationary tire. The tangential stress T on the tireprint can be decomposed
in x and y directions. The tangential stress is also called shear stress or
friction stress.

The tangential stress on a tire is inward in z direction and outward in
y direction. Hence, the tire tries to stretch the ground in the x-axis and
compact the ground on the y-axis. Figure 3.15 depicts the shear stresses on
a vertically loaded stationary tire. The force distribution on the tireprint
is not constant and is influenced by tire structure, load, inflation pressure,
and environmental conditions:

The tangential stress 7, in the z-direction may be modeled by the fol-
lowing equation.

2n+1
To(T,Y) = —Tuy, (%) sin? <2w> cos (%ﬂ') nenN (3.32)
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FIGURE 3.16. Absolute value of a 7, distribution model for n = 1.

T, 1s negative for z > 0 and is positive for z < 0, showing an inward longi-
tudinal stress. Figure 3.16 illustrates the absolute value of a 7, distribution
for n = 1.

The y-direction tangential stress 7, may be modeled by the equation

2n
Ty(z,y) = =Ty, (2771 - 1) sin (%71’) nenN (3.33)

where 7, is positive for y > 0 and negative for y < 0, showing an outward
lateral stress. Figure 3.17 illustrates the absolute value of a 7, distribution
forn =1.

3.4 Effective Radius

Consider a vertically loaded wheel that is turning on a flat surface as shown
in Figure 3.18. The effective radius of the wheel R,,, which is also called a
rolling radius, is defined by y

Ry = o (3.34)
where, v, is the forward velocity, and w,, is the angular velocity of the
wheel. The effective radius R,, is approximately equal to
Ry — Ry,

3

and is a number between the unloaded or geometric radius R, and the
loaded height Ry,.

Ry~ R, — (3.35)

Ry, <Ry < Ry (3.36)
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FIGURE 3.17. Absolute value of a 7, distribution model for n = 1.

Proof. An effective radius Ry, = v, /w,, is defined by measuring a wheel’s
angular velocity w,, and forward velocity v,,. As the tire turns forward, each
part of the circumference is flattened as it passes through the contact area.
A practical estimate of the effective radius can be made by substituting the
arc with the straight length of tireprint. The tire vertical deflection is

Ry — R, = Ry (1 —cosyp) (3.37)

and therefore
R, = Rgcosp (3.38)
a = Rysing. (3.39)

If the motion of the tire is compared to the rolling of a rigid disk with
radius R, then the tire must move a distance a = R, for an angular
rotation ¢.

a = Rgsing = Ry (3.40)

Hence,
Rgsing
_ Y

¥

Ry (3.41)

Expanding Si—’;‘ﬁ in a Taylor series show that

R, =R, <1 2?40 (<p4)> . (3.42)
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Ground plane F

FIGURE 3.18. Effective radius R,, compared to tire radius Ry and loaded height
Ry,.

Using Equation (3.37) we may approximate

1
cosp ~ 1—§<p2 (3.43)
©* ~ 2(1—cosyp)
Ry,
~ 2(1—-— 3.44
(%) 40
and therefore,
1 Ry,
R, =~ R;(1—=1[1——
(-30-%))
2 1
= =R =Ry, 3.45
3 g+3 h ( )

Because Ry, is a function of tire load F,

Ry, = Ri(F.)
F,
Ry~ = (3.46)

the effective radius R,, is also a function of the tire load. The angle ¢ is
called tireprint angle or tire contact angle.

The vertical stiffness of radial tires is less than non-radial tires under
the same conditions. So, the loaded height of radial tires, Ry, is less than
the non-radials’. However, the effective radius of radial tires R,,, is closer
to their unloaded radius R,. As a good estimate, for a non-radial tire,
R, ~0.96R,, and R;, ~ 0.94R,, while for a radial tire, R, ~ 0.98R,, and
Ry =~ 0.92R,.
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Generally speaking, the effective radius R,, depends on the type of tire,
stiffness, load conditions, inflation pressure, and wheel’s forward velocity.
|

Example 81 Compression and expansion of tires in the tireprint zone.
Because of longitudinal deformation, the peripheral velocity of any point
of the tread varies periodically. When it gets close to the starting point of
the tireprint, it slows down and a circumferential compression results. The
tire treads are compressed in the first half of the tireprint and gradually
expanded in the second half. The treads in the tireprint contact zone almost
stick to the ground, and therefore their circumferential velocity is close
to the forward velocity of the tire center v,. The treads regain their initial
circumferential velocity Rqw., after expanding and leaving the contact zone.

Example 82 Tire rotation.
The geometric radius of a tire P235/75R15 is Ry = 366.9 mm, because

hT = 235x 75%
= 176.25mm ~ 6.94in (3.47)

and therefore,

2hp + 15
2
2 x 6.94 4 15
2
= 14.44in ~ 366.9 mm. (3.48)

Ry

Consider a vehicle with such a tire is traveling at a high speed such as
v=>50m/s =180km/h =~ 111.8 mi/ h. The tire is radial, and therefore the
effective tire radius R, is approximately equal to

Ry, ~ 0.98R, ~ 359.6 mm. (3.49)

After moving a distance d = 100km, this tire must have been turned n, =
44259 times because

ny = —=

100 x 103
= = 44259. )
271 % 359.6 x 103 59 (3.50)

Now assume the vehicle travels the same distance d = 100km at a low
inflation pressure, such that the effective radius of the tire remained close
to at the loaded radius

R Ry, ~ 0.92R,

330.8 mm. (3.51)

Q
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Ground

of tire points, d
FIGURE 3.19. Radial motion of the tire peripheral points in the contact area.

This tire must turn no = 48112 times to travel d = 100km, because,

d
D
100 x 103

= T x3308x103  BH2 (3.52)

NnNg =

Example 83 % Radial motion of tire’s peripheral points in the tireprint.
The radial displacement of a tire’s peripheral points during road contact
may be modeled by a function

d=d(z,0). (3.53)

We assume that a peripheral point of the tire moves along only the radial
direction during contact with the ground, as shown in Figure 3.19.
Let’s show a radius at an angle 0, by r = r (x,0). Knowing that

cosf = % (3.54)
cos¢p = g—z (3.55)
we can find
cos ¢

(3.56)
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Thus, the displacement function is

d = Ryg—r(z,0)
= R, (1 B ) —p< <. (3.57)

R, cosd
Example 84 Tread travel.

Let’s follow a piece of tire tread in its travel around the spin axis when
the vehicle moves forward at a constant speed. Although the wheel is turning
at constant angular velocity w.,,, the tread does not travel at constant speed.
At the top of the tire, the radius is equal to the unloaded radius Ry and the
speed of the tread is Ryw,, relative to the wheel center. As the tire turns, the
tread approaches the leading edge of tireprint, and slows down. The tread
is compacted radially, and gets squeezed in the heading part of the tireprint
area. Then, it is stretched out and unpacked in the tail part of the tireprint
as it moves to the tail edge. In the middle of the tireprint, the tread speed
is Rpw,, relative to the wheel center.

The variable radius of a tire during the motion through the tireprint is

Cos ¢

gm —op<O<o (358)

T =

where ¢ is the half of the contact angle, and 0 is the angular rotation of the
tire, as shown in Figure 3.19. The angular velocity of the tire is w,, = 0
and is assumed to be constant. Then, the radial velocity 1 and acceleration
7 of the tread with respect to the wheel center are

in 0

= Rywy 3.59
7 gWay COS @ 20 ( )

L1 5 COSQ
o= 2Rgo.)w p—y (3 —cos26). (3.60)

Figure 3.20 depicts v, 7, and 7 for a sample car with the following data:

R, = 05m (3.61)
¢ = 15deg (3.62)
wy = 60rad/s (3.63)

3.5 Rolling Resistance

A turning tire on the ground generates a longitudinal force called rolling
resistance. The force is opposite to the direction of motion and is propor-
tional to the normal force on the tireprint.

F, = —F,i (3.64)
F. = . F; (3.65)
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FIGURE 3.20. Radial displacement, velocity, and acceleration of tire treads in
the tireprint.

The parameter p,. is called the rolling friction coefficient. p,. is not constant
and mainly depends on tire speed, inflation pressure, sideslip and camber
angles. It also depends on mechanical properties, speed, wear, temperature,
load, size, driving and braking forces, and road condition.

Proof. When a tire is turning on the road, that portion of the tire’s circum-
ference that passes over the pavement undergoes a deflection. Part of the
energy that is spent in deformation will not be restored in the following re-
laxation. Hence, a change in the distribution of the contact pressure makes
normal stress o, in the heading part of the tireprint be higher than the
tailing part. The dissipated energy and stress distortion cause the rolling
resistance.

Figures 3.21 and 3.22 illustrate a model of normal stress distribution
across the tireprint and their resultant force F, for a turning tire.

Because of higher normal stress in the front part of the tireprint, the
resultant normal force moves forward. Forward shift of the normal force
makes a resistance moment in the —y direction, opposing the forward ro-
tation.

M, = —Mj (3.66)
M, = F.Ax (3.67)

The rolling resistance moment M,. can be substituted by a rolling resistance
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FIGURE 3.21. A model of normal stress o (z,y) in the tireprint area for a rolling

tire.
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Ground plane

FIGURE 3.22. Side view of a normal stress o, distribution and its resultant force

F’, on a rolling tire.
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force F,. parallel to the z-axis.

F, = —F. (3.68)
1 Az
F, = —M,=—F, 3.69

Practically the rolling resistance force can be defined using a rolling friction
coefficient p,..
F.=p, F, (3.70)

Example 85 A model for normal stress of a turning tire.
We may assume that the normal stress of a turning tire is expressed by

x?n an T
Oy =0z, (1WW+E> (371)

where n = 3 or n = 2 for radial tires and n = 1 for non-radial tires.
We may determine the stress mean value o,,, by knowing the total load
on the tire. As an example, using n = 3 for an 800kg car with a tireprint
Ap=4xaxb=4x5cm x 12cm, we have

1
F, = 1800 x 9.81

[ opaa
Ap

0.05 0.12 6 6
T Y T
- (1= - dyd
PP ( 0.050  0.120 | 1x 0.05> yar
=1.7143 x 10~ %0, (3.72)

and therefore,

F,

" T g = 11445 % 10° Pa (3.73)

Oz
Example 86 Deformation and rolling resistance.

The distortion of stress distribution is proportional to the tire-road de-
formation that is the reason for shifting the resultant force forward. Hence,
the rolling resistance increases with increasing deformation. A high pres-
sure tire on concrete has lower rolling resistance than a low pressure tire
on soil.

To model the mechanism of dissipation energy for a turning tire, we as-
sume there are many small dampers and springs in the tire structure. Pairs
of parallel dampers and springs are installed radially and circumstantially.
Figures 8.23 and 3.24 illustrate the damping and spring structure of a tire.
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FIGURE 3.23. Damping structure of a tire.
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FIGURE 3.24. Spring structure of a tire.
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3.5.1 Y Effect of Speed on the Rolling Friction Coefficient

The rolling friction coefficient 4, increases with a second degree of speed.
It is possible to express p, = p,.(v;) by the function

Hy = fig + 11 V3 (3.74)

Proof. The rolling friction coefficient increases by increasing speed exper-
imentally. We can use a polynomial function

e =D iU, (3.75)
=0

to fit the experimental data. Practically, two or three terms of the polyno-
mial would be enough. The function

[y = po + 11 V3 (3.76)

is simple and good enough for representing experimental data and analytic
calculation. The values of

pe = 0.015 (3.77)
p, = 7x107%s?/m? (3.78)

are reasonable values for most passenger car tires. However, 1y and g
should be determined experimentally for any individual tire. Figure 3.25
depicts a comparison between Equation (3.74) and experimental data for
a radial tire.

Generally speaking, the rolling friction coefficient of radial tires show to
be less than non-radials. Figure 3.26 illustrates a sample comparison.

Equation (3.74) is applied when the speed is below the tire’s critical
speed. Critical speed is the speed at which standing circumferential waves
appear and the rolling friction increases rapidly. The wavelength of the
standing waves are close to the length of the tireprint. Above the critical
speed, overheating happens and tire fails very soon. Figure 3.27 illustrates
the circumferential waves in a rolling tire at its critical speed. m

Example 87 Rolling resistance force and vehicle velocity.
For computer simulation purposes, a fourth degree equation is presented
to evaluate the rolling resistance force F,

F.=Cy+ Ciu, + Covl, (3.79)

The coefficients C; are dependent on the tire characteristics, however, the
following values can be used for a typical raided passenger car tire:

Cy = 991x10°3
C, = 1.95x107° (3.80)
Cy = 1.76x107°
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FIGURE 3.25. Comparison between the analytic equation and experimental data
for the rolling friction coefficient of a radial tire.
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FIGURE 3.26. Comparison of the rolling friction coefficient between radial and
non-radial tires.
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FIGURE 3.27. Illustration of circumferential waves in a rolling tire at its critical

Example 88 Road pavement and rolling resistance.
The effect of the pavement and road condition is introduced by assigning
a value for py in equation w, = g + py v2. Table 3.1 is a good reference.

Table 3.1 - The value of uy on different pavements.

Road and pavement condition o
Very good concrete 0.008 — 0.1
Very good tarmac 0.01 — 0.0125
Average concrete 0.01 —0.015
Very good pavement 0.015
Very good macadam 0.013 — 0.016
Average tarmac 0.018
Concrete in poor condition 0.02
Good block paving 0.02
Average macadam 0.018 — 0.023
Tarmac in poor condition 0.23
Dusty macadam 0.023 — 0.028
Good stone paving 0.033 — 0.055
Good natural paving 0.045
Stone pavement in poor condition | 0.085
Snow shallow (5cm) 0.025
Snow thick (10cm) 0.037
Unmaintained natural road 0.08 — 0.16
Sand 0.15-10.3
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Example 89 Tire information tips.

A new front tire with a worn rear tire can cause instability.

Tires stored in direct sunlight for long periods of time will harden and
age more quickly than those kept in a dark area.

Prolonged contact with oil or gasoline causes contamination of the rubber
compound, making the tire life short.

Example 90 % Wave occurrence justification.

The normal stress will move forward when the tire is turning on a road.
By increasing the speed, the normal stress will shift more and concentrate
in the first half of the tireprint, causing low stress in the second half of the
tireprint. High stress in the first half along with no stress in the second half
is similar to hammering the tire repeatedly.

Example 91 % Race car tires.

Racecars have very smooth tires, known as slicks. Smooth tires reduce the
rolling friction and maximize straight line speed. The slick racing tires are
also pumped up to high pressure. High pressure reduces the tireprint area.
Hence, the normal stress shift reduces and the rolling resistance decreases.

Example 92 % Effect of tire structure, size, wear, and temperature on
the rolling friction coefficient.

The tire material and the arrangement of tire plies affect the rolling fric-
tion coefficient and the critical speed. Radial tires have around 20% lower
i, and 20% higher critical speed.

Tire radius Ry and aspect ratio hy/wr are the two size parameters that
affect the rolling resistance coefficient. A tire with larger Ry and smaller
hr /wr has lower rolling resistance and higher critical speed.

Generally speaking, the rolling friction coefficient decreases with wear in
both radial and non-radial tires, and increases by increasing temperature.

3.5.2 % Effect of Inflation Pressure and Load on the Rolling
Friction Coefficient

The rolling friction coefficient p,. decreases by increasing the inflation pres-
sure p. The effect of increasing pressure is equivalent to decreasing normal
load F3.

The following empirical equation has been suggested to show the effects
of both pressure p and load F, on the rolling friction coefficient.

K 5.5 x 10° +90F, 1100 + 0.0388F,
=——|(5.1 3.81
=135 S LOEOOE ) sy

The parameter K is equal to 0.8 for radial tires, and is equal to 1.0 for non-
radial tires. The value of F}, p, and v, must be in [N], [Pa], and [m/s]
respectively.
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FIGURE 3.28. Motorcycle rolling friction coefficient.

Example 93 Motorcycle rolling friction coefficient.

The following equations are suggested for calculating rolling friction coef-
ficient p,. applicable to motorcycles. They can be only used as a rough lower
estimate for passenger cars. The equations consider the inflation pressure
and forward velocity of the motorcycle.

1800  2.0606
0.0085 + — + " v? v, <46m/s(~ 165km/h)

= . 2
Hr 1800  3.7714 (3.82)
—

v
p p

vy >46m/s (= 165km/ h)

€T

The speed v, must be expressed in m/s and the pressure p must be in
Pa. Figure 3.28 illustrates this equation for v, < 46m/s (= 165km/h).
Increasing the inflation pressure p decreases the rolling friction coefficient

-
Example 94 Dissipated power because of rolling friction.
Rolling friction reduces the vehicle’s power. The dissipated power because

of rolling friction is equal to the rolling friction force F, times the forward
velocity v,. Using Equation (8.81), the rolling resistance power is

P = F,u,
= —ppvg F
—K v, <5 ] 5.5 x 10° + 90F, n 1100 + 0.0388F,

F.. (3.83
1000 P “m> (3.83)
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The resultant power P is in [ W] when the normal force F, is expressed in
[N], velocity v, in [m/s], and pressure p in [Pa].

The rolling resistance dissipated power for motorcycles can be found based
on Equation (3.82).

1800 = 2.0606
(0.0085 + > + » vg) v F, v, <46m/s(= 165km/h)
1800 = 3.7714
<T + » vg) v F vy >46m/s (= 165km/ h)
(3.84)

Example 95 Rolling resistance dissipated power.

If a vehicle is moving at 100km/h ~ 27.78 m/s ~ 62mi/h and each
radial tire of the vehicle is pressurized up to 220kPa ~ 32 psi and loaded
by 220kg, then the dissipated power, because of rolling resistance, is

5
P g e (o) B5X10° £ 90F, 1100 +0.0388F. 2
1000 p
= 2424.1W ~ 2.4kW. (3.85)

To compare the given equations, assume the vehicle has motorcycle tires
with power loss given by Equation (3.84).

1 2.
P = <0.0085 + % + 0506 ui) v F,

= B5734.1W ~ 5.7kW. (3.86)

It shows that if the vehicle uses motorcycle tires, it dissipates more power.

Example 96 Effects of improper inflation pressure.

High inflation pressure increases stiffness, which reduces ride comfort
and generates vibration. Tireprint and traction are reduced when tires are
over inflated. Over-inflation causes the tire to transmit shock loads to the
suspension, and reduces the tire’s ability to support the required load for
cornerability, braking, and acceleration.

Under-inflation results in cracking and tire component separation. It also
increases sidewall flexing and rolling resistance that causes heat and me-
chanical failure. A tire’s load capacity is largely determined by its inflation
pressure. Therefore, under-inflation results in an overloaded tire that oper-
ates at high deflection with a low fuel economy, and low handling.

Figure 3.29 illustrates the effect of over and under inflation on tire-road
contact compared to a proper inflated tire.

Proper inflation pressure is mecessary for optimum tire performance,
safety, and fuel economy. Correct inflation is especially significant to the
endurance and performance of radial tires because it may not be possible
to find a 5psi =~ 35kPa under-inflation in a radial tire just by looking.
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Proper Inflation
Over Inflation Under Inflation

FIGURE 3.29. Tire-road contact of an over- and under-inflated tire compared to
a properly inflated tire.

However, under-inflation of 5 psi ~ 35kPa can reduce up to 25% of the tire
performance and life.

A tire may lose 1 to 2psi (=7 to 14kPa) every month. The inflation
pressure can also change by 1 psi~ TkPa for every 10°F ~ 5°C of tem-
perature change. As an example, if a tire is inflated to 35psi ~ 240kPa
on an 80°F =~ 26°C summer day, it could have an inflation pressure of
23 psi =~ 160kPa on a 20°F = —6°C day in winter. This represents a nor-
mal loss of 6 psi ~ 40kPa over the six months and an additional loss of
6 psi &~ 40kPa due to the 60°F = 30°C change. At 23psi =~ 160kPa, this
tire is functioning under-inflated.

Example 97 Small / large and soft / hard tires.

If the driving tires are small, the vehicle becomes twitchy with low traction
and low top speed. However, when the driving tires are big, then the vehicle
has slow steering response and high tire distortion in turns, decreasing the
stability.

Softer front tires show more steerability, less stability, and more wear
while hard front tires show the opposite. Soft rear tires have more rear
traction, but they make the vehicle less steerable, more bouncy, and less
stable. Hard rear tires have less rear traction, but they make the vehicle
more steerable, less bouncy, and more stable.

3.5.3 Y Effect of Sideslip Angle on Rolling Resistance

When a tire is turning on the road with a sideslip angle «, a significant
increase in rolling resistance occurs. The rolling resistance force F,. would
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FIGURE 3.30. Effect of sideslip angle « on rolling resistance force F.

then be

F, = Fycosa+ Fysina (3.87)
F, — Cya? (3.88)

where, F, is the longitudinal force opposing the motion, and F), is the
lateral force.

Proof. Figure 3.30 illustrates the top view of a turning tire on the ground
under a sideslip angle . The rolling resistance force is defined as the force
opposite to the velocity vector of the tire, which has angle o with the z-
axis. Assume a longitudinal force F, in —z-direction is applied on the tire.
Sideslip o increases F, and generates a lateral force F,. The sum of the
components of the longitudinal force F}, and the lateral force F;, makes the
rolling resistance force F..

F, = F,cosa+ Fysina (3.89)

For small values of the sideslip «, the lateral force is proportional to —«
and therefore,

F. =~ F, — Cya’. (3.90)
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3.5.4 % Effect of Camber Angle on Rolling Resistance

When a tire travels with a camber angle v, the component of rolling mo-
ment M, on rolling resistance F,. will be reduced, however, a component
of aligning moment M, on rolling resistance will appear.

F, = —F.i (3.91)
1 1
F. = R—hMrCOS’y-i-R—hMZSiH’y (3.92)

Proof. Rolling moment M, appears when the normal force F, shifts for-
ward. However, only the component M,. cos~y is perpendicular to the tire-
plane and prevents the tire’s spin. Furthermore, when a moment in z-
direction is applied on the tire, only the component M, sin~y will prevent
the tire’s spin. Therefore, the camber angle v will affect the rolling resis-
tance according to

F, = —-F.i
1 1 .
F. = EMT cos*yEMz sin ~y (3.93)

where M, may be substituted by Equation (3.66) to show the effect of

normal force F,.
A

F,
h

1
F, cos'yEMZ siny (3.94)

3.6 Longitudinal Force

The longitudinal slip ratio of a tire is

o= flau 4 (3.95)
Vg
where, R, is the tire’s geometric and unloaded radius, w,, is the tire’s
angular velocity, and v, is the tire’s forward velocity. Slip ratio is positive
for driving and is negative for braking.

To accelerate or brake a vehicle, longitudinal forces must develop between
the tire and the ground. When a moment is applied to the spin axis of
the tire, slip ratio occurs and a longitudinal force F}, is generated at the
tireprint. The force F, is proportional to the normal force,

F, = F,i (3.96)
F, = u,(s)F, (3.97)

where the coefficient p,, (s) is called the longitudinal friction coefficient and
is a function of slip ratio s as shown in Figure 3.31. The friction coefficient
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FIGURE 3.31. Longitudinal friction coefficient as a function of slip ratio s, in
driving and braking.

reaches a driving peak value p4, at s =~ 0.1, before dropping to an al-
most steady-state value p,,. The friction coefficient p, (s) may be assumed
proportional to s when s is very small

ty (8) =Cs s s<<1 (3.98)

where Cj is called the longitudinal slip coefficient.
The tire will spin when s 2 0.1 and the friction coefficient remains almost
constant. The same phenomena happens in braking at the values p,,, and

Hps-

Proof. Slip ratio, or simply slip, is defined as the difference between the
actual speed of the tire v, and the equivalent tire speeds R,,w,,. Figure 3.32
illustrates a turning tire on the ground. The ideal distance that the tire
would freely travel with no slip is denoted by dg, while the actual distance
the tire travels is denoted by d4. Thus, for a slipping tire, d4 > dp, and
for a spinning tire, d4 < dp.
The difference dp — d 4 is the tire slip and therefore, the slip ratio of the
tire is
_dp —da
5= P

To have the instant value of s, we must measure the travel distances in an
infinitesimal time length, and therefore,

(3.99)

dr —da
da

s (3.100)
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FIGURE 3.32. A turning tire on the ground to show the no slip travel distance
dr, and the actual travel distance d4.

If the angular velocity of the tire is w,, then, dp = Ryw, and da = Ryway
where, R, is the geometric tire radius and R,, is the effective radius. There-
fore, the slip ratio s can be defined based on the actual speed v, = R,,w.,,
and the free speed Rjw.,

Rywyy — Rywy
Ryywy
= Bew (3.101)

Vg

A tire can exert longitudinal force only if a longitudinal slip is present.
Longitudinal slip is also called circumferential or tangential slip. During
acceleration, the actual velocity v, is less than the free velocity Ryw.,, and
therefore, s > 0. However, during braking, the actual velocity v, is higher
than the free velocity Ryw,, and therefore, s < 0.

The frictional force F,, between a tire and the road surface is a function of
normal load F, vehicle speed v,,, and wheel angular speed w,,. In addition
to these variables there are a number of parameters that affect F)., such as
tire pressure, tread design, wear, and road surface. It has been determined
empirically that a contact friction of the form F,, = u, (wy, v;)F, can model
experimental measurements obtained with constant v, w,,. |

Example 98 Slip ratio based on equivalent angular velocity weq.

It is possible to define an effective angular velocity weq as an equivalent
angular velocity for a tire with radius Ry to proceed with the actual speed
Vg = Rgweq. Using weq we have

Vg = Rgweq = Rypwoy (3.102)
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and therefore,

Rywy — Rgweq
Rgweq
W

- ~ 1. (3.103)

Weq

Example 99 Slip ratio is —1 < s < 0 in braking.

When we brake, a braking moment is applied to the wheel axis. The tread
of the tire will be stretched circumstantially in the tireprint zone. Hence,
the tire is moving faster than a free tire

Rywyw > Rgwqy (3.104)

and therefore, s < 0. The equivalent radius for a braking tire is more than
the free radius

R, > R,. (3.105)

Equivalently, we may express the condition using the equivalent angular
velocity we and deduce that a braking tire turns slower than a free tire

Ryweq > Ryway. (3.106)

The brake moment can be high enough to lock the tire. In this case wy, =0
and therefore, s = —1. It shows that the longitudinal slip would be between
—1 < s < 0 when braking.

—1<s<0 for a<0 (3.107)

Example 100 Slip ratio is 0 < s < o0 in driving.

When we drive, a driving moment is applied to the tire axis. The tread
of the tire will be compressed circumstantially in the tireprint zone. Hence,
the tire is moving slower than a free tire

Rywy < Rgwy (3.108)

and therefore s > 0. The equivalent radius for a driving tire is less than the
free radius

Ry < Ry (3.109)

Equivalently, we may express the condition using the equivalent angular
velocity we and deduce that a driving tire turns faster than a free tire

Ryweq < Rgwyy. (3.110)

The driving moment can be high enough to overcome the friction and turn
the tire on pavement while the car is not moving. In this case v, = 0
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and therefore, s = oo. It shows that the longitudinal slip would be between
0 < s < co when accelerating.

0<s<oo for a>0 (3.111)

The tire speed R,,w.,, equals vehicle speed v, only if acceleration is zero.
In this case, the normal force acting on the tire and the size of the tireprint
are constant in time. No element of the tireprint is slipping on the road.

Example 101 Power and maximum velocity.
Consider a moving car with power P = 100kW =~ 134hp can attain
279km/h ~ 77.5m/s ~ 173.3mi/h. The total driving force must be

P 100 x 103

Fw = — =
Vg 77.5

= 1290.3N. (3.112)
If we assume that the car is rear-wheel-drive and the rear wheels are driving
at the mazximum traction under the load 1600 N, then the longitudinal fric-
tion coefficient u, is
F, 1290.3
= — = —— =~ 0.806. 3.113

He = F, = 71600 (8.113)
Example 102 Slip of hard tire on hard road.

A tire with no slip cannot create any tangential force. Assume a toy
car equipped with steel tires is moving on a glass table. Such a car cannot
accelerate or steer easily. If the car can steer at very low speeds, it is because
there is sufficient microscopic slip to generate forces to steer or drive. The
glass table and the small contact area of the small metallic tires deform and
stretch each other, although such a deformation is very small. If there is any
friction between the tire and the surface, there must be slip to maneuver.

Example 103 Samples for longitudinal friction coefficients jiq,, and fi.
Table 3.2 shows the average values of longitudinal friction coefficients
Hap and pigs for a passenger car tire 215/65R15. It is practical to assume

Hap = Hbp» and Hds = Hps-

Table 3.2 - Average of longitudinal friction coefficients.

Road surface | Peak value, p,, | Sliding value, ji,,
Asphalt, dry 0.8—-0.9 0.75
Concrete, dry 0.8—-0.9 0.76
Asphalt, wet 0.5—-0.7 0.45—0.6
Concrete, wet 0.8 0.7
Gravel 0.6 0.55
Snow, packed 0.2 0.15
Ice 0.1 0.07
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FIGURE 3.33. The molecular binding between the tire and road surfaces.

Example 104 Friction mechanisms.
Rubber tires generate friction in three mechanisms: 1— adhesion, 2—
deformation, and 3— wear.

F,=F,;+ F4 + Fye. (3.114)

Adhesion friction is equivalent to sticking. The rubber resists sliding
on the road because adhesion causes it stick to the road surface. Adhesion
occurs as a result of molecular binding between the rubber and surfaces.
Because the real contact area is much less than the observed contact area,
high local pressure make molecular binding, as shown in Figure 3.33. Bound
occurs at the points of contact and welds the surfaces together. The adhesion
friction is equal to the required force to break these molecular bounds and
separate the surfaces. The adhesion is also called cold welding and is
attributed to pressure rather than heat. Higher load increases the contact
area, makes more bounds, and increases the friction force. So the adhesion
friction confirms the friction equation

F, =p,(s) F,. (3.115)

The main contribution to tire traction force on a dry road is the adhesion
friction. The adhesion friction decreases considerably on a road covered by
water, ice, dust, or lubricant. Water on a wet road prevents direct contact
between the tire and road and reduces the formation of adhesion friction.
The main contribution to tire friction when it slides on a road surface is the
viscoelastic energy dissipation in the tireprint area. This dissipative energy
is velocity and is time-history dependent.

Deformation friction is the result of deforming rubber and filling the
microscopic irreqularities on the road surface. The surface of the road has
many peaks and valleys called asperities. Movement of a tire on a rough
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surface results in the deformation of the rubber by peaks and high points on
the surface. A load on the tire causes the peaks of irreqularities to penetrate
the tire and the tire drapes over the peaks. The deformation friction force,
needed to move the irreqularities in the rubber, comes from the local high
pressure across the irreqularities. Higher load increases the penetration of
the irregularities in the tire and therefore increases the friction force. So
the deformation friction confirms the friction equation (3.115).

The main contribution to the tire traction force on a wet road is the
deformation friction. The adhesion friction decreases considerably on a road
covered by water, ice, dust, or lubricant.

Deformation friction exists in relative movement between any contacted
surfaces. No matter how much care is taken to form a smooth surface, the
surfaces are irreqular with microscopic peaks and valleys. Opposite peaks
interact with each other and cause damage to both surfaces.

Wear friction is the result of excessive local stress over the tensile
strength of the rubber. High local stresses deform the structure of the tire
surface past the elastic point. The polymer bonds break, and the tire surface
tears in microscopic scale. This tearing makes the wear friction mechanism.
Wear results in separation of material. Higher load eases the tire wear and
therefore increases the wear friction force. So the wear friction confirms the
friction equation (3.115).

Example 105 Empirical slip models.

Based on experimental data and curve fitting methods, some mathemati-
cal equations are presented to simulate the longitudinal tire force as a func-
tion of longitudinal slip s. Most of these models are too complicated to be
useful in vehicle dynamics. However, a few of them are simple and accurate
enough to be applied.

The Pacejka model, which was presented in 1991, has the form

F, (s) = ¢; sin (CQ tan~! (638 —cy (038 —tan! (038)))) (3.116)

where ¢y, co, and c3 are three constants based on the tire experimental data.
The 1987 Burckhardt model is a simpler equation that needs three num-

bers.
F.(s)=ac1 (1 — 67C2S) — 38 (3.117)

There is another Burckhardt model that includes the velocity dependency.
Fo(s)=(c1 (1—e%*) —cgs) e " (3.118)

This model needs four numbers to be measured from experiment.
By expanding and approrimating the 1987 Burckhardt model, the simpler
model by Kiencke and Daviss was suggested in 1994. This model is

Fy(s) = 5

=kg—m— 3.119
14 c18 + cos? ( )
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where kq is the slope of F (s) versus s at s =0

AF,
ks = 1i 2 3.120
lim —= (3.120)
and c1, co are two experimental numbers.
Another simple model is the 2002 De- Wit model
F, (s) = c1v/s — cs (3.121)

that is based on two numbers c1, ca.

In either case, we need at least one experimental curve such as shown
in Figure 8.31 to find the constant numbers c;. The constants ¢; are the
numbers that best fit the associated equation with the experimental curve.
The 1997 Burckhardt model (3.118) needs at least two similar tests at two
different speeds.

Example 106 % Alternative slip ratio.
An alternative method for defining the slip ratio is

Vg

1-— Rywy > v, drivin
Rng g¥rw T g
5= (3.122)
Rywy, .
——— —1 Rywy, <vg braking
Vg
where v, is the speed of the wheel center, w,, is the angular velocity of the
wheel, and Ry is the tire radius.
In another alternative definition, the following equation is used for lon-

gitudinal slip:

B Ryw, \" | 41 Ryww <y
s = 1-— (U—x> where n—{ 1 Ryww > (3.123)

s € [0,1]

In this definition s is always between zero and one. When s = 1, then the
tire is either locked while the car is sliding, or the tire is spinning while the
car is mot moving.

Example 107 % Tire on soft sand.

Figure 3.34 illustrates a tire turning on sand. The sand will be packed
when the tire passes. The applied stresses from the sand on the tire are
developed during the angle 81 < 6 < 03 measured counterclockwise from
vertical direction.

It is possible to define a relationship between the mormal stress o and
tangential stress T under the tire

7= (c+otand) (1 - cFO-0H0=Cn0)—sno) (3.124)
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FIGURE 3.34. A tire turning on sand.

where s is the slip ratio defined in Equation (3.122), and
Tm =c+otanf (3.125)

is the maximum shear stress in the sand applied on the tire. In this equation,
c is the cohesion stress of the sand, and k is a constant.

Example 108 % Lateral slip ratio.

Analytical expressions can be established for the force contributions in x
and y directions using adhesive and sliding concept by defining longitudinal
and lateral slip ratios s, and s,

Rywy
sy = 9w (3.126)
Vg
5, = Dau (3.127)
- v
)

where v, is the longitudinal speed of the wheel and vy is the lateral speed of
the wheel. The unloaded geometric radius of the tire is denoted by R, and
Wy 18 the Totation velocity of the wheel.
At very low slips, the resulting tire forces are proportional to the slip

F, = Cs, s (3.128)
F, = (s, sy (3.129)
where Cs, is the longitudinal slip coefficient and Cs, is the lateral slip
coefficient.

3.7 Lateral Force

When a turning tire is under a vertical force F, and a lateral force F),, its
path of motion makes an angle o with respect to the tire-plane. The angle
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FIGURE 3.35. Front view of a laterally deflected tire.

is called sideslip angle and is proportional to the lateral force

F, = F,j (3.130)
F, = —-Cha (3.131)
where C,, is called the cornering stiffness of the tire.
C, = lim M
a—0 da
OF,

= |lim —%¢ 3.132
Jim = (3.132)

The lateral force F, is at a distance a,, behind the centerline of the
tireprint and makes a moment M, called aligning moment.

M. = Mk (3.133)
For small «, the aligning moment M, tends to turn the tire about the

z-axis and make the z-axis align with the velocity vector v. The aligning
moment always tends to reduce a.

Proof. When a wheel is under a constant load F, and then a lateral force
is applied on the rim, the tire will deflect laterally as shown in Figure 3.35.
The tire acts as a linear spring under small lateral forces

Fy =k, Ay (3.135)

with a lateral stiffness k.

The wheel will start sliding laterally when the lateral force reaches a
maximum value F,,. At this point, the lateral force approximately remains
constant and is proportional to the vertical load

Fyyy =, F. (3.136)
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FIGURE 3.36. Bottom view of a laterally deflected tire.

where, (1, is the tire friction coefficient in the y-direction. A bottom view
of the tireprint of a laterally deflected tire is shown in Figure 3.36.

If the laterally deflected tire is turning forward on the road, the tireprint
will also flex longitudinally. A bottom view of the tireprint for such a lat-
erally deflected and turning tire is shown in Figure 3.37. Although the
tire-plane remains perpendicular to the road, the path of the wheel makes
an angle o with tire-plane. As the wheel turns forward, undeflected treads
enter the tireprint region and deflect laterally as well as longitudinally.
When a tread moves toward the end of the tireprint, its lateral deflection
increases until it approaches the tailing edge of the tireprint. The normal
load decreases at the tail of the tireprint, so the friction force is lessened and
the tread can slide back to its original position when leaving the tireprint
region. The point where the laterally deflected tread slides back is called
sliding line.

A turning tire under lateral force and the associated sideslip angle o
are shown in Figure 3.38. Lateral distortion of the tire treads is a result
of a tangential stress distribution 7, over the tireprint. Assuming that the
tangential stress 7, is proportional to the distortion, the resultant lateral
force F,

F, = / 7, dA, (3.137)
Ap

is at a distance a,, behind the center line.

1
Uy, = — xTydA, (3.138)
Ey Ap

The distance a,,, is called the pneumatic trail, and the resultant moment
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FIGURE 3.37. Bottom view of a laterally deflected and turning tire.

M, is called the aligning moment.

M., = M.k (3.139)
M. = Fya,, (3.140)

The aligning moment tends to turn the tire about the z-axis and make it
align with the direction of tire velocity vector v. A stress distribution 7,
the resultant lateral force F),, and the pneumatic trail a,, are illustrated
in Figure 3.38.

There is also a lateral shift in the tire vertical force F, because of slip
angle a, which generates a slip moment M, about the forward z-axis.

M, = —Mi (3.141)
Mm = Fz Ay, (3142)

The slip angle a always increases by increasing the lateral force F,.
However, the sliding line moves toward the tail at first and then moves
forward by increasing the lateral force Fy,. Slip angle a and lateral force F),
work as action and reaction. A lateral force generates a slip angle, and a
slip angle generates a lateral force. Hence, we can steer the tires of a car
to make a slip angle and produce a lateral force to turn the car. Steering
causes a slip angle in the tires and creates a lateral force. The slip angle
a > 0 if the tire should be turned about the z-axis to be aligned with the
velocity vector v. A positive slip angle « generates a negative lateral force
F,. Hence, steering to the right about the —z-axis makes a positive slip
angle and produces a negative lateral force to move the tire to the right.

A sample of measured lateral force Fy, as a function of slip angle « for
a constant vertical load is plotted in Figure 3.39. The lateral force F, is
linear for small slip angles, however the rate of increasing F, decreases
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FIGURE 3.38. The stress distribution 7, the resultant lateral force Fy, and the
pneumatic trail ay for a turning tire going on a positive slip angle c.

for higher a.. The lateral force remains constant or drops slightly when «
reaches a critical value at which the tire slides on the road. Therefore, we
may assume the lateral force F), is proportional to the slip angle o for low
values of a.

F, = —Cya (3.143)
_ : a(_Fy)
Co = lim o (3.144)

The cornering stiffness C,, of radial tires are higher than C,, for non-radial
tires. This is because radial tires need a smaller slip angle « to produce the
same amount of lateral force F,.

Examples of aligning moments for radial and non-radial tires are illus-
trated in Figure 3.40. The pneumatic trail a,,, increases for small slip angles
up to a maximum value, and decreases to zero and even negative values for
high slip angles. Therefore, the behavior of aligning moment M, is similar
to what is shown in Figure 3.40.

The lateral force Fyy = —C o can be decomposed to F), cos o, parallel to
the path of motion v, and F}, sin o, perpendicular to v as shown in Figure
3.41. The component F,cosa, normal to the path of motion, is called
cornering force, and the component Fy sinc, along the path of motion, is
called drag force.

Lateral force F), is also called side force or grip. We may combine the
lateral forces of all a vehicle’s tires and have them acting at the car’s mass
center C. m
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FIGURE 3.39. Lateral force F}, as a function of slip angle « for a constant vertical
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FIGURE 3.40. Aligning moment M, as a function of slip angle « for a constant
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FIGURE 3.41. The cornering and drag components of a lateral force Fy,.

Example 109 Effect of tire load on lateral force curve.

When the wheel load F, increases, the tire treads can stick to the road
better. Hence, the lateral force increases at a constant slip angle o, and the
slippage occurs at the higher slip angles. Figure 3.42 illustrates the lateral
force behavior of a sample tire for different normal loads.

Increasing the load mot only increases the maximum attainable lateral
force, it also pushes the mazimum of the lateral force to higher slip angles.

Sometimes the effect of load on lateral force is presented in a dimen-
stonless variable to make it more practical. Figure 3.43 depicts a sample.

Example 110 Gough diagram.

The slip angle o is the main affective parameter on the lateral force F,
and aligning moment M, = Fya, . However, F, and M, depend on many
other parameters such as speed v, pressure p, temperature, humidity, and
road conditions. A better method to show F, and M, is to plot them versus
each other for a set of parameters. Such a graph is called a Gough dia-
gram. Figure 3.44 depicts a sample Gough diagram for a radial passenger
car tire. Fvery tire has its own Gough diagram, although we may use an
average diagram for radial or non-radial tires.

Example 111 Effect of velocity.

The curve of lateral force as a function of the slip angle F, (o) decreases
as velocity increases. Hence, we need to increase the sideslip angle at higher
velocities to generate the same lateral force. Sideslip angle increases by
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FIGURE 3.42. Lateral force behavior of a sample tire for different normal loads
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FIGURE 3.44. Gough diagram for a radial passenger car tire.

increasing the steer angle. Figure 8.45 illustrates the effect of velocity on F,
for a radial passenger tire. Because of this behavior, a fized steer angle, the
curvature of a one-wheel-car trajectory, increases by increasing the driving
speed.

Example 112 % A model for lateral force.

When the sideslip angle is not small, the linear approximation (3.151)
cannot model the tire behavior. Based on a parabolic normal stress distrib-
ution on the tireprint, the following third-degree function was presented in
the 1950s to calculate the lateral force at high sideslips

1|Cha 1 (Coa\?
F,=-C, 1— = |— = (= 3.145
Y a< 3’FyM +27(FyM>> ( )
where Fy,, is the mazimum lateral force that the tire can support. Fy,, is

set by the tire load and the lateral friction coefficient p,,. Let’s show the
sideslip angle at which the lateral force F), reaches its mazimum value Fy,,
by anr. Equation (3.145) shows that

ay = —2 (3.146)

2
F, = —Cya <1 I (i> ) (3.147)
ap ap

3
F, 1 2
o 3 (1—0‘ += <—O‘ ) ) (3.148)
yM (e%Vs ay 3 \ay

and therefore,

eS|



144 3. Tire Dynamics

7000 — v =]0 m/s
6000 v =1‘5 m/s
5000 v =20 m/s

= |
&, 4000 = v=30m/s |
" 3000 /// S
2000 ///
V /4

1000

y

0
0 2 4 6 8 10 12

oc[deg]

FIGURE 3.45. Effect of velocity on F, and M, for a radial tire.

Figure 8.46 shows the cubic curve model for lateral force as a function
of the sideslip angle. The Equation is applicable only for 0 < a < apy.

Example 113 % A model for lateral stress.
Consider a tire turning on a dry road at a low sideslip angle . Assume
the developed lateral stress on tireprint can be expressed by the following

equation:
x 3 Y
Ty(Z,Y) = cTyy, (1 - E) (1 - E) cos <2b ) (3.149)

The coefficient c is proportional to the tire load F, sideslip o, and longitu-
dinal slip s. If the tireprint Ap =4 x a xb=4x5cm x 12cm, then the
lateral force under the tire, Fy, forc=1 is

Fy:/ Ty(z,y)dA

0.05 0.12 3
T ) x 9 ( ym )
T — ) |1— —= | cos” | =— | dy dx
/0 05 / o1z M\ 0.05 ( 0.053> 0.24) Y
= 0.01447,,, . (3.150)

If we calculate the lateral force Fyy = 1000N by measuring the lateral accel-
eration, then the maximum lateral stress is
F,
Tu = 00144
and the lateral stress distribution over the tireprint is

x z3 o [ YT
7, (1, ) = 69444 (1 - m) (1 - 0'053) cos (m) Pa. (3.152)

= 69444 Pa (3.151)




3. Tire Dynamics 145

Ym 0.8 /'
0.6 /

0 0.2 0.4 0.6 0.8 1
(04

Ol s

FIGURE 3.46. A cubic curve model for lateral force as a function of the sideslip
angle.

3.8 Camber Force

Camber angle v is the tilting angle of tire about the longitudinal z-axis.
Camber angle generates a lateral force Fy called camber trust or camber
force. Figure 3.47 illustrates a front view of a cambered tire and the gen-
erated camber force F,. Camber angle is assumed positive v > 0, when it
is in the positive direction of the z-axis, measured from the z-axis to the
tire. A positive camber angle generates a camber force along the —y-axis.

The camber force is proportional to v at low camber angles, and depends
directly on the wheel load F.. Therefore,

F, = F,j (3.153)

where C is called the camber stiffness of tire.

Cy = lim —8(—Fy)

3.155
Jim = (3.155)

In presence of both, camber v and sideslip «, the overall lateral force F,
on a tire is a superposition of the corner force and camber trust.

Fy=—Cyv—Coa (3.156)

Proof. When a wheel is under a constant load and then a camber angle
is applied on the rim, the tire will deflect laterally such that it is longer in
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FIGURE 3.47. A front view of a cambered tire and the generated camber force.

the cambered side and shorter in the other side. Figure 3.48 compares the
tireprint of a straight and a cambered tire, turning slowly on a flat road. As
the wheel turns forward, undeflected treads enter the tireprint region and
deflect laterally as well as longitudinally. However, because of the shape of
the tireprint, the treads entering the tireprint closer to the cambered side,
have more time to be stretched laterally. Because the developed lateral
stress is proportional to the lateral stretch, the nonuniform tread stretching
generates an asymmetric stress distribution and more lateral stress will be
developed on the cambered side. The result of the nonuniform lateral stress
distribution over the tireprint of a cambered tire produces the camber trust
F, in the cambered direction.

F F,j (3.157)

y =
F, = / v, dA (3.158)
Ap
The camber trust is proportional to the camber angle for small angles.
F,=-Cyy (3.159)

The camber trust Fy shifts a distance ag., forward when the cambered
tire turns on the road. The resultant moment

M. = Mk (3.160)
M, = Fya,, (3.161)
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FIGURE 3.48. The tireprint of a straight and a cambered tire, turning slowly on
a flat road.

is called camber torque, and the distance a,, is called camber trail. Camber
trail is usually very small and hence, the camber torque can be ignored in
linear analysis of vehicle dynamics.

Because the tireprint of a cambered tire deforms to be longer in the
cambered side, the resultant vertical force F),

F, = / o,dA (3.162)
Ap

that supports the wheel load, shifts laterally to a distance a,. from the
center of the tireprint.

1
ay, = = yo,dA, (3.163)
FZ Ap

The distance a,, is called the camber arm, and the resultant moment M,
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FIGURE 3.49. The camber force F, for different camber angle v at a constant
tire load.

is called the camber moment.

M, = Mk (3.164)
M, = —F.a,, (3.165)

The camber moment tends to turn the tire about the z-axis and make the
tire-plane align with the z-axis. The camber arm a,., is proportional to the
camber angle - for small angles.

ay, =Cy v (3.166)

Figure 3.49 shows the camber force F), for different camber angle v at a
constant tire load F, = 4500 N. Radial tires generate lower camber force
due to their higher flexibility.

It is better to illustrate the effect of F, graphically to visualize the camber
force. Figure 3.50 depicts the variation of camber force Fy as a function of
normal load F, at different camber angles for a sample radial tire.

If we apply a slip angle « to a turning cambered tire, the tireprint will
distort similar to the shape in Figure 3.51 and the path of treads become
more complicated. The resultant lateral force would be at a distance a,,
and a,  from the center of the tireprint. Both distances a, and a, are
functions of angles o and . Camber force due to -, along with the corner
force due to «, give the total lateral force applied on a tire. Therefore, the
lateral force can be calculated as

F,=—-Cha—Cyy (3.167)
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FIGURE 3.50. The variation of camber force F), as a function of normal load F.
at different camber angles for a sample radial tire.
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FIGURE 3.51. Tireprint of a cambered tire under a sideslip.
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FIGURE 3.52. An example for lateral force as a function of v and « at a constant
load F, = 4000 N.

that is acceptable for v < 10deg and « < 5deg. Presence of both camber
angle v and slip angle o makes the situation interesting because the total
lateral force can be positive or negative. Figure 3.52 illustrates an example
of lateral force as a function of v and « at a constant load F, = 4000 N.
Similar to lateral force, the aligning moment M, can be approximated as
a combination of the slip and camber angle effects

MZZCMaOz—I—CMW . (3.168)

For a radial tire, Cpz, ~ 0.013Nm/ deg and Cjz, =~ 0.0003 N m/ deg, while
for a non-radial tire, Cps, ~ 0.01Nm/deg and Cjs, =~ 0.001Nm/deg. m

Example 114 Banked road.

Consider a vehicle moving on a road with a transversal slope B, while
its tires remain vertical. There is a downhill component of weight, F} =
mgsin 8, that pulls the vehicle down. There is also an uphill camber force
due to camber v = [ of tires with respect to the road Fy» = C, . The
resultant lateral force Fy = C, — mgsin depends on camber stiffness
Cy and determines if the vehicle goes uphill or downhill. Since the camber
stiffness C., is higher for non-radial tires, it is more possible for a radial
tire to go downhill and a non-radial uphall.

The effects of cambering are particularly important for motorcycles that
produce a large part of the cornering force by cambering. For cars and
trucks, the cambering angles are much smaller and in many applications
their effect can be negligible. However, some suspensions are designed to
make the wheels camber when the azle load varies.
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Example 115 Camber importance and tireprint model.

Cambering of a tire creates a lateral force, even though there is no sideslip.
The effects of cambering are particularly important for motorcycles that
produce a large part of the lateral force by camber. The following equations
are presented to model the lateral deviation of a cambered tireprint from the
straight tireprint, and expressing the lateral stress T, due to camber

y = —siny (/R -2 /B2 - a2) (3.169)

Ty = —k(a®—2?) (3.170)
where k is chosen such that the average camber defection is correct in the
tireprint

/ Tydr = / ydx. (3.171)
Therefore,
3sin-y 9 . .1 @
E = Ty (a, [RZ —a? + R, sin R_g (3.172)
R, /R2 —a?
3t 9
~ g G (3.173)
and
R,/ R? —a?
3 9V 2_ 2
B e (a® —2?). (3.174)

3.9 Tire Force

Tires may be considered as a force generator with two major outputs: for-
ward force Fy, lateral force Fy, and three minor outputs: aligning moment
M, roll moment M,, and pitch moment M,. The input of the force gen-
erator is the tire load F., sideslip «, longitudinal slip s, and the camber
angle .

F, = F,(F.,q,8,7) (3.175)
F, = F,(F.,a,s,7) (3.176)
M, = M, (F.,a,s,7) (3.177)
M, = M,(F; a,s,7) (3.178)
M, = M, (F,, a,s,7) (3.179)

Ignoring the rolling resistance and aerodynamic force, and when the tire
is under a load F, plus only one more of the inputs «, s, or ~, the major
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output forces can be approximated by a set of linear equations

Fy = p,(s) F. (3.180)
po(s) = Css

F, = —Cya (3.181)

F, = —C,y (3.182)

where, C; is the longitudinal slip coefficient, C,, is the lateral stiffness, and
C, is the camber stiffness.

When the tire has a combination of tire inputs, the tire forces are called
tire combined force. The most important tire combined force is the shear
force because of longitudinal and sideslips. However, as long as the angles
and slips are within the linear range of tire behavior, a superposition can
be utilized to estimate the output forces.

Driving and braking forces change the lateral force F), generated at any
sideslip angle a. This is because the longitudinal force pulls the tireprint
in the direction of the driving or braking force and hence, the length of
lateral displacement of the tireprint will also change.

Figure 3.53 illustrates how a sideslip « affects the longitudinal force
ratio F}/F, as a function of slip ratio s. Figure 3.54 illustrates the effect
of sideslip « on the lateral force ratio F,/F, as a function of slip ratio s.
Figure 3.55 and 3.56 illustrate the same force ratios as Figures 3.53 and
3.54 when the slip ratio s is a parameter.

Proof. Consider a turning tire under a sideslip angle a. The tire devel-
ops a lateral force F;, = —C, a. Applying a driving or braking force on
this tire will reduce the lateral force while developing a longitudinal force
F, = p,(s) F.. Experimental data shows that the reduction in lateral
force in presence of a slip ratio s is similar to Figure 3.54. Now assume
the sideslip « is reduced to zero. Reduction a will increase the longitudinal
force while decreasing the lateral force. Increasing the longitudinal force is
experimentally similar to Figure 3.55.

A turning tire under a slip ratio s develops a longitudinal force F, =
i, (s) Fy. Applying a sideslip angle @ will reduce the longitudinal force
while developing a lateral force. Experimental data shows that the reduc-
tion in longitudinal force in presence of a sideslip « is similar to Figure
3.53. Now assume the slip ratio s and hence, the driving or breaking force
is reduced to zero. Reduction s will increase the lateral force while decreas-
ing the longitudinal force. Increasing the lateral force is similar to Figure
3.54. m

Example 116 Pacejka model.
An approzimate equation is presented to describe force Equations (8.175)
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FIGURE 3.53. Longitudinal force ratio F,/F. as a function of slip ratio s for
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FIGURE 3.55. Longitudinal force ratio F,/F, as a function of sideslip a for
different slip ratio s.
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slip ratio s.
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FIGURE 3.57. Parameters A, B, C, D and a tire experimental curve.

or (8.176). This equation is called the Pacejka model.

F = Asin{Btan™'[Cz — D (Cz —tan™" (C2))]} (3.183)

A = uF, (3.184)
Ca

c - = (3.185)

B,D = shape factors (3.186)

The Pacejka model is substantially empirical. However, when the para-
meters A, B, C, D, Ci, and Cs are determined for a tire, the equation
expresses the tire behavior well enough. Figure 3.57 illustrates how the pa-
rameters can be determined from a test force-slip experimental result.

Example 117 Friction ellipse.

When the tire is under both longitudinal and sideslips, the tire is under
combined slip. The shear force on the tireprint of a tire under a combined
slip can approximately be found using a friction ellipse model.

F,\’ F\2
: =1 1

A friction ellipse is shown in Figure 3.58.

Proof. The shear force Fgpeqr, applied on the tire at tireprint, parallel to
the ground surface, has two components: the longitudinal force F, and the
lateral force F,.

Fshear = Fz i+ Fy j (3188)
CssF, (3.189)
F, = —Cyo (3.190)

&
|
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FIGURE 3.58. Friction ellipse.

These forces cannot exceed their mazimum values Fy,, and F,,.

Fyu = p,F.
FQ:'M = ,uxFZ

The tire shown in Figure 3.58 is moving along the velocity vector v at
a stdeslip angle a. The xz-axis indicates the tire-plane. When there is no

sideslip, the mazimum longitudinal force is Fy,, = p, F, = 0—1)4 Now, if a
—
sideslip angle « is applied, a lateral force Fy, = OFE is generated, and the
—
longitudinal force reduces to F,, = OB. The mazimum lateral force would

be Fyy = py, Iy = OD when there is no longitudinal slip.

In presence of the longitudinal and lateral forces, we may assume that
the tip point of the maximum shear force vector is on the following friction

ellipse:
F, 2 < F, )2
- + =1 3.191
<FyM ) Fan ( )

When p, = p, = p, the friction ellipse would be a circle and

Fupear = p Fs. (3.192)
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Example 118 Wide tires.

A wide tire has a shorter tireprint than a narrow tire. Assuming the
same vehicle and same tire pressure, the area of tireprint would be equal in
both tires. The shorter tireprint at the same sideslip has more of its length
stuck to the road than longer tireprint. So, a wider tireprint generates more
lateral force than a narrower tireprint for the same tire load and sideslip.

Generally speaking, tire performance and mazximum force capability de-
crease with increasing speed in both wide and narrow tires.

Example 119 sin tire forces model.

A few decades ago, a series of applied sine functions were developed based
on experimental data to model tire forces. The sine functions, which are
explained below, may be used to model tire forces, especially for computer
purposes, effectively.

The lateral force of a tire is

F, = Asin{Btan™'(C®)} (3.193)
® = (1-FE)(a+)uk, (3.194)
Ca
c = = (3.195)
: 1 B
C, = Cpsin|2tan™" — (3.196)
Cy
A, B = Shape factors (3.197)
Ci1 = Mazimum cornering stif fness (3.198)
Cy = Tireload at mazimum cornerin stif fness (3.199)

3.10 Summary

We attach a coordinate frame (oxyz) to the tire at the center of the
tireprint, called the tire frame. The z-axis is along the intersection line of
the tire-plane and the ground. The z-axis is perpendicular to the ground,
and the y-axis makes the coordinate system right-hand. We show the tire
orientation using two angles: camber angle v and sideslip angle «. The
camber angle is the angle between the tire-plane and the vertical plane
measured about the z-axis, and the sideslip angle « is the angle between
the velocity vector v and the z-axis measured about the z-axis.
A vertically loaded wheel turning on a flat surface has an effective radius
R, called rolling radius
Ry, = = (3.200)

Ww

where v, is the forward velocity, and w,, is the angular velocity of the
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wheel. The effective radius R,, is approximately equal to

_ By — R

R, ~ Ry 3

(3.201)

and is a number between the unloaded or geometric radius Ry and the
loaded height Rj,.
Ry, <Ry < Ry (3.202)

A turning tire on the ground generates a longitudinal force called rolling
resistance. The force is opposite to the direction of motion and is propor-
tional to the normal force on the tireprint.

F. =, F, (3.203)

The parameter p,. is called the rolling friction coefficient and is a function
of tire mechanical properties, speed, wear, temperature, load, size, driving
and braking forces, and road condition.

The tire force in the z-direction is a combination of the longitudinal force
F, and the roll resistance F).. The longitudinal force is

F,=p,(s) F, (3.204)

where s is the longitudinal slip ratio of the tire

s = Baw (3.205)
Vg
wy(s) = Css s<<1 (3.206)

The wheel force in the tire y-direction, Fy, is a combination of the lateral
force and the tire roll resistance F,.. The lateral force is

Fy=-Cy,v—-Cyha (3.207)

where —C,y is called the camber trust and C« is called the sideslip force.
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3.11 Key Symbols

A=

P
C1,C2,C3,C4
Co, C1,C2
Cs

C...C.,
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acceleration
semiaxes of Ap

camber trail

camber arm

tireprint area

coefficients of the function F, = F; (s)
coefficients of the polynomial function F,. = F. (v,)
longitudinal slip coeflicient

longitudinal and lateral slip coefficients

sideslip coefficient

camber stiffness

distance of tire travel

no slip tire travel

actual tire travel

tire diameter

Young modulus

function

spring force

rolling resistance force

longitudinal force, forward force

lateral force

pneumatic trail

normal force, vertical force, wheel load
gravitational acceleration

stiffness

nonlinear tire stiffness coefficients

equivalent stiffness

slope of F, (s) versus s at s =0

tire stiffness in the z-direction

tire stiffness in the y-direction

tire stiffness in the z-direction

radial and non-radial tires parameter in u, = p,. (p, vs)
mass

rolling resistance moment

roll moment, bank moment, tilting torque,

pitch moment, rolling resistance torque

yaw moment, aligning moment, self aligning moment, bore torque
exponent for shape and stress distribution of Ap
number of tire rotations

tire inflation pressure

rolling resistance power
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r
r=w/wy
Ry

Ry,

Ry

s

Sy

T

V=X, V
T,Y, 2, X
x? y’ z
Ax

Ay

YAV A

Koy M1

Loy

iz (5)
Mdp

Has

Oz
o.(z,y)
0z,
Tw<x’ y)7 Ty(l‘, y)
Tarv> Tym
4

Weq

Wy

Wy

radial position of tire periphery
frequency ratio

geometric radius

loaded height

rolling radius

longitudinal slip

lateral slip

wheel torque

velocity

displacement

coordinate axes

tire deflection in the z-direction, rolling resistance arm
tire deflection in the y-direction

tire deflection in the z-direction

tire deflection rate in the z-direction

sideslip angle

maximum sideslip angle

transversal slope

camber angle

deflection

tire deflection in the z-direction, rolling resistance arm
tire deflection in the y-direction

tire deflection in the z-direction

tire angular rotation

nonlinear rolling friction coefficient
rolling friction coefficient
longitudinal friction coefficient
friction coefficient driving peak value
friction coefficient steady-state value
maximum normal stress

normal stress over the tireprint
normal stress mean value

shear stresses over the tireprint
maximum shear stresses

contact angle, angular length of Ap
equivalent tire angular velocity
angular velocity of a wheel

actual tire angular velocity
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Exercises

1. Tireprint size and average normal stress.
The curb weight of a model of Land Rover LR3™™ is

m = 2461 kg =~ 54261b
while the gross vehicle weight can be
m = 3230kg ~ 7121 1b.

Assume a front to rear load ratio

F., 1450kg
F, ~ 1875kg
and use the following data
[ = 2885mm = 113.6in
Tires = 255/55R19

to determine the the size parameters of the tireprints a, and b, for the
front and rear tires. Assume a uniform normal stress on tireprints.

2. Tireprint size, radial tire.

Holden TK Barina”™ is a hatchback car with the following charac-

teristics.
m = 2461kg ~ 54261b
[ = 2480mm
Tires = 185/55R15 82V
Assume
m = 860kg
N
a2

and determine the size of its tireprints for n = 3.

3. Rolling resistance coefficient.

Alfa Romeo Spider™ has the following characteristics.

m = 1690kg ~ 3725.81b
l 2530 mm ~ 99.6in
Tires = P225/50R17
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Determine the rolling resistance coeficient p, for the front and rear
tires of the car at zero and at top speed wvy,.

var = 235.0km/h ~ 146.0mi/ h

Assume a1 /ay = 1.2 and use p = 27 psi.

. Rolling resistance power.

A model of Mitsubishi Galant™™ has the following specifications.

m = 1,700kg
I = 2750mm
Tires = P235/45R18

vy &~ 190km/h

Assume aq/az = 1.2 and p = 27 psi to find the rolling resistance
power at the maximum speed.

. Longitudinal slip.

(a) Determine the longitudinal slip s for the tire P225/50R17 if
R, = 0.98R,.

(b) If the speed of the wheel is v, = 100km/ h, what would be the
angular velocity w,, and equivalent angular velocity w., of the
tire.

Cornering and drag force on a tire.

Consider the tire for which we have estimated the lateral force be-
havior shown in Figure 3.42. If the sideslip angle « is 4deg and
F, = 5000N, calculate the cornering and drag force on the tire.

Required camber angle.

Consider the tire for which we have estimated the behavior shown
in Figure 3.52. Assume F, = 4000N and we need a lateral force
F, = —3000N. If = 4deg, what would be the required camber
angle 77 Estimate the coeflicients C, and C,.

High camber angle.

Consider a tire with C, = 300N/ deg and C, = 700N/ deg. If the
camber angle is v = 18 deg how much lateral force will develop for a
zero sideslip angle? How much sideslip angle is needed to reduce the
value of the lateral force to F,, = —3000N?
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Sideslip and longitudinal slip.

Consider the tire for which we have estimated the behavior shown in
Figure 3.54. Assume a vehicle with that tire is turning with a constant
speed on a circle such that « = 4deg. What should be the sideslip
angle « if we accelerate the vehicle such that s = 0.05, or decelerate
the vehicle such that s = —0.057

% Motion of the air in tire.

What do you think about the motion of the pressurized air within
the tires, when the vehicle moves with constant velocity or constant
acceleration?
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Driveline Dynamics

The maximum achievable acceleration of a vehicle is limited by two fac-
tors: maximum torque at driving wheels, and maximum traction force at
tireprints. The first one depends on engine and transmission performance,
and the second one depends on tire-road friction. In this chapter, we ex-
amine engine and transmission performance.

4.1 Engine Dynamics

The maximum attainable power P, of an internal combustion engine is a
function of the engine angular velocity w.. This function must be deter-
mined experimentally, however, the function P, = P, (w.), which is called
the power performance function, can be estimated by a third-order poly-
nomial

601 -180
] L 150
50 > :
= ~ 120
~ 30 / ~ 90 g
AT / N -
207 A 60 ™
101 E 30
0t )
0 1000 2000 3000 4000 5000 6000 7000
o [rpm]
0 100 200 300 400 500 600 700
o [rad/s]

FIGURE 4.1. A sample of power and torque performances for a spark ignition
engine.

3
P, = Z P!
=1

= P1WQ+PQW5+P3LL)2. (41)
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If we use wysto indicate the angular velocity, measured in [rad/
which the engine power reaches the maximum value Py, measured in |
Nm/s], then for spark ignition engines we use

s], at
W:

Py

P = 4.2
1 ot (4.2)
P,
P = — (4.3)
Wiy
Py
Py = ——. 4.4
3 3 ( )

Figure 4.1 illustrates a sample for power performance of a spark ignition
engine that provides Py = 50kW at wjr = 586rad/s &~ 5600 rpm. The
curve begins at an angular velocity at which the engine starts running
smoothly.

For indirect injection Diesel engines we use

P o= 06 (4.5)
wm
P

P = 1421 (4.6)
W
P

Py = 7TM (4.7
Wi

and for direct injection Diesel engines we use

P
P = 087X (4.8)
WM
P, = 1.13P—2M (4.9)
Wiy
Py
py = X 4.10
3 w3 ( )

The driving torque of the engine T is the torque that provides P,

Pe
T. = -

We

= P+ Pyw.+ P3uw?. (4.11)

Example 120 Porsche 9117M and Corvette Z06™M engines.

A model of Porsche 911 turbo has a flat-6 cylinder, twin-turbo engine with
3596 cm® ~ 2201in® total displacement. The engine provides a mazimum
power Py = 353kW ~ 480 hp at wps = 6000 rpm ~ 628 rad/ s, and a maz-
imum torque Thy = 620N m = 4571bft at w. = 5000 rpm ~ 523 rad/s. The
car weighs around 1585 kg ~ 34941b and can move from 0 to 96km/h =~
60mi/ h in 3.7s. Porsche 911 has a top speed of 310km/h ~ 193 mi/ h.
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The power performance equation for the Porsche 911 engine has the co-
efficients

Py 353000
P = _ = = 2.1 S 4.12
| Y 528 562.1W/s (4.12)
Py 353000 2
X = o 0.89507 W/ s (4.13)
Py 353000 e g
Py = R Pt —1.4253 x 1073 W/ s (4.14)

and, its power performance function is
P, = 562.1w, + 0.89507 w? — 1.4253 x 1072 w?. (4.15)

A model of Corvette Z06 uses a V8 engine with 6997 cm® = 4271in® total
displacement. The engine provides a maximum power Py = 377TkW =~
512hp at wy = 6300rpm ~ 660rad/s, and a mazimum torque Thy =
637TNm ~ 4701bft at w. = 4800rpm = 502rad/s. The Corvette weighs
around 1418kg ~ 31261b and can move from 0 to 100km/h ~~ 62mi/h in
3.9s in first gear. Its top speed is 320km/h =~ 198 mi/ h.

The power performance equation for the engine of Corvette Z06 has the
coefficients

Py 377000
P = _— = = 1.2 S 4.1
) = age = 0T W/s (4.16)
Py 377000 2
P, = ——=—— =0.8654 4.1
X epi: 0.86547 W/ s (4.17)
Py 377000 e g
Ps = —F/—=———"""72-=-13113x107°W 4.18
3 W?w 6603 X /S ( )

and, its power performance function is
P, = 5712w, + 0.86547w? — 1.3113 x 1073 w?. (4.19)

The power performance curves for the Porsche 911 and Corvette Z06 are
plotted in Figure 4.2.

Although there is almost no limit for developing a powerful engine, any
engine with power around 100 hp would be enough for street cars with nor-
mal applications. It seems that engines with 600 hp reach the limit of appli-
cation for street cars. However, race cars may have higher power depending
on the race regulations. As an example, formula 1 requlations dictates the
type of engine permitted. It must be a four-stroke engine, less than 3000 cm?
swept volume, no more than ten cylinders, and no more than five valves per
cylinder, but there is no limit for power.
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FIGURE 4.2. Power performance curves for the Porsche 911 and Corvette Z06.

Example 121 Below the curves P, = P, (we) and T, = T, (w.).

An engine can theoretically work at any point under the performance
curve P, = P, (we). Assume the angular velocity of an engine is kept con-
stant by applying a braking force. Then, by opening the throttle, we produce
more power until the throttle is wide open, and the mazximum power at that
angular velocity is gained.

Power rises with w., and continues to climb until a marimum power Pay,
and then starts decreasing. The torque T, = P, /w. also increases with w.
but reaches a maximum point before the mazimum power. Hence, the torque
starts decreasing sooner than the power. When the power starts decreasing,
the torque is very far from its peak value.

Drivers usually cannot feel the engine power, however they may feel the
engine torque.

Example 122 FEngine efficiency curves.

Engines are supposed to convert the chemical energy, embedded in the
fuel, into mechanical energy at the engine output shaft. Depending on the
working conditions, this conversion happens at a specific efficiency. The
constant efficiency contours can be added to the performance map of the
engine to show the efficiency at an operating condition. Hence, every point
under the curve P, = P, (we) can be an operating condition at a specific
efficiency. The mazimum efficiency usually happens around the angular
velocity corresponding to the mazimum torque when the throttle is almost
wide open. A sample of power performance of a spark ignition engine with
constant efficiency contours is shown in Figure 4.3.
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FIGURE 4.3. An example of power performance in a spark ignition engine with
constant efficiency contours.

Example 123 Power units.
There are many different units for expressing power. The metric unit for

power is Watt [W].
1J 1Nm

1W= "= 4.2
w 1s 1s (420)
Horsepower [hp] is also used in vehicle dynamics.
1W = 0.001341hp (4.21)
lhp = 745.699872 W (4.22)

There are four definitions for horsepower: international, metric, water, and
electric. They slightly differ.

1hp(international) = 745.699872' W (4.23)
1hp(electrical) = T46 W (4.24)
1hp(water) = 746.043W (4.25)
1hp(metric) = 735.4988 W (4.26)
Depending on the application, other units may also be useful.
1W = 0.239006cal/s (4.27)
1W = 0.000948 Btu/s (4.28)

IW = 0.737561ft1b/s (4.29)
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James Watt (1736 — 1819) experimented and concluded that a horse can
lift a weight of 5501b for one foot in one second. It means the horse per-
forms work at the rate of 550 ft1b/s = 745.701 W, or 33000 ft Ib/ min. Wait
then stated that 33000-foot-pounds per minute of work was equivalent to the
power of one horse, or, one horsepower. He said that 33000 ft1b/ min is
equivalent to one horsepower. The following formulas apply for calculating
horsepower from a torque measurement in the English unit system:

AP[hp]==ZI££%%§§£BEﬂ (4.30)
P = ELblrmi/ 1 s

Example 124 Fuel consumption at constant speed.

Consider a vehicle moving straight at a constant speed v,. The energy
required to travel can be calculated by multiplying the power at the drive
wheels by time

E = Pt
d
= P— (4.32)

Vg

where d is the distance traveled and E is the needed energy to turn the
wheels. To find the actual energy needed to run the whole vehicle, we should
include the coefficients of efficiencies. We use n, for engine efficiency, H
for thermal value of fuel, and p; for density of the fuel. When the vehicle
moves at constant speed, the traction force F, is equal to the resistance
forces. Therefore, the fuel consumption per unit distance, q, is

F,

g=———. (4.33)
Nenepy H

The dimension of q in SI is [m3/m], however, liter per 100km is more

common. In the United States, the fuel consumption of vehicles is called by

[mi/ gal.

Example 125 % Changing the curve P, = P, (we).

The whole power performance curve moves up when the engine’s com-
pression ratio increases. The angular velocity at which the engine’s peak
torque happens can be moved by changing the cam, header lengths, and
intake manifold runner lengths.

The wheel power curve, or the power delivered to the ground, may have
a different shape and a different peak w., because of transmission losses.
The best result is obtained from a power curve measured by a chassis dy-
namometer.
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Example 126 % Power peak versus torque peak.

When the engine is operating at its torque peak (say P. = 173.4kW =
232.5hp at w. = 3600rpm) in a gear, it is generating some level of torque
(say Ty = 460N m = 340 ft1b times the overall gearing ratio) at the drive
wheels. This is the best performance in that gear. By changing the gear
and making the engine to operate at the power peak (say P, = 209kW =
280hp at we = 5000rpm), it delivers less torque T, = 400 N m == 295 ft Ibf.
However, it will deliver more torque to the drive wheels, at the same car
speed. This is because we gear it up by nearly 39%(~ [5000 — 3600] /3600),
while the engine torque is dropped by 13%(~ [460 — 400] /460). Hence, we
gain 26% in drive wheel torque at the power peak versus the torque peak, at
a given car speed.

As long as the performance curves of engines are similar to those in
Figure 4.1, any engine speed, other than the power peak speed wys, at a
given car speed will provide a lower torque value at the drive wheels. There-
fore, theoretically the best top speed will always occur when the vehicle is
operating at its power peak.

A car running at its power peak can accelerate no faster at the same
vehicle speed. There is no better gear to choose, even if another gear would
place the engine closer to its torque peak. A car running at peak power at a
given vehicle speed is delivering the maximum possible torque to the tires,
although the engine may not be running at its torque peak. The transmission
amplifies the torque coming from the engine by a factor equal to the gear
ratio.

Example 127 % Ideal engine performance.
It is said that an ideal engine is one that produces a constant power
regardless of speed. For this kind of ideal engine we have

P. = P (4.34)
Py

T, = —. 4.35
. (4:35)

Figure 4.4 depicts a sample of the power and torque performance curves
for an ideal engine having Py = 50kW.

In vehicle dynamics, we introduce a gearbox to keep the engine running
at the mazimum power or in a working range around the mazimum power.
So, practically we keep the power of the engine, and therefore, the power
at wheels constant at the mazximum value. Hence, the torque at the wheels
should be similar to the torque of an ideal engine. A constant power per-
formance is an applied approximation for electrical motors.

Another ideal engine would generate a linear torque-speed relationship.
For such an ideal engine we have

T. = Cow. (4.36)
P, = C.uw? (4.37)
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FIGURE 4.4. Power and torque performance curves for an ideal engine.

Howewver, internal combustion engines do not work like this ideal engine.
Figure 4.5 illustrates such an ideal performance for C, = 0.14539.

Example 128 % Maxzimum power and torque at the same wyy.

Ideal performance for an engine would be having mazximum power and
maximum torque at the same angular velocity wyr. However, it is impossible
to have such an engine because the mazximum torque Ths of a spark ignition
engine occurs at

dr.
dwz = P2 + 2P3 We = 0 (438)
Py
—PQ wﬁ/[ 1
e = _— = = — 4'
w 5P, 2P_M WM (4.39)
Wiy

that is half of the speed at which the power is maximum.
When the torque is maximum, the power is at

)
- gPM. (4.40)

However, when the power is marimum at we = wys, the torque s

1
T, = — Py (4.41)
W
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FIGURE 4.5. Performance curves of an ideal engine having a linear torque-speed
relationship 7. = 0.14539 we.

4.2 Driveline and Efficiency

We use the word driveline, equivalent to transmission, to call the systems
and devices that transfer torque and power from the engine to the drive
wheels of a vehicle. Most vehicles use one of two common transmission
types: manual gear transmission, and automatic transmission with torque
convertor. A driveline includes the engine, clutch, gearbox, propeller shaft,
differential, drive shafts, and drive wheels. Figure 4.6 illustrates how the
driveline for a rear-wheel-drive vehicle is assembled.

The engine is the power source in the driveline. The output from the
engine is an engine torque 7., at an associated engine speed we.

The clutch connects and disconnects the engine to the rest of the driveline
when the vehicle is equipped with a manual gearbox.

The gearboz can be used to change the transmission ratio between the
engine and the drive wheels.

The propeller shaft connects the gearbox to the differential. The propeller
shaft does not exist in front-engined front-wheel-drive and rear-engined
rear-wheel-drive vehicles. In those vehicles, the differential is integrated
with the gearbox in a unit that is called the transazle.

The differential is a constant transmission ratio gearbox that allows the
drive wheels to have different speeds. So, they can handle the car in a curve.

The drive shafts connect the differential to the drive wheels.
The drive wheels transform the engine torque to a traction force on the
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FIGURE 4.6. Driveline components of a rear wheel drive vehicle.

road.

The input and output torque and angular velocity for each device in a
driveline are indicated in Figure 4.7.

The available power at the drive wheels is

P, =nP, (4.42)

where 7 < 1 indicates the overall efficiency between the engine and the
drive wheels

n="NcN (4.43)

1. < 1is the convertor efficiency and n, < 1 is the transmission efficiency.

The relationship between the angular velocity of the engine and the ve-

locity of the vehicle is
Ryw
Vp = ——— (4.44)
NgNq
where ng is the transmission ratio of the gearbox, ng is the transmission
ratio of the differential, w, is the engine angular velocity, and R, is the
effective tire radius.
Transmission ratio or gear reduction ratio of a gearing device, n, is the
ratio of the input velocity to the output velocity
ws
n=— (4.45)
Wout
while the speed ratio w, is the ratio of the output velocity to the input
velocity.

w
Wy = ﬁ (4.46)
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Proof. The engine is connected to the drive wheels through a driveline.
Because of friction in the driveline, especially in the gearbox and torque
convertor, the power at the drive wheels is always less than the power at
the engine output shaft. The ratio of output power to input power is a

number called efficiency
P, out
= —. 4.47
=5 (4.47)
If we show the efficiency of transmission by 7, and the efficiency of torque
convertor by 7., then the overall efficiency of the driveline is n = 7. n,. The
power at the wheel is the output power of driveline P,,; = P, and the

engine power is the input power to the driveline P;, = P,. Therefore,
P, =nP.. (4.48)

Figure 4.8 illustrates a driving wheel with radius R,, that is turning with
angular velocity w,, on the ground and moving with velocity v,.

Vg = Ry wy (4.49)

There are two gearing devices between the engine and the drive wheel:
gearbox and differential. Assigning n, for the transmission ratio of the
gearbox and ng for the transmission ratio of the differential, the overall
transmission ratio of the driveline is

n = ngng. (4.50)

So, the angular velocity of the engine w, is n times of the angular velocity
of the drive wheel w,,.

We = NWy

= NgNgWy (4.51)
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FIGURE 4.8. A tire with radius R, rolling on the ground and moving with
velocity v and angular velocity w.,.

Therefore,

Rw e
vy = e (4.52)
Ng Nq

Example 129 Front and rear-engined, front and rear drive.

The engine may be installed in the front or back of a car. They are called
front-engined and rear-engined vehicle respectively. The driving wheels may
also be the front, the rear, or all wheels. Therefore, there are sixz possible
combinations. Out of those six combinations, the front-engined front-wheel-
drive, front-engined rear-wheel-drive, and front-engined all-wheel-drive ve-
hicles are the most common. There are only a few manufacturers that make
cars with rear-engined rear-wheel-drive. However, there is no rear-engined
front-wheel-drive vehicle.

Example 130 Torque at the wheel.

The power at the wheel is P, = nP,., and the angular velocity at the
wheel is wy = we/ (ngnq). Knowing P = Tw, we find out that the available
torque at the wheel, T,,, 1s

PU) e
Ty = — =nngng—
Way We

= nngngTe. (4.53)

Example 131 Power law.
For any mechanical device in the driveline of a car, there is a simple law
to remember.

Power in = Power out minus losses
Pm = Pout - Ploss (454)
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Also, because of

Power = Torque x angular velocity
P = Tw (4.55)

any gearing device in the driveline of a car can reduce or increase the input
torque in by increasing or decreasing the angular velocity.

Example 132 % Volumetric, thermal, and mechanical efficiencies.
There is an efficiency between the attainable power in fuel and the power
available at the engine’s output shaft.

0 =1y N Ny (4.56)

Ny 1S the engine volumetric efficiency, nr is the thermal efficiency,
and 1, s the mechanical efficiency.

Volumetric efficiency ny identifies how much fueled air gets into the
cylinder.

The fueled air mizture that fills the cylinder volume in the intake stroke
s what will be used to create the power. Volumetric efficiency 1y, indicates
the amount of fueled air in the cylinder relative to atmospheric air. If the
cylinder is filled with fueled air at atmospheric pressure, then the engine
has 100% volumetric efficiency. Super and turbo chargers increase the pres-
sure entering the cylinder, giving the engine a volumetric efficiency greater
than 100%. However, if the cylinder is filled with less than the atmospheric
pressure, then the engine has less than 100% volumetric efficiency. Engines
typically run between 80% and 100% of 1y, .

Volumetric efficiency 1y, can be changed by any occurrence that affects
the fueled air flow into the cylinder. The power of an engine is proportion-
ally dependent on the mass ratio of fuel/air that gets into the cylinders of
the engine.

Thermal efficiency ny identifies how much of the fuel is converted to
usable power.

Although having more fueled air into the cylinder means more fuel en-
ergy is available to make power, not all of the available energy converts
to mechanical energy. The best engines can convert only about 1/3 of the
chemical energy to mechanical energy.

Thermal efficiency is changed by the compression ratio, ignition timing,
plug location, and chamber design. Low compression engines may have an
Ny ~ 0.26. A high compression racing engine may have an ny ~ 0.34.
Therefore, racing engines may produce about 30% more power because of
their higher np.

Any improvement in the thermal efficiency np significantly improves the
final power that the engine produces. Therefore, a huge investment is ex-
pended in research to improve np.

Mechanical efficiency n,, identifies how much power is consumed by
the engine to run itself.
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Some of the produced power is consumed by the engine’s moving parts.
It takes power to overcome the friction between parts and to run engine ac-
cessories. So, depending on how much fuel goes into the cylinder and how
much converts to power, some of this power is used by the engine to run it-
self. The leftover power is what we can measure on an engine dynamometer.
The difference between the engine output power and the generated power in
the cylinders is the mechanical efficiency 1.

Mechanical efficiency is affected by mechanical components of the engine
or the devices attached to the engine. It also depends on the engine speed.
The greater the speed, the more power it takes to turn the engine. This
means the ny; drops with speed. The mechanical efficiency ny, is also called
Jriction power because it indicates how much power is needed to overcome
the engine friction.

The engine power performance curve supplied by a car manufacturer is
usually the gross engine performance and does not include the mechanical
efficiency. Therefore, the effective engine power available at the transmis-
sion input shaft is reduced by the power needed for accessories such as the
fan, electric alternator, power steering pump, water pump, braking system,
and air conditioning compressor.

4.3 Gearbox and Clutch Dynamics

The internal combustion engine cannot operate below a minimum engine
speed woin. Consequently, the vehicle cannot move slower than a minimum
speed vy, while the engine is connected to the drive wheels.
Uiy, = L min (4.57)
Ngng

At starting and stopping stages of motion, the vehicle needs to have speeds
less than v,,;,. A clutch or a torque converter must be used for starting,
stopping, and gear shifting.

Consider a vehicle with only one drive wheel. Then, the forward velocity
v, of the vehicle is proportional to the angular velocity of the engine we,
and the tire traction force F, is proportional to the engine torque T,

T3 Mg

e — x 4.58

w . v ( )
1 R,

T, = ~Zwp (4.59)
7 Ning

where R,, is the effective tire radius, ng is the differential transmission
ratio, n; is the gearbox transmission ratio in gear number i, and 7 is the
overall driveline efficiency. Equation (4.58) is called the speed equation, and
Equation (4.59) is called the traction equation.
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Proof. The froward velocity v, of a driving wheel with radius R,, is
vy = Ry wy (4.60)

and the traction force F; on the driving wheel is
F,=—. (4.61)

Ty, is the applied spin torque on the wheel, and w,, is the wheel angular
velocity.
The wheel inputs T3, and w,, are the output torque and angular velocity
of differential. The differential input torque T, and angular velocity wy are
1

Ty = Tw (4.62)
NqgMd

Wg = NgWy (4.63)

where ng is the differential transmission ratio and 7, is the differential
efficiency.

The differential inputs T; and wy are the output torque and angular
velocity of the vehicle’s gearbox. The engine’s torque T, and angular ve-
locity we are the inputs of the gearbox. The input-output relationships for
a gearbox depend on the engaged gear ratio n;.

1
T, = T, (4.64)
g i
We = MN;wq (4.65)

1, is the gearbox efficiency, and n; is the gear reduction ratio in the gear
number i. Therefore, the forward velocity of a driving wheel v, is propor-
tional to the engine angular velocity we, and the tire traction force F} is
proportional to the engine torque T,, when the driveline is engaged to the
engine.
n; Nq
We = éw Ve (4.66)
1 1
T. = — Tw
NgMa MiNd
1 R
= Y F,
NgMa Nild
1 R
= - —F, (4.67)
7 niNg

Having the torque performance function T, = T, (w.) enables us to de-
termine the wheel torque T, as a function of vehicle speed v, at each gear
ratio n;.

Tw =nningTe (we) (4'68)



180 4. Driveline Dynamics

Using the approximate equation (4.11) for T, provides

2
T, = nnmg <P1+P2 (”&Zd vz) + Py (”;%’:d vx) )

P P
= 7 (Plndni + nR—ininfvx + nR—gngnfvg) . (4.69)

Example 133 A siz-gear gearboz.
Consider a inefficient passenger car with the following specifications:

m = 1550kg
R, = 0.326m
n = 024
torque = 392Nm at 4400 rpm = 460.7rad/ s
power = 206000 W at 6800rpm = 712.1rad/s
1st gear ratio = mnq = 3.827
2nd gear ratio = ng = 2.36 (4.70)
3rd gear ratio = n3 = 1.685
4th gear ratio = n4 = 1.312
5th gear ratio = nz =1
6th gear ratio = mng=0.793
reverse gear ratio = mn, = 3.28
final drive ratio = ng = 3.5451

Based on the speed equation (4.58),

 ning

We = Rw Ve
3.5451n;
0326 °

= 10.875n; v, (4.71)

we can find the gear-speed plot that is shown in Figure 4.9. The angular
velocities associated to maximum power and mazimum torque are indicated
by dashed lines.

The power and torque performance equations for the engine can be ap-
proximated by

P. = 289.29w. +0.40624 w? — 5.7049 x 10~ *w? (4.72)
T. = 289.29 +0.406 24w, — 5.7049 x 10~ *w? (4.73)
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FIGURE 4.9. A sample of a gear-speed plot for a gearbox.

because
P = f—g _ 2316;20 — 289.29W/s (4.74)
P, = % = 27(162??3 =0.40624 W/ s* (4.75)
Py = % = 7% = —5.7049 x 1074 W/ s>. (4.76)

Using the torque equation (4.73) and the traction equation (4.71), we can
plot the wheel torque as a function of vehicle speed at different gears.

Tw = nnngTe
nning (289.29 + 0.406 24w, — 5.7049 x 10~ *w?)
= —5.7405 x 10~?ndv? + 3.758 8n?v, + 246.13n; (4.77)

Figure 4.10 shows the wheel torque-speed Equation (4.77) at each gear n;.
The envelope curve for the series of torque-speed equations is similar to the
torque curve of a constant power ideal engine.

Example 134 % Envelope curve for torque-speed family.
Assume the torque-speed equation of a car is similar to Equation (4.77)
that is a second degree of speed having the gear ratio n = n; as a parameter.

T = an®*v® + bnv + cn (4.78)

A wvariation of the parameter generates a series of curves called family. An
envelope is a curve tangent to all members of the family. To find the enve-
lope of a family, we should eliminate the parameter between the equation of
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FIGURE 4.10. Wheel torque-speed Equation (4.77) at each gear n; of a gearbox,
and the envelope curve simulating an ideal engine behavior.

the family and its derivative with respect to the parameter. The derivative
of the family (4.78) with respect to the parameter n

or
s 3anv? + 2bnv +c =0 (4.79)
n

leads to
. —b+ Vb2 — 3ac

4.
3av (4.80)

Substituting the parameter back into the equation of the family provides the
equation of the envelop analytically.

70 (b N 3ac) (b — /02 — 3ac — @> (4.81)

~ 27a2v b

The equation of envelope for the wheel torque-speed family at different gears

s equivalent to

_¢ (4.82)

v

where C' is a constant. Such a torque equation belongs to an ideal constant
power device introduced in FExample 127.

Example 135 Mechanical and hydraulic clutches.

Mechanical clutches are widely used in passenger cars and are normally
in the form of a dry single-disk clutch. The adhesion between input and
output shafts is produced by circular disks that rub against each other.
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Engagement begins with the engine running at we = Wmin and the clutch
being released gradually from time t = 0 to t = t1 such that the transmitted
torque T, from the engine to the gearbox increases almost linearly in time
from T, = 0 to the mazimum value T, = T,, that can be handled in slipping
mode. The transmitted torque remains constant until the input and output
disks stick together and a speed equality is achieved. At this time, the clutch
is Tigid and T, = T,.

The transmitted torque T, should overcome the resistance force and the
vehicle should accelerate sometime in 0 < t < t1. The magnitude of the
transferable torque depends on the applied force between the disks, the fric-
tional coefficient between clutch disks, the effective frictional area, and the
number of frictional pairs. The axial force is generally produced by a pre-
loaded spring. The driver can control the spring force by using the clutch
pedal, and adjust the transferred torque.

The hydraulic clutch consists of a pump wheel connected to the engine
and a clutch-ended turbine that is equipped with radial vanes. A torque is
transferred between the pump wheel and the turbine over a fluid, which
is accelerated by the pump and decelerated in the turbine. The hydraulic
clutch is also called Foettinger clutch.

The transferred torque can be calculated according to the Foettinger’s law

T. = C’cpw%D2 (4.83)

where C, is slip factor, p is the oil density, wy, is the pump angular velocity,
and D 1is the clutch diameter.

Example 136 Acceleration capacity at different speed.
Assume an engine is working at speed wys associated to the mazimum
power Pyy.

PM = Te Wapr
1
= _FI UI 4.84
; (4.84)
Substituting
F, = ma, (4.85)
indicates that m
Py = ;aw Vg (4.86)
and therefore,
n 1
a, = Pyy——. (4.87)
muy

Equation (4.87) is called acceleration capacity and expresses the achiev-
able acceleration of a wvehicle at speed v,. The acceleration capacity de-
creases by increasing velocity. As an example, Figure 4.11 depicts the ac-
celeration capacity a; as a function of the forward speed v, for a vehicle
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FIGURE 4.11. An example for the acceleration capacity a, as a fucntion of
forward speed v,.

with mass m = 860kg, maximum power Pp; = 180kW = 241.4hp at
wpr = 4600 rpm = 481.7rad/ s, and efficiency n = 0.25.

Example 137 Power-limited and traction-limited accelerations.

Acceleration capacity is power-limited acceleration and is based on the
assumption that the driving force does mot reach the tire traction limit.
Therefore, the vehicle reaches its peak acceleration because the engine can-
not deliver any more power.

The traction-limited acceleration happens when the engine delivers more
power, but vehicle acceleration is limited because the tires cannot transmit
any more driving force to the ground. Equation F, = u, F, gives the maz-
imum transmittable force. If more driving torque is applied to the wheel,
the tire slips and enters the dynamic friction regime where the coefficient
of friction, and hence the traction force, are less.

Example 138 % Gearbox stability condition.

Consider a vehicle moving at speed v, when the gearbox is engaged in
gear number ¢ with transmission ratio n;. To be safe, we have to select the
transmission ratios such that when the engine reaches the maximum torque
it can shift to a lower gear n;_1 without reaching the maximum permissible
engine speed. The mazrimum permissible engine speed is usually indicated
by a red line or red region.

Let’s show the engine speed for the maximum torque Ths by we = wr.
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The speed of the vehicle at w. = wr is

Ry
ning

Uy = wr. (4.88)
When we shift the gear to n;_1 the engine speed w. jumps to a higher speed
We = w;_1 > wr at the same vehicle speed

Ni—1 Mg
Ry,

Wi—1 =

Vg (4.89)

The stability condition requires that w;_1 be less than the mazximum per-
missible engine speed Warqz

Wi;—1 S WMazx- (490)

Using Equations (4.88) and (4.89), we may define the following condition
between transmission ratios at two successive gears and the engine speed:
Wi—1 WMazx Ti—1

= = 4.91
Wwj wT n; ( )

A constant relative gear ratio, at a constant vehicle speed, can be a simple
rule for a stable gearbox design

= ¢, (4.92)

Example 139 Transmission ratios and stability condition.
Consider a passenger car with the following gearbox transmission ratios:

1st gear ratio = mn; = 3.827
2nd gear ratio = n9 = 2.36
3rd gear ratio = mng = 1.685
4th gear ratio = n4 = 1.312
oth gear ratio = ns=1
6th gear ratio = mng = 0.793
final drive ratio = mng4 = 3.5451 (4.93)

The stability condition requires that n;—1/n; = cte. We examine the gear
ratios and find out that the relative gear ratios are not constant.

ns 1

%5 - 1961
e 0.793

nao_ L3124 a0
N5 1
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ng 1685

e 1312 1.284 3

2 - 22y

n3 1.685

n1 3.827

— = —=1.621 4.94
ng 2.36 6216 (4.94)

We may change the gear ratios to have n;_1/n; = cte. Let’s start from
the higher gear and find the lower gears using ¢y = ng/ns = 1.261.

ng = 0.793

ny = 1

ng = cgns=1.261

ng = cgng = 1261 x 1.261 =1.59

no = cgng = 1261 x1.59 =2

ny = cgng = 1.261 x 2 = 2.522 (4.95)

We may also start from the first two gears and find the higher gears using
cg =n1/ny = 3.827/2.36 = 1.6216.

ng = 3.827

ny = 236

ng = Z—j = 1?62236 = 1.455

= Z_j - 11.6425156 = 0.897

o= Z_j = 1().682917(5 = 0553

ne = Z—;’ = 1%525136 =0.341 (4.96)

None of these two sets shows a practical design. The best way to apply
a constant relative ratio is to use the first and final gears and fit four
intermittent gears such that n;_1/n; = cte. Using nq and ng we have,

ny 3.827

ng 0.793
T N2 N3 Ny N
N2 N3 Ny N5 N
= < (4.97)

and therefore,
cg = 1.37. (4.98)
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Now we are able to find the gear ratios.

n = 3.827

ny = %:%:2‘793

ny = Z—jz%ffzz.osg

nyg = %—%_1.488

ns = 2—32%385:1.086

ng = 0.793 (4.99)

4.4 Gearbox Design

The speed and traction equations (4.58) and (4.59) can be used to calculate
the gear ratios of a gearbox as well as vehicle performance. Theoretically
the engine should work at its maximum power to have the best perfor-
mance. However, to control the speed of the vehicle, we need to vary the
engine’s angular velocity. Hence, we pick an angular velocity range (w1, ws2)
around wys, which is associated to the maximum power Pj;, and sweep the
range repeatedly at different gears. The range (w1, ws) is called the engine’s
working range.

As a general guideline, we may use the following recommendations to
design the transmission ratios of a vehicle gearbox:

1. We may design the differential transmission ratio ng and the final gear
n, such that the final gear n,, is a direct gear, n,, = 1, when the ve-
hicle is moving at the moderate highway speed. Using n,, = 1 implies
that the input and output of the gearbox are directly connected with
each other. Direct engagement maximizes the mechanical efficiency
of the gearbox.

2. We may design the differential transmission ratio ngy and the final
gear n, such that the final gear n,, is a direct gear, n,, = 1, when the
vehicle is moving at the maximum attainable speed.

3. The first gear n; may be designed by the maximum desired torque
at driving wheels. Maximum torque is determined by the slope of a
desired climbing road.

4. We can find the intermediate gears using the gear stability condition.
Stability condition provides that the engine speed must not exceed
the maximum permissible speed if we gear down from n; to n;_1,
when the engine is working at the maximum torque in n;.
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FIGURE 4.12. A gear-speed plot for a geometric gearbox design.

5. The value of ¢, for relative gear ratios

= ¢, (4.100)

can be chosen in the range.

1<e, <2 (4.101)

To determine the middle gear ratios, there are two recommended meth-
ods:

1— Geometric ratios

2— Progressive ratios

4.4.1 Geometric Ratio Gearbox Design

When the jump of engine speed in any two successive gears is constant at
a vehicle speed, we call the gearbox geometric. The design condition for a

geometric gearbox is
i—1

(4.102)

n; =
Cyg

where ¢, is the constant relative gear ratio and is called step jump.

Proof. A geometric gearbox has constant engine speed jump in any gear
shift. So, a geometric gearbox must have a gear-speed plot such as that
shown in Figure 4.12.
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The engine working range is defined by two speeds (w1, ws)
{(wi,w2) w1 <wm <wa}. (4.103)

When the engine reaches the maximum speed ws in the gear number ¢ with
ratio n;, we gear up to n;4+1 to jump the engine speed down to w;. The
engine’s speed jump is kept constant for any gear change from n; to n;y1.
Employing the speed equation (4.58), we have

Aw = wy—wp
_ Micing o Mina
R, * Ry, °
nd
= (ni-1—ny) R U (4.104)
w
and therefore,
wy—wi M1
w1 T;
22y o= Ml
w1 n;
w ng_
- — (4.105)
w1 n;

Let’s indicate the maximum vehicle speed in gear n; by v; and in gear
ni—1 by vi—1, then,
n; Ng
we = vy
2 Rw 7
n;_1 M
= %d Vi1 (4.106)
w
and therefore, the maximum speed in gear ¢ to the maximum speed in gear
1 — 1 is inverse of the gear ratios

g =zt o U (4.107)

Uz Vi—1

The change in vehicle speed between gear n;_; and n; is indicated by
A’Ui =V; —V;j—1 (4108)

and is called speed span.

Having the step jump c4, and knowing the maximum speed v; of the
vehicle in gear n;, are enough to find the maximum velocity of the car in
the other gears

Vi = CgUj-1 (4109)
1

Vil = —u (4.110)
Cq

Vi+1 = Cgq;. (4111)
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FIGURE 4.13. A gear-speed plot for a progressive gearbox design.

4.4.2 Y Progressive Ratio Gearbox Design

When the speed span of a vehicle in any two successive gears is kept con-
stant, we call the gearbox progressive. The design condition for a progressive

gearbox is
iNi—1

Ni+1 = (4112)

2n; 1 —mny
where n;_1, n;, and n;41 are the transmission ratios of three successive
gears.

Proof. A progressive gearbox has constant vehicle speed span in any gear.
So, a progressive gearbox must have a gear-speed plot such as that shown
in Figure 4.13.
Indicating the maximum vehicle speed in gear n; by v;, in gear n;_; by
v;—1, and in gear n;11 by v;+1, we have
o onyng
Wy = Rw V;
Nj—1Mgq

= —F Vi1
Ry

N1 MNd
= — Vjs1- 4.113
R, Vi+1 ( )

The difference in vehicle speed at maximum engine speed is

Av = Vi —Vi—1
= Uj41 — Uy (4114)



4. Driveline Dynamics 191

and therefore,

Vig1 +Vic1 = 2v; (4.115)
il (Yt (4.116)
Vg Vg
L (4.117)
Ni+1  Mi-1
M1 —1
; _— 4.118
i+1 M1 — 1, ( )

The step jump of a progressive gearbox decreases in higher gears. If the
step jump cg4, between n; and n;y; is

n;

= ¢y, 4.119

then,
1

o =2— (4.120)

cgi—l
]

Example 140 A gearbox with three gears.
Consider an m = 860 kg car having an engine with n = nyn, = 0.84 and
the power-speed relationship
100

2
Pe =100 — 55 (we — 398) kW (4.121)

where w, 1s in [rad/s]. We define the working range for the engine
272rad/s (= 2600 rpm) < w, < 524rad/s (= 5000 rpm) (4.122)

when the power is 100kW > P, > 90kW. The power performance curve
(4.121) is illustrated in Figure 4.14 and the working range is shaded.

The differential of the vehicle uses ng = 4, and the effective tire radius is
R, =0.326 m. We like to design a three-gear geometric gearbox to have the
minimum time required to reach the speed v, = 100km/h ~ 27.78m/s ~
62mi/h. We assume that the total resistance force is constant, and the
engine cannot accelerate the car at vy, = 180km/h = 50m/s ~ 112mi/h
anymore. Assume that every gear change takes 0.47s and we need tg =
2.58s to adjust the engine speed with the car speed in first gear.

Using the speed equation (4.58), the relationship between vehicle and en-
gine speeds s

- We. (4.123)
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FIGURE 4.14. The power performance curve (4.121) and its working range.

At the mazimum speed v, = 50m/s, the engine is rotating at the upper
limit of the working range w, = 524rad/s and the gearbox is operating in
third gear. Therefore, Equation (4.123) provides that

S 0.326&
57 4 v,

0.326 524
= ———— =0.85412. 4.124
4 50 ( )

The speed equation
0.326

__ U926 412
Ur = 1% 0.85412"¢ (4.125)

is applied as long as the gearbox is operating in third gear n; = ns, and we 18
in the working range. By decreasing w. and sweeping down over the working
range, the speed of the car will reduce. At the lower range w, = 272rad/ s,
the vehicle speed is

0.326
Txoasin <27
25.95m/s (4.126)

93.43km/h ~ 58 mi/ h.

Ve =

At this speed we should gear down to ng and jump to the higher range
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we = 524rad/s. This provides that

n 0.326 we
2 4 v,
0.326 524
= ———— =1.645T7. 4.12
4 25.95 7 ( 7
Therefore, the engine and vehicle speed relationship in second gear is
0.326
r = ———————We 4.12
Y T X 16457 (4.128)
that is applicable as long as n; = ns, and we s in the working range.
Sweeping down the engine’s angular velocity reduces the vehicle speed to
0.326
= —— x 272
s = Txtedsr <
= 1347m/s (4.129)

48.49km/h ~ 30.1mi/ h.

At this speed we should gear down to ny and jump again to the higher range
we = 524rad/s. This provides that

n 0.326 we
L= 4 v,
0.326 524
= 1 B 3.1705 (4.130)
and therefore, the speed equation for the first gear is
0.326
= —————We. 4.131
Y T % 3.1705" (4.131)

At the lower range of the engine’s speed in the first gear n; = ny, the speed
of the vehicle is
0.326 “
4 x 3.1705
= Tm/s (4.132)
25.2km/h ~ 15.6 mi/ h.

272

Vg -

Therefore, the three-gear gearbox uses the following gear ratios:

ny = 3.1705
ny = 1.6457
ng = 0.85412 (4.133)

The speed equations for the three gears are plotted in Figure 4.15. Such a
plot is called a gear-speed plot. Figure 4.15 also shows the gear switching
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FIGURE 4.15. The gear-speed plot for a three-gear gearbox.

points and how the vehicle speed is reducing from v, = 50m/s to v, =

Tm/s.

To evaluate the required time to reach the desired speed, we need to find
the traction force F, from the traction equation and integrate.

. n ind Pe
—
1 MiNg 100 9
= — 100 — _
we R <OO 3052 (We ~3%8) >
25 q
= 39601 gz " (T96Fw = nanive) kN. (4.134)

At the mazimum speed, the gearbox is in the third gear and the traction
force Fy, is equal to the total resistance force FR.

Fy

I
5
|

= T —1512kN (4.135)

Therefore, the traction force in the first gear is

Fy

25
39601 R2 —ngni (T96 R, — ngniv,)
25  0.84

30601 0.3262 X 4 x 3.1705 (796 x 0.326 — 4 x 3.1705v,,)

16.421 — 0.80252v,, kN. (4.136)
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Based on Newton’s equation of motion

(4.137)

dvg

dvg
F,—Fr=m—
R= 0
we can evaluate the required time to sweep the velocity from zero to v, =
13.47m/s
= m —dv,
! 0 Fm - FR
13.47 -3
10
= 860/
0 16.421 — 0.80252v, — 1.512

= 1.3837s.

In second gear, we have

25
Fw = MR_%Unan (796Rw - nanUw)
25 0.84

39601 0.3262
= 8.5235 — 0.21622v, kN

and therefore, the sweep time in the second gear is

25.95 1
ta = m —dv
2 - x

1347 Foe— FRr

25.95 -3
1
= 860 / 0
1

547 8.5235 — 0.216220, — 1.512

= 4.2712s.

Finally, the traction equation in the third gear is

25
Foo= m%nm (T96 Ry, — nanavy)
25 0.84

39601 0.3262
= 4.4237 — 5.8242 x 10~ %0, kN

and the sweep time is

(4.138)

= x 4 % 1.6457 (796 x 0.326 — 4 x 1.6457v,)

(4.139)

duy
(4.140)

= x 4 x 0.85412 (796 x 0.326 — 4 x 0.85412v,,)

(4.141)

27.78 1
t3 = m —dv,
25905 Fo—Fr =
27.78 -3
= 860/ 10 5
o5.95 4.4237 — 5.8242 x 10~2v, — 1.512

= 1.169s.

dv,
(4.142)
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The total time to reach the speed v, = 100km/h ~ 27.78m/s is then
equal to

t = to+ti+ta+t3+3x0.47
= 2.58+41.3837 +4.2712 + 1.169 + 3 x 0.47
10.8145 (4.143)

Example 141 Better performance with a four-gear gearbozx.
A car equipped with a small engine has the following specifications:

m = 860kg
R, = 0.326m
n = 084
ng = 4 (4.144)

and the engine operates based on the following performance equation:

100 )
Pe =100 — 555 (we — 398)" kW (4.145)

where we s in [rad/s]. Assuming the engine works well in the range
272rad/ s (= 2600 rpm) < w, < 524rad/s (= 5000 rpm) (4.146)

when the power is 100kW > P, > 90kW. We would like to design a gearbox
to minimize the time to reach v, = 100km/h ~ 27.78 m/s ~ 62mi/ h.

The power performance equation (4.145) is illustrated in Figure 4.14 and
the working range is shaded. To make this example comparable to Example
140 we assume that the total resistance force is constant, and the engine
cannot accelerate the car at v, = 180km/h. Furthermore, we assume that
every gear change takes 0.47s and a time tg = 2.58 s is needed to adjust the
engine speed need in first gear.

Let’s design a four-gear gearbox and set the third gear such that we reach
the desired speed v, = 27.78 m/ s at the higher limit of working range w, =
524rad/s. The gear-speed plot for such a design is plotted in Figure 4.16.

Using the speed equation (4.58), the relationship between vehicle and en-
gine speeds s

Ry
Vp = We
g Mg
0.326
= e- 4.14
T Y (4.147)

At the speed v, = 100km/h ~ 27.78 m/ s, the engine is rotating at the up-
per limit of the working range w. = 524rad/s and the gearboz is operating
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FIGURE 4.16. The gear-speed plot for Example 141.

in third gear n; = ns. Therefore,

0.326 we
4 v

0.326 524
= g = L9373 (4.148)

ng =

and the speed equation in the third gear n; = ng3 is

0.326

o090 4.14
Ve = T 153737 (4.149)

while we 1s in the working range. By sweeping down to the lower limit of
the working range w. = 272rad/ s, the speed of the car will reduce to

0.326

1x15373 "
14.42m/s (4.150)

51.91km/h ~ 32.25mi/ h.

272

Ve -

Q

At this speed we should gear down to ng and jump to the higher range
we = 524rad/s. This provides that

0.326 We
4 v,

0.326 524
= i = 29616 (4.151)

ng =
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Therefore, the gear-speed relationship in second gear n; = no is

0.326

_ 99026 4.152
Ve = 1 2.0616"° (4.152)

Sweeping down the engine’s angular velocity to w. = 272rad/ s, reduces the
vehicle speed to

0.326
— X
4 x 2.9616
7.48m/ s (4.153)
26.9km/h ~ 16.7mi/ h.

272

Ve -

Q

At this speed, we gear down to my and jump again to the higher range
we = 524rad/s. This provides that

I 0.326 we
v 4 v,
0.326 524
= == _5, 4.154
1 748 5.7055 (4.154)
and therefore the speed equation for first gear is

0.326

Vy = T2 5705k 5-70550%. (4.155)

In first gear, n; = ni, and the vehicle’s speed at the lower range of the
engine’s speed 1s
0.326 o
4 x 5.7055
= 3.88m/s (4.156)
~ 14km/h~ 8. 7mi/h.

272

Vg

To calculate the fourth gear n; = ny we may use the gear-speed equation
and set the engine speed to the lower limit w, = 272rad/s while the car is
moving at the maximum speed in third gear. Therefore,

0.326 w,

4 v,

0.326 272
= o gag = 079798, (4.157)

The four-gear gearbox uses the following ratios:

ngy =

ny = 95.7055
ng = 29616
ny = 1.5373

ng = 0.79798 (4.158)
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To calculate the required time to reach the desired speed v, = 100km/h =~
27.78 m/ s, we need to use the traction equations and find the traction force
Fy

nmd P
F p—
x R we
n ning 100 9
= — 100 — . — 308
we Ry ( 3987 ) )
25
~ 39601 R2 g i (T96 Ry — nanivg) kN. (4.159)

At the mazimum speed, the gearboz is in fourth gear and the traction force
F, is equal to the total resistance force FR.

Fy

|
=
|

= T —1512kN (4.160)

Therefore, the traction force in the first gear is

25 7
F, = 39601 RZ —ngny (T96 R, — ngnivy,)
25 0.84
= 4 % 5.7055 (796 x 0.326 — 4 x 5.70550,
39601 03262« ° (796 % X 5.7055v,)
—  29.55 — 2.5989v, kN. (4.161)

Using Newton’s equation of motion

dvy
F,— Fp=m=—< (4.162)

we can evaluate the required time to reach the velocity v, = 7.48m/ s

7.48 1
tl = m/ —dUw
0 Fm - FR
7.48 _3
10

— 860 dv,

/O 29.55 — 2.59890, — 1.512 "
— 0.39114s. (4.163)

In second gear we have

25
F, = 39601 R2 —ngns (T96 R, — ngnavy,)
25  0.84

= 3960103262 X 4 % 2.9616 (796 x 0.326 — 4 x 2.9616v,,)

= 15.339 — 0.70025v, kN (4.164)
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and therefore, the sweep time in second gear is

14.42 1

ta = m ——duv,
748 Fo—Fr °

14.42 10—3
= 860 dv,
/7_48 15.330 — 0.70025v, — 1.512° "
= 1.0246s. (4.165)

The traction equation in third gear is

25 7

FZE = . > — 3 Us
39601 1z, a3 (7967w = nangvs)
25 0.84
= x4 x 1. 326 — 4 x 1.5373,
s o X 4 X L5373 (796 X 0326 — 4 x 1.53730,)
= 7.9621 — 0.18868v, kN (4166)

and the sweep time 1is

27.78 1
t3 = m ——dv,
14.42 Fm - FR
27.78 -3
10
= 860 dv,
/14,42 7.9621 — 0.188680, — 1.512°"
— 5.1359s. (4.167)

The total time to reach the speed vy, = 100km/h ~ 27.78m/s is then
equal to

t = to+t1+ta+1t3+3X 0.07
2.58 +0.39114 4 1.0246 + 5.1359 + 3 x 0.47
10.542s (4.168)

Example 142 Working range.
Consider that a car equipped with a small engine has the following spec-
ifications:

m = 860kg
R, = 0.326m
n = 084
ng = 4. (4.169)

The performance equation of the engine is

100 2
P, =100 — —— (we — 398)° kW 4.170
o (e — 398) (4.70)
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where w, is in [rad/s]. The engine provides a mazimum power Py =
100kW at wypr = 400rad/ s.

The total resistance force is assumed to be constant, and the maximum
attainable speed is assumed to be v, = 180km/h. Furthermore, we assume
that every gear change takes 0.07s and a minimum time tg = 0.18s is
needed to adjust the engine speed with that car speed in the first gear.

We would like to design a four-gear gearbox to minimize the time to reach
vy = 100km/h ~ 27.78 m/ s.

To find the best working range for the engine, we set third gear to reach
the desired speed v, = 100km/h at the upper limit of the working range.
Therefore, fourth gear starts with the lower limit of the working range when
we gear up. If fourth gear is set such that the car reaches the maximum speed
v, = 180km/h ~ 50m/ s at the upper limit of the working range, then the
gear-speed equation

n;n
we = é—wd o (4.171)
provides
472,4
= Tons 4.172
WhMaz 0396 x 50 (4.172)
4an
Wmin = 0.3246 X 27.78. (4.173)

By setting Wmin and Warqq to an equal distance from wyy = 400rad/ s,

WMaz T Wmin

5 =400 (4.174)
we find
ng = 0.83826 (4.175)
Wmin = 285.73rad/s (4.176)
WMaz = 514.27rad/s. (4.177)

We are designing a gearbox such that the ratio w./v, is kept constant in
each gear. The engine speed jumps up from Wmin t0 Warer when we gear
down from n4 to n3 at Wmin, hence,

4713
= 27.78 =514.2 4.1
Wiaz G30g X 2778 =514.27 (4.178)
ns = 1.5087. (4.179)

Therefore, the speed of the car in third gear at the lower limit of the engine
speed s

v, = 27.78%min
WMaz

27.78
= 27.78 x w0 15.435m/s. (4.180)
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The engine’s speed jumps again to Wyrq, when we gear it down from ng to
ng, hence,

4712
Wilas S 39g X 15435 = 514.27 (4.181)
ny = 2.7155. (4.182)

Finally the speed of the car in second gear at the lower limit of the engine
speed s

v, = 15.4352min
WMaz

27.78
= 15435 x —~ =8.5757m/s. (4.183)

that provides the following gear ratio in first gear

472,1
. =514.2 4.184
Sagg X 85757 =514.27 (4.184)

ny = 4.8874. (4.185)

WMazx

The speed of the car in first gear at the lower limit of the engine speed is
then equal to

vy = 857TH7ImIn
WMaz
97.78

= 85757 x — = = 4.7647m/s. (4.186)

Therefore, the four gears of the gearbox have the following ratios:

n = 4.8874
ny = 2.7155
ns = 1.5087
ny = 0.83826 (4.187)

and the working range for the engine is

285.73rad/ s (~ 2730rpm) < w, < 514.27rad/s (~ 4911 rpm).
(4.188)
The power performance curve (4.170) is illustrated in Figure 4.17 and the
working range is shaded. The gear-speed plot of this design is also plotted
in Figure 4.18.
Balance of the traction force F, and the total resistance force Fr at the
maximum speed provides

P,

F,o= py = 1
Vg

0.84 x 90

= T —1512KkN. 4.189
= (4.189)
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FIGURE 4.17. The power performance curve (4.170) and its working range.
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FIGURE 4.18. The gear-speed plot for Example 142.
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The traction force in first gear is

25
F pu— o
v 39601 R2 Tz am (T96 Ry — nanivg)
25 0.84
— x4 x 4.8874 326 — 4 x 4.8874v,
30601 03262 1 X 48874 (796 x 0.326 — 4 x 4.8874v,)
—  925.313 — 1.907v, kN. (4190)

The time in first gear ny can be calculated by integrating Newton’s equation
of motion

dv
F,— Fp=m—< (4.191)

and sweep the velocity from v, =0 to v, = 8.5757m/ s

8.5757 1
m ——duvy,
\/0 Fm - FR

8.5757 1073
860 dv,
/0 25313 — 1.9070, — 15120

0.52398s. (4.192)

tq

In second gear, the traction force is

25
F, = 39601 R2 —nana (T96 Ry, — ngnavy)
2% 0.84
= 2 O X 2.7155 (796 x 0.326 — 4 x 2.71550,
39601 0.326% (796 % x va)
—  14.064 — 0.5887v, kN (4.193)

and therefore, the sweep time in second gear is

15.435
t 1 d
2 = M AUy

85757 Pz — FRr

15.435 10,3
860 dv,
/8_5757 14.064 — 0.58870, — 1.512
1.1286s. (4.194)

In third gear, the traction force is

25
F, = 39601 R2 —ngn3 (196 R, — ngnsv,)
25  0.84

= 3960103262 X 4 x 1.5087 (796 x 0.326 — 4 x 1.5087v,,)

= 7.814 —0.18172v, kN (4.195)
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and the third sweep time is

27.78
t3 = m/ d
5.435 Fo — FR

27.78 10_3
— 860 dv.
,/15.435 7.814 — 0.18172v, — 1.512

The total time to reach the speed v, = 100km/h ~ 27.78m/s is then
equal to
t = to+t1+ta+1t3+3x0.07
2.58 +0.52398 + 1.1286 + 4.8544 4 3 x 0.47
= 10.497s (4.197)

4.5 Summary

The maximum attainable power P, of an internal combustion engine is a
function of the engine angular velocity w.. This function must be deter-
mined by experiment however, the function P, = P. (w.), which is called
the power performance, can be estimated by a mathematical function such
as

P, =Piwe+ Pow? + P3w? (4.198)
where,
P,
p = M (4.199)
WM
P,
p = &£ (4.200)
Wiy
P,
p = (4.201)
Wiy

wypsis the angular velocity, measured in [rad/s|, at which the engine
power reaches the maximum value Pys, measured in [W = Nm/ s].
The engine torque T, is the torque that provides P,
P
T. = ==
We
= P+ Pyw. + P3uw?. (4.202)
An ideal engine is the one that produces a constant power regardless of
speed. For the ideal engine, we have

P, = P (4.203)
T, = = (4.204)
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We use a gearbox to make the engine approximately work at a constant
power close to the Pys. To design a gearbox we use two equations: the speed
equation

n;n
We = é—wd Vg (4.205)
and the traction equation
1 R,
T.=- F, (4.206)
n Mind

These equations state that the forward velocity v, of a vehicle is propor-
tional to the angular velocity of the engine w., and the tire traction force
F, is proportional to the engine torque 7., where, R,, is the effective tire ra-
dius, ng is the differential transmission ratio, n; is the gearbox transmission
ratio in gear number 4, and 7 is the overall driveline efficiency.
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4.6 Key Symbols

a=12
aiai:Oa"' 76
ax

AW D

i)
s}

SESISENS

FWD

H

m

n = Win/wout
n

nd

Ng

P

Py

P, P, P
P,

Pe - Pe (We)
Pyr

q
r=w/wy
RWD

Ty

T

Tm

T
V=T, V
Umin

Av

T, Y,z X

Ne
Ne
v
P
Mt
Nt

acceleration

coefficients of function T, = T, (w,)
acceleration capacity

all-wheel-drive

constant relative gear ratio

slip factor

distance traveled

clutch diameter

energy

traction force

front-wheel-drive

thermal value of fuel

vehicle mass

gear reduction ratio

gearbox transmission ratio in gear number ¢
transmission ratio

overall transmission ratio

power

ideal engine constant power

coefficients of the power performance function
maximum attainable power of an engine
power performance function

maximum power

fuel consumption per unit distance
frequency ratio

rear-wheel-drive

differential input torque

engine torque

maximum torque

wheel torque

velocity

minimum vehicle speed corresponding to wy,in
difference in maximum vehicle speed at two different gears
displacement

overall efficiency
convertor efficiency
engine efficiency
mechanical efficiency
transmission efficiency
thermal efficiency
thermal efficiency
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v
[z

p

Ps

¢

wq
We
Wmin
wpm
WMazx
Wp

w
wr — out
Win

volumetric efficiency

traction coefficient

oil density

fuel density

slope of the road

differential input angular velocity
engine angular velocity

minimum engine speed

engine angular velocity at maximum power
maximum engine speed

pump angular velocity

speed ratio
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Exercises

1. Power performance.
Audi R8™™ with m = 1558 kg, has a V'8 engine with

Py = 313kW = 420 hp at wyr = 7800 rpm
and Audi TT Coupe”™ with m = 1430kg, has a V6 engine with
Py = 184kW =~ 250 hp at wy; = 6300 rpm.

Determine the power performance equations of their engines and com-
pare the power mass ratio, Pys/m of the cars.

2. Power and torque performance.

A model of Nissan NISMO 3507 with m = 1522kg, has a V6 engine
with

Py = 228kW = 306 hp at wyr = 6800 rpm
Ty = 363Nm =~ 2681bft at w = 4800 rpm.

Determine the power and torque performance equations, and compare
Ty from the torque equation with the above reported number.

3. Fuel consumption conversion.

A model of Subaru Impreza WRX STI”M with m = 1521kg, has a
turbocharged flat-4 engine with

Py = 219kW =~ 293 hp at wyy = 6000 rpm.

Fuel consumption of the car is 19 mi/ gal in city and 25 mi/gal in
highway. Determine the fuel consumption in liter per 100 km.

4. Fuel consumption conversion.

A model of Mercedes-Benz SLR 722 Edition”™ with m = 1724 kg,
has a supercharged V8 engine with

Py = 485 kW = 650 hp at wyr = 6500 rpm.
The maximum speed of the car is
vy = 337km/ h ~ 209 mi/ h.

Assume the maximum speed happens at the maximum power and use
an overall efficiency n = 0.75 to determine the traction force at the
maximum speed.
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5. Car speed and engine speed.
A model of Toyota Camry” has a 3.5-liter, 6-cylinder engine with
Py = 268 hp at wys = 6200 rpm.

The car uses transaxle/front-wheel drive and is equipped with a six-
speed ECT-i automatic transmission.

1st gear ratio = mn; = 3.300
2nd gear ratio = mng = 1.900
3rd gear ratio = mng = 1.420
4th gear ratio = ny = 1.000
5th gear ratio = mnz =0.713
6th gear ratio = mng = 0.609
reverse gear ratio = n, =4.148
final drive ratio = mng = 3.685

Determine the speed of the car at each gear, when the engine is
running at wys, and it is equipped with

(a) P215/55R17 tires
(b) P215/60R16 tires.

6. Geer-speed equations.

A model of Ford Mondeo™ is equipped with a 2.0-liter, which has
Ty =185 Nm at w. = 4500 rpm.

It has a manual five-speed gearbox.

1st gear ratio = mn; = 3.42
2nd gear ratio = ng =2.14
3rd gear ratio = ng=1.45
4th gear ratio = n4 =1.03
5th gear ratio = nz =0.81
reverse gear ratio = n, = 3.46
final drive ratio = ng = 4.06

If the tires of the car are 205/55R16, determine the gear-speed equa-
tions for each gear.
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7. Final drive and gear ratios.

A model of Renault/Dacia Logan?™ with m = 1115kg, has a four-
cylinder engine with

Py = T77kW = 105hp at wyr = 5750 rpm
Ty = 148 Nm at w. = 3750 rpm
vy = 183km/h

Tires = 185/65R15.

It has a five-speed gearbox. When the engine is running at 1000 rpm
the speed of the car at each gear is as follow.

1st gear ratio = ng; =7.25km/h

2nd gear ratio = mng =13.18km/h
3rd gear ratio = ng=19.37Tkm/h
4th gear ratio = mny =26.21km/h
5th gear ratio = ns =33.94km/h

Assume that the top speed happens when the car is in the final gear
and the engine is at the maximum power. Evaluate the final drive
ratio, ng and gear ratios n;,i =1,2,---5.

8. Traction equation.
A model of Jeep Wrangler™ is equipped with a V6 engine and has

the following specifications.

Py = 153kW = 205hp at wyr = 5200 rpm
Ty = 325Nm =~ 2401bft at w. = 4000 rpm

A model of the car may have a six-speed manual transmission with
the following gear ratios

1st gear ratio = mn; =4.46
2nd gear ratio = ng = 2.61
3rd gear ratio = ng=1.72
4th gear ratio = nyg=1.25
5th gear ratio = ns = 1.00
6th gear ratio = ng=0.84
reverse gear ratio = n, =4.06

final drive ratio = ng=3.21
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or a four-speed automatic transmission with the following gear ratios.

1st gear ratio = n; =2.84
2nd gear ratio = mng = 1.57

3rd gear ratio = mng=1.0
4th gear ratio = ny = 0.69
reverse gear ratio = n, =2.21
final drive ratio = ng=4.10

Assume
n = 0.8
Tires = 245/75R16

and determine the traction equation for the two models.

9. Acceleration capacity.

Lamborghini Murcielago?™ is equipped with a 6.2-liter V12 engine
and has the following specifications.

Py = 631hp at wyr = 8000 rpm
Ty = 4871bft at w. = 6000 rpm

m = 36381b
P245/357Z R18
P335/30ZR18

Front tire

Rear tire

The gearbox of the car uses ratios close to the following values.

1st gear ratio = mn; =2.94
2nd gear ratio = mng = 2.056
3rd gear ratio = ng = 1.520
4th gear ratio = ng4=1.179
5th gear ratio = ns = 1.030
6th gear ratio = ng=0.914
reverse gear ratio = n, = 2.529

final drive ratio = ng= 3.42

If n = 0.8, then

(a) determine the wheel torque function at each gear

(b) determine the acceleration capacity of the car.
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10. Y Gearbox stability.

11.

A model of Jaguar XJTM is a rear-wheel drive car with a 4.2-liter
V'8 engine. Some of the car’s specifications are close to the following
values.

m = 36381b
I = 1194in
Front tire = P235/50R18
Rear tire = P235/50R18
Py = 300hp at wys = 6000 rpm

If gear ratios of the car’s gearbox are

1st gear ratio = n; =4.17
2nd gear ratio = mn9 =2.34
3rd gear ratio = mng =1.52
4th gear ratio = n4y=1.14
5th gear ratio = ng = 0.87
6th gear ratio = mng = 0.69
reverse gear ratio = n, =3.40
final drive ratio = ng=2.87

check the gearbox stability condition. In case the relative gear ratio
is not constant, determine the new gear ratios using the relative ratio
of the first two gears.
% Geometric gearbox design.
Lamborghini Diablo”™ is a rear-wheel drive car that was built in
years 1990 — 2000. The car is equipped with a 5.7-liter V12 engine.
Some of the car’s specifications are given.

Py = 492hp at wy = 7000 rpm

Ty = 580Nm ~ 4281bft at w. = 5200 rpm

vy = 328km/h A~ 203mi/h

m = 1576kg =~ 34741b
I = 2650mm ~ 104in

wy = 1540mm =~ 60.6in

w, = 1640mm = 64.6in

Front tire = 245/40ZR17
Rear tire = 335/35ZR17
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The gear ratios of the car’s gearbox are close to the following values.

1st gear ratio = mn; =2.31 vy = 97.3km/h &~ 60.5mi/h
2nd gear ratio = ng =1.52 vy = 147.7km/h ~ 91.8mi/h
3rd gear ratio = ngz=1.12 vpr = 200.2km/ h &~ 124 mi/ h
4th gear ratio = ny = 0.88 vpr = 254.8km/ h ~ 158.4mi/ h
5th gear ratio = mns = 0.68 vy = 325km/h &~ 202mi/h
reverse gear ratio = n, =2.12 vy = 105.7km/h ~ 65.7mi/ h
final drive ratio = ng=2.41

Assume 1 = 0.9 and

(a) Determine the step jump ¢, for each gear change.
(b) Determine the speed span for each gear change.

(¢) Determine the engine speed at the maximum car speed for each
gear.

(d) Determine the power performance equation and find the engine
power at the maximum car speed for each gear.

(e) There is a difference between the car’s top speed and the maxi-
mum speed in the 5th gear. Find the engine power at the car’s
top speed. Based on the top speed, determine the overall resis-
tance forces.

(f) Accept the 1st gear data and assume a symmetric working range
around the maximum power. Determine the other gear ratios
based on a geometric design.

12. Manual and auto transmission comparison.

A model of Nissan U12 Pintara’™ may come with manual or auto
transmission. A model with a manual transmission has gear ratios
and characteristics close to the following values

1st gear ratio = mn; = 3.285
2nd gear ratio = mng = 1.850
3rd gear ratio = mng=1.272
4th gear ratio = n4 = 0.954
5th gear ratio = mnz = 0.740
reverse gear ratio = n, = 3.428

final drive ratio = mng = 3.895
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and the model with an auto transmission has gear ratios close to the
following values.

1st gear ratio = n; = 2.785
2nd gear ratio = mny = 1.545
3rd gear ratio = mn3 = 1.000
4th gear ratio = n4 = 0.694
reverse gear ratio = n, = 2.272
final drive ratio = ng = 3.876

Compare the transmissions according to geometric design condition
and determine which one has the maximum deviation.
% Progressive and geometric gearbox design.

An all wheel drive model of Hyundai Santa Fe”™ has specifications
close to the following numbers.

Py = 242hp at wyr = 6000 rpm
Ty = 2261bft at we. = 4500 rpm
m = 1724kg =~ 40221b
[ = 2700mm =~ 106.3in
Tires = P235/70R16
1st gear ratio = mn; =3.79
2nd gear ratio = mno = 2.06
3rd gear ratio = ng=1.42
4th gear ratio = n4 =1.03
5th gear ratio = mns =0.73
reverse gear ratio = n, = 3.81
final drive ratio = ng = 3.68

Assume that the car can reach a speed v = 200.2km/h ~ 124mi/h
at the maximum power Pj; in the final gear ns = 0.73. Accept ns
and redesign the gear ratios based on a progressive and a geometric
gearbox.

% Engine performance estimation.

Consider a RW D vehicle with the following specifications.

m = 63001b
I = 153in
F.,/F., = 4410/6000

Tires = 245/T5R16
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If an experiment shows that

vy =62.6mi/h at 3% slope
vy =521mi/h at 6% slope
vy =0 at 33.2% slope

estimate the maximum power of the vehicle. Assume 1 = 0.85.

Hint: assume that when the vehicle is stuck on a road with the max-
imum slope, the engine is working at the maximum torque. However,
when the vehicle is moving on a slope at the maximum speed, the
engine is working at the maximum power. Slope 3% means the angle
of the road with horizon is

¢ =tan"! —.

% Gearbox design.
Consider a RW D vehicle with the following specifications.

Py = 141kW = 189 hp at wyr = 7800 rpm
Ty = 181Nm = 1331bft at w. = 6800 rpm
vy = 237km/h =~ 147mi/h
n = 0.90
m = 875bkg
I = 2300mm
Front tirest = 195/50R16
Rear tirest = 225/45R17
1st gear ratio = n; =3.116
2nd gear ratio = ny = 2.050
3rd gear ratio = mn3 = 1481
4th gear ratio = ny = 1.166
5th gear ratio = mnz =0.916
6th gear ratio = ng=0.815
reverse gear ratio = n, = 3.250
final drive ratio = mng = 4.529

(a) Based on the maximum velocity at the 6th gear ng, redesign
the gear ratios. Use +20% around the maximum power for the
working range.

(b) Assume the car is supposed to be able to run on a 28% slope
with zero acceleration, and redesign the gear ratios.
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Applied Kinematics

Position, velocity, and acceleration are called kinematics information. Ro-
tational position analysis is the key to calculate kinematics of relatively
moving rigid bodies. In this chapter, we review kinematics and show applied
methods to calculate the relative kinematic information of rigid bodies. A
vehicle has many moving sub-systems such as suspensions, and the vehicle
can be treated as a moving rigid body in an inertia coordinate frame.

5.1 Rotation About Global Cartesian Axes

Consider a Cartesian coordinate frame Oxyz fixed to a rigid body B that
is attached to the ground G at the origin point O. The orientation of the
rigid body B with respect to the global coordinate frame OXY Z fixed to
the ground is known when the orientation of Ozyz with respect to OXY Z
is determined. Figure 5.1 illustrates a body coordinate B rotating about
point O in global coordinate frame G.

Z

z

y

FIGURE 5.1. A body coordinate B rotating about point O in global coordinate
frame G.

If the rigid body, B rotates o degrees about the Z-axis of the global
coordinate frame, then coordinates of any point P of the rigid body in the
local and global coordinate frames are related by the equation

Sr =Rz, Br (5.1)
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where
cosae —sina 0
Rzo=| sina cosa O (5.2)
0 0 1
and
[ X
Gr = Y (5.3)
| Z
[«
By = Y (5.4)
R

Similarly, rotation 8 degrees about the Y-axis, and ~ degrees about the
X-axis of the global frame relate the local and global coordinates of point
P by the following equations:

S = RysPr (5.5)
Gr = Rx By (5.6)
where

cosf 0 sing |
Ryp = 0 1 0 (5.7)

| —sinf8 0 cosf |

1 0 0
Rx., = 0 cosy —siny |. (5.8)

| 0 siny  cosy

Proof. Let (i, j,k) and (I,.J, K) be the unit vectors along the coordinate
axes of Ozyz and OXY Z respectively. The rigid body has a space fixed
point at O, which is the common origin of Oxyz and OXY Z. The dashed
lines in Figure 5.2 illustrate the top view of the coordinate frames at initial
position.

The initial position of a body point P is indicated by P;. The position
vector r1 of P; can be expressed in body and global coordinate frames by

Br, = xli+y1j+21f€ (5.9)

Cry = X I+ViJ+ 21K (5.10)

where Pr refers to the position vector r; expressed in the body coordinate
frame B, and “r; refers to the position vector r; expressed in the global
coordinate frame G.

If the rigid body undergoes a rotation a about the Z-axis, then the local
frame Oxyz, and point P will be seen in a second position, as shown by
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X5 X;

FIGURE 5.2. Position vectors of point P before and after the rotation of the
local frame about the Z-axis of the global frame.

the solid lines in Figure 5.2. Now the position vector ry of Ps is expressed
in both coordinate frames by

BI,2

GI_2

1‘2’2 + y2j+ 22];3
Xol +YoJ + ZoK.

(5.11)
(5.12)

Using Equation (5.11) and the definition of the inner product, we may
write

Xy = f~r2

= T moi+1-ypj+1-2k (5.13)
Y, = j'I'Q

= Jowoi4J-yj+J 2k (5.14)
Zy = K-rg

= K- -a9i+ K -yoj+ K - 20k (5.15)

or equivalently

%] [ Li 1E[n
Yo | =| J-2 J-] J-k Y2 (5.16)
Zs K-i Kj K-k 22

The elements of the Z-rotation matriz, Rz, are called the direction
cosines of Bry with respect to OXY Z. Figure 5.2 shows the top view of
the initial and final configurations of r in both coordinate systems Ozyz
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and OXY Z. Analyzing Figure 5.2 indicates that

I-i=cosa, f~j=—sina, I-k=0
J-i=sina, J-j=cosa, J-k=0 (5.17)
K-i=0, K-j=0, K-k=1
Combining Equations (5.16) and (5.17) shows that
X9 cosa —sina 0 To
Y2 | = | sina cosa 0 Y2 (5.18)
Zs 0 0 1 22
which can also be shown in the following short notation:
“ry = Rz Py (5.19)
cose —sina 0
Rzo=| sina cosaa O |. (5.20)
0 0 1

Equation (5.19) states that the vector r at the second position in the
global coordinate frame is equal to Rz times the position vector in the
local coordinate frame. Hence, we are able to find the global coordinates of
a point of a rigid body after rotation about the Z-axis, if we have its local
coordinates.

Similarly, rotation 8 about the Y-axis and rotation v about the X-axis
are described by the Y-rotation matriz Ry,g and the X-rotation matriz
Rx -~ respectively.

cosB 0 sinfB |

Ryp = 0 1 0 (5.21)
—sinf 0 cosf |
1 0 0

Rx~y= 1|0 cosy —siny (5.22)
0 siny cosvy

The rotation matrices Rz o, Ry, and Rx - are called basic global ro-
tation matrices. We usually refer to the first, second, and third rotations
about the axes of the global coordinate frame by «, 8, and  respectively.
|

Example 143 Successive rotation about global axes.

The final position of the point P(1,2,3) after a 30deg rotation about
the Z-axis, followed by 30 deg about the X -axis, and then 90 deg about the
Y -axis can be found by first multiplying Rz 30 by [1,2,3]T to get the new
global position after first rotation

X5 cos30 —sin30 O 1 —0.134

Y2 | = | sin30 cos30 O 2 | = 2.23 (5.23)
Z 0 0 1 3 3
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and then multiplying Rx 30 by [—0.134,2.23,3]T to get the position of P
after the second rotation

X3 1 0 0 —0.134 —0.134
Ys [ = 0 cos30 —sin30 2.23 = 0.433
73 0 sin30 cos30 3 3.714

(5.24)
and finally multiplying Ry oo by [—0.134,0.433,3.714]T to get the final po-
sition of P after the third rotation.

X4 cos90 0 sin90 —0.134 3.714
Y, | = 0 1 0 0.433 = | 0.433
Zy —sin90 0 cos90 3.714 0.134

25)

Example 144 Global rotation, local position.
If a point P is moved to ®ry = [2,3,2]T after a 60 deg rotation about the
Z -axis, its position in the local coordinate is

Pry = Rzg “r

oo cos60 —sin60 0] ' 2 3.6

Y2 = sin60 cos60 0 3= -023 [. (5.26)
Z 0 0 1 2 2

The local coordinate frame was coincident with the global coordinate frame
before rotation, thus the global coordinates of P before rotation was also
Gry =[3.6,-0.23,2].

5.2 Successive Rotation About Global Cartesian
Axes

The final global position of a point P in a rigid body B with position vector
r, after a sequence of rotations Ry, Ro, Rg3, ..., R, about the global axes
can be found by

Cr = %Ry Br (5.27)

where,

“Rp= R, - -RsRoR; (5.28)

and “r and Br indicate the position vector r expressed in the global and
local coordinate frames. “Rp is called the global rotation matriz. It maps
the local coordinates to their corresponding global coordinates.

Because matrix multiplications do not commute, the sequence of per-
forming rotations is important. A rotation matrix is orthogonal that means
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its transpose R” is equal to its inverse R~1.
RT =R™! (5.29)

Example 145 Successive global rotation matriz.
The global rotation matriz after a rotation Rz . followed by Ry g and
then Rx  is

“Rp = Rx,RypRza

cacf —cfBsa sB
cysa+ casfsy  cacy — sasfsy  —cBsy | . (5.30)
sasy — cacysf  casy+ cysasf cBey

Example 146 Successive global rotations, global position.
The point P of a rigid body that is attached to the global frame at O is
located at

X, 0.0
v, | =026 |. (5.31)
Z 0.97

The rotation matriz to find the new position of the point after a —29 deg
rotation about the X -axis, followed by 30 deg about the Z-axis, and again
132 deg about the X -axis is

“Rp = Rxi32Rz30Rx, 20
0.87 —-0.44 -—-0.24
— | —033 —0.15 —0.93 |. (5.32)

037 089 —-0.27

Therefore, its new position is at

Xs 087 —-044 -0.24 0.0 —0.35
Y, | = —-033 —-0.15 -0.93 026 | =| —094 |[. (5.33)
Zs 037 089 —0.27 0.97 —0.031

Example 147 Order of rotation, and order of matriz multiplication.
Changing the order of global rotation matrices is equivalent to changing
the order of rotations.
The position of a point P of a rigid body B is located at BPrp = [ 1 2 3 ]T.
Its global position after rotation 30deg about the X-azis and then 45 deg
about the Y -azis is at

(GrP) 1 = Rvas Rx30 Brp
0.53 —-0.84 0.13 1 —0.76
= 0.0 0.15 0.99 2 | = 3.27 (5.34)

—-0.85 —0.52 0.081 3 —1.64
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and if we change the order of rotations, then its position would be at

(GI“P)2 = Rxa30RyasPrp
0.53 0.0 0.85 1 3.08
= —-0.84 0.15 0.52 2 = 1.02 . (5.35)
—0.13 —-0.99 0.081 3 —1.86

These two final positions of P are d = |(Grp) — (Grp)2| = 4.456 apart.

1

Example 148 Global roll-pitch-yaw angles.

The rotation about the X -axis of the global coordinate frame is called
roll, the rotation about the Y -axis of the global coordinate frame is called
pitch, and the rotation about the Z-axis of the global coordinate frame is
called yaw. The global roll-pitch-yaw rotation matriz is

“Rp = Rz RypRxa
cBey  —casy + cysasfB sasy + cacysf
= cBsy  cacy+ sasfsy  —cysa+casfBsy | . (5.36)
—sf cBsa cacf

Given the roll, pitch, and yaw angles, we can compute the overall rotation
matriz using Equation (5.36). Also, we are able to compute the equivalent
roll, pitch, and yaw angles when a rotation matriz is given. Suppose that r;;
indicates the element of row @ and column j of the roll-pitch-yaw rotation
matriz (5.36), then the roll angle is

a = tan! (Tﬁ> (5.37)

33

and the pitch angle is
B=—sin""(rs) (5.38)

and the yaw angle is

v = tan~" (Tﬂ) (5.39)

T11
provided that cos S # 0.

5.3 Rotation About Local Cartesian Axes

Consider a rigid body B with a space-fixed point at point O. The local body
coordinate frame B(Ozyz) is coincident with a global coordinate frame
G(OXY Z), where the origin of both frames are on the fixed point O. If
the body undergoes a rotation ¢ about the z-axis of its local coordinate
frame, as can be seen in the top view shown in Figure 5.3, then coordinates
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of any point of the rigid body in the local and global coordinate frames are
related by the equation
By =R, ,Cr. (5.40)

The vectors “r and Pr are the position vectors of the point in the global

and local frames respectively

v = [X YV 2] (5.41)
By = [z y 2 ]T (5.42)
and R, , is the z-rotation matriz
cosp sing 0
R.,=| —sinp cosg 0 |. (5.43)

0 0 1

Similarly, rotation # about the y-axis and rotation ¥ about the z-axis
are described by the y-rotation matriz R, ¢ and the x-rotation matriz R
respectively.

[ cosf 0 —sinf

Ryp = o 1 0 (5.44)
| sinf 0 cosf
[ 1 0 0

Ryy = 0 cosy siny (5.45)
| 0 —siny cosy

Proof. Vector r indicates the position of a point P of the rigid body B
where it is initially at P;. Using the unit vectors (i,7, k) along the axes
of local coordinate frame B(Oxyz), and (I, J, K) along the axes of global
coordinate frame B(OXY Z), the initial and final position vectors r; and

ro in both coordinate frames can be expressed by

Br, = mi4+wyj+ 2k (5.46)
Gl‘l = le + Ylj + Zlff (547)
BI‘Q = Xol+yo)+ 22]% (5.48)
GI‘Q = ng + Y—QJA + ZQK (549)

The vectors Br; and Bry are the initial and final positions of the vector r

expressed in body coordinate frame Oxyz, and “r; and “ry are the initial
and final positions of the vector r expressed in the global coordinate frame
OXYZ.
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FIGURE 5.3. Position vectors of point P before and after rotation of the local
frame about the z-axis of the local frame.

The components of Zry can be found if we have the components of &rs.
Using Equation (5.49) and the definition of the inner product, we may write

Ty = d-rg=i-Xol+1-YoJ +i-ZoK (5.50)
Yo = jro=7-Xol+7-Yod+7-ZoK (5.51)
zZ9 = ]ACI‘QZIE‘XQIA—‘F];‘YYQJ‘F]%ZQK (552)
or equivalently
w|=| il g K| n 6
22 k-1 k-J k-K Z

The elements of the z-rotation matrix R, , are the direction cosines of
ro with respect to Oxyz. So, the elements of the matrix in Equation (5.53)
are

G

i'f:cosgo, P-J = sin ¢, 1 K=0
j-I=—sing, j-J=cosg, j-K=0 . (5.54)
k-I=o0, k-J=o0, E-K=1

Combining Equations (5.53) and (5.54), we can find the components of

Bry by multiplying z-rotation matrix R, , and vector Gry
T2 cosp sing 0 Xo
y2 | = | —sing cosp 0 Y, |. (5.55)
29 0 0 1 ZQ

It can also be shown in the following short form:
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Br2 = Rz,gp Gr2 (556)
where
cose sing 0
R.,=| —sinp cosep 0 |. (5.57)
0 0 1

Equation (5.56) says that after rotation about the z-axis of the local
coordinate frame, the position vector in the local frame is equal to R, ,
times the position vector in the global frame. Hence, after rotation about
the z-axis, we are able to find the coordinates of any point of a rigid body
in a local coordinate frame, if we have its coordinates in the global frame.

Similarly, rotation 6 about the y-axis and rotation 1 about the z-axis
are described by the y-rotation matrix R, ¢ and the z-rotation matrix R y
respectively.

cosf 0 —sinf

R, o= 0 1 0 (5.58)
sinf 0 cosé
1 0 0

Rypy=1|0 cos¢ siny (5.59)

0 —sinYy cosvy

We indicate the first, second, and third rotations about the local axes by
©, 0, and ¥ respectively. m

Example 149 Local rotation, local position.

If a local coordinate frame Oxyz has been rotated 60 deg about the z-
azis and a point P in the global coordinate frame OXY Z is at (4,3,2), its
coordinates in the local coordinate frame Ozyz are

x cos60 sin60 O 4 4.60
y | =] —sin60 cos60 0 3 =1 —-197 |. (5.60)
z 0 0 1 2 2.0

Example 150 Local rotation, global position.

If a local coordinate frame Oxyz has been rotated 60 deg about the z-axis
and a point P in the local coordinate frame Oxyz is at (4,3,2), its position
in the global coordinate frame OXY Z is at

T

X cos60 sin60 0 4 —0.60
Y | = | —sin60 cos60 0 3| =1 49 |. (5.61)
Z 0 0 1 2 2.0
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Example 151 Successive local rotation, global position.

First we turn a rigid body —90 deg about the y-azis and then 90 deg about
the x-axis. If a body point P is at Prp = [ 9.5 —10.1 10.1 ]T, then its
position in the global coordinate frame is at

“ry = [Ruego Ry o0] " Prp

_ 1 -1 B

= Ry,—QO Rx790 rp

_ T T B

= Ry,—go Rm,go rp
10.1

= | -101 |. (5.62)
9.5

Example 152 Global position and postmultiplication of rotation matrix.

The local position of a point P after rotation is at Pr = [ 1 2 3 ]T.
If the local rotation matriz to transform Cr to Br is given as

cosp sing 0 cos30 sin30 O
BR,,=| —sing cosp 0 | =| —sin30 cos30 0 (5.63)
0 0 1 0 0 1

then we may find the global position vector Cr by postmultiplication BRZ#,
by the local position vector BrT,

G _ BT BRz,cp
cos30 sin30 O

[1 2 3] —sin30 cos30 0
0 0 1

= [ -013 223 30 ] (5.64)

instead of premultiplication of BRz_)Slo by Br.

“r = BR;IP By
cos30 —sin30 0 1 —0.13
= sin30 cos30 0O 2 | =] 223 (5.65)
0 0 1 3 3

5.4 Successive Rotation About Local Cartesian
Axes

The final global position of a point P in a rigid body B with position
vector r, after some rotations Ry, Rs, Rs, ..., R, about the local axes, can
be found by

By = BR;Cr (5.66)
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where

BRG = R,---R3RyR;. (5.67)

B Rg is called the local rotation matriz and it maps the global coordinates
to their corresponding local coordinates.

Example 153 Successive local rotation, local position.

A local coordinate frame B(Oxyz) that initially is coincident with a global
coordinate frame G(OXY Z) undergoes a rotation ¢ = 30deg about the
z-axis, then 0 = 30deg about the x-axis, and then 1 = 30deg about the
y-axis. The local coordinates of a point P located at X =5,Y =30, Z =10
can be found by [ =y = ]T =Ry yRsoR.,[ 5 30 10 ]T, The local
rotation matriz s

0.63  0.65 —0.43
BRe = Ry30Rz30R-30= | —043 075  0.50 (5.68)
0.65 —0.125 0.75

and coordinates of P in the local frame are

x 0.63 0.66 —0.43 5 18.35
y | =] —043  0.75 0.50 30 | =1 2535 |. (5.69)
z 0.65 —0.125 0.75 10 7.0

Example 154 Successive local rotation.
The rotation matriz for a body point P(x,y,z) after rotation R, , fol-
lowed by Ry and Ry i

BRG = Ry,dJR:c,ORz,cp
coc) — sOspsty  cpsp + cpslsyp  —clsy
= —clsp chep s0 . (5.70)
cpsh + sOcpsp  spsp — cpsbcp  clerp

Example 155 Local roll-pitch-yaw angles

Rotation about the x-axis of the local frame is called roll or bank, rota-
tion about y-axis of the local frame is called pitch or attitude, and rotation
about the z-azis of the local frame is called yaw, spin, or heading. The
local roll-pitch-yaw angles are shown in Figure 5.4.

The local roll-pitch-yaw rotation matriz is

BRG = Rz,wRy,OR:c,ga

ey cps + sOcsp  spsh — cpsbcp
= —clsth  cpep — slspsh cpsp + cpshsy | . (5.71)
s0 —clsyp ey

Note the difference between roll-pitch-yaw and FEuler angles, although we
show both utilizing v, 8, and .
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FIGURE 5.4. Local roll-pitch-yaw angles.

5.5 Y Euler Angles

The rotation about the Z-axis of the global coordinate is called precession,
the rotation about the z-axis of the local coordinate is called nutation,
and the rotation about the z-axis of the local coordinate is called spin.
The precession-nutation-spin rotation angles are also called Fuler angles.
Rotation matrix based on Euler angles has application in rigid body kine-
matics. To find the Euler angles rotation matrix to go from the global
frame G(OXY Z) to the final body frame B(Ozyz), we employ a body
frame B’'(Oxz'y’z") as shown in Figure 5.5 that before the first rotation co-
incides with the global frame. Let there be at first a rotation ¢ about the

Z'-axis. Because Z-axis and z'-axis are coincident, by our theory

By = P'RgCr (5.72)
) cosp sinp 0
BRe = R.,=| —sing cosp 0 |. (5.73)
0 0 1

Next we consider the B’(Oz'y'z") frame as a new fixed global frame and
introduce a new body frame B”(Ox"y"z"). Before the second rotation, the
two frames coincide. Then, we execute a 6 rotation about z'/-axis as shown
in Figure 5.6. The transformation between B'(Oxz'y’z’) and B”(Ox"y"2")
is

By = B'Rp Py (5.74)
, 1 0 0

B'Rpr = Rup=|0 cosf sinf |. (5.75)
0 —sinf cosd

Finally, we consider the B”(Oz"y"2") frame as a new fixed global frame
and consider the final body frame B(Oxzyz) to coincide with B” before the
third rotation. We now execute a 1) rotation about the z’-axis as shown in
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X , Y

FIGURE 5.5. First Euler angle.

FIGURE 5.6. Second Euler angle.
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FIGURE 5.7. Third Euler angle.

Figure 5.7. The transformation between B” (Ox"y"z") and B(Oxyz) is

BI‘ = BRB// BHI‘ (576)
costy siny 0

BRpy = R,y=| —siny cosyp 0 |. (5.77)
0 0 1

By the rule of composition of rotations, the transformation from G(OXY Z)
to B(Oxyz) is

By = BR;Cr (5.78)
where
BRG’ = Rz,wa,ORz7tp
cpc) — clspsy chsp + clcpsyy  sOsyp
= —cpsy — clchsp  —sps + cBepey  sOcy (5.79)
sOsp —cpsh ct
and therefore,
PRG' = PR = CRp=[ReyRuoRe )"
coc) — chspsyy  —cps — clcpsp  sOsp
= s+ cepsy)  —spsip+ chepep —cpsh | . (5.80)
sOsy sfcy ch

Given the angles of precession ¢, nutation 6, and spin 1, we can compute
the overall rotation matrix using Equation (5.79). Also we are able to com-
pute the equivalent precession, nutation, and spin angles when a rotation
matrix is given.

If r;; indicates the element of row 7 and column j of the precession-
nutation-spin rotation matrix, then,

0 = cos™* (r33) (5.81)
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¢ =—tan"! (%) (5.82)
¥ = tan~! (%2) (5.83)

provided that sin 6 # 0.

Example 156 % FEuler angle rotation matriz.

The Euler or precession-nutation-spin rotation matriz for ¢ = 79.15deg,
0 = 41.41 deg, and v = —40.7 deg would be found by substituting @, 6, and
¥ in Equation (5.79).

PRe¢ = R._so7RearsR. 1015 (5.84)
0.63 0.65 —0.43

= —-043  0.75 0.50
0.66 —0.125 0.75

Example 157 % FEuler angles of a local rotation matriz.
The local rotation matriz after a rotation 30 deg about the z-axis, 30 deg
about the x-axis, and 30 deg about the y-axis is

BRe = Rys0R:30R.30
0.63 0.65 —0.43
— | 043 075 050 (5.85)

0.65 —0.125 0.75

and therefore, the local coordinates of a sample point at X =5, Y = 30,
and Z =10 are

x 063 065 —0.43 5 18.35
y | =] —043 075 050 30 | =] 2535 |. (5.86)
2 065 —0.125 0.75 10 7.0

The Euler angles of the corresponding precession-nutation-spin rotation
malric are

6 = cos ' (0.75) = 41.41 deg (5.87)
= gt (2255 ) _79.154de (5.88)
L 0125 ) (0Uek '
—0.4
Y = tan? <%>:—40.7deg. (5.89)

Hence, Ry 30R:30R: 30 = R, ¢ Rs o R o when ¢ = 79.15deg, 0 = 41.41 deg,
and Vv = —40.7deg. In other words, the rigid body attached to the local
frame mowves to the final configuration by undergoing either three consecu-
tive rotations ¢ = 79.15deg, 0 = 41.41deg, and p = —40.7deg about the
z, x, and z axes respectively, or three consecutive rotations 30deg, 30 deg,
and 30deg about the z, x, and y azes.
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Example 158 % Relative rotation matriz of two bodies.

Consider a rigid body By with an orientation matriz B+ Rg made by Euler
angles p = 30deg, § = —45deg, v = 60deg, and another rigid body Bs
having ¢ = 10deg, 0 = 25deg, ¥ = —15deg, with respect to the global
frame. To find the relative rotation matriz B Rp, to map the coordinates
of the second body frame Bs to the first body frame By, we need to find the
indiwvidual rotation matrices first.

BiRe = R.eoRs _4sR.30
0.127 0.78 —0.612
— | —0927 —0.127 —0.354 (5.90)

—0.354 0.612 0.707

B2Re = R.i0Rs25R. 15
0.992 —6.33 x 1072 —0.109
= 0.103 0.907 0.408 (5.91)
7.34 x 1072 —0.416 0.906

The desired rotation matriz 51 Rp, may be found by

BiRp, = P'Rc“Rp, (5.92)
which is equal to
PiRp, = P'RePR;
0.992 0.103 7.34 x 1072
= —6.33x 1072 0907  —0.416 . (5.93)

—0.109 0.408 0.906

Example 159 % FEuler angles rotation matrix for small angles.
The Euler rotation matric PRa = R. 4Rz oR. , for very small Euler
angles ¢,0, and 1 is approximated by

1 v 0
BRa=| — 1 6 (5.94)
0 -0 1
where
Y=+ (5.95)

Therefore, wen the angles of rotation are small, the angles ¢ and v are
indistinguishable.
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FIGURE 5.8. Euler angles frame é,, ég, €.

Example 160 % Small second Euler angle.
If0 — 0 then the Euler rotation matriz BRg = R. 4R, oR. , approaches
to

cpc) — sps csp +cpsy 0
BRe = —cpsy — cpsp  —spsY + cpcp 0
i 0 0 1
[ cos(p+y) sin(p+y) 0
= —sin(p+1) cos(p+) 0 (5.96)
0 0 1

and therefore, the angles ¢ and v are indistinguishable even if the value of
© and ¢ are finite. Hence, the Euler set of angles in rotation matriz (5.79)
is not unique when 0 = 0.

Example 161 % Angular velocity vector in terms of Euler frequencies.

A Eulerian local frame E (0, é,,€q,éy) can be introduced by defining unit
vectors €,, €9, and €y as shown in Figure 5.8. Although the Fulerian frame
is not necessarily orthogonal, it is very useful in rigid body kinematic analy-
sis.

The angular velocity vector gwp of the body frame B(Oxzyz) with respect
to the global frame G(OXY Z) can be written in Fuler angles frame E as
the sum of three Euler angle rate vectors:

Bop = pé, + 0eg + ey, (5.97)

where the rate of Euler angles, ¢, 9, and w are called Euler frequencies.
To find gwp in the body frame we must express the unit vectors é,,
€g, and €y shown in Figure 5.8, in the body frame. The unit vector é, =
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[ 0 0 1 ]T = K is in the global frame and can be transformed to the
body frame after three rotations

Be, = PRgK
= R.yR,R. K
sin 6 sin ¢
= sinfcos?y | . (5.98)
cos 6
The unit vector ég = [ 1 0 0 ]T = i is in the intermediate frame

Oz'y'z" and needs to get two rotations Ry e and R, to be transformed
to the body frame

Beg = PRogy 7
R,y Ryt
cos
—siny | . (5.99)
0

The unit vector €y s already in the body frame, é; = [ 0 0 1 ]T k.
Therefore, gwp is expressed in the body coordinate frame as

sin f sin ¢ ) cos 10
@ | sinfcosy | +6 | —sinyy | +¢ | 0
cos 6 0 1
(gbsin@sini/ﬂr@cosz/))i
+ (gbsin@cosz/) — ésin1p>j

+ (gb cosf + 12;) 2 (5.100)

B
GWB

and therefore, components of qwp in body frame Oxyz are related to the
Euler angle frame Op6vy by the following relationship:

Swp = PRpEwp (5.101)
Wy sinfsiny cosy 0 ¢
Wy = sinfcosy —siny 0 6 (5.102)
Wy cos 6 0 1 w

Then, gwp can be expressed in the global frame using an inverse transfor-
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mation of Euler rotation matriz (5.79)

G BR—lB

Gwn = G GYB
gbsin@sinw—i—écosw
= BR;'| ¢sinfcosyh —Osing (5.103)
c'pcos@Jrzb

= (9cos<p+1l)sinﬁsingp) I
+ (ésingo — @bcosgosin@) J
+ (<,b + 1 cos 9) K (5.104)

and hence, components of gwp in global coordinate frame OXY Z are re-
lated to the Euler angle coordinate frame Op0) by the following relation-
ship:

Swn — ORpwn (5.105)
wx 0 cose sinfsing ¢
Wy = 0 siny —cospsinf 0 |. (5.106)
Wy 1 0 cos ¢

Example 162 % FEuler frequencies based on a Cartesian angular velocity
vector.

The vector ng, that indicates the angular velocity of a rigid body B
with respect to the global frame G written in frame B, is related to the
Euler frequencies by

bwp = PRpEwp
Wy sinfsinty cosy 0 ©

Bwp = wy | = | sinfcosyp —siny 0 0 |.(5.107)
Wy cos 0 1 1/)

The matrixz of coefficients is not an orthogonal matriz because,

BRL # PRy (5.108)
sin@siny sinfcosvy cosf
BRL = cos —sine) 0 (5.109)
0 0 1
1 sin cos Y 0
BR = 7 sinfcosty  —sinfsiny 0 [. (5.110)
sin —cosfsiny —cosfcosy 1

It is because the Euler angles coordinate frame OwBy is not an orthogonal
frame. For the same reason, the matriz of coefficients that relates the FEuler
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frequencies and the components of Gwp

Cwp = CRpEwp (5.111)
wx 0 cosep sinfsing @

Swp = wy | =] 0 sing —cospsing 0 (5.112)
Wz 1 0 cosd "

is not an orthogonal matrix. Therefore, the Euler frequencies based on local
and global decomposition of the angular velocity vector gwp must solely be
found by the inverse of coefficient matrices

twp = PRy Bwp (5.113)
@ 1 sin cos 0 Wy
0 = - sinfcosy  —sinfsiny 0 wy | (5.114)
¥ SV —cosfsing  —cosfcosy 1 W

and
Ewp = CYRy'Swp (5.115)
¢ 1 —cosfsing cosfcosp 1 wx
0 = = sinfcosp sinfsinp 0 wy | . (5.116)
: sin . .
) sin ¢ —cosp 0 Wz

Using (5.113) and (5.115), it can be verified that the transformation ma-
trit BRe =B Rp GR;Jl would be the same as Fuler transformation matriz
(5.79).

The angular velocity vector can thus be expressed as

~ wl)
cwp = [1 7 k]| wy
Wy

A A A WX

= [I J K]| wy

wz

. N ¢

= [K e k]| 0] (5.117)
(4

Example 163 % Angular velocity and local roll-pitch-yaw rate.
Using the roll-pitch-yaw frequencies, the angular velocity of a body B with
respect to the global reference frame is

qwp = wx’2+wyj+wzk

= (e, +0ep +béy. (5.118)
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Relationships between the components of gwp in body frame and roll-pitch-
yaw components are found when the local roll unit vector é, and pitch
unit vector €y are transformed to the body frame. The roll unit vector
€y = [ 1 00 ]T transforms to the body frame after rotation 6 and then
rotation

1 cosf cosp
Be,=R.yRyo | 0 | =| —cosOsiny |. (5.119)
0 sin 0

The pitch unit vector ég = [ 0 1 0 ]T transforms to the body frame after
rotation

0 sin
Beg=R,y | 1 | =] cosy |. (5.120)
0 0

The yaw unit vector éy = [ 0 0 1 ]T 18 already along the local z-axis.
Hence, gwp can be expressed in body frame Oxyz as

Wy
CB:WB = Wy
Wz
cos 0 cos 1 | sing 10
= ¢ | —cosfsiny | +6 | cosyp | +¢ | 0
sin 6 0 1
cosfcosy sinty 0 P
= —cosfsiny costy 0 0 (5.121)
sin 6 0 1 ¢

and therefore, gwp in global frame OXY Z in terms of local roll-pitch-yaw
frequencies is

wx Wy
ng = wy :BR(_;I Wy
wz Wz
9sin1/1—|—gbc059cosd)
= PR fcosyp — pcosfsiny
¥+ psinf
¢+ 1psinf
= 0 cos p — Y cosfsing
0 sin ¢ 4 1) cos 6 cos ¢
1 0 sin 6 ¢
= 0 cosep —cosfsing 0 (5.122)
| 0 sinp  cosfcosp ¢
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5.6 General Transformation

Consider a general situation in which two coordinate frames, G(OXY Z)
and B(Oxyz) with a common origin O, are employed to express the com-
ponents of a vector r. There is always a transformation matric “Rp to
map the components of r from the reference frame B(Ozyz) to the other
reference frame G(OXY Z).

Cr = %Ry Br (5.123)

In addition, the inverse map, Br = “R;' ©r, can be done by ®Rg

By = BRoCr (5.124)
where,
|“Rp| =|"Ra| =1 (5.125)
and
BRe = “Ry' = “RE. (5.126)

Proof. Decomposition of the unit vectors of G(OXY Z) along the axes of
B(Ozxyz)

I = (I-0i+-)i+T-k)k (5.127)
J = (J 2)i+ (A Ni+ (J - k)k (5.128)
K = (K-d)i+ (K-)j+(K-kk (5.129)

introduces the transformation matrix “Rp to map the local frame to the
global frame

I Ii 15 1k P P
J|\=|Ji Jj J-k Jj|=%Rs| ] (5.130)
K K K-j K-k k k
where
I 17 Ik
“Rp = Ji J-j J-k
[ cos(,i) cos(I,j) cos(I,k)
= cos(J,%) cos(J,]) cos(J, k) |- (5.131)
| cos(K,7) cos(K,)) cos(K, k)

The elements of “ Ry are direction cosines of the axes of G(OXY Z) in
frame B(Oxyz). This set of nine direction cosines then completely specifies
the orientation of the frame B(Oxyz) in the frame G(OXY Z), and can
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be used to map the coordinates of any point (x,y, z) to its corresponding
coordinates (X,Y, Z).

Alternatively, using the method of unit vector decomposition to develop
the matrix ® Rg leads to

BI‘ _ BRGGI':GRgch'
(i i-J i K
BRe = j-1 3-J j-K
k-1 k-J kK
[ cos(i, 1) cos(i,J) cos(i, K)
= cos(j, I) cos(j,J) cos(j, K) (5.132)
| cos(k,I) cos(k,J) cos(k,K)

and shows that the inverse of a transformation matrix is equal to the trans-
pose of the transformation matrix,

“R;' = “RE. (5.133)

A matrix with condition (5.133) is called orthogonal. Orthogonality of
R comes from the fact that it maps an orthogonal coordinate frame to
another orthogonal coordinate frame.

The transformation matrix R has only three independent elements. The
constraint equations among the elements of R will be found by applying
the orthogonality condition (5.133).

“Rp-CRL = 1T (5.134)
rir T2 713 TiL T21 T31 100
T21 T22 T23 T2 T22  T32 = 0 1 0 [.(5135)
r31 T32 T33 T13 T23  T33 0 0 1

Therefore, the dot product of any two different rows of “Rp is zero, and
the dot product of any row of R with the same row is one.
Aty = 1
o Tty =
T3+ T3+ =
711721 + T12722 + 113723 =

711731 + 12732 + 713733 =

o O O = =

T21T31 + T22T32 + T237r33 = (5.136)

These relations are also true for columns of GRB, and evidently for rows
and columns of ®Rg. The orthogonality condition can be summarized in
the following equation:

3
B, B, =0, By = ) rigra =0 (k=1,23)  (5.137)
i=1
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where 7;; is the element of row 7 and column j of the transformation matrix
R, and 0, is the Kronecker’s delta

Sk =1ifj =k, and 6;; = 0 if j # k. (5.138)

Equation (5.137) gives six independent relations satisfied by nine direction
cosines. It follows that there are only three independent direction cosines.
The independent elements of the matrix R cannot obviously be in the same
row or column, or any diagonal.

The determinant of a transformation matrix is equal to one,

|“Rp| =1 (5.139)

because of Equation (5.134), and noting that

B g = Bl B
“Rp- “Rp| = |“Rp|-|“Rj|
= [oRs] - °Rs|
— |%Rs|"=1. (5.140)

Using linear algebra and row vectors tg,,%p,, and ty, of ¢ Rp, we know
that
“Rp| =], - (Fu, x £u,) (5.141)

and because the coordinate system is right handed, we have £, Xt g, = £,
SO |GRB| = f',ll;l . f‘Hl =1 n

Example 164 FElements of the transformation matriz.

The position vector r of a point P may be expressed in terms of its
components with respect to either G (OXY Z) or B (Oxyz) frames. If r =
1001 — 50J + 150K, and we are looking for components of r in the Ozyz
frame, then we have to find the proper rotation matriz ®Rq first. Assume
that the angle between the © and X azes is 40deg, and the angle between
the y and Y azes is 60 deg.

The row elements of BRg are the direction cosines of the Oxyz azes in
the OXY Z coordinate frame. The x-axis lies in the XZ plane at 40deg
from the X -axis, and the angle between y and Y is 60deg. Therefore,

BRG _

0.766 0.643
- i1 05 5K (5.142)
k-l k-J k-K
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and by using PRg “Rp = PRg BRg =1

0.766 0 0.643 0.766 191 731 100
T21 0.5 T23 0 0.5 T32 = 01 0 (5143)
T31 732 733 0.643 T23 T33 0 0 1
we obtain a set of equations to find the missing elements.
0.766 721 + 0.643 123
0.766r31 + 0.643 733 =
T3 + 735 +0.25 = (5.144)

721731 + 0.9732 + 193733 =

_= O = O O

2 2 2
T31 T 732 T 733
Solving these equations provides the following transformation matriz:

0766 0  0.643
BRe=1| 0557 05 —0.663 (5.145)
—0.322 0.866 0.383

and then we can find the components of Pr.

BI' — BRG GI‘

0.766 0 0.643 100
= 0.557 0.5 —0.663 —50
—-0.322 0.866 0.383 150

173.05
= | —6875 (5.146)
—18.05

Example 165 Global position, using Pr and B Rg.

The position vector r of a point P may be described in either G (OXY Z)
or B (Oxyz) frames. If Br = 100i — 507 + 150k, and the following B Rg is
the transformation matriz to map “r to Pr

By — BR.Cr
0.766 0  0.643
= 0.557 0.5 —0.663 | “r (5.147)

—-0.322 0.866 0.383
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then the components of “r in G (OXY Z) would be

Gy = GR,Br
BRg By

[ 0.766

= 0

| 0.643

[ 0.45

= 104.9
| 154.9

0.5567 —0.322 100
0.5 0.866 —30
—0.663  0.383 150

(5.148)

Example 166 Two points transformation matriz.
The global position vector of two points, Py and Ps, of a rigid body B are

G
rp

G
rp,

1.077
1.365 (5.149)

| 2.666

—0.473
2.239 | . (5.150)
—0.959

The origin of the body B (Oxyz) is fixed on the origin of G(OXY Z), and
the points Py, and Py are lying on the local x-axis and y-axis respectively.
To find “Rp, we use the local unit vectors “i and

to obtain Ck

0.338

N | 0.429 (5.151)

0.838
—0.191

2 | 0902 (5.152)

—0.387

0.429 —0.191
—0.338 0.902
0 —0.387

(5.153)

where 7 s the skew-symmetric matriz corresponding to 7, and © j is an

alternative for i x j.
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Hence, the transformation matriz using the coordinates of two points

GI‘pl and Grp2 would be
“Rp = [% ¢ Gk ]
0.338 —0.191 —-0.922
= 0.429 0.902 —-0.029 | . (5.154)

0.838 —0.387  0.387

Example 167 Length invariant of a position vector.

Describing a vector in different frames utilizing rotation matrices does
not affect the length and direction properties of the vector. Therefore, the
length of a vector is an invariant

r| = |%r| = |Pr|. (5.155)

The length invariant property can be shown by

> = %7

= [“Rp®r]" “RpPr
BI‘T GRE GRB BI‘
ByT By, (5.156)

Example 168 % Skew symmetric matrices for i, j, and k.
The definition of skew symmetric matriz a corresponding to a vector a
is defined by

0 —as a9
a= as 0 —a . (5157)
—a9 aq 0
Hence,
[0 0 0 ]
i=|10 0 -1 (5.158)
01 0 |
o 0 1]
j=1 0 0 0 (5.159)
| -1 0 0|
i 0 -1 0
k=|1 0 o0 (5.160)
0 0 0

Example 169 Inverse of Fuler angles rotation matriz.
Precession-nutation-spin or Euler angle rotation matriz (5.79)
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BRG = Rz,meﬂRz,ap
cpc) — chspsip chsp + clcpsyy  sOsyp
= —cpsy — clcsp  —sps + chepcy  sOc (5.161)
s0sp —cpst cd
must be inverted to be a transformation matrix to map body coordinates to
global coordinates.

“Rp PRG' = RI Ry oR7,
cpc) — cBspsty  —cpsh — clhcbsp  sOsp
= cpsp + clepsy  —sps + clepey  —cpsh (5.162)
sOsy sOcy cl
The transformation matriz (5.161) is called a local Euler rotation matriz,
and (5.162) is called a global Euler rotation matriz.

Example 170 % Alternative proof for transformation matriz.
Starting with an identity

>

(i k]| J]=1 (5.163)
k
we may write . A
1 1 7
J=J|[2 ] k]| (5.164)
K K k
Since matriz multiplication can be performed in any order, we find
I I I-7 Ik 0
J = J-iv J-5 J-k j
K Kt K-j K-k k
7
= “Rp|J (5.165)
k
where, R
1
“Rp=1|J |[i j k]. (5.166)
K
Following the same method we can show that
7
BRq = (I J K]. (5.167)
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Y

FIGURE 5.9. A rotating rigid body B(Ozyz) with a fixed point O in a global
frame G(OXY Z).

5.7 Angular Velocity

Consider a rotating rigid body B(Ozyz) with a fixed point O in a reference
frame G(OXY Z) as shown in Figure 5.9. The motion of the body can be
described by a time varying rotation transformation matrix between the
global and body frames to map the instantaneous coordinates of any fixed
point in body frame B into their coordinates in the global frame G

Sr(t) = “Rp(t) Br. (5.168)

The velocity of a body point in the global frame is

i) = “v() (5.169)
= YRp(t)Br (5.170)
= c@pr(t) (5.171)
= gwpx (1) (5.172)

where gwp is the angular velocity vector of B with respect to G It is equal
to a rotation with angular rate ¢ about an instantaneous axis of rotation

u.

w1 .
w=| wy | =¢0 (5.173)
w3

The angular velocity vector is associated with a skew symmetric matrix
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cwp called the angular velocity matriz

0 —Wws wo
O=| wsg 0 —w (5.174)
o) w1 0
where
cwop = CYRpYRE (5.175)
= ¢ (5.176)

Proof. Consider a rigid body with a fixed point O and an attached frame
B(Oxyz) as shown in Figure 5.9. The body frame B is initially coincident
with the global frame G. Therefore, the position vector of a body point P
is

Sr(ty) = Pr. (5.177)

The global time derivative of &r is

GV — Gf‘

Gd
= “r(t)
G
= d_f [GRB(t) BI‘]
G
= d_f [GRB(t) Gr(to)]
= CYRp(t)Pr. (5.178)

Eliminating Pr between (5.168) and (5.178) determines the velocity of the
point in global frame

Gv = “Rp(t) “RE(t) Cr(t). (5.179)
We denote the coefficient of “r(t) by @
cwp = “Rp “R} (5.180)
and write Equation (5.179) as
v = qip “r(t) (5.181)

or as

v = qwp x %r(t). (5.182)

The time derivative of the orthogonality condition, “Rp “RE = 1, in-
troduces an important identity

“Rp “RE+ Ry “RE =0 (5.183)
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which can be utilized to show that giog = [GR B GRE} is a skew-symmetric
matrix because T
GRy CRL = [GRB GRE} . (5.184)

The vector gw B is called the instantaneous angular velocity of the body B
relative to the global frame G as seen from the G frame.

Since a vectorial equation can be expressed in any coordinate frame, we
may use any of the following expressions for the velocity of a body point
in body or global frames

ng = ng X GI‘p (5185)

Bvp = Bwpx Brp (5.186)

where gv p is the global velocity of point P expressed in the global frame
and gv p is the global velocity of point P expressed in the body frame.

G G B
aqvp = RB aVpP

B

“Rp (Bwp x Prp) (5.187)

gv p and gv p can be converted to each other using a rotation matrix

Bvp = CRESvp (5.188)
= YR} cop &rp

“RE “Rp “RE Grp

= CYRLCYRp Brp. (5.189)

showing that _
cop = “Rp “Rp (5.190)
which is called the instantaneous angular velocity of B relative to the global

frame G as seen from the B frame. From the definitions of q@p and g&) B
we are able to transform the two angular velocity matrices by

cop = “Rp Bop “RE (5.191)
Gaop = “RE Gap “Rp (5.192)
or equivalently .
“Rp = ¢wp “Rp (5.193)
“Rp = “Rp Baop (5.194)
cp “Rp = “Rp Jap. (5.195)

The angular velocity of B in G is negative of the angular velocity of G
in B if both are expressed in the same coordinate frame.

Sop = —%oa (5.196)
Bop = —Bag. (5.197)
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cwp and can always be expressed in the form
GwB = wi (5.198)

where 4 is a unit vector parallel to qwp and indicates the instantaneous
azxis of rotation. |

Example 171 Rotation of a body point about a global axis.

Consider a rigid body is turning about the Z-axis with & = 10deg /s. The
global velocity of a point P(5,30,10), when the body is turned o = 30 deg,
18

Svp = YRp(t)Prp (5.199)
Qg cosa —sina 0 ] 5
= v sinae  cosa O 30
L | 10
—sina —cosa 0 [ 5
= « cosa —sinao 0 30
0 | 10
1 —sing —cos % 0 5 —4.97
= % cos % —sin % 0 30 | = —1.86
0 0 0 10 0
at this moment, point P is at
GI‘p = GRB BI‘p (5200)
cosg —sing 0 5 —10.67
= sin % cos % 0 30 | = 28.48
0 0 1 10 10

Example 172 Rotation of a global point about a global axis.
A point P of a rigid body is at Prp = [ 5 30 10 ]T. When it is turned
a = 30deg about the Z-axis, the global position of P is

Srp = CRpPrp (5.201)
cosg —sing 0 5 —10.67
= sing cosg 0 30 | = 28.48
0 0 1 10 10

If the body is turning with & = 10deg /s, the global velocity of the point P
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would be
Svp = YRpYRL%p (5.202)
jor [ 755 ¢ 0] [ s 0 T 1067
= @ Cg —Sg 0 85 Cg 0 28.48
0 0 0 0 0 1 10
—4.97
= | -1.86
0

Example 173 % Principal angular velocities.
The principal rotational matrices about the axes X, Y, and Z are

1 0 0
Rx =] 0 cosy —siny (5.203)
0 siny cosy

cosf 0 sing |

Ryp = 0 1 0 (5.204)
—sing 0 cosf |
cosa —sina 0
Rzo=| sina cosa 0 |. (5.205)
0 0 1

and hence, their time derivatives are

. 0 0 0
Rx,y=%| 0 —siny —cosvy (5.206)
0 cosy —sinvy |

_ | —sinB 0 cosp
Rys=p 0 0 0 (5.207)
—cosfB 0 —sinf |

. —sina —cosa 0
Rzo=&| cosa —sina 0 |. (5.208)
0 0 0

Therefore, the principal angular velocity matrices about ares X, Y, and Z
are

00 0
ciox =Rx Ry, =%|0 0 -1 (5.209)

01 0

0 0 1
GOJy—RyﬁRYB—B 0 0 0 (5.210)

-1.0 0
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' 0 -1 0
¢z =RzoRyo=c¢| 1 0 0 (5.211)
0 0 O
which are equivalent to
cox = AI (5.212)
oy = BJ (5.213)
cz = akK (5.214)
and therefore, the principal angular velocity vectors are
cwx = wxl=#I (5.215)
cwy = wyd=p3J (5.216)
cwz = wzK=akK. (5.217)

Utilizing the same technique, we can find the following principal angular
velocity matrices about the local axes:

. o o0 o .
G0 =Ry Rey=0 |0 0 —1 | =11 (5.218)
01 0
. o o117
B, =RLyR,o=0| 0 0 0 |=0] (5.219)
| -1 0 0|
. [0 -1 0] )
g@zzRinz,¢=¢ 1 0 0| =¢pk (5.220)
0 0

Example 174 Decomposition of an angular velocity vector.
FEvery angular velocity vector can be decomposed to three principal angu-
lar velocity vectors.

cwp = (Gw3~f)f+(Gw3~j)j+(GwB~K)K (5.221)
= wa—i—wyj—i—wZR’
= A +p3J+aK
wx +wy +wgz

Example 175 Combination of angular velocities.
Starting from a combination of rotations

Ry = "Ry 'Ry (5.222)
and taking a time derivative, we find

ORo = "Ri 'Ry + "Ry ' Rs. (5.223)



254 5. Applied Kinematics

Now, substituting the derivative of rotation matrices with

Ry = o@2°Ry (5.224)
R = o01°Ry (5.225)
Ry = 1@2'Ry (5.226)
results in
0@2°Ry = o01°Ri'Ra+ "Ri1@2 'Ry
= o1 "Ro+ "Ry 102 °RY °Ry 'Ry
= W1 ORQ + (1](112 0R2 (5227)
where
OR1 102 'RT = %%,. (5.228)
Therefore, we find
02 = oW1 + @2 (5.229)

which indicates that the angular velocities may be added relatively:
w2 = gw1 + (1)602 (5.230)
This result also holds for any number of angular velocities

own = owi+ Swet Swy+-oo+ 0w, (5.231)

n
i=1

Example 176 % Angular velocity in terms of FEuler frequencies.
The angular velocity vector can be expressed by Euler frequencies. There-
fore,

ng = Wyt twyjt+wk
= pé, +0cg + ey
sin 6 sin v ) cos 10
= ¢ | sinfcosy | +60 | —sinyy | +¢ | O
cos 6 0 1
sinfsinty cosy 0 @
= sinfcosy —siny 0 6 (5.232)
cos 0 0 1 ¥
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and
ng = BRG GYB
@Slnﬁsin¢+écosw
= BRal psinf cosp — Osinp
pcosh+ Y
0 cose sinfsing @
= 0 sing —cospsinf 0 (5.233)
1 0 cos "

where the inverse of the Euler transformation matriz is

coc) — clspsyy  —cpsth — clepsp  sOsp
BROY = | csp + clcpsyy  —spsi + cepchp  —cipsh | . (5.234)
s0syp sOcy ct

Example 177 % Angular velocity in terms of rotation frequencies.
Consider the Euler angles transformation matrix:

BRG =R, yR.pR. (5.235)
The angular velocity matriz is then equal to
pg = PRePRL
. dR dR dR
= <§0 Rz,wa,G dz . + GR 2,3 dlf QRZ,LP + 1/1 ﬂb R:c GRZ Lp)
X (RayRuoRz )"
. dR.,
= PRy Rep— SRR GRE,
; dR:c (4
+0 Rz,w d R ) R ,w
dR,
op —2L RT (5.236)
.
which, in matriz form, is
0 cos —sin 6 cos
BWG = ¢ —cosf 0 sin @ sin ¢
sinfcosy —sinfsiny 0
) 0 0 sin ) 0 1 0
+0 0 0 cosy | +¢ | -1 0 0 | (5.237)
—siny —cosvy 0 0 0 0
or
0 o+ pcl Os1) — psbcy
BWG = -1 — pch 0 Ocyp + psfsyp | . (5.238)

—0st) 4 psherp  —Octp — psOsip 0
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The corresponding angular velocity vector is

Oy + pstsyp
Bwg = — | —0sy+ psbcyp
P+ pch
[ sinfsiny cosy 0 @
= — | sinfcosyy —sinyy 0 0 (5.239)
| cosf 0 1 ¥
However,
Boa = —Bup (5.240)
Bweg = —Bwp (5.241)
and therefore,
sinfsinty costy 0 @
Bwp = | sinfcosy —siny 0 0. (5.242)

cos 6 0 1 "

Example 178 % Coordinate transformation of angular velocity.
Angular velocity tws of coordinate frame By with respect to By and ex-
pressed in By can be expressed in base coordinate frame By according to

OR; 109 °RT = s, (5.243)
To show this equation, it is enough to apply both sides on an arbitrary
vector Or. Therefore, the left-hand side would be
Ri1@2°RTr = Ry 10 'Ry°r
= OR 10 'r
= "Ry (1w2 x 'r)

= ORl 1Wo X ORl 1I‘

= Ywy x O (5.244)
which is equal to the right-hand side after applying on the vector °r
002 r = Ywy x Or. (5.245)

Example 179 % Time derivative of unit vectors.

Using Equation (5.186) we can define the time derivative of unit vectors
of a body coordinate frame B(i, 7, lAc), rotating in the global coordinate frame
G(1,J, K)

Sdi

Gdj
J A
G i ~
dk - _ Bwp x k. (5.248)

dt
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Example 180 % Elements of the angular velocity matriz.
Utilizing the permutation symbol

1
cijk = 5= —k)(k=2)  45k=123 (5.249)
allows us to find the elements of the angular velocity matriz, w, when the
angular velocity vector, w = [ w1 Wa w3 ]T, s given.
Wij = €ijk Wk (5.250)

We may verify that following relationship between permutation symbol
€k and Kronecker’s delta 0y, .

€ijk€imn = 0jmOkn — 0jndkm (5.251)

5.8 Y Time Derivative and Coordinate Frames

The time derivative of a vector depends on the coordinate frame in which
we are taking the derivative. The time derivative of a vector r in the global
frame is called the G-derivative and is denoted by

Gd

dt
while the time derivative of the vector in the body frame is called the
B-derivative and is denoted by

r

Bd
EI‘.

The left superscript on the derivative symbol indicates the frame in which
the derivative is taken, and hence, its unit vectors are considered constant.

Time derivative is straightforward if the vector is expressed in the same
coordinate frame that we are taking the derivative, because the unit vec-
tors are constant and scalar coeflicients are the only time variables. The
derivatives of Brp in B and Crp in G are

B
dB B

— Frp = ip=Pvp=ii+yi+ik (5.252)
G e
d—fGrp = Crp=Cvp=XI+YJ+ZK. (5.253)

It is also possible to find the G-derivative of Prp and the B-derivative
of “rp. We define the G-derivative of a body vector rp by
Gd B

B
= — 5.254
aVvp dt rp ( )
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and similarly, a B-derivative of a global vector “rp by

Bq

G Gy

BVp = rp. 5.255
dt ( )

When point P is moving in frame B while B is rotating in G, the G-
derivative of Prp (t) is defined by

= Bip (5.256)
and the B-derivative of “rp is defined by

BdG G G
i rp(t) = “Fp— qwpXx “rp

= Gip. (5.257)

Proof. Let G(OXY Z) with unit vectors I, .J, and K be the global co-
ordinate frame, and let B(Ozyz) with unit vectors 7, j, and k be a body
coordinate frame. The position vector of a moving point P, as shown in
Figure 5.10, can be expressed in the body and global frames

Prp(t) = z)i+y®)i+z0)k (5.258)
“rp(t) = XWI+Y)J+Z (K. (5.259)
The time derivative of Prp in B and Crp in G are
Bd ~
EBrp = Bip=Bvp=ii+yj+zik (5.260)
Gq e e A
EGrp = Cip=Cvp=XI+YJ+ZK (5.261)

because the unit vectors of B in Equation (5.258) and the unit vectors of
G in Equation (5.259) are considered constant.

Using Equation (5.186) for the global velocity of a body fixed point P,
expressed in body frame

ng = ng X BI‘p
GdB

= — 5.262
at " ( )

and definition (5.254), we can find the G-derivative of the position vector
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FIGURE 5.10. A moving body point P at Pr(¢) in the rotating body frame B.

Brp as

Gd
B
— Br

a

We achieved this

Gd R
- E(mi—kyﬁ—i—zk)

it 24 Gdi+ Gdj+ Gk
= X1 z r— —_— Z—

47 at YV at dt

= Bf'p—i—mngxi—i—yngxj—l—zngxk
= BI"p—i-ngx(ari—l—yj—i—z/%)
= Bf‘p-i-ngXBI‘p

BdB

= = Trp+ Bwp x Brp. (5.263)

result because the z, y, and z components of BPrp are

scalar. Scalars are invariant with respect to frame transformations. There-
fore, if = is a scalar then,

Gd Bq

— = —3 =1 .264
ek (5.264)

The B-derivative of “rp can be found similarly

BdG
— T

a r

B

= d—j(XerYjJer()

Bql BqJ Bk

= XI+YJ+ZK+X—+4+Y—"— 47—

dt dt dt
G

= %p+ Guwgx %rp (5.265)

and therefore,

Bq
E GI‘p = Gf‘p — gwp X GI‘p. (5266)
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The angular velocity of B relative to G is a vector quantity and can be
expressed in either frames.

ng = wa+wyj+wZK (5267)

Wal 4+ wy] + w,k. (5.268)

B
GWYWB
]

Example 181 % Time derivative of a moving point in B.
Consider a local frame B, rotating in G by & about the Z-axis, and a
moving point at Brp(t) = ti . Therefore,

GI‘p = GRB BI‘p = Rz,a(t) BI‘p
cosae —sina 0 t
= sinae  cosa O 0
0 0 1 0
= tcosal +tsinal. (5.269)

The angular velocity matriz is

cop = “RpR}
= &k (5.270)
that gives
cwp = akK. (5.271)

It can also be verified that

Bop = YRE Sap “Rp
= ak (5.272)
and therefore,
Buwp = k. (5.273)

Now we can find the following derivatives:

Bd

B B,
—Brp = Pi
T P

= i (5.274)

Gd
> GI‘P _ GI',P

= (cosa —tasina) + (sina+tacosa)J. (5.275)
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mized derivatives, we start with
Gd Bd
EB = EBI']J#*EQJBXBFP
[ 1 0 t
= 0| +a| 0f|x]|O0
0 1 0
[ 1
= | ta | =i+taj= Sip (5.276)
0

which is the global velocity of P expressed in B. We may, however, trans-
form gi'p to the global frame and find the global velocity expressed in G.

Ge

rp

“Rp Bip
[ cosa —sina 0 1
sina  cosa ta
0 0 0

cosa — tasin o
sin o + taecos «

The next derivative is

BdG
— I

a r

0
(cosa — tavsin ) I + (sin o + tévcos o) J (5.277)
GI"p — gwp X GI‘p
[ cosa —tasina 0 tcos
sina+tacosa | —a | 0 | x | tsina
i 0 1 0
[ cosa R R
sina | = (cosa)l + (sina) J
| 0
Cip (5.278)

which is the velocity of P relative to B and expressed in G. To express this
velocity in B we apply a frame transformation

Be

rp

= YR} Gip
[ cosa —sina 0 CoSs &
= sinaw cosa O sin o
| 0 0 1 0
(1
= 0| =zq (5.279)
| 0
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Sometimes it is more applied if we transform the vector to the same frame in
which we are taking the derivative and then apply the differential operator.
Therefore,

Gy Gy Gy tcos o
B Gp B .
— — (“R =— | t
dt g (RsTre) =4 "0
cosa — tasin
= sin a + té cos « (5.280)
0

and

Bq Bq
—%rp = E(GRgch)
By |t 1
= 7 0|=10]. (5.281)
0 0

Example 182 % Orthogonality of position and velocity vectors.
If the position vector of a body point in global frame is denoted by r then

dr
— .r=0. .282
T 0 (5.282)
To show this property we may take a derivative from
r-r=r? (5.283)
and find
4 (r-r) = a r+r ar
dt o dt dt
dr
= 2— .
it "
= 0. (5.284)

Equation (5.282) is correct in every coordinate frame and for every con-
stant length vector, as long as the vector and the derivative are expressed
in the same coordinate frame.

Example 183 % Derivative transformation formula.

The global velocity of a fixed point in the body coordinate frame B (Oxyz)
can be found by Equation (5.172). Now consider a point P that can move
in B (Oxyz). In this case, the body position vector Prp is not constant, and
therefore, the global velocity of such a point expressed in B is

Yd g Pd g B B
E rp = E rp+ qwp X "rp (5.285)
= Bip. (5.286)
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Sometimes the result of Equation (5.285) is utilized to define transfor-
mation of the differential operator from a body to a global coordinate frame

%D = ﬁm+ Bwp x PO (5.287)
dt dt ¢
= 20 (5.288)

however, special attention must be paid to the coordinate frame in which the
vector O and the final result are expressed. The final result is gD showing
the global (G) time derivative expressed in body frame (B). The vector O
might be any vector such as position, velocity, angular velocity, momentum,
angular velocity, or even a time-varying force vector.

Equation (5.287) is called the derivative transformation formula
and relates the time derivative of a vector as it would be seen from frame G
to its derivative as seen in frame B. The derivative transformation formula
(5.287) is more general and can be applied to every vector for derivative
transformation between every two relatively moving coordinate frames.

Example 184 ¥ Differential equation for rotation matriz.
Equation (5.175) for defining the angular velocity matriz may be written
as a first-order differential equation

d

EG‘RBf SRy awp =0. (5.289)
The solution of the equation confirms the exponential definition of the ro-
tation matriz as

“Rp = et (5.290)

or

ot = ¢u
In (“Rp). (5.291)

Example 185 % Acceleration of a body point in the global frame.

The angular acceleration vector of a rigid body B(Oxzyz) in the global
frame G(OXY Z) is denoted by cap and is defined as the global time deriv-
ative of qwpg.

Gd

GOB = —r GWB (5.292)

Using this definition, the acceleration of a fixed body point in the global
frame is
G “d G
ap = E (GwB X I‘p)
= qgoap X GI‘p + gwp X (GwB X GI‘p). (5.293)
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FIGURE 5.11. A body coordinate frame moving with a fixed point in the global
coordinate frame.

Example 186 % Alternative definition of angular velocity vector.

The angular velocity vector of a rigid body B(i,j,k) in global frame
G(I,J,K) can also be defined by
Gdj - Gk . G

o k) i) (s

- ))- (5.294)

Gwp = i(—=

Proof. Consider a body coordinate frame B moving with a fixed point in
the global coordinate frame G. The fixed point of the body is taken as the
origin of both coordinate frames, as shown in Figure 5.11. To describe the
motion of the body, it is sufficient to describe the motion of the local umt
vectors 1, J, k. Lettp be the position vector of a body point P. Then, Prp
is a vector with constant components.

Brp = zi4yj+ 2k (5.295)

When the body moves, it is only the unit vectors 7, j, and k that vary
relative to the global coordinate frame. Therefore, the vector of differential
displacement 1is

drp =adi+ydj+ zdk (5.296)
which can also be expressed by
drp = (drp 1)@+ (drp - )]+ (drp - k) k. (5.297)
Substituting (5.296) in the right-hand side of (5.297) results in
drp = (mi~di—|—yi~dj+zi-dfc)i

(my div+yj-dj+z2j- dk)

J
+ (xk dityk-dj+ 2k d ) (5.298)
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Utilizing the unit vectors’ relationships

jodi = —i-dj (5.299)
k-dj —7-dk (5.300)
P dk —k-di (5.301)
P-di jodj=k-dk=0 (5.302)
i-j jok=k-i=0 (5.303)
ih o= 7-j=k-k=1 (5.304)
the drp reduces to
drp — (zi.dl%—yj-di)i
+(a:j-d@—zl%-dj)j
+ vk~ dj - ai- di) k. (5.305)

This equation can be rearranged to be expressed as a vector product

drp = (k- dj)i+ (- di)j+ (- di)k) x (wi+yj+2k)  (5.306)

or
) - Gaj.. . CGdk._. . Sdi_. .
orp = ((k'ﬂ)l‘f‘(l'?)ﬁr(]'ﬁ)k X ($Z+y3+2k)-
(5.307)
Comparing this result with
I"P = qwWBp X Irp (5308)
shows that
Gdj - Gk . (Cdi
By —s_ 4. ¥ L L
GwB_Z(dt k>+j<dt z>+k(dt j>. (5.309)
| ]

Example 187 % Alternative proof for angular velocity definition (5.294).

The angular velocity definition presented in Equation (5.294) can also be
shown by direct substitution for “Rp in the angular velocity matriz Bop

Bop=C“RECRp. (5.310)
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Therefore,
Cie1 i i K Gd Iv I 1k
¢op = |31 j-J oK | -— | Ja Jj J-k
kT k-J kK Ki K-j K-k
dt dt dt
_ Cdi %) Cdk
= (E) <W> ( 7) (5:311)
dt d dt
which shows that
-Gy
(5 >
B dk

_(_

Example 188 % Second derivative.
In general, dr/dt is a variable vector in G(OXY Z) and in any other
coordinate frame such as B (oxyz). Therefore, it can be differentiated in

either coordinate frames G or B. However, the order of differentiating is
important. In general,

BgGd GdBq
oy 2 A (5.313)
dt dt dt dt
As an example, consider a rotating body coordinate frame about the Z-axis,
and a variable vector as

Gr =¢I. (5.314)
Therefore,
G A
% = Cp=1] (5.315)
and hence,
Gdr . A
() = =]

cose sing 0 1
—sing cosy 0 0
0 0 1 0

= cos pi — sinpj (5.316)
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which provides

BaGd
Ed—tr = —Qsin pi — @ cos p] (5.317)
and s
d“dr L
Now
By = ng [tf} = tcos pi — tsinpj (5.319)
that provides
Bdr . S , R
el (—tpsing + cos )i — (sinp + tpcos ) j (5.320)

and

By .
“(ar) = &

= Rz, ((—tpsinp+cosg)i— (sinp + te cos @) j)

cosp —sing 0 —tpsin g + cos ¢
= sinp cose O —singp — tpcosy
0 0 1 0
= [ —tpJ (5.321)
which shows
Gd Bdr A
— = —(p+tp)J 5.322
—— CER) (5.322)
BdGdr
#* ——
dt dt

5.9 Rigid Body Velocity

Consider a rigid body with an attached local coordinate frame B (oxyz)
moving freely in a fixed global coordinate frame G(OXY Z), as shown in
Figure 5.12. The rigid body can rotate in the global frame, while the origin
of the body frame B can translate relative to the origin of G. The coor-
dinates of a body point P in local and global frames are related by the
following equation:

“rp=“Rp Prp + Ydp (5.323)

where “dp indicates the position of the moving origin o relative to the
fixed origin O.
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FIGURE 5.12. A rigid body with an attached coordinate frame B (oxyz) moving
freely in a global coordinate frame G(OXY Z).

The velocity of the point P in G is

GVP _ GI"P

= GRB BI‘p + GdB

= ¢gWwp grp + “dp

= cop (“rp— “dp) + “dp

= cqwp x (°rp— %dp) + %dp. (5.324)

Proof. Direct differentiating shows

“vp = G—dGI“P = %p
dt
Gd
= (GRB Brp + GdB)
= SRpPrp+ “dp. (5.325)
The local position vector Brp can be substituted from (5.323) to obtain
Gvp = SRRORL (rp- Sdp) + %dp
= GgwgB (GI‘P - GdB) + %dp
= cwp x (°rp— %d3p) + %ds. (5.326)

It may also be written using relative position vector

GVP = gqwp X gI‘p + G(.iB. (5327)
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X

FIGURE 5.13. Geometric interpretation of rigid body velocity.

Example 189 Geometric interpretation of rigid body velocity.

Figure 5.13 illustrates a body point P of a moving rigid body. The global
velocity of point P
GVP = gwp X grP + GaB
is a vector addition of rotational and translational velocities, both expressed
in the global frame. At the moment, the body frame is assumed to be coin-
cident with the global frame, and the body frame has a velocity Gdp with
respect to the global frame. The translational velocity Gdp is a common
property for every point of the body, but the rotational velocity cwpg X grp
differs for different points of the body.

Example 190 Velocity of a moving point in a moving body frame.

Assume that point P in Figure 5.12 is moving in frame B, indicated by
time varying position vector Brp(t). The global velocity of P is a composi-
tion of the velocity of P in B, rotation of B relative to G, and velocity of
B relative to G.

G—dGr = %(Gd + “Rp Br )
P B B Ip

= GdB + gf'p + gwp X grp (5328)

Example 191 Velocity of a body point in multiple coordinate frames.
Consider three frames, By, By and B, as shown in Figure 5.14. The
velocity of point P should be measured and expressed in a coordinate frame.
If the point is stationary in a frame, say Ba, then the time derivative of
2rp in By is zero. If frame By is moving relative to frame Bi, then, the
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X

FIGURE 5.14. A rigid body coordinate frame By is moving in a frame B; that
is moving in the base coordinate frame By.

time derivative of 'rp is a combination of the rotational component due to
rotation of Bs relative to By and the velocity of By relative to By . In forward
velocity kinematics, the velocities must be measured in the base frame By.
Therefore, the velocity of point P in the base frame is a combination of the
velocity of Bs relative to By and the velocity of By relative to By.

The global coordinate of the body point P is

vp = °dy+ fdy+ Jrp (5.329)
°d; + °Ry'dy + °Ry %rp. (5.330)

Therefore, the velocity of point P can be found by combining the relative
velocities

Of‘p = 0&1 + (ORl ldg + ORl 1d2) + ORQ 2I'P
Od; + Jwi x 9da + °Ry 'dy + Jwa x Yrp (5.331)

Most of the time, it is better to use a relative velocity method and write

dvp=fvi+ dva+ Svp (5.332)

because
ovi = 0dy (5.333)
o = Jwix do+ "R 'dy (5.334)

vp = Jwax Jrp (5.335)
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and therefore,

Ovp =04, + 8w1 x 9dy + Ry 'dy + 80-’2 X Srp. (5.336)

Example 192 Velocity vectors are free vectors.
Velocity vectors are free, so to express them in different coordinate frames

we need only to premultiply them by a rotation matriz. Hence, considering
;?VZ- as the velocity of the origin of the B; coordinate frame with respect to

the origin of frame Bj; expressed in frame By, we can write

bvi=—Fv; (5.337)
and
bvi= "Ry T'v; (5.338)
and therefore,
d, , , ,
E I‘p = Vp = ;‘Vp + ﬁwj X ;»I'P. (5339)

Example 193 % Zero velocity points.
To answer whether there is a point with zero velocity at each time, we
may utilize Equation (5.324) and write

c@p (“ro — “dp) + “dp =0 (5.340)
to search for Grq which refers to a point with zero velocity
Cro = “dp — gz “dp (5.341)

however, the skew symmetric matric gop s singular and has no inverse.
In other words, there is no general solution for Equation (5.340).

If we restmct ourselves to planar motions, say XY -plane, then qwp =
wK and GwB = 1/w. Hence, in 2D space there is a point at any time with
zero velocity at position Crq given by

Cro(t) = “dp(t) *i “dp(t). (5.342)

The zero wvelocity point is called the pole or instantaneous center of
rotation. The position of the pole is generally a function of time and the
path of its motion is called a centroid.

Example 194 % FEulerian and Lagrangian view points.

When a variable quantity is measured within the stationary global coor-
dinate frame, it is called absolute or the Lagrangian viewpoint. When the
variable is measured within a moving body coordinate frame, it is called
relative or the Fulerian viewpoint.

In 2D planar motion of a rigid body, there is always a pole of zero velocity

at
1
Yo = Ydp — - Sdp. (5.343)
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oxXr

FIGURE 5.15. A rotating rigid body B(Ozyz) with a fixed point O in a reference
frame G(OXY Z).

The position of the pole in the body coordinate frame can be found by sub-
stituting for Cr from (5.323)
GRB BI‘() + GdB = GdB — G(Z)EI GdB (5344)

and solving for the position of the zero velocity point in the body coordinate

rame BI‘ .
f 0

B G pT ~—1 G ]
ro = -— RBGwB dB

_GRT [GRBGRE}_I G,

_GRT [GRB GREI} Gdp
= —%Rp'%dp (5.345)
Therefore, “ro indicates the path of motion of the pole in the global frame,

while Brq indicates the same path in the body frame. The Crq refers to the
Lagrangian centroid and BPrqy refers to the Eulerian centroid.

5.10 Angular Acceleration

Consider a rotating rigid body B(Ozyz) with a fixed point O in a reference
frame G(OXY Z) as shown in Figure 5.15.

Equation (5.172), for the velocity vector of a point in a fixed origin body
frame,

Srt) = ()
= qWB Gl‘(t)
= cqwp x 9r(t) (5.346)
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can be utilized to find the acceleration vector of the body point

G
d
G G
= —Cit
r o ()
= goap X GI‘+ awp X (GwB X GI‘) (5347)
= (da+di) x Cr+d7ax (ax Or). (5.348)

cap is the angular acceleration vector of the body with respect to the G
frame.

G
GOpB = E GWB (5349)
Proof. Differentiating Equation (5.346) gives
¢ = swp X “r+ qwp x °r
= gap X GI‘+ awp X (GwB X GI‘) (5350)
and because
w = oéu (5.351)
a = ¢u+ ¢u (5.352)

we derive Equation (5.348). Therefore, the position, velocity, and accelera-
tion vectors of a body point are

Brp = zi4yj+ 2k (5.353)
Gd
G _ G, _ _"B
vp = rp dt rp
= cwpx % (5.354)
G G G Gd2
ap = Vp = "I'p = W rp

GOaB X GI‘+ GwpB X G

= goap X GI‘—l— qwp X (GwB X GI‘). (5355)

The angular acceleration expressed in the body frame is the body derivative

of the angular velocity vector. To show this, we use the derivative transport
formula (5.287)
Gd
B B
ap = —aw
GOB 7 GWB
Pd g B B
= %GWB + ocwB X qwp
Bd
B
at U

= Bup. (5.356)
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FIGURE 5.16. Hlustration of a simple pendulum.

The angular acceleration of B in G can always be expressed in the form
Gap = Gap g (5.357)

where 1, is a unit vector parallel to gap. The angular velocity and angular
acceleration vectors are not parallel in general, and therefore,

e # G (5.358)
Gap # GWwB. (5.359)

However, the only special case is when the axis of rotation is fixed in both
G and B frames. In this case

cap=ai=wi= ¢i. (5.360)
|

Example 195 Velocity and acceleration of a simple pendulum.

A point mass attached to a massless rod and hanging from a revolute joint
is called a simple pendulum. Figure 5.16 illustrates a simple pendulum. A
local coordinate frame B is attached to the pendulum that rotates in a global
frame G. The position vector of the bob and the angular velocity vector cwp
are

By = 10 (5.361)
lsin ¢

S = CYRpBr=| —lcos¢ (5.362)
0

Bwp = ok (5.363)

cwp = C9RLBwp =¢K. (5.364)



[ cos (37 +¢) —sin
SR = sin (§7T+¢) cos(
i 0
[ sing cos¢p O
= —cos¢ sing 0
| 0 0 1

Its velocity is therefore given by

ov =

B+ Bup x Br

5. Applied Kinematics

= 0+¢kxi
= 1¢j

l(‘ﬁcos¢

9 =C%RpPv= lpsing
0

The acceleration of the bob is then equal to

Ba = Bv+ BwpxBv
= 1]+ ok x1¢j

— 1di—1d

Example 196 Motion of a vehicle on the Farth.

lécosq&—lézsin(b
“a= “RpPa= lésiné—i—l(fcowb
0

0
0
1

275

(5.365)

(5.366)

(5.367)

(5.368)

(5.369)

Consider the motion of a vehicle on the Earth at latitude 30deg and
heading north, as shown in Figure 5.17. The vehicle has the velocity v =
Bi =80 km/h = 22.22m/s and acceleration a = B¥# = 0.1m/s?, both with
respect to the road. The radius of the Farth is R, and hence, the vehicle’s

kinematics are

B -
B -
.

Rk m

22.22t m/s

0.1i m/ s?

v
R
a

R

rad/ s

rad/ s,

There are three coordinate frames involved. A body coordinate frame B is
attached to the vehicle as shown in the figure. A global coordinate G is set
up at the center of the Earth. Another local coordinate frame E is rigidly
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(@) (®)

FIGURE 5.17. The motion of a vehicle at 30 deg latitude and heading north on
the Earth.

attached to the Farth and turns with the Earth. The frames E and G are
assumed coincident at the moment. The angular velocity of B is

ng = GwEJFng
= BRG (cw;f(—i—@f)
= (wgcosh)i+ (wesinb)k+0)

= (wpcosh)i+ (wpsind)k -+ (5.375)

v
R
Therefore, the velocity and acceleration of the vehicle are

Bv = Bit BupxBr
= 0+ Bwp x Rk
= vi— (Rwgcosl)j (5.376)
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Ba = Bv4+ BwpxBv
[ wgcosb v
= ai—i—(RwEésinQ)j—i— % X | —Rwpg cosf
| wesinf 0

' Rw?, cosfsin 6
= at+ (RwEGSinH)j—i— VW sin 0

1,2 2 g2
—3v° — Rwg cos” 0

a+ Rw?, cos 0sin ¢
2Rwg Osinf . (5.377)

1,2 2 og2
—5v° — Rwg cos® 0

The term ai is the acceleration relative to Earth, (2RwEésin 0)j is the
Coriolis acceleration, —”—;l% 1s the centrifugal acceleration due to traveling,
and —(Rw?, cos? 0) is the centrifugal acceleration due to Earth’s rotation.

Substituting the numerical values and accepting R = 6.3677 x 105 m pro-
vides

2 2
By = 22.22%6.3677><106< m__ 300 5> s

™.
24 % 3600 365.25 ) “° 67
— 22.227 — 402.13) m/s (5.378)

Ba=1.5662 x 1072 + 1.6203 x 1073) — 2.5473 x 10 %k m/s>. (5.379)
Example 197 % Combination of angular accelerations.
It is shown that the angular velocity of several bodies rotating relative to
each other can be related according to (5.231)
own = owi + Jwo + Jwz + -+, wn. (5.380)
However, in general, there is no such equation for angular accelerations

0, # oo + Yoo+ oz + -+ .0 . (5.381)

To show this, consider a pair of rigid links connected by revolute joints.
The angular velocities of the links are

w1 = 61%, (5.382)
fwa = 6% (5.383)
ows = w1+ jws

0 0/%0 + 05 %k
= 91 OIACO + 92 ORl 1]2?1 (5384)
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however, the angular accelerations show that

0
d o
000 = = oW1 = oW1 Oko (5.385)
t
0q 0d /. .. . .
02 = % owa = % (01 Oko + 92 OR1 1]{31)

= 0% + 02 Ry Yy + owr x 02°R; kg
By O+ s Ok + 01 020 % Ok,
oar + Yo 4+ gwi x ws (5.386)
and therefore,
0z # oo + Jas. (5.387)
Equation (5.386) is the relative acceleration equation. It expresses the

relative accelerations for connected rigid bodies.

Example 198 % Angular acceleration and Euler angles.
The angular velocity ng in terms of Euler angles is

wx 0 cosp sinfsing @
gwg = wy | =] 0 sinp —cospsind 0
| wz 1 0 cos @ "
t?cosg@ +1.l)sin0singp
= fsinp — 1 cospsingd | . (5.388)
L @+ 1 cosb
The angular acceleration is then equal to
“d
Sap = o Swp (5.389)

cos<p(é—|—gbi/;sin9)+sin<p Ysinf + O cos  — 0
= sinnp(é—i—gbzbsin@)—l—cosgp 0p — 1hsin@ — Gi) cos 0
¢+i/}cos9791;bsin0

The angular acceleration vector in the body coordinate frame is then equal
to

Bap = YREL%ap (5.390)

cpc) — chspsy cpsp + clcpsy  sOsyp
= —cpsh — clcsp  —sps + cBepey  sOcy gaB
sOsp —cpst ct

cos (0 + @1 sin@) + sin ) (go" sin 6 + 0 cosf — 911})
= cosw(gbsinﬁ—l—@gbcose—@zb)—Sinw(é—i—gb'g'bsine)
@cos@—ib —ngsinﬁ
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FIGURE 5.18. A rigid body with coordinate frame B (oxyz) moving freely in a
fixed global coordinate frame G(OXY Z).

5.11 Rigid Body Acceleration

Consider a rigid body with an attached local coordinate frame B (oxyz)
moving freely in a fixed global coordinate frame G(OXY Z). The rigid
body can rotate in the global frame, while the origin of the body frame B
can translate relative to the origin of G. The coordinates of a body point
P in local and global frames, as shown in Figure 5.18, are related by the
equation

Srp= %Ry Prp + %dp (5.391)

where “dp indicates the position of the moving origin o relative to the
fixed origin O.
The acceleration of point P in G is

Gap — G‘-,P — Gi:P
qop X (GI‘p — GdB)
+gowp X (GwB X (GI‘p — GdB)) + GEIB. (5.392)

Proof. The acceleration of point P is a consequence of differentiating the
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velocity equation (5.326) or (5.327).

G “d G
ap = E vp
= gapx §rp+ gwp x §ip+ “dp
= gapX gI‘P + gwp X (GwB X grp) + GaB
= qgap X (GI‘p — GdB)

+gwp X (GwB X (GI‘P — GdB)) + GaB. (5393)

The term gwp X (GwB X grp) is called centripetal acceleration and is
independent of the angular acceleration. The term gap X gr p is called
tangential acceleration and is perpendicular to grp. [ |

Example 199 Acceleration of joint 2 of a 2R planar manipulator.
A 2R planar manipulator is illustrated in Figure 5.19. The elbow joint
has a circular motion about the base joint. Knowing that

w1t = 01 ko (5.394)
we can write
oo = odn =6 O];o (5.395)
Od.’l X 01‘1 = él O];}() X 01‘1
= 0 Rz.9490 11 (5.396)
owi X (0w1 X 01‘1) = —9? 01‘1 (5397)

and calculate the acceleration of the elbow joint

. . .92
OI’1 = 91 RZ,0+90 OI’1 — 01 01’1. (5398)

Example 200 Acceleration of a moving point in a moving body frame.

Assume the point P in Figure 5.18 is indicated by a time varying local
position vector Brp(t). Then, the velocity and acceleration of P can be
found by applying the derivative transformation formula (5.287).

Svp = Ydp+ Bip+ Bwp x Brp
= %dp+ Bvp+ Bup x Prp (5.399)
- B B B. B B
Sap = Ydp+ Pip+ Bwp x Pip+ Bop x Prp

+ng X (Bf‘P—l- ng X BI‘p)
= GaB—f—Bap—i—ngBx BVP—I—ga'JBX BI‘P
+8wp x (Bwp x Prp). (5.400)
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X2

FIGURE 5.19. A 2R planar manipulator.

It is also possible to take the derivative from FEquation (5.323) with the
assumption Pip # 0 and find the acceleration of P.

Srp= %Ry Prp + %dp (5.401)
%tp = CRpPrp + SRy Bip + “dp
= gwp X GRB BI‘PJr GRB BI"p + GdB (5.402)
G'I"p = qwpB X GRB BI‘p + gwp X GRB BI‘P + gwp X GRB Bf‘p

+%Rp Pip + “Rp Pip + Cdp
= qwpg X (B;I‘p—i— awp X (Gwa Grp)+2GwB>< gf‘p
+Gip + %dp (5.403)

The third term on the right-hand side is called the Coriolis acceleration.
The Coriolis acceleration is perpendicular to both qwp and Bip.

Example 201 % Acceleration of a body point.

Consider a rigid body is moving and rotating in a global frame. The
acceleration of a body point can be found by taking twice the time derivative
of its position vector

GI‘p = GRB BI‘p + GdB (5404)

Cip = %Rp Prp + Cdp (5.405)
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“%p = 9RpPrp+ “dp
= S%Rp °RE (°rp— “dp) + Cds. (5.406)
Differentiating the angular velocity matrix
cwp = “Rp°RL (5.407)
shows that
Go;JB = % cop = “Rp GRE + “Rp GRE
— ORLORT 4 ciop i (5.408)
and therefore,
CREORL = ciop — cip oWy (5.409)

Hence, the acceleration vector of the body point becomes

“p = (aoDB — ¢@B cdzﬁ) (“rp— “dp) + “dg (5.410)
where
) 0 —Ww3 Wy
cop =gap=| w3y 0 —w (5.411)
—Wwy W1 0
and
wi 4wl —wiws —wiws
GWB G@g = —WiWso OJ% + w§ —WaoW3; . (5.412)
—WiWs —WoWs w% + w%

5.12 s Axis-angle Rotation

When the rotation is about an arbitrary axis going through the origin, two
parameters are necessary to define the direction of the line through O and
one is necessary to define the amount of rotation of the rigid body about
this line. Let the body frame B(Ozyz) rotate ¢ about a line indicated by
a unit vector 4 with direction cosines w1, us, us,

o=yl +ugJ +usK (5.413)

\Jui+ul+ul=1 (5.414)

This is called azis-angle representation of a rotation.

A transformation matrix “Rp that maps the coordinates in the lo-
cal frame B(Ozyz) to the corresponding coordinates in the global frame
G(OXYZ),

Cr = %Ry Pr (5.415)
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X

FIGURE 5.20. Axis of rotation 4@ when it is coincident with the local z-axis.

is

“Rp = Ry = Icos ¢ + ai” vers ¢ + isin ¢ (5.416)
u? vers ¢ + co U U VETS ) — U3SP  ULUZ VETS @ + UsSP
“Rp = | ujugvers ¢+ uzso u3 vers ¢ + co UoUgz VErs ¢ — u1SP
ULU3 VETS ) — U2SP  UgU3 VErS ¢ + U1 SP u% vers ¢ + c¢
(5.417)
where
vers¢ = wersine¢
= 1—cosd (5.418)
.9 @
= 2sin? <
sin” o

and u is the skew-symmetric matrix corresponding to the vector

0 —us u9
—U2 U7 0

A matrix 4 is skew-symmetric if
o’ = —a. (5.420)

The transformation matrix (5.417) is the most general rotation matrix for
a local frame rotating with respect to a global frame. If the axis of rotation
(5.413) coincides with a global coordinate axis, then the Equations (5.20),
(5.21), or (5.22) will be reproduced.

Proof. Interestingly, the effect of rotation ¢ about an axis 4 is equivalent
to a sequence of rotations about the axes of a local frame in which the
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local frame is first rotated to bring one of its axes, say the z-axis, into
coincidence with the rotation axis u, followed by a rotation ¢ about that
local axis, then the reverse of the first sequence of rotations.

Figure 5.20 illustrates an axis of rotation & = uyd+ugJ —|—uSK the global
frame G (OXY Z), and the rotated local frame B (Oxyz) when the local
z-axis is coincident with 4. Based on Figure 5.20, the local frame B (Ozyz)
undergoes a sequence of rotations ¢ about the z-axis and 6 about the y-
axis to bring the local z-axis into coincidence with the rotation axis 4,
followed by rotation ¢ about @, and then perform the sequence backward.
Therefore, the rotation matrix “ Rz to map coordinates in local frame to
their coordinates in global frame after rotation ¢ about # is

GRB _ BRgvl: BRT:Rﬁ7¢
[Rz7—w Ry o R4 Ryp Rz,sa]T

T pT pT pT T
= Rz,cp Ry,@ Rz,c/) Ry,fe R — (5421)
but
sing = _ Y2 (5.422)
Vu? + ul
cosp = ——— (5.423)
VUi +us
sinf = \/u?+u3 (5.424)
cosf = wug (5.425)
sinfsing = ugy (5.426)
sinfcosp = w (5.427)
and hence,
SRp = Rag (5.428)
u? vers ¢ + c¢ U Uz VETS @ — U3SP  ULU3 VTS P + U28P
= U1 Uz VETS @ + U3SP u3 vers ¢ + co UgU3 VETS ) — U1 SP
ULUZ VErS ) — U2SP  UaU3 VTS P + U1 S u3 vers ¢ + co
The matrix (5.428) can be decomposed to
1 00
Ryg = cosp| 0 1 0
0 0 1
Uy
+ (1 —cosg) | us [ w1 Uz U3 ]
us
0 —us u
+sing | us 0 —u (5.429)

—U Uy 0
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to be equal to
®Rp = Ry = Icos ¢ + i’ vers ¢ + isin ¢. (5.430)
Equation (5.416) is called the Rodriguez rotation formula (or the Euler-

Lezell-Rodriguez formula). It is sometimes reported in literature as the
following equivalent forms:

Rag = I+ (sing)a+ (verso)a? (5.431)
Rigy = [I-ad"]cos¢+ dsing + i’ (5.432)
Ray = —U’cos¢+ising+a*+1 (5.433)

The inverse of an angle-axis rotation is

BRe = YRL=Ri_,
= TIcos¢ + aul vers ¢ — asin ¢. (5.434)
It means orientation of B in G, when B is rotated ¢ about #, is the same

as the orientation of G in B, when B is rotated —¢ about @. We can verify
that

au = 0 (5.435)
I-au? = @2 (5.436)
rlar = 0 (5.437)
Uxr = dr=-—-7i=-rXxd. (5.438)
|
Example 202 % Axis-angle rotation when 4 = K.
If the local frame B (Oxyz) rotates about the Z-axis, then
=K (5.439)

and the transformation matriz (5.417) reduces to

[ Overs¢+cos¢ Overs¢p —1lsing Overseo + Osing
R = Overs¢ + 1sing Overs¢p+cos¢ 0Overs¢p — Osin ¢

| Oversg —0sing Overs¢g +0sing  1vers¢ + cos¢

[ cos¢p —sing 0

= sing cos¢p 0 (5.440)
0 0 1

which is equivalent to the rotation matrix about the Z-axis of global frame
in (5.20).
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Example 203 % Rotation about a rotated local axis.
If the body coordinate frame Oxyz rotates ¢ deg about the global Z-axis,
then the x-axis would be along

cosep —sing 0 1

Uy = GRZ#)i: sing cosp 0 0
0 0 1 0
cos @
= sing | . (5.441)
0

Rotation 6 about Gy = (cos)l + (sing)J is defined by Rodriguez’s
formula (5.417)

cos? pversf +cos  cospsinpversd sin  sin 0
GR@m.g = cos psinpvers®  sin? g versh + cosf —cossind
—sinpsinf cos @ sin 6 cos

Now, rotation ¢ about the global Z-axis followed by rotation 6 about the
local x-axis is transformed by

“Rp = ©“Ru,0%Rz,
cosp —cosfsing sinfsingp
= sing cosfcosp —cospsinf (5.442)
0 sin 0 cosf

that must be equal to [Ry g R. ) " = RT R,

Example 204 % Axis and angle of rotation.
Given a transformation matriz © Rg we may obtain the axis @ and angle
¢ of the rotation by considering that

1

~ G G pT
a = 5 d (“Rz — “Rp) (5.443)
1
cosgp = 3 (tr (GRB) -1) (5.444)
because
0 —2(sing)us 2 (sin¢)us
SRp— “RE = 2 (sin ¢) ug 0 —2 (sin @) uq
—2(sing)uy 2 (sing)uy 0
0 —us (5
= 2sin¢ us 0 —uq
—U2 (5% 0

= 2dsing (5.445)
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and

tr (“Rp) = ri1+ra2+rss
= 3cosd+ui (1 —cosep)+u3 (1 —cose)+ui(1— cosg)
= 3cosd+ui +uj+ u3 — (uf +uj +u3) cos g
2cos ¢+ 1. (5.446)

Example 205 % Axis and angle of a rotation matrix.

A body coordinate frame, B, undergoes three Euler rotations (¢, 0,1) =
(30, 45,60) deg with respect to a global frame G. The rotation matriz to
transform coordinates of B to G is

“Rp = PRL=[R.yReoR. )"
= R RipRiy
0.12683 —0.92678 0.35355
— | 0.78033 —0.12683 —0.61237 |. (5.447)

0.61237 0.35355  0.70711

The unique angle-axis of rotation for this rotation matriz can then be found
by Equations (5.443) and (5.444).

1
6 = cos! (5 (tr (GRB)—1)>
= cos ! (—0.14645) = 98 deg (5.448)
i = —— (Rp- °RY)
2sin ¢
0.0  —0.86285 —0.13082
= | 0.86285 0.0 —0.488 22 (5.449)
0.13082  0.48822 0.0
0.488 22
4= | —0.13082 (5.450)
0.862 85

As a double check, we may verify the angle-azis rotation formula and derive
the same rotation matrix.

®Rp = Rio = Icos ¢ + aal vers ¢ + asin ¢
0.12682 —0.92677 0.35354
= 0.78032 —0.12683 —0.61237 (5.451)

0.61236  0.35355  0.70709
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93

FIGURE 5.21. A screw motion is translation along a line combined with a rotation
about the line.

5.13 Y Screw Motion

Any rigid body motion can be produced by a single translation along an
axis combined with a unique rotation about that axis. This is called Chasles
theorem. Such a motion is called screw. Consider the screw motion illus-
trated in Figure 5.21. Point P rotates about the screw axis indicated by @
and simultaneously translates along the same axis. Hence, any point on the
screw axis moves along the axis, while any point off the axis moves along
a helix.

The angular rotation of the rigid body about the screw is called twist.
Pitch of a screw, p, is the ratio of translation, h, to rotation, ¢.

D 3 (5.452)
So, pitch is the rectilinear distance through which the rigid body translates
parallel to the axis of screw for a unit rotation. If p > 0, then the screw is
right-handed, and if p < 0, it is left-handed.

A screw is shown by 3(h, ¢, 4,s) and is indicated by a unit vector 4, a
location vector s, a twist angle ¢, and a translation h (or pitch p). The
location vector s indicates the global position of a point on the screw axis.
The twist angle ¢, the twist axis 4, and the pitch p (or translation h) are
called screw parameters.

The screw is another transformation method to describe the motion of a
rigid body. A linear displacement along an axis combined with an angular
displacement about the same axis arises in steering kinematics of vehicles.
If Brp indicates the position vector of a body point, its position vector in
the global frame after a screw motion is

Srp =3(h,¢,0,s) Prp (5.453)
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that is equivalent to a translation “dp along with a rotation “Rp.
“rp= “Rp Prp + “dp (5.454)

We may introduce a 4 x4 matrix [T], that is called the homogeneous matriz,

G G
oy, — [ 1(1)%3 1‘1 } (5.455)

and combine the translation and rotation to express the motion with only
a matrix multiplication

Crp= 9Tp Brp (5.456)

where, “rp and Prp are expanded with an extra zero element to be con-

sistent with the 4 x 4 matrix [T7].

X
Y

Crp = 7 (5.457)
L0
[ xr

Brp = z (5.458)
0

Homogeneous matrix representation can be used for screw transformations
to combine the screw rotation and screw translation about the screw axis.

If & passes through the origin of the coordinate frame, then s = 0 and
the screw motion is called central screw 3(h,¢,4). For a central screw we
have

GéB (ha ¢, ﬁ) = Dﬁ,h Rﬂ,q& (5459)
where,
1 0 0 hu1
0 1 0 hus
Dan=1¢ 0 1 his (5.460)
0 00 1
Rip =
u? vers ¢ + co UU VEIS ¢ — U3SP U Uz vers @ + uss¢ 0
U1 Usg Vers ¢ + uzseo u3 vers ¢ + co usug vers ¢ — u1s¢ 0
UIU3 VErS ¢ — USP  UgUsz VErs ¢ + Uy SP u3 vers ¢ + co 0
0 0 0 1
(5.461)
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and hence,
X “Rp “d
GéB(h7¢7u): [ OB 1 ] =
u% vers ¢ + c¢p U U VETS @ — U3SP  ULU3 VErs ¢ + ussp  hug
U1 U VErs @ + U3zSP u% vers ¢ + cop UgUz VErS @ — u18¢  hus
ULU3 VETS ) — U2SP  UU3 VErS ¢ + U1 S u3 vers ¢ + co hus
0 0 0 1

(5.462)
As a result, a central screw transformation matrix includes the pure
or fundamental translations and rotations as special cases because a pure
translation corresponds to ¢ = 0, and a pure rotation corresponds to h =0
(or p = 00).
When the screw is not central and 4 is not passing through the origin, a
screw motion to move p to p” is denoted by

P’ = (p—s)cosg+(l—cosg)(d-(p—s))i
+ (4 x (p—s))sing+s+ hi (5.463)
or
p" = CRp(p—s)+s+hi
= CYRpp+s— “Rps+hi (5.464)

and therefore,
p” = 5(h,¢,4,8)p=[T]|p (5.465)

where

R %s— “Rp%s+hi
G G
_ { gB 1d } : (5.466)

The vector s, called location vector, is the global position of the body
frame before screw motion. The vectors p” and p are global positions of a
point P after and before screw, as shown in Figure 5.22.

The screw axis is indicated by the unit vector u. Now a body point P
moves from its first position to its second position P’ by a rotation about
4. Then it moves to P” by a translation h parallel to 4. The initial position
of P is pointed by p and its final position is pointed by p”.

A screw motion is a four variable function $(h, ¢, @, s). A screw has a line
of action 4 at “s, a twist ¢, and a translation A.

The instantaneous screw axis was first used by Mozzi (1730 — 1813) in
1763 although Chasles (1793 — 1880) is credited with this discovery.
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FIGURE 5.22. Screw motion of a rigid body.

Proof. The angle-axis rotation formula (5.416) relates r’ and r, which are
position vectors of P after and before rotation ¢ about & when s = 0,
h=0.

r' =rcosd+ (1 —cosd) (4-r)d+ (4 x r)sing (5.467)
However, when the screw axis does not pass through the origin of G(OXY Z),
then r’ and r must accordingly be substituted with the following equations:
r = p—s (5.468)
r = p'—s—hau (5.469)
where r’ is a vector after rotation and hence in G coordinate frame, and r
is a vector before rotation and hence in B coordinate frame.

Therefore, the relationship between the new and old positions of the
body point P after a screw motion is

P’ = (p—s)cos¢+(1—cosg)(i-(p—s))d
+ (4 x (p—8))sing + (s + hii). (5.470)
Equation (5.470) is the Rodriguez formula for the most general rigid body
motion. Defining new notations “p = p” and Zp = p and also noting that
s indicates a point on the rotation axis and therefore rotation does not
affect s, we may factor out Pp and write the Rodriguez formula in the
following form

Gp = (Icos¢+ aa” (1 —cos¢) + @ sing) “p
— (Tcos¢+aa” (1 —cos¢) +asing) “s+ s+ ha (5.471)
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which can be rearranged to show that a screw can be represented by a
homogeneous transformation

p = CYRpPp+Ys— “RpYs+hu (5.472)
= GRB Bp+ “d
= “Tp"p
GTB = ¢ VB(ha (b? a? S) (5473)
[ “Rp Ys—C%RpY+hia] [ “%Rp ©d
- 0 1 o0 1
where,
SRp = Icos¢+aiT (1 —cose)+ i sine (5.474)
“d = ((I-ad")(1—cosg)—using) “s+ha. (5.475)

Direct substitution shows that:

u% vers ¢ + c¢ U Ug VETS ) — U3zSO  ULU3 VErS ¢ + Uz SP i
CRp = | uiusversd + ugse u3 vers ¢ + co UgU3 VEIrS ¢ — U1 S¢P
UTUZ VETS ) — U2SP  UgUg VETS ¢ + U1 SP u3 vers ¢ + c¢
(5.476)
huy + (81— uq (83uz + Saug + s1u1)) vers ¢ + (sauz — S3uz) s¢ |
Sd=| huy+ (89 — ug (83u3 + Sous + s1up)) vers @ + (szu; — S1u3) $@
hus 4 (83 — u3 (s3u3 + s2us + s1u1)) vers ¢ + (s1u2 — Sau1) 5¢ |
(5.477)

This representation of a rigid motion requires six independent parame-
ters, namely one for rotation angle ¢, one for translation h, two for screw
axis 4, and two for location vector “s. It is because three components of @
are related to each other according to

wfu=1 (5.478)

and the location vector s can locate any arbitrary point on the screw axis.
It is convenient to choose the point where it has the minimum distance from
O to make s perpendicular to . Let us indicate the shortest location vector
by ©sg, then there is a constraint among the components of the location
vector

Gl =0. (5.479)

If s = 0 then the screw axis passes through the origin of G and (5.473)
reduces to (5.462).

The screw parameters ¢ and h, together with the screw axis % and loca-
tion vector “s, completely define a rigid motion of B(oryz) in G(OXY 7).
Having the screw parameters and screw axis, we can find the elements of
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the transformation matrix by Equations (5.476) and (5.477). So, given the
transformation matrix Tz, we can find the screw angle and axis by

1 G
cos¢p = 3 (tr( RB) — 1)
1
= 5 (r(“Ts) -2)
1
= 5 (r11 +ro2+1733 — 1) (5.480)
~ 1 G G pT
= — 481
hence,
1 T32 —T23
= " T13 — T31 . (5482)
2sin ¢ For — 1

To find all the required screw parameters, we must also find A and co-
ordinates of one point on the screw axis. Because the points on the screw
axis are invariant under the rotation, we must have

11 Ti12 T13 Ti14 X 1 0 0 hu1 X

To1 To2 T23 T2 Y | |01 0 hu Y

31 T32 T33 T34 A o 0 0 1 h’LL3 A (5483)
0 0 0 1 1 00 0 1 1

where (X,Y, Z) are coordinates of points on the screw axis.

As a sample point, we may find the intersection point of the screw line
with Y Z-plane, by setting Xs = 0 and searching for s = [ 0 Y, Z ]T.
Therefore,

11 — 1 12 13 14 — hu1 0 0
T21 rog — 1 723 ro4 — huo Yo | | O
731 T32 T3z — 1 734 — hug Zs | |0 (5.484)
0 0 0 0 1 0
which generates three equations to be solved for Yy, Z,, and h.
-1
h Ui —T12 —T13 714
3/5 = U2 1-— 22 —T23 724 (5485)
Zs ug  —rzz  1—rs3 T34
Now we can find the shortest location vector “sy by
Cso=s—(s-0)i. (5.486)
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Example 206 % Central screw transformation of a base unit vector.

Consider two initially coincident frames G(OXY Z) and B(oxyz). The
body performs a screw motion along the Y -azis for h =2 and ¢ = 90 deg.
The position of a body point at [ 1 0 0 1 ]T can be found by applying
the central screw transformation.

s(hoo,) = 3(2,5.J) (5.487)
= D(2J)R(J,3)
1 0 0 O 0 0 1 0
. 01 0 2 0 1 0 O
o 00 10 -1 0 0 0
10 0 0 1 0 0 0 1
[0 0 1 0
Lo 10 2
o -1 0 0 0
0 00 1
Therefore,
i = s25.0)"% (5.488)
0 0 1 0 1
o 1o0z2]]o
o -1 0 0 O 0
0 0 0 1 1
= [0 2 -1 1]".
The pitch of this screw is
h 2 4
p=—=—=—=12732 unit/rad. (5.489)
o b ™

Example 207 % Screw transformation of a point.

Consider two initially parallel frames G(OXY Z) and B(oxyz). The body
performs a screw motion along X = 2 and parallel to the Y -axis for h = 2
and ¢ = 90deg. Therefore, the body coordinate frame is at location s =
[ 2 00 ]T, The position of a body point at Br = [ 3 0 01 ]T can
be found by applying the screw transformation, which is

ar, — GRp s— “Rpgs—+hi (5.490)
0 1
0o 0 1 2
Lo 10 2
- -1 0 0 2
0 001
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because,
0 01
“Rp=1| 0 1 0 (5.491)
-1 0 0
2
s=10 (5.492)
0
0
=1 (5.493)
0
Therefore, the position vector of “r would then be
Gp — Gr,Byp
0 0 1 2 3 2
0 1 0 2 0 2
= 10 0 2 ol =1 21 |- (5.494)
0 0 01 1 1

Example 208 % Rotation of a vector.

Transformation equation “r = “Rp Br and Rodriguez rotation formula
(5.416) describe the rotation of any vector fized in a rigid body. However,
the vector can conveniently be described in terms of two points fized in the
body to derive the screw equation.

A reference point Py with position vector r1 at the tail, and a point P,
with position vector ro at the head, define a vector in the rigid body. Then
the transformation equation between body and global frames can be written
as

G (I‘Q — I‘1) = GRB B (1‘2 — I‘1) . (5495)

Assume the original and final positions of the reference point Py are along
the rotation axis. Equation (5.495) can then be rearranged in a form suitable
for calculating coordinates of the new position of point Py in a transforma-
tion matrix form

GI‘Q = GRB B (I‘Q — I‘1) + GI‘1 (5496)
= GRB BI‘Q + GI‘1 — GRB BI‘1
= 9Tg Pry
where . . G 5
o1 =| T eI (5.497)

It is compatible with screw motion (5.473) for h = 0.
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Y | |
P 0,(X.Y)
/ 58.0°]
N
Py4,15) |
P,(11) 0,(3.1)
o | | X

FIGURE 5.23. Motion in a plane.

Example 209 % Special cases for screw determination.

There are two special cases for screws. The first one occurs when r11 =
roo = 133 = 1, then, ¢ = 0 and the motion is a pure translation h parallel
to 1, where,

T14 — 81 3 T24 — 82 2 T34 — 83 2
i K. 4
- = (5.498)

Since there is no unique screw axis in this case, we cannot locate any specific
point on the screw axis.
The second special case occurs when ¢ = 180deg. In this case

3 (rin+1)

792 + 1 (5499)

Nl=

>
Il
j

N[—=

(r33+1)

however, h and (X,Y,Z) can again be calculated from (5.485).

Example 210 % Rotation and translation in a plane.
Assume a plane is displaced from position 1 to position 2 according to
Figure 5.23. New coordinates of Qo are

rg, = 2Ry (rg, —rp)+ rp, (5.500)
[ cosb8 —sinb8 0 3 1 4
= sinb8  cosH8 0 1] -11 + | 1.5
| 0 0 1 0 0 0
[ 1.06 4 5.06
= 1.696 | +| 1.5 | = | 3.196
| 0 0 0.0
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or equivalently

rg, = °2Tirg, (5.501)
[ 2R rp, — ’R rp

| o 1T

[ cosb58 —sinb8
sinb8  cos 58
0 0
0 0

5.06
3.196
0
1

4.318
0.122

o= OO
o
— O = W

Example 211 % Pole of planar motion.

In the planar motion of a rigid body, going from position 1 to position
2, there is always one point in the plane of motion that does not change
its position. Hence, the body can be considered as having rotated about this
point, which is known as the finite rotation pole. The transformation matriz
can be used to locate the pole. Figure 5.23 depicts a planar motion of a
triangle. To locate the pole of motion Py(Xo,Yo) we need the transformation
of the motion. Using the data given in Figure 5.23 we have

ey, = | Bt = PRirp (5.502)
| 0 1
[ c& —sa 0 —ca+sa+4
B sao ca 0 —ca—sa+3.5
o 0 0 1 0
| 0 0 O 1

The pole would be conserved under the transformation. Therefore,

rp, = 2T1 rp, (5503)
Xo cosae —sina 0 —cosa+sina+4 Xy
Yy . sinae cosa 0 —cosa—sina+ 1.5 Yo
0 - 0 0 1 0 0
1 0 0 0 1 1

which for a = 58 deg provides

Xo = —15sina+1—4cosa=2.049
Yy = 4sina+1—1.5cosa = 3.956.
Example 212 % Determination of screw parameters.

We are able to determine screw parameters when we have the original
and final position of three non-colinear points of a rigid body. Assume po,
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qo, and ro denote the position of points P, @, and R before the screw
motion, and p1, q1, and r1 denote their positions after the screw motion.

To determine screw parameters, ¢, U, h, and s, we should solve the fol-
lowing three simultaneous Rodriguez equations:

P1—Po = tan gﬁ x (p1 4+ Ppo — 28) + hi (5.504)
q1 —qo = tan gﬁ x (q1 + qo — 28) + hi (5.505)
r—rog = tan %a X (r1 + 19 — 28) + hil (5.506)

We start with subtracting Equation (5.506) from (5.504) and (5.505).

(P1 —po) — (r1 —rg) = tan gfb X [(p1 +Po) — (r1 —1ro)]  (5.507)
(- a0) — (1 —r0) = tan Tix [far +a0) — (11 —10)] (5509

Now multiplying both sides of (5.507) by [(q1 — qo) — (r1 — ro)] which is
perpendicular to

[(@1 —qo) — (r1 —r0)] X [(P1 — Po) — (r1 —10)]

— tan ¢ [(a: — a) — (r1 —r0)] % {@ x [(p1 + po) — (11 —xo)]} 770
gives us
(a1 —qo) — (r1 —ro)] x [(P1 + Po) — (r1 — 10)] A (5.510)

= tan% [(@1 —qo) — (r1 — o)} - [(P1 + Po) — (r1 —r0)] &

and therefore, the rotation angle can be found by equating tan% and the
norm of the right-hand side of the following equation:

tan ?12 _ [(@1 —qo) — (r1 —ro)] X (P1 +Po) — (r1 — o)

2 [(a1 —qo) — (r1 —ro)] - (P1 + Po) — (r1 — o)

(5.511)
To find s, we may start with the cross product of G with Equation (5.504).
@ x(pr—po) = ax tan%ﬂ X (p1 + po — 28) + hi (5.512)

= tan  {fi (p1 + Do)~ (p1 -+ po) + 2[5 — (i) i)
Note that s — (G- s) G is the component of s perpendicular to @, where s
is a vector from the origin of the global frame G(OXY Z) to an arbitrary
point on the screw axis. This perpendicular component indicates a vector
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with the shortest distance between O and G. Let’s assume sq is the name of
the shortest s. Therefore,

so0 = s—(u-s)u
1|axpr— N .
= 3 #—[U'(p1+po)]u+p1+po (5.513)
2 tan £

The last parameter of the screw is the pitch h, which can be found from any
one of the Equations (5.504), (5.505), or (5.506).

h @-(p1—Po)
= 4 (a1 —qo)
= - (1'1 - I‘()) (5514)

Example 213 % Alternative derivation of screw transformation.

Assume the screw azis does not pass through the origin of G. If ©s is the
position vector of some point on the axis G, then we can derive the matriz
representation of screw 3(h, ¢, 4, s) by translating the screw azis back to the
origin, performing the central screw motion, and translating the line back
to its original position.

§(h, ¢,1,s)

é(hv ¢a ,&) D(i GS)

D(hi) R(ti, ¢) D(— “s)

CRp ha ][I Gs]
0 1

2l

Example 214 % Rotation about an off-center axis.

Rotation of a rigid body about an axis indicated by u and passing through
a point at s, where “sxa # 0 is a rotation about an off-center axis. The
transformation matriz associated with an off-center rotation can be obtained
from the screw transformation by setting h = 0. Therefore, an off-center
rotation transformation is

(5.515)

G _
Te=|

Gg_ GR,Cs

. (5.516)

Example 215 % Principal central screw.

There are three principal central
and z-screw, which are

screws, namely the x-screw, y-screw,

cosae —sina 0 0

. S sinaw cosa O 0
$(hz,a, K) = 0 0 1 pra (5.517)

0 0 0 1
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cosf 0 sinf 0
- N 0 1 0 pyﬁ
$(hy,B,J) = —sinf8 0 cosf8 O (5.518)
0 0 0 1
I 0 0 PX Y
. & | 0 cosy —siny 0
sthx, 7, 1) = 0 siny cosy 0 (5.519)
0 0 0 1

Example 216 % Proof of Chasles theorem.
Let [T] be an arbitrary spatial displacement, and decompose it into a
rotation R about . and a translation D.

[T] = [DI[R] (5.520)

We may also decompose the translation [D] into two components [Dy] and
[D1], parallel and perpendicular to G, respectively.

[T] = [Dy][DL][R] (5.521)

Now [D_][R] is a planar motion, and is therefore equivalent to some rota-
tion [R'] = [D_][R] about an axis parallel to the rotation axis t. This yields
the decomposition [I'] = [Dy][R']. This decomposition completes the proof,
since the axis of [D)] can be taken equal to 1.

Example 217 % FEvery rigid motion is a screw.
To show that any proper rigid motion can be considered as a screw mo-
tion, we must show that a homogeneous transformation matrix

G G
CTp = [ 1313 1d } (5.522)

can be written in the form

G e .
a7y — [ IgB (T Rf)”h“ } . (5.523)

This problem is then equivalent to the following equation to find h and 4.
Sd=(I- “Rp)s+hi (5.524)

The matriz [I — 9 Rp] is singular because “Rp always has 1 as an eigen-
value. This eigenvalue corresponds to U as eigenvector. Therefore,

[I—- “Rpli=[I- “RLla=0 (5.525)
and an inner product shows that
a-9d = 4 [I-Y9Rp|s+i-hi
= [I-“Rpla-s+a-hi
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which leads to
h=1-%d. (5.526)

Now we may use h to find s

s=[1— 9Rp] " (“d - ha). (5.527)

5.14 Summary

To analyze the relative motion of rigid bodies, we instal a body coordinate
frame at the mass center of each body. The relative motion of the bodies
can be expressed by the relative motion of the frames.

Coordinates of a point in two Cartesian coordinate frames with a com-
mon origin are convertible based on nine directional cosines of the three
axes of a frame in the other. The conversion of coordinates in the two
frames can be cast in matrix transformation

% = CYRpPr (5.528)
6] [1d g 1E[s
Y, = J-i J-7 J-k Y2 (5.529)
Zs K-i K7 K-k Z2
where,
cos(1,i) cos(I,7) cos(I,k)
“Rp = | cos(J,i) cos(i, ) cos(J, k) |- (5.530)

cos(K,7) cos(K,j) cos(K,k)

The transformation matrix “Rp is orthogonal and therefore its inverse is
equal to its transpose.

“R' = “RE (5.531)

When a body coordinate frame B and a global frame G have a com-
mon origin and frame B rotates continuously with respect to frame G, the
rotation matrix Ry is time dependent.

Cr(t) = “Rp(t) Br (5.532)

Then, the global velocity of a point in B is

“i(t)

Gy (t)
“Rp(t) Pr
= cwp°r(t) (5.533)
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where ¢@wp is the skew symmetric angular velocity matrix

cop = CYRp®RE (5.534)
0 —Ws3 wo

G@B = w3 0 —W1 . (5535)
—Ww29 w1 0

The matrix gwp is associated with the angular velocity vector gwp = {zﬁﬂ,
which is equal to an angular rate ¢ about the instantaneous axis of rotation
.

Angular velocities of connected rigid bodies may be added relatively to

find the angular velocity of the nth body in the base coordinate frame

n
own = owi + Jwo + Jws +- 4+, Lw, =) Cw; (5.536)

i=1

Relative time derivatives between the global and a coordinate frames
attached to a moving rigid body must be taken according to the following
rules.

Bd ~

EBrp = Bip=Byvp=ii+yj+ik (5.537)

Gq A

EGrp = Cip=Cvp=XI+YJ+ZK (5.538)
%Br (t) = Pip+ Bwpx Brp= 8¢ (5.539)
i P = P T GgWB P = grp .
ﬁGr (t) = %ip— qwpx “rp=Gi (5.540)
a P = P~ GWB p = BIp. .

The global velocity of a point P in a moving frame B at
“rp = “Rp Prp + %dp

is

GVp = Gf‘p
= gws (GI“P - GdB) + %dp
= qwpg X (Gl‘p — GdB) + GdB. (5.541)

When a body coordinate frame B and a global frame G have a common
origin, the global acceleration of a point P in frame B is
Gd
Gw _ _%qg
e ow Y
= goap X GI‘+ awp X (GwB X GI‘) (5542)
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where, gap is the angular acceleration of B with respect to G

Gd
Gap = E GWHB. (5543)
However, when the body coordinate frame B has a rigid motion with re-
spect to G, then

G “d ¢
ap = — "V
P . vr

aap X (GI‘p — GdB)

+gwp X (GwB X (Grp — GdB)) + GaB (5544)

where ©dp indicates the position of the origin of B with respect to the
origin of G.
Angular accelerations of two connected rigid bodies are related according
to
_ 0 0
0Qa = g1 + 10 + gwW1 X jWa. (5.545)
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5.15 Key Symbols

B, Oxyz body Cartesian coordinate frame

Gdp position vector of body coordinate frame B in G
?dg position of frame By respect to By expressed in By
€, €0, €y Euler angle coordinate frame unit vectors

G, OXYZ global Cartesian coordinate frame

7, j,lAf body coordinate frame unit vectors

0,7, k skew symmetric matrix associated to 7, jJAf

I , J , K global coordinate frame unit vectors

p=h/d pitch of screw

P point

Gr position vector in global coordinate frame

By position vector in body coordinate frame

Ty, tH,, TH, row vectors of a rotation matrix

Rz rotation matrix about the global Z-axis

Ry rotation matrix about the global Y-axis

Rx rotation matrix about the global X-axis

R time derivative of a rotation matrix R

“Rp rotation matrix from local frame to global frame
RT transpose of a rotation matrix

R inverse of a rotation matrix

Rz rotation matrix about the body z-axis

Ry rotation matrix about the body y-axis

Rx rotation matrix about the body z-axis

Blez rotation matrix from coordinate frame B to Bs
BRa rotation matrix from global to local coordinate frame
5(h, @, u,s) screw motion

t time

U, ¢ axis and angle of rotation

U, instant angular acceleration axis

Uy instant angular velocity axis

T,Y, 2 body coordinates of a point

XY Z body coordinates of a point

T,Y, 2, X displacement

cap angular acceleration of body B expressed in G
Ok Kronecker’s delta

€ijk permutation symbol

?, 0,1 Euler frequencies

GwWB angular velocity of rigid body B expressed in G

skew symmetric matrix associated to w

&
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Exercises

1. Body point and global rotations.
The point P is at rp = (1,2,1) in a body coordinate B(Ozxyz). Find
the final global position of P after a rotation of 30deg about the
X-axis, followed by a 45 deg rotation about the Z-axis.

2. Body point after global rotation.
Find the position of a point P in the local coordinate, if it is moved
to “rp = [1,3,2]T after a 60 deg rotation about the Z-axis.

3. Invariant of a vector.

A point was at Brp = [1,2, 2]T. After a rotation of 60 deg about the
X-axis, followed by a 30 deg rotation about the Z-axis, it is at

X

GI‘p = Y
2.933

Find z, X, and Y.

4. % Constant length vector.
Show that the length of a vector will not change by rotation.

[“r| = [“Rs Pr|

Show that the distance between two body points will not change by
rotation.
Pp1— Ppa| = |“Rp ®p1 — “Rp "py|

5. Global roll-pitch-yaw rotation angles.

Calculate the role, pitch, and yaw angles for the following rotation
matrix:

0.53 —0.84 0.13
BRo = 0.0 0.15  0.99
—0.85 —0.52 0.081

6. Body point, local rotation.
What is the global coordinates of a body point at Brp = [2,2,3]7,
after a rotation of 60 deg about the x-axis?

7. Two local rotations.

Find the global coordinates of a body point at Brp = [2,2,3]7 after
a rotation of 60deg about the z-axis followed by 60deg about the
Z-axis.
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10.

11.

12.

13.

14.

15.
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Combination of local and global rotations.

Find the final global position of a body point at Zrp = [10, 10, —10]7
after a rotation of 45 deg about the z-axis followed by 60 deg about
the Z-axis.

Combination of global and local rotations.

Find the final global position of a body point at Zrp = [10, 10, —10]7
after a rotation of 45 deg about the X-axis followed by 60 deg about
the z-axis.

% Euler angles from rotation matrix.

Find the Euler angles for the following rotation matrix:

0.53 —0.84 0.13
BRe = 0.0 0.15  0.99
—0.85 —0.52 0.081

% Equivalent Euler angles to two rotations.

Find the Euler angles corresponding to the rotation matrix ?Rg =
Ay745Aw730~

% Equivalent Euler angles to three rotations.

Find the Euler angles corresponding to the rotation matrix ?Rg =
Az760Ay745Ax730-

% Local and global positions, Euler angles.

Find the conditions between the Euler angles to transform ¢

[1,1,0] to Brp =[0,1,1]T.

rp =

Elements of rotation matrix.

The elements of rotation matrix Ry are

cos(1,7) cos(I,7) cos(I,k)
“Rp = | cos(J,i) cos(J,7) cos(J,k)

cos(K,i) cos(K,j) cos(K,k)

Find “Rp if “rp, = (0.7071, —1.2247,1.4142) is a point on the z-axis,
and “rp, = (2.7803,0.38049, —1.0607) is a point on the y-axis.

Local position, global velocity.
A body is turning about the Z-axis at a constant angular rate & =

2rad/sec. Find the global velocity of a point at

5
By =1 30
10
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17.

18.

19.

20.

21.

22.
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Global position, constant angular velocity.

A body is turning about the Z-axis at a constant angular rate & =
2rad/s. Find the global position of a point at

5
Br=1 30
10

after ¢ = 3sec if the body and global coordinate frames were coinci-
dent at t = O sec.

Turning about z-axis.

Find the angular velocity matrix when the body coordinate frame is
turning 35 deg / sec at 45 deg about the z-axis.

Combined rotation and angular velocity.

Find the rotation matrix for a body frame after 30 deg rotation about
the Z-axis, followed by 30deg about the X-axis, and then 90 deg
about the Y-axis. Then calculate the angular velocity of the body
if it is turning with & = 20deg/sec, § = —40deg/sec, and ¥ =
55deg / sec about the Z, Y, and X axes respectively.

Angular velocity, expressed in body frame.

The point P is at rp = (1,2,1) in a body coordinate B(Oxyz). Find
B&p when the body frame is turned 30deg about the X-axis at a
rate ¥ = 75deg / sec, followed by 45deg about the Z-axis at a rate
& = 25deg / sec.

Global roll-pitch-yaw angular velocity.
Calculate the angular velocity for a global roll-pitch-yaw rotation
of a = 30deg, 8 = 30deg, and v = 30deg with & = 20deg /sec,
B = —20deg /sec, and ¥ = 20 deg / sec.

Roll-pitch-yaw angular velocity.

Find gd;B and gwp for the role, pitch, and yaw rates equal to & =
20deg / sec, § = —20deg / sec, and 4 = 20 deg / sec respectively, and
having the following rotation matrix:

0.53 —0.84 0.13
BRo = 0.0 0.15  0.99
—0.85 —0.52 0.081

% Differentiating in local and global frames.

Consider a local point at Brp = ti + j. The local frame B is rotating
B G B
in G by & about the Z-axis. Calculate d—f Brp, d—f Crp, d—f Grp, and

G
dB
& LP-
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23.

24.

25.

26.

27.

28.
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% Transformation of angular velocity exponents.

Show that
Bay = ORY oo} O Ry,

Local position, global acceleration.

A body is turning about the Z-axis at a constant angular accel-
eration & = 2rad/sec?. Find the global velocity of a point, when
& = 2rad/sec, a = w/3rad and

10

Global position, constant angular acceleration.

A body is turning about the Z-axis at a constant angular acceleration
& = 2rad/sec?. Find the global position of a point at

5
Br=1 30
10

after ¢ = 3sec if the body and global coordinate frames were coinci-
dent at t = Osec.

Turning about z-axis.

Find the angular acceleration matrix when the body coordinate frame
is turning —5 deg / sec?, 35 deg / sec at 45 deg about the z-axis.

Angular acceleration and Euler angles.

Calculate the angular velocity and acceleration vectors in body and
global coordinate frames if the Euler angles and their derivatives are:

¢=.25rad ¢ =25rad/sec  $=25rad/ sec?
0 =—.25rad 0= —4.5rad/sec 6 = 35rad/sec?

1 = .5rad 1 = 3rad/ sec b = 25rad/ sec?

Combined rotation and angular acceleration.

Find the rotation matrix for a body frame after 30 deg rotation about
the Z-axis, followed by 30deg about the X-axis, and then 90 deg
about the Y-axis. Then calculate the angular velocity of the body
if it is turning with & = 20deg/sec, 8 = —40deg/sec, and ¥ =
55deg /sec about the Z, Y, and X axes respectively. Finally, cal-
culate the angular acceleration of the body if it is turning with
& = 2deg /sec?, f = 4deg/sec?, and 4 = —6deg /sec® about the
Z,Y,and X axes.
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Applied Mechanisms

Most of the mechanisms used in vehicle subsystems are made of four-bar
linkages. Double A-arm for independent suspension, and trapezoidal steer-
ing are two examples of mechanisms in vehicle subsystems. In this chapter,
we review the analysis and design methods for such mechanisms.

6.1 Four-Bar Linkage

An individual rigid member that can have relative motion with respect to
all other members is called a link. A link may also be called a bar, body,
arm, or a member. Any two or more links connected together, such that no
relative motion can occur among them, are considered a single link.

Axis of joint Axis of joint

Revolute Prismatic

FIGURE 6.1. A revolute and a prismatic joint.

Two links are connected by a joint where their relative motion can be
expressed by a single coordinate. Joints are typically revolute (rotary) or
prismatic (translatory). Figure 6.1 illustrates a geometric form for a revo-
lute and a prismatic joint. A revolute joint (R), is like a hinge that allows
relative rotation between the two connected links. A prismatic joint (P),
allows a relative translation between the two connected links.

Relative rotation or translation, between two connected links by a revo-
lute or prismatic joint, occurs about a line called axis of joint. The value
of the single variable describing the relative position of two connected links
at a joint is called the joint coordinate or joint variable. It is an angle for
a revolute joint, and a distance for a prismatic joint.

A set of connecting links to do a function is called a mechanism. A linkage
is made by attaching, and fixing, one link of a mechanism to the ground.
The fixed link is called the ground link. There are two types of linkages,
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FIGURE 6.2. A four-bar linkage.

closed loop or parallel, and open loop or serial. In vehicle subsystems we
usually use closed-loop linkages. Open-loop linkages are used in robotic
systems where an actuator controls the joint variable at each joint.

A four-bar linkage is shown in Figure 6.2. Link number 1 is the ground
link M N. The ground link is the base and used as a reference link. We
measure all the variables with respect to the ground link. Link number
2 = M A is usually the input link which is controlled by the input angle 6.
Link number 4 = N B is usually the output link with angular position 6y,
and link number 3 = AB is the coupler link with angular position #3 that
connects the input and output links together.

The angular position of the output and coupler links, 64 and 63, are
functions of the links’ length and the value of the input variable 5. The
angles 64 and 63 can be calculated by the following functions

—B++vB?-4A
0s = 2tan? ¢ (6.1)
24
—E++E?—-4DF
03 = 2tan! (6.2)
2D
where,
A = J3—J+ (1 — JQ) cos 05 (63)
B = -—2sin6, (6.4)
C = Ji+J3—(1+Jz)cosbs (6.5)
D = J5 - J1 + (1 + J4) COS 92 (66)
E = -—2sinfy (6.7)

F = Jy+J— (1 — J4) cos 05 (68)
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FIGURE 6.3. Expressing a four-bar linkage with a vector loop.

and

=
Jy =
Jy =

Jy =

d

a

d

c

a? —b* + 2 + d?
2ac

d

b

A —d*>—a®—-b
2ab
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Proof. We may show a closed loop, four-bar linkage by a vector loop as
shown in Figure 6.3. The direction of each vector is arbitrary. However,
the angle of each vector should be measured with respect to the positive
direction of the z-axis. The vector expression of each link is shown in Table

6.1.

Table 6.1 - Vector representation of the four-bar linkage
shown in Figure 6.3.

Link | Name | Vector | Length Angle Variable
1 Ground ri d 01 = 180 deg -
2 Input ro a 0o D)
3 Coupler rs b 93 93
4 Output ry c 04 n
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The vector loop in global coordinate frame G is

“ry+ “ri 4+ Cry— “r3=0 (6.14)
where,

Gpp = —di (6.15)

Gry = a (cos B2 i+ sin by j) (6.16)

Gpg = b (cos B3+ sinds 7) (6.17)

Sry = c(cosfyi+sinfy)) (6.18)

and the left superscript G reminds that the vectors are expressed in the
global coordinate frame attached to the ground link. Substituting the Carte-
sian expressions for the planar vectors in Equation (6.14) results in

—di+a(cosfyi+sinbs j) + b(cosbsi+ sinbs j)

—c(cosfyi+sinfyj) = 0. (6.19)

We may decompose Equation (6.19) into sin and cos components.
asin@y + bsinfs —csinfy, = 0 (6.20)
—d+acosfy+bcosfs —ccosby = 0 (6.21)

To derive the relationship between the input angle 62 and the output
angle 04, the coupler angle 63 must be eliminated between Equations (6.20)
and (6.21). Transferring the terms not containing 65 to the other side of
the equations, and squaring both sides, provides the following equations:

(bsinf3)® = (—asinfy + csinfy)? (6.22)
(beosBs)® = (—acosby + ccosby +d)° (6.23)

By adding Equations (6.22) and (6.23), and simplifying, we derive the fol-
lowing equation:

JicosOy — Jocosly + J3 = cos (04 — 03) (6.24)
where
d
= = 2
Ji " (6.25)
d
a2 _ b2 + C2 + d2
Jy = o . (6.27)

Equation (6.24) is called Freudenstein’s equation. The Freudenstein’s equa-
tion may be expanded by using trigonometry

0
2‘53&1—4

sinfy = — (6.28)
1 + tan? ?4
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0
1—tan? —=
COSs 04 = m (629)
2
to provide a more practical equation
0 0
Atan? 74 + Btan ?4 +C=0 (6.30)
where A, B, and C are functions of the input variable.
A = J3—J+ (1 — JQ) cos 05 (631)
B = —2sinf, (6.32)
C = Ji+J3—(1+Jz)cosbs (6.33)

Equation (6.30) is a quadratic in tan (64/2) and can be used to find the
output angle 6.

(6.34)

b — 9t (—B +/B? - 4AC>
)=
24

To find the relationship between the input angle 65 and the coupler angle
03, the output angle 6, must be eliminated between Equations (6.20) and
(6.21). Transferring the terms not containing 64 to the right-hand side of
the equations, and squaring both sides, provides

(csinfy)® = (asinfy + bsinfs)’ (6.35)
(ccosy)® = (acosfy+bcosls —d). (6.36)

By adding Equations (6.35) and (6.36), and simplifying, we derive the equa-
tion:

Jy cos O3 + Jycos s + J5 = cos (03 — 02) (6.37)
where
Jy = %l (6.38)
62 _ d2 _ a2 _ b2
= ) 6.39
Is 2ab ( )

Equation (6.37) may be expanded and transformed to

0 0
Dtanzé’ +Etan?3 +F=0 (6.40)
where D, FE, and F are functions of the input variable.
D = J5 - J1 + (1 + J4) COS 92 (641)
E = —2sinf, (6.42)

F = Js+J— (1 — J4) cos 05 (643)
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Equation (6.40) is a quadratic in tan (63/2) and can be used to find the
coupler angle 63.

—E+VE? —4DF
03 = 2tan™* ( ) (6.44)

2D

Equations (6.34) and (6.44) can be used to calculate the output and
coupler angles 64 and 03 as two functions of the input angle 85, provided
the lengths a, b, ¢, and d are given. m

Example 218 Two possible configurations for a four-bar linkage.

At any angle 03, and for suitable values of a, b, ¢, and d, Equations (6.1)
and (6.2) provide two values for the output and coupler angles, 64 and 03.
Both solutions are possible and provide two different configurations for each
input angle 0.

A suitable set of (a, b, ¢, d) is the numbers that make the radicals in
Equations (6.1) and (6.2) real.

As an example, consider a linkage with the following lengths:

1
= 2

2.5

3. (6.45)

Q& o o 9
I

The J;,i=1,2,3,4,5 are functions of the links’ length and are equal to

d
J = —=3
a
d 3
Jo = —=—=12
2 c 25
2 _ b2 2 d2
g, = LIV ECHE 5
2ac
d
A —d?—a?-b?
Js = = —1.9375. 6.46
5 57 (6.46)

The coefficients of the quadratic equations are then calculated.

= —0.6914213562

= —1.414213562

3.894365082

—3.169733048

—1.414213562

1.416053390 (6.47)

MmO QW
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B
51.4°
45° N
N
B 149°
(a) (b)

315

FIGURE 6.4. Two possible configuration of a four-bar linkage having the same
input angle 0.

Using the minus sign, the output and coupler angles at 02 = 7w/4rad =

45deg are

04 2rad = 114.73 deg
03 =~ 0.897rad ~ 51.42deg

Q

and using the plus sign, they are

0y ~ —26rad~ —149deg
03 ~ —1.495rad ~ —85.7deg.

(6.48)

(6.49)

Figure 6.4 depicts the two possible configurations of the linkage for 65 =
45deg. The configuration in Figure 6.4(a) is called convex, non-crossed,
or elbow-up, and the configuration in Figure 6.4(b) is called concave,
crossed, or elbow-down.

Example 219 Velocity analysis of a four-bar linkage.
The wvelocity analysis of a four-bar linkage is possible by taking a time
derivative of Equations (6.20) and (6.21),

where

% (asinfs + bsinf3 — csinby)

= awsgcosbly +bwscosbhs —cwscosfy =0

d
7 (—=d+ acosfs + bcosfs — ccosby)

= —awssinfy —bwssinfs + cwysinfy =0

Wy = 92
w3 = 93
Wy = 94.

(6.50)

(6.51)

(6.52)



316 6. Applied Mechanisms

Assuming 0o and ws are given values, and 03, 04 are known from Equa-
tions (6.1) and (6.2), we may solve Equations (6.50) and (6.51), for ws

and wy.
oy — asin (62 — 03)
T Csin (04 — 03)
asin (62 — 04)
w3 =

Example 220 Velocity of moving joints for a four-bar linkage.

bsin (04 — 03)

w2

w2

(6.53)

(6.54)

Having the coordinates 05, 03, 04 and velocities ws, ws, wy enables us to
calculate the absolute and relative velocities of points A and B shown in
Figure 6.3. The absolute velocity is referred to the ground link, and relative

velocity refers to a moving point.
The absolute velocity of points A and B are

GVA = Gwa X GI‘Q
0 acosfs |
= 0 x | asinfy | =
w2 0 ] L
GVB = Gw4 X ry
0 ccosfy |
= 0 X | esinfy | =
Wy 0 ] L

—aws sin Oy

[ —cwysindy ]

aws cos O
0

cwy cos Oy
0

and the velocity of point B with respect to point A is

GVB _ GVA

G _
vVB/A =

[ —cw, sinfy

= cwy cos Oy —

0

—aws sin B9
aws cos 02
0

aws Sin 0y — cwy sin 04

= cwy cos By — aws cos B

0

The velocity of point B with respect to A can also be found as

G Gp 2
vp/a = ~“Ra7vp
Gp 2
= TRy%vp
G 2
= YRy (ows x °r3)
= gwsx “ry
0 bcos 03
= 0 X bSiIl93 =

w3 0

—bws sin 65
bws cos 03
0

(6.55)

(6.56)

(6.57)

(6.58)
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Equations (6.57) and (6.58) are both correct and convertible to each other.

Example 221 Acceleration analysis of a four-bar linkage.
The acceleration analysis of a four-bar linkage is possible by taking a time
derivative from Equations (6.50) and (6.51),

d
— (awg cos s + bwsz cos B3 — cwy cosby)

dt

= aoy cos by + bag cos B3 — cay cos Oy
—aw3 sin 0 — bw3 sin 03 + cw? sin 6
=0 (6.59)

d
p (—awsysinfs — bwssinf3 + cwy sinby)

= —aqgsinfy — bag sin O3 + cay sinfy

fa,wg cos By — bw§ cos O3 + cw?1 cos Oy

_ 0 (6.60)
where

Qo = (,«')2

a3 = d)g

Qg4 = d)4. (661)

Assuming 0y, wa, and as are given values as the kinematics of the input
link, 03, 04 are known from Equations (6.1) and (6.2), and w3, wy are
known from Equations (6.53) and (6.54), we may solve Equations (6.59)
and (6.60), for as and ay.

C3Cy — C1Cs

= _-— .62
0‘4 C1Cs — CsChy (6.62)
C5C5 — CyC
= —-— 6.63
s C1C5 — C5Cy (6.63)
where
Ci = csinby
Cy = bsinfs
Cs3 = aassinfy + awg cos Oy + bw?,, cos b3 — cwi cos 04
Cy = ccosby
Cs = bcosbs

Cs = aaycosly — awssinfy — bws sin O3 + cw? sin 0. (6.64)
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Example 222 Acceleration of moving joints for a four-bar linkage.
Having the angular kinematics of a four-bar linkage 05, 03, 04, wa, ws,
wy, Q2, ag, and a4 is necessary and enough to calculate the absolute and
relative accelerations of points A and B shown in Figure 6.3. The absolute
acceleration is referred to as the ground link, and the relative acceleration
refers to a moving point.
The absolute acceleration of points A and B are
“ay = gasx “ro+ qws x (Gw2 X Gr2)
—aag sin fy — aw3 cos
= ac cos 3 — aw? sin (6.65)
0

G G
ap = @Oy X T4+ gwy X (Gw4 X I‘4)
—cay sinfy — cw? cos 04
= cay cos By — cwisinby (6.66)

where

Cry = asin @ (6.67)

Cry = csindy (6.68)

qwy = 0 (6.69)

QW4 = 0 (6.70)

QO = 0 (6.71)

qOy = 0 . (6.72)
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The acceleration of point B with respect to point A is

G G G
ap/a = @GO3 X rz3+ gws X (Gw3 X 1“3)

—bag sin 03 — bw3 cos 03
= baz cos B3 — bw? sin 03 (6.73)

where

rs = bsin 093 (674)

GWwWs = 0 (6.75)

Gy = 0 . (6.76)

Example 223 Grashoff criterion.

The ability of a four-bar linkage to have a rotary link is determined by
Grashoff criterion. Assume the four links have the lengths s, I, p, and q,
where

I = longestlink

shortest link
the other two links

S

b,q

then, the Grashoff criterion states that the linkage can have a rotary link
if

l+s<p+aq. (6.77)
Different types of a Grashoff mechanism are:

1— Shortest link is the input link, then the mechanism is a crank-rocker.
2— Shortest link is the ground link, and the mechanism is a crank-crank.
3— At all other conditions, the mechanism is a rocker-rocker.

A crank-crank mechanism is also called a drag-link.

Example 224 Limit positions for a four-bar linkage.

When the output link of a four-bar linkage stops while the input link
can turn, we say the linkage is at a limit position. It happens when the
angle between the input and coupler links is either 180 deg or 360 deg. Limit
positions of a four-bar linkage, if there are any, must be determined by the
designer to make sure the linkage is designed properly. A limit position for
a four-bar linkage is shown in Figure 6.5.
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B

180° 360°

(a) (b)
FIGURE 6.5. Limit position for a four-bar linkage.

We show the limit angle of the output link by 04,,, 04,,, and the corre-
sponding input angles by Os, ., 02,,. They can be calculated by the following
equations:

- s o
B 1 le+b)+d*—c
02, = cos 2d(a+0) (6.78)

_ a+b2—d2—02-
04,, = cos ! ( )2cd (6.79)

- s o
B 2 |=a)y+d*—c
02,, = cos 20— a) (6.80)

b—a)?—d?—c?]
04,, = cos ' ( )QCd (6.81)

The sweep angle of the output link would be

¢ =04,,—04,,. (6.82)

Example 225 Dead positions for a four-bar linkage.

When the input link of a four-bar linkage locks, we say the linkage is at a
dead position. It happens when the angle between the output and coupler
links is either 180deg or 360deg. Limit positions of a four-bar linkage, if
there are any, must be determined by the designer to make sure the linkage
is mever stuck in a dead position. A dead position for a four-bar linkage is
shown in Figure 6.6.

We show the dead angle of the output link by 04, , 04,,,, and the corre-
sponding input angles by 02, , 02,,,. They can be calculated by the following
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FIGURE 6.6. Dead position for a four-bar linkage.

equations:

92D1 =

94D1 =

92D2 -

94D2 -

cos—

cos—

cos—

COS

-1
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A
180°
B
B 360°
M N M N
A

(b)

(a2 + d2 — b+ 0)2-
2ad

a2—d2—(b+c)2-
2(b+c)d

(a2 + d? — (b— 0)2-
2ad

(a2 — d? - (b— 0)2-
2ad
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(6.83)

(6.84)

(6.85)

(6.86)

Example 226 % Designing a four-bar linkage using Freudenstein’s equa-

tion.

Designing a mechanism can be thought of as determining the required
lengths of the links to accomplish a specific task.

Freudenstein’s equation (6.24)
Jycosly — Jy cosbs + J3 = cos (04 — 02)

N
Jo

J3

determines the input-output

output angles.

S ol

e

2ac

(6.87)

(6.88)
(6.89)

(6.90)

relationship of a four-bar linkage. This equa-
tion can be utilized to design a four-bar linkage for three associated input-
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Double arm Double arm
parallel opposed
/ i
Single arm Single arm
simple cam controlled

FIGURE 6.7. Four popular windshield wiper systems.

Figure 6.7 illustrates the four popular windshield wiper systems. Double-
arm parallel method is the most popular wiping system that serves more
than 90% of passenger cars. The double-arm opposing method has been
used been using since last century, however, it was never very popular. The
single-arm simple method is not very efficient, so the controlled single-arm
is designed to maximize the wiped area.

Wipers are used on windshields, and headlights. Figure 6.8 illustrates
a sample of double-arm parallel windshield wiper mechanism. A four-bar
linkage makes the main mechanism match the angular positions of the left
and right wipers. A dyad or a two-link connects the driving motor to the
main four-bar linkage and converts the rotational output of the motor into
the back-and-forth motion of the wipers.

The input and output links of the main four-bar linkage at three different
positions are shown in Figure 6.9. We show the beginning and the end angles
for the input link by 021 and 023, and for the output link by 041 and 043
respectively. To design the mechanism we must match the angular positions
of the left and right blades at the beginning and at the end positions. Let’s
add another match point approrimately in the middle of the total sweep
angles and design a four-bar linkage to match the angles indicated in Table
6.2.

Table 6.2 - Matching angles for a four-bar linkage of the double-arm
parallel mechanism shown in Figure 6.9.

Matching Input angle Output angle
1 021 = 157.6deg ~ 2.75rad | 04 = 157.2deg ~ 2.74rad
2 020 = 113.1deg ~ 1.97rad | 042 = 97.5deg =~ 1.7rad
3 023 = 69.5deg =~ 1.213rad | 043 = 26.8deg ~ 0.468 rad
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FIGURE 6.9. The input and output links of the main four-bar linkage of a wind-
shield wiper at three different positions.
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Substituting the input and output angles in Freudenstein’s equation (6.24)

Jl COS 0941 — JQ COSs 921 + J3 = COS (941 — 021)
Ji1coslyy — Jocosbos +J3 = cos (942 — 022) (691)
Jicosba3 — Jacosbos +J3 = cos (943 — 923)

provides the following set of three equations:

J1c0s2.74 — Jycos2.75+J3 = cos(2.74 — 2.75)
Jycosl.7—Jyco81.97+ J;3 = cos(1.7—1.97) (6.92)
J1080.468 — Jycos1.213 4+ J3 = cos(0.468 — 1.213)

The set of equations (6.92) is linear for the unknowns Jy, Jo, and Js

—0.92044  0.9243 1 Jy [ 0.99995
—0.12884 0.38868 1 Jy | = | 0.96377 (6.93)
0.89247 —0.35021 1 J3 | 0.73509

with the following solution:

Ji 2.5284
Jo | = | 3.8043 (6.94)
Js ~0.18911 |

The three factors Ji, Jo, J3 should be used to find four numbers for the
links’ length.

d
Ji = - (6.95)
Jy = g (6.96)
2124 2 g2
g = a*—b"+c°+d (6.97)

2ac

So, we may preset the length of one of the links, based on the physical situa-
tion. Traditionally, we use a =1 and find the remaining lengths. Then, the
designed mechanism can be magnified or shrunk to fit the required geometry.
In this example, we find

a 1

b = 238436

¢ = 0.66462

d = 2.5284. (6.98)

Assuming a distance d = 75cm =~ 29.5in for a real passenger car, between
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FIGURE 6.10. The main four-bar linkage of the windshield wiper at the initial
position measured in [cm].

the left and right fized joints M and N, we find the following dimensions:

= 296 mm
= 843mm
197 mm
= 750 mm (6.99)

QL o o &
Il

Such a mechanism is shown in Figure 6.10 at the initial position.

Example 227 % FEqual sweep angles for input and output links.
Let’s place the second matching point of the windshield wiper mechanism
in Example 226 exactly in the middle of the total sweep angles

157.6 4 69.5
Ory = +=113.55deg%1.982rad
157.2 4 26.8
00 = +:92deg%1.605rad. (6.100)

The first and second sweep angles for such matching points would be equal.
Having equal sweep angles makes the motion of the wipers more uniform,
although it cannot guarantee that the angular speed ratio of the left and
right blades remains constant.

The matching points for the main four-bar linkage of the windshield wiper
with equal sweep angles are indicated in Table 6.3.

Table 6.3 - Equal sweep angle matching points for the four-bar linkage of
the double-arm parallel mechanism shown in Figure 6.9.

Matching Input angle Output angle
1 051 = 157.6deg ~ 2.75rad 041 = 157.2deg ~ 2.74rad
2 035 = 113.55deg ~ 1.982rad | 0402 = 92deg ~ 1.605 rad
3 023 = 69.5deg ~ 1.213rad 043 = 26.8deg ~ 0.468 rad
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Substituting the angles in Freudenstein’s equation (6.24) provides the fol-
lowing set of three equations:
Jycos2.74 — Jycos2.75+ J3 = cos(2.74 —2.75)
J1 08 1.605 — Jp cos 1.982 + J3 cos (1.605 — 1.982)
J1€0s0.468 — Jycos1.213 4+ J3 = cos(0.468 —1.213) (6.101)

The set of equations can be written in a matriz form for the three unknowns
Jl, Jg, and J3

—-0.92044 09243 1] [ 0.999 95
—.0332 .3993 1 Jo | = | .929589 (6.102)
0.89247 —-0.35021 1 | | J3 0.73509
with the solution. ~
J1 0.276
Jo | = 0.6 (6.103)
J3 | 0.699
Using a =1 and the three factors Jy, Ja, and J3
d
J = - 6.104
1 - (6.104)
d
Jo = - (6.105)
a? — b+ + d?
Ja = 6.106
3 2ac ’ ( )
we can find the links’ length.
a = 1
b = 0.803
c = 046
d = 0.276. (6.107)

Assuming a distance d = T5cm = 29.5in between the left and right fixed
joint M and N, we find the following dimensions for a real passenger car:

a = 2717mm
b = 2182mm
c = 1250 mm
d = 750mm (6.108)

These dimensions do not show a practical design because the links’ length
may be longer than the width of the vehicle. It shows that the designed
mechanism 1is highly dependent on the second match point. So, it might
be possible to design a desirable mechanism by choosing a suitable second
match point.
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Example 228 % Second match point and link’s length.
To see how the design of the windshield wiper mechanism in Example
226 is dependent on the second match point, let’s set

157.6 + 69.5
029 — + — 113.55 deg ~ 1.982rad (6.109)
and make 045 a variable. The three matching points for the main four-bar

linkage of the windshield wiper are indicated in Table 6.4.

Table 6.4 - Variable second match point for the four-bar linkage of
the double-arm parallel mechanism shown in Figure 6.9.

Matching Input angle Output angle
1 021 = 157.6 deg ~ 2.75rad 041 = 157.2deg ~ 2.74rad
2 022 = 113.55 deg ~ 1.982rad 040
3 023 = 69.5deg ~ 1.213rad 043 = 26.8 deg =~ 0.468 rad

The Freudenstein’s equation (6.24) provides the following set of equa-
tions:

J1cos2.74 — Jycos2.75 + J3
J1cosO4p — Jo cos1.982 + J3
J1c0s0.468 — Jy cos1.213 + J;3

cos (2.74 — 2.75)
cos (042 — 1.982)
cos (0.468 — 1.213)  (6.110)

The set of equations gives the following solutions:

79.657 cos(f42 — 1.9815) — 70.96
79.657 cos 040 + 13.828
93.642 cos(f42 — 1.981) + 13.681 cos f45 — 81.045
65.832 cos 40 + 11.428
32.357 — 25.959 cos(049 — 1.981) + 53.184 cos(f42)

_ 111
I3 11.428 + 65.83 cos(012) (6.111)

Ji =

Jo =

Having d = 75 cm =~ 29.5in between the left and right fized joint M and N
as a ground link, and using the factors Jy, Jo, and Js3

d
= - 112
J1 - (6.112)
d
Bo= = (6.113)
232 2., 2
gy = a®—b*+c"+d , (6.114)

2ac

we can find the length of the other links a, b, and c as functions of 04o.
Figure 6.11 illustrates how the angle 0490 affects the lengths of the links.
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FIGURE 6.11. The length of links a, b, and c as functions of 042.
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FIGURE 6.12. Maginification of the plot for the length of links a, b, and ¢ as
functions of 042, around the optimal design.
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FIGURE 6.13. The finalized main four-bar linkage of the windshield wiper at the
initial position measured in [cm].

To hide the mechanism under the hood in a small space, we need to have
the lengths a and ¢ much shorter than the ground d. Based on Figure 6.11,
a possible solution would be around 049 = 100deg. Figure 6.12 illustrates a
magnified view around 645 = 100 deg.

To have the length of a and c less than 100 mm = 3.94in we pick 043 =
99.52deg ~ 1.737rad. Then the factors Ji, J2, and J3 are

Ji 9.740208376
Jy | = | 14.06262379 (6.115)
Js —3.032892944

and the links’ length for d = 7T5cm ~ 29.5in are equal to

= 77Tmm

= 772mm

= 53.3mm

= 750mm. (6.116)

& o o e

These numbers show a compact and reasonable mechanism. Figure 6.13
illustrates the finalized four-bar linkage of the windshield wiper at the initial
position.

Example 229 % Designing a dyad to attach a motor.

The main four-bar linkage of a windshield wiper is a rocker-rocker mech-
anism because both the input and the output links must oscillate between
two specific limits. To run the wipers and lock them at the limits, a two-link
dyad can be designed. First we set the point of installing a rotary motor
according to the physical conditions. Let point P, as shown in Figure 6.14,
be the point at which we install the electric motor to run the mechanism.
The next step would be to select a point on the input link to attach the sec-
ond link of the dyad. Although joint B is usually the best choice, we select
a point on the extension of the input link, indicated by D. There must be a
dyad between joints D and P with lengths p and q. When the mechanism
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is at the initial position, joint D is at the longest distance form the motor
P, and when it is at the final position, joint D is at the shortest distance
form the motor P. Let’s show the longest distance between P and D by [
and the shortest distance by s.

Il = longest distance between P and D
s = shortest distance between P and D
p,q = dyad lengths between P and D

When P and D are at the maximum distance, the two-link dyad must
be along each other, and when P and D are at the minimum distance, the
two-link dyad must be on top of each other. Therefore,

Il = q+p (6.117)
s = q—p (6.118)

where p is the shortest link, and q is the longest link of the dyad. Solving
Equations (6.117) and (6.118) for p and q provides

p = Z;S (6.119)
¢ = l;rs. (6.120)
In this example we measure
[ = 453.8mm
s = 312.1mm (6.121)
and calculate for p and q
D 70.8 mm
q 382.9 mm. (6.122)

The final design of the windshield mechanism and the running motor is
shown in Figure 6.14 at the initial and final positions. The shorter link of
the running dyad, p, must be attached to the motor at P, and the larger
link, q, connects joint D to the shorter link at C. The motor will turn the
shorter link, PC continuously at an angular speed w, while the longer link,
CD, will run the mechanism and protect the wiper links to go beyond the
initial and final angles.

Example 230 Application of four-bar linkage in a vehicle.

The double A arm suspension is a very popular mechanism for inde-
pendent suspension of street cars. Figure 6.15 illustrates a double A arm
suspension and its equivalent kinematic model. We attach the wheel to a
coupler point at C. The double A arm is also called double wishbone
SUSpension.
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FIGURE 6.14. The final design of the windshield mechanism at the initial and
final positions.

FIGURE 6.15. Double A arm suspension in a four-bar linkage mechanism.
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FIGURE 6.16. A slider-crank mechanism.

6.2 Slider-Crank Mechanism

A slider-crank mechanism is shown in Figure 6.16. A slider-crank mecha-
nism is a four-bar linkage. Link number 1 is the ground, which is the base
and reference link. Link number 2 = M A is usually the input link, which
is controlled by the input angle 6. Link number 4 is the slider link that is
usually considered as the output link. The output variable is the horizontal
distance s between the slider and a fixed point on the ground, which is
usually the revolute joint at M. If the slider slides on a flat surface, we
define the horizon by a straight line parallel to the flat surface and passing
through M. The link number 3 = AB is the coupler link with angular posi-
tion @3, which connects the input link to the output slider. This mechanism
is called the slider-crank because in most applications, the input link is a
crank link that rotates 360 deg, and the output is a slider.

The position of the output slider, s, and the angular position of the
coupler link, €3, are functions of the link’s length and the value of the
input variable 6. The functions are

-G++vG?—-4H

= 6.123
. (6123)
—asind
0; = sin ! (Lbbm?) (6.124)
where
G = —2acosbs (6.125)
H = a*+e®—b*—2aesinbs. (6.126)

Proof. We show the slider-crank mechanism by a vector loop, as shown in
Figure 6.17. The direction of each vector is arbitrary, however the angles
should be associated to the vector’s direction and be measured with the
positive direction of the z-axis. The links and their expression vectors are
shown in Table 6.5.
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FIGURE 6.17. Expressing a slider-crank mechanism by a vector loop.

Table 6.5 - Vector representation of the slider-crank mechanism
shown in Figure 6.17.

Link | Vector | Length Angle Variable
1 Cry s 01 = 180deg s
2 GI‘Q a 02 92
3 GI‘3 b 93 93
4 Cry e 0, = 90deg -

The vector loop is

Cri4 %y — “r3— “ry =0 (6.127)

and we may decompose the vector equation (6.127) into sin and cos com-
ponents.

asinfy —bsinfls —e = 0 (6.128)
acosfy —bcosfs—s = 0 (6.129)

To derive the relationship between the input angle 65 and the output
position s, the coupler angle 63 must be eliminated between Equations
(6.128) and (6.129). Transferring the terms containing 3 to the other side
of the equations, and squaring both sides, we get

(bsinf3)® = (asinfy —e)’ (6.130)
(beosBs)® = (acosfy —s)°. (6.131)

By adding Equations (6.130) and (6.131), we derive the following equation:

s%2 —2ascosls + a + e? — b? — 2aesinfy = 0 (6.132)
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or
2 +Gs+H=0 (6.133)

where
G = —2acosby (6.134)
H = a*+e®—b*—2aesinbs. (6.135)

Equation (6.133) is a quadratic in s and provides the following solution:
s -G+ VG? - 4H
N 2

To find the relationship between the input angle 5 and the coupler angle
03, we can use Equations (6.128) or (6.129) to solve for 63.

(6.136)

fs = sin! (%) (6.137)
05 = cos™! <%) (6.138)

Equations (6.34) and (6.44) can be used to calculate the output and
coupler variables s and 63 as functions of the input angle 65, provided the
lengths a, b, and e are given. m

Example 231 Two possible configurations for a slider-crank mechanism.
At any angle 05, and for suitable values of a, b, and e, Equation (6.136)
provides two values for the output variable s. Both solutions are possible
and provide two different configurations for the mechanism. A suitable set
of (a, b, e) is the numbers that make the radical in Equations (6.136) real.
As an example, consider a slider-crank mechanism at 62 = 7/4rad =
45 deg with the lengths

a = 1
b = 2
e = 0.5 (6.139)

To solve the possible configurations, we start by calculating the coefficients
of the quadratic equation (6.183)

G = —2acosfy

= —14142 (6.140)
H = d®>+¢e®>—1%—2aesinb,

= —3.4571. (6.141)

Employing Equation (6.136) provides

,_—G+VCG A _{ 2.696

2 —1.282 (6.142)
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FIGURE 6.18. Two possible configurations of a slider-crank mechanism having
the same input angle 5.

The corresponding coupler angle 83 can be calculated form either Equation
(6.137) or (6.138).

e

{ 3.037rad ~ 174 deg

0.103rad ~ 5.9 deg (6.143)

~

Figure 6.18 depicts the two possible configurations of the mechanism for
0> = 45deg.

Example 232 Velocity analysis of a slider-crank mechanism.
The velocity analysis of a slider-crank mechanism is possible by taking a
time deriwative of Equations (6.128) and (6.129),

4 (asinfy — bsinfs — e)

dt
= awgcosfy —bwscosfsz =0 (6.144)
4 (acosBy —beosfs — s)
a 2 3
= —awssinf; +bwszsinfs —s=10 (6.145)
where
Wy = 92
ws = 03 (6.146)

Assuming 02 and wo are given values, and s, 03 are known from Equa-
tions (6.123) and (6.124), we may solve Equations (6.144) and (6.145) for
$ and ws.

. sin (03 — 02)
= —2 4 14
$ P aws (6.147)
wy = e (6.148)

cosfls b
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Example 233 Velocity of moving joints for a slider-crank mechanism.

Having the coordinates 02, 03, s and velocities wa, w3, § enables us to
calculate the absolute and relative velocities of points A and B shown in
Figure 6.17. The absolute velocities of points A and B are

GVA = GWo X GI‘Q
0 acos by —aws sin B9
= 0 X | asinfy | = aws cos B (6.149)
w2 0 0
GVB = $17
sin (03 - 02)
70%;2
= costs (6.150)
0

and the velocity of point B with respect to point A is

GVB/A = Yvp— %y
Sihi¥s —Y2) (0 0_ 02) aws —aws sin 09
= cos 03 — | awscosfy
L 0 O
r aws sin o + a$‘:29—3 sin (93 — 02)
= —aws cos Oy . (6.151)
0

The velocity of point B with respect to A can also be found as

“vpa = “Ry’vp
— GR,2yv,
= “Ry (sws x ’r3)
= qw3 X GI‘3
0 bcos 03 —bws sin 65
= 0 x | bsinfs | = bws cosls3 | . (6.152)
w3 0 0

FEquations (6.151) and (6.152) are both correct and convertible to each
other.
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Example 234 Acceleration analysis of a slider-crank mechanism.
The acceleration analysis of a slider-crank mechanism is possible by tak-
ing another time derivative from Equations (6.144) and (6.145),

% (aws cosfz — bws cosb3)

= aogy cos by — bas cosfs — aw% sin 09 + bw?), sin 05
0 (6.153)

— (—awssinfy + bwssinfz — §)

dt
= —aagsinfy — bas sin O3 + awg cos Oy + bw% cosbl3 — §
0 (6.154)
where,
(65 = 01)2
a3 = (,«')3. (6155)

Assuming 0z, wo, and ag are given values as the kinematics of the input
link, s, 03, are known from Equations (6.123) and (6.124), and $, ws are
known from Equations (6.147) and (6.148), we may solve Equations (6.153)
and (6.154) for 5 and as.

—aag sin (02 + 03) + bw3 cos 203 + aw3 cos (02 — 03)

s _ 1
5 <030 (6.156)

acg cos B — aw3 sin 3 + bw? sin 03
= 6.157
as bcos O3 ( )

Example 235 Acceleration of moving joints of a slider-crank mechanism.
Having the angular kinematics of a slider-crank mechanism 05, 03, s, wa,
ws, §, g, ag, and § are necessary and enough to calculate the absolute and
relative accelerations of points A and B, shown in Figure 6.17.
The absolute acceleration of points A and B are

“ay = gasx “ry+ qws x (Gw2 X Gr2)
—aag sin fy — aw3 cos Oy
= acg cos fy — aw3 sin Oy (6.158)
0
GaB =517
—aag sin (02 + 03) + bw3 cos 203 + aw3 cos (02 — 03)
- cos 03 . (6.159)

0
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FIGURE 6.19. Limit position for a slider-crank mechanism.

The acceleration of point B with respect to point A is

G G G
ap/4 = @gogX "r3+ gwsX (Gws X 1‘3)
—bag sin 03 — bw3 cos 03

bag cos b3 — bw% sin 03
0

Example 236 Limit positions for a slider-crank mechanism.

(6.160)

When the output slider of a slider-crank mechanism stops while the input
link can turn, we say the slider is at a limit position. It happens when the
angle between the input and coupler links is either 180 deg or 360 deg. Limit
positions of a slider-crank mechanism are usually dictated by the design
requirements. A limit position for a slider-crank mechanism is shown in

Figure 6.19.

We show the limit angle of the input link by 0s,,, 02,,, and the cor-
responding horizontal distance of the slider by Syraz, Smin- They can be

calculated by the following equations:

092L1 = Sin_1|: ¢ :|

SMaz = b+ a)2 —e2

. e
0y,, = sin! { 5 }
Smin = (b— a)® — e2
The length of stroke that the slider travels repeatedly would be

S = SMaz — Smin

\/(b+a)2—62—\/(b—a)2—62.

(6.161)

(6.162)

(6.163)

(6.164)

(6.165)
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Example 237 % Quick return slider-crank mechanism.
Consider a slider-crank with a rotating input link at a constant angular
velocity wa. The required time for the slider to move from Spmin t0 Sprar 18

02L2 - 02L1
w2

- w% (sm—l [ﬁ] —sin~! {biaD (6.166)

and the required time for returning from Syraz t0 Smin 18

t1 =

¢ _ 02L1 - 02L2
g = 2L 7212
w2
-2 sin™! | —S— | —sin~! | 2 (6.167)
T Wy b+a b—al/)’ '
If e =0, then
0s,, = 0 (6.168)
02,, = 180deg (6.169)
and therefore,
o=ty = (6.170)
w2
However, when e < 0 then,
to <t (6171)

and the slider returns to Smin faster. Such a mechanism is called quick
return.

6.3 Inverted Slider-Crank Mechanism

An inverted slider-crank mechanism is shown in Figure 6.20. It is a four-
link mechanism. Link number 1 is the ground link, which is the base and
reference link. Link number 2 = M A is usually the input link, which is
controlled by the input angle #s. Link number 4 is the slider link and is
usually considered as the output link. The slider link has a revolute joint
with the ground and a prismatic joint with the coupler link 3 = AB. The
output variable can be the angle of the slider with the horizon, or the length
AB. The link number 3 = AB is the coupler link with angular position 63.

If we attach the coupler link of a slider-crank mechanism to the ground,
an inverted slider-crank mechanism is made. Changing the grounded link
produces a new mechanism that is called an inversion of the previous mech-
anism. Hence, the inverted slider-crank is an inversion of a slider-crank
mechanism.
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FIGURE 6.20. An inverted slider-crank mechanism.

The angular position of the output slider 8, and the length of the coupler
link b are functions of the lengths of the links and the value of the input
variable 0. These variables are:

b = ++v/a?+d? —e? —2adcosby (6.172)

7r

0, = 03+ 3

—H++vH? —4GI
= 2tan! ( ¢ ) (6.173)
2G
where

G = d—e—acosb; (6.174)
H = 2asinb; (6.175)
I = acosby—d—e. (6.176)

Proof. We show the inverted slider-crank mechanism by a vector loop as
shown in Figure 6.21. The direction of each vector is arbitrary, however,
the angles should be associated to the vector’s direction and be measured
with positive direction of the z-axis. The links and their expression vectors
are shown in Table 6.6.

Table 6.6 - Vector representation of the inverted slider-crank
mechanism shown in Figure 6.21.

Link | Vector | Length Angle Variable
1 Gry d 01 = 180deg d
2 GI‘Q a 92 92
3 GI‘3 b 93 93 or 94
4 Cry e 04 =035+ 90deg —

The vector loop is
GI‘1 + GI‘Q — GI‘3 — GI‘4 =0 (6177)
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FIGURE 6.21. Kinematic model of an inverted slider-crank mechanism.

X

which can be decomposed into sin and cos components.
asin @y — bsin (04 - g) —esinfy, = 0 (6.178)
—d + acosfy — bsin (94 — g) —ecosly = 0 (6.179)

To derive the relationship between the input angle 65 and the output 4,
we eliminate b between Equations (6.178) and (6.179) and find

(acosfy — d)cosfy + asinfysinfy — e = 0. (6.180)

The have a better expression suitable for computer programming, we
may use trigonometric equations

2tan%

sinf, = 2—29 (6.181)
1+ tan? =
+ tan 5
1+tan20—4

cosfy = — 2 (6.182)
1+tan20—4
2

to transform Equation (6.180) to a more useful equation
5 04 04
Gtan 7+Htan7+I:O (6.183)

where, I, J, and K are functions of the input variable.

G = d—e—acosbs (6.184)
H = 2asinfy (6.185)
I = acosby—d—e (6.186)
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Equation (6.183) is a quadratic in tan (64/2) and can be used to find the
output angle 6.

_ N H2 —
94:2tan—1< HEvVH 4G1> (6.187)

2G

To find the relationship between the input angle 5 and the coupler length
b, we may solve Equations (6.178) and (6.179) for sin 64 and cos 64
abcosfy — aesin Oy + bd

sinf, = e (6.188)

bsin Oy — 0 d
cosfy = _ash 2b2(fz(2)s 2te (6.189)

or substitute (6.187) in (6.180) and solve for b. By squaring and adding
Equations (6.188) and (6.189), we find the following equation:

a? —b? +d* — e* — 2adcosfy = 0 (6.190)

which must be solved for b.

b=+va2+ d? — 2 — 2ad cos 0, (6.191)
|

Example 238 Two possible configurations for an inverted slider-crank mech-
anism.

At any angle 02, and for suitable values of a, d, and e, Equations (6.172)
and (6.173) provide two values for the output b and coupler angles 04. Both
solutions are possible and provide two different configurations for the mech-
anism. A suitable set of (a, d, e) are the numbers that make the radicals in
Equations (6.172) and (6.173) real.

For example, consider an inverted slider-crank mechanism at 03 = w/4rad =

45 deg with the lengths

a = 1
e = 0.5
d = 3. (6.192)

The parameters of Equation (6.172) are equal to

G = d—e—acosbly=1.7929
H = 2asinfly =1.4142
I = acosfy—d—e=-27929 (6.193)

Now, Equation (6.183) gives two real values for 0,4

0, ~ { 1.48rad ~ 84.8 deg (6.194)

—2.08rad =~ —120deg
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(a) (b)

FIGURE 6.22. Two configurations of an inverted slider crank mechanism for
02 =45 deg.

Using the known values and for 04 = 1.48rad, Fquations (6.188) will
provide
b~ 2.33. (6.195)

When 64 = —1.732rad we get
b= —2.28. (6.196)

Figure 6.22 depicts the two configurations of the mechanism for 05 =
45 deg.

Example 239 Velocity analysis of an inverted slider-crank mechanism.
The velocity analysis of a slider-crank mechanism can be found by taking
a time derivative of Equations (6.178) and (6.179),

% (asinfy + bcosfy — esinby)

= awycosfy —bwysinby + bcoshy — ew,ycosly =0 (6.197)

%(acosﬁg +bcosly —ecosly —d)

= —qwssinfy —bwysinby + bcosly + ew,sinfy =0 (6.198)
where
wo = 0
wyg = wsz=04. (6.199)

Assuming 02 and wo are given values, and b, 04 are known from Equa-
tions (6.172) and (6.173), we may solve Equations (6.197) and (6.198) for
b and wy.

b = %wg [beos (04 — 02) — esin (64 — 05)] (6.200)

wqg = W3 = %OJQ sin (92 — 94) (6201)
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Example 240 Velocity of moving joints for an inverted slider-crank mech-

anism.

Having the coordinates 05, 04, b and velocities wa, wy, b enables us to
calculate the absolute and relative velocities of points A and B shown in
Figure 6.21. The absolute and relative velocities of points A and B are

G

VB4

G
VB;3/A

G
VB3/By

Gwo X GI‘Q
0 a cos by —aws sin 0y
0 X | asinfy | = aws cos O (6.202)
wo 0 0
GWy X "Iy
0 ecos by —ewy sin Oy
0 X | esinfy | = ewy cos 4 (6.203)
w4 0 0

Gw3 X (7 GI‘3)

0 —bcos by bw, sin 04
0 x | —bsinfy | = | —bwycosfy (6.204)
w4 0 0

G G
= Vpz/Aat+ VA

bw, sin 04 —aws sin Oy
= —bwycosby | + aws cos B
i 0 0
[ bw,gsin Oy — aws sin Oy
= awsy cos By — bw, cos 04 (6.205)
i 0
GV33 B GVB4
[ bwy sin 4 — aws sin O —ewy sin 04
aws cos By — bwycosfy | — ewy cos Oy
i 0 0
[ wsesinfy — aws sin @y + bw, sin 6,4
awsg cos By — waecosly — bwycosly | . (6.206)
0
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Example 241 Acceleration analysis of an inverted slider-crank mecha-
nism.

The acceleration analysis of an inverted slider-crank mechanism can be
found by taking another time derivative from Equations (6.197) and (6.198),

% (awg cosfy —bwysinfy + bcost94 —ewy cos04)

= aogcosfy — aw% sin 5 — bayy sin 04 + bwi cosfy
+bcos 04 — l}w4 sin 04 — ecq cos 04 + ewi sin 04
= 0 (6.207)

d
dt
= —aagsinfy + aw% cos g — bay sinfy — bwi cos 04

(—awz Sinfs — bwy sin Oy + bcos Oy + e wy sin 94)

+bcosOy — bwysin Oy + ecy sinfy + ewi cos 04
= 0 (6.208)

where

042:(;:)2

g = Q3= (.2}4 = (,«')3. (6209)

Assuming 0z, wo, and ay are given values as the kinematics of the input
link, b, 04, are known from Equations (6.172) and (6.1738), and b, wy are
known from Equations (6.200) and (6.201), we may solve Equations (6.207)
and (6.208), for b and oy

; C7C12 — CyChp
b 00y — CsCro (6.210)
CoC11 — C5C12

oy = — 6.211
* C7C11 — CgCho ( )

where,
C; = sinf,
Cs = bcosfy+esinby
Cy = aagsinly + aw% cos Oy — 2bwy cos 04

+bw? sin 04 — ew? cos Oy

010 = COS 94

Q
I

—bsinfy + ecosly
Cia = aagcosby — aw% sin 0 + 2bw, sin 04
+bw cos O + ew? sin . (6.212)
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FIGURE 6.23. The McPherson strut suspension is an inverted slider mechanism.

Example 242 Application of inverted slider mechanism in vehicles.

The McPherson strut suspension is a very popular mechanism for inde-
pendent front suspension of street cars. Figure 6.23 illustrates a McPherson
strut suspension and its equivalent kinematic model. We attach the wheel
to a coupler point at C.

The piston rod of the shock absorber serves as a kingpin axis at the top
of the strut. At the bottom, the shock absorber pivots on a ball joint on
a single lower arm. The McPherson strut, also called the Chapman strut,
was invented by Earl McPherson in the 1940s. It was first introduced on
the 1949 Ford Vedette, and also adopted in the 1951 Ford Consul, and then
become one of the dominating suspension systems because it’s compactness
and has a low cost.

6.4 Instant Center of Rotation

In a general plane motion of a rigid body, at a given instant, the velocities
of various points of the body can be expressed as the result of a rotation
about an axis perpendicular to the plane. This axis intersects the plane at
a point called the instantaneous center of rotation of the body with respect
to the ground. The instantaneous center of rotation is also called instant
center, centro, and pole.

If the directions of the velocities of two different body points A and B
are known, the instant center of rotation I is at the intersection of the lines
perpendicular to the velocity vectors v4 and vg. Such a situation is shown
in Figure 6.24(a).

If the velocity vectors v 4 and vp are perpendicular to the line AB and
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FIGURE 6.24. Determination of the instantaneous center of rotation I for a
moving rigid body.

if their magnitudes are known, the instantaneous center of rotation I is at
the intersection of AB with the line joining the extremities of the velocity
vectors. Such a situation is shown in Figure 6.24(b).

There is an instant center of rotation between every two links moving
with respect to each other. The instant center is a point common to both
bodies that has the same velocity in each body coordinate frame.

The three instant centers , I1o, I3, and 113 between three links numbered
1, 2, and 3 lie on a straight line. This statement is called the Kennedy
theorem for three instant centers.

Proof. Consider the two bodies shown in Figure 6.25. The ground is link
number 1, links number 2 and 3 are pivoted to the ground at points M
and N, and are rotating with angular velocities wo and ws. The two links
are contacted at point C'. The revolute joint at M is the instant center I
and the revolute joint at N is the instant center I73.

The velocity of point C' as a point of link 2 is v¢,, perpendicular to the
radius MC. Similarly, the velocity of point C' as a point of link 3 is v¢,,
perpendicular to the radius NC. The instant center of rotation I;3 must
be a common point with the same velocity in both bodies. Let’s draw the
normal line n — n, and tangential line ¢ — ¢ to the curves of links 2 and 3,
at the contact point C.

Point C' is a common point between the two bodies. The normal compo-
nents of ve, and v, must be equal to keep contact, so the only difference
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FIGURE 6.25. A 3-link mechanism with the ground as link number 1, and two
moving links, numbers 2 and 3.

between the velocity of the common point can be in the tangent compo-
nents. So, the instant center of rotation I13 must be at a position where
the relative velocity of points Cy and C3 with respect to I;3 are equal and
are on the line ¢ — t. Hence, it must be on the normal line n — n, and the
intersection of the normal line n — n with the center line M N is the only
possible point for the instant center of rotation ;3.

Let’s define

Lals = 1o (6.213)
Lisls = 3 (6.214)

then, because the velocities of the two bodies must be equal at the common
instant center of rotation, we have

ZQLUQ = lgtdg (6215)
or
w2 b
ws o
1
= — (6.216)
1+ —
ly

where, d is the length of the ground link M N. =
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FIGURE 6.26. The instant centers of rotation for a four-bar linkage, a slid-
er-crank, and an inverted slider-crank mechanism.

Example 243 Number of instant centers.

There is one instant center between every two relatively moving bodies.
So, there are three instant centers between three bodies. The number N of
instant centers between n relatively moving bodies is

N_m (n— 1).
2
Thus, a four-bar linkage has six instant centers, Is, I3, I14, Io3, Io4, I34.
The symbol I;; indicates the instant center of rotation between kinks i and
j. Because two links have only one instant center, we have

L = L. (6.218)

(6.217)

The four instant centers of rotation for a four-bar linkage, a slider-crank,
and an inverted slider-crank mechanisms are shown in Figure 6.26. The in-
stant center of rotation for two links that slide on each other is at infinity,
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FIGURE 6.27. Fifteen instant center of rotations for a 6-link mechanism.

on a line normal to the common tangent. So, T4 in Figure 6.26(b) is on
a line perpendicular to the ground, and Is4 in Figure 6.26(c) is on perpen-
dicular to the link 3.

Figure 6.27 depicts the 15 instant centers for a siz-link mechanism.

Example 244 Application of instant center of rotation in vehicles.

Figure 6.28 illustrates a double A-arm suspension and its equivalent kine-
matic model. The wheel will be fastened to the coupler link AB, witch con-
nects the upper A-arm BN to the lower A-arm AN. The A-arms are con-
nected to the body with two revolute joints at N and M. The body of the
vehicle acts as the ground link for the suspension mechanism, which is a
four-bar linkage.

Points N and M are, respectively, the instant centers of rotation for the
upper and lower arms with respect to the body. The intersection point of the
extension line for the upper and lower A-arms indicates the instant center
of rotation for the coupler with respect to the body. When the suspension
moves, the wheel will rotate about point I with respect to the body. Point I
is called the roll center of the wheel and body.
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A

FIGURE 6.28. The roll center of a double A-arm suspension and its equivalent
kinematic model.

Example 245 The instant centers of rotation may not be stationary.
When a mechanism moves, the instant centers of rotation may move,
if they are not at a fized joint with the ground. Figure 6.29 illustrates a
four-bar linkage at a few different positions and shows the instant centers
of rotation for the coupler with respect to the ground Ii3. Point I3 will
move when the linkage moves, and traces a path shown in the figure.

Example 246 Sliding a slender on the wall.

Figure 6.30 illustrates a slender bar AB sliding at points A and C. We
have the velocity axis of two points A and C, and therefore, we can find the
instant center of rotation I.

The coordinates of point I are a function of the parameter 6 as follows:

xy = hcotd (6.219)
yr = h+xrcotd
h(1+cot?6). (6.220)

Eliminating 0 between x and y, generates the path of motion for I.

1,2
yr=nh (1 + h—§> (6.221)

Example 247 % Plane motion of a rigid body.
The plane motion of a rigid body is such that all points of the body move

only in parallel planes. So, to study the motion of the body, it is enough to
examine the motion of points in just one plane.
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FIGURE 6.29. Path of motion for the instant center of rotation I13.
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FIGURE 6.30. A slender bar AB sliding at points A and C.
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FIGURE 6.31. A rigid body in a planar motion.

Figure 6.31 illustrates a rigid body in a planar motion and the correspond-
ing coordinate frames. The position, velocity, and acceleration of body point
P are:

% p = C%dp+ “Rp Prp
= %+ Grp (6.222)
vp = %dp+ qws x (GI‘P - GdB)
= %dp 4 qwp x Grp (6.223)

where, dp indicates the position of the moving origin o relative to the
fized origin O. The term©dp is the velocity of point o and, gwp x Grp
is the velocity of point P relative to o.

GVP/O = gwp X grp (6224)

Although it is not a correct view, it might sometimes help if we interpret
GaB as the translational velocity and qwp X gl‘p as the rotational velocity
components of “vp. Then, the velocity of any point P of a rigid body is
a superposition of the wvelocity Gdp of another arbitrary point o and the
angular velocity gwp x Grp of the points P around o.

The relative velocity vector v p /o0 18 perpendicular to the relative position
vector grp. Employing the same concept we can say that the velocity of
points P and o with respect to another point QQ are perpendicular to grp/Q
and grO/Q respectively. We may search for a point Q), as the instantaneous
center of rotation, at which the velocity is zero. Points o, P, and Q) are
shown in Figure 6.32.
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FIGURE 6.32. Instant center of rotation @, for planar motion of a rigid body.

Assuming a position vector GrO/Q for the instant center point Q, let’s
define
GI‘O/Q =aq GdB +bg gwr X GdB (6.225)
then, following (6.223), the velocity of point Q can be expressed by
GVQ = GdB + gwp X GI‘Q/O
= GaB — gwp X GI'O/Q (6226)
= Gc'le qwp X (aQGdB +bQGwB>< G&B)
= Gdg—aQGwa GdB—bQGwa (GUJBX GdB)
= 0. (6.227)

Now, using the following equations

cwp = wKk (6.228)
awp X (GwB X Gdg) = (GwB . GdB) awWB —w2 GdB (6.229)
cwp- % = 0 (6.230)

we find
(1 + bQ w2) G&B —ag gwp X GdB =0. (6.231)

Because ©dp and qwp x dp must be perpendicular, Equation (6.231)
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provides
1+ bg w? 0 (6.232)
agQ 0 (6.233)
and therefore,
1 .
GI‘Q/O = E (GwB X GdB) . (6234)

Example 248 Y Instantaneous center of acceleration.

For planar motions of rigid bodies, it is possible to find a body point with
zero acceleration. Such a point may be called the instantaneous center of
acceleration. When a rigid body is in a planar motion, we can be express
the acceleration of a body point P, such as shown in Figure 6.32, as

Yap = CYdp + gap x (“rp — “dp)
+cwp X (qwp x (GI'P - GdB))
= GHB + gap X grp + qgwp X (GwB X gI‘p) . (6.235)
The term qgwp X (GwB X grp) is the centripetal acceleration, and the
term gap X grp s the tangential acceleration and is perpendicular to
grp. Because the motion is planar, the angular velocity vector is always in
parallel to k and K unit vectors.

cwp = wk (6.236)
cap = ok (6.237)

Therefore, the velocity “vp and acceleration “ap can be simplified to
CGap = %dp + gap x grp — w2 grp. (6.238)

We now look for a zero acceleration point S and express its position vector
by

GPS/O =as%dp +bscap x “dp (6.239)
and based on (6.238) we have,
GaS = G&B + gap X grs —w? grs

“dp + qap x GrS/o - w? GTS/O
= Cdp + gap x (as “dp +bs gap x GaB)
—w? (as GaB + bs cap X GHB)
= GaB +asgoap X GaB +bs gap X (GaB X GHB)

—a5w2 G&B —b5w2 cap X G&B
= 0. (6.240)
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Simplifying results in

(1 — a5w2 —bg 052) G&B + (as — b5w2) aap X GdB =0 (6.241)

and because ©dp and cap x Sdg are perpendicular, we must have

l—asw?—bsa? = 0 (6.242)
as —bsw? = 0 (6.243)
and hence,
2
w
1
bs = —/——. 6.245
s w? 4 o2 ( )

The position vector of the instant center of acceleration is then equal to

1

== (w2G&B + gap x G&B) (6.246)

G
I's/o

6.5 Coupler Point Curve

The most common independent suspension systems are double A-arm and
inverted slider-crank mechanisms. The wheel of the vehicle will be attached
to a point of the coupler link of the mechanism, which is attached to the
body of the vehicle.

6.5.1 Coupler Point Curve for Four-Bar Linkages

Figure 6.33 illustrates a four-bar linkage M N AB and a coupler point at C'.
When the mechanism moves, the coupler point C' will move on a path.

The path of the coupler point is called the coupler point curve. Consid-
ering 65 as the input of the mechanism, the parametric coordinates of the
coupler point curve (z¢,yc) are

rc = acosby+ecos(f—v+ ) (6.247)
yo = asinfy+esin(f—v+a) (6.248)
where,
LU I (6.249)
T = d — acoslq '

R S s
tan™
b2+ f2 — 2
f = Va?+d?—2adcosby. (6.251)

(6.250)
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Clxc ye)

FIGURE 6.33. A four-bar linkage M N AB and a coupler point at C.

Proof. The position of the coupler point C in Figure 6.33 is defined by
the polar coordinates length e and angle « in a coordinate frame attached
to the coupler link, and by (z¢,yc) in the Cartesian coordinate frame
attached to the ground. The length of the links are indicated by M A = a,
AB = b, NB = ¢, and MN = d. We show the angle ZANM by ~ and
/BAN by (. Let’s draw a line [ through A and parallel to the ground link
M N, then,

/NAl = /ANM =~ (6.252)
/CAl = 1 (6.253)
Y = B—y+a (6.254)

The global coordinates of point C are

xec = acosby+ ecost (6.255)
yo = asinfy+esiny (6.256)

where, 1) comes from Equation (6.254). The angle 3 can be calculated from
the cosine law in ABAN,

B4 f2 -2

57 (6.257)

cosf =

where, f = AN. Applying the cosine law in AAM N shows that f is equal
to

f=+a%+d? —2adcos b, (6.258)

given by Equation (6.251).
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FIGURE 6.34. A double A arm suspension mechanism and its equivalent four-bar
linkage kinematic model.

For computer calculation ease, it is better to find S from the trigonomet-
ric equation

tan? 3 = sec? B — 1 (6.259)

after we substitute sec 8 from Equation (6.257).

. \/4b2f2 _ (b2—|—f2—02)2
b2 + f2 — 2

B =tan~ (6.260)

The angle v can be found from a tan equation based on the vertical
distance of point A from the ground link M N.

1 asinfy

=tan= ————
v d — acosfy

(6.261)

Therefore, the coordinates x¢ and yo can be calculated as two parametric
functions of #5 for a given set of a, b, ¢, d, e, and . m

Example 249 A poorely designed double A arm suspension mechanism.

Figure 6.34 illustrates a double A arm suspension mechanism and its
equivalent four-bar linkage kinematic model. Points M and N are fixed
joints on the body, and points A and B are moving joints attached to the
wheel supporting coupler link. Point C' is on the spindle and supposed to
be the wheel center. When the wheel moves up and down, the wheel center
moves on a the couple point curve shown in the figure. The wheel’s center
of proper suspension mechanism is supposed to move vertically, however,
the wheel center of the suspension moves on a high curvature path and
generates an undesired camber.

A small motion of the kinematic model of suspension is shown in Fig-
ure 6.35, and the actual suspension and wheel configurations are shown in
Figure 6.36.
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FIGURE 6.35. A small motion of the kinematic model.

FIGURE 6.36. A small motion of the actual suspension and wheel configurations.
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y C(xc yc)

- X
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Y

FIGURE 6.37. A slider-crank mechanism and a coupler point at C.

6.5.2 Coupler Point Curve for a Slider-Crank Mechanism

Figure 6.37 illustrates a slider-crank mechanism and a coupler point at C.
When the mechanism moves, coupler point C' will move on a coupler point
curve with the following parametric equation:

zc = acosfy +ccos(a—7) (6.262)
Yo = asinfy + csin(a—7) (6.263)

The angle 65 is the input angle and acts as a parameter, and angle v can
be calculated from the following equation.

] 0 _
v =sin~! % (6.264)

Proof. We attach a planar Cartesian coordinate frame to the ground link
at M. The z-axis is parallel to the ground indicated by the sliding surface,
as shown in Figure 6.37. Drawing a line [ through A and parallel to the
ground shows that

B=a—7 (6.265)

where 7 is the angle between the coupler link and the ground.
The coordinates (z¢, yc) for point C are

xc = acosbs+ ccosf (6.266)
Yo = asinfy + csing. (6.267)
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FIGURE 6.38. A centric and symmetric slider-crank mechanism.

To calculate the angle «, we examine AAEB and find

AE
AB
asinfy — e

= L=t (6.268)

siny =

that finishes Equation (6.264).
Therefore, the coordinates x¢ and y¢ can be calculated as two parametric
functions of 65 for a given set of a, b, ¢, e, and a. B

Example 250 A centric and symmetric slider-crank mechanism.

Point C (z¢, yc) is the coupler point of a centric and symmetric slider-
crank mechanism shown in Figure 6.38. It is centric because e = 0, and s
symmetric because a = b, and therefore, 83 = 604. Point C is on the coupler
link AB and is at a distance kb from A, where 0 < k < 1.

The coordinates of point C' are

rc = acosly + kacosbs
= a(l+k)cosbs (6.269)
Yo = asinfy — kasinfy
a(1—k)sinfy (6.270)
and therefore,
To
0y = —O 271
cos 3 a0 (6.271)
. Yc
sin 0y () (6.272)

Using cos® 0y + sin® 6y = 1, we can show that the coupler point C will
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Yy o C(xc yc)

FIGURE 6.39. An inverted slider-crank mechanism and a coupler point at C.

move on an ellipse.

e e
a2(1+k)? a2(1-k)?

=1 (6.273)

6.5.3 Coupler Point Curve for Inverted Slider-Crank
Mechanism

Figure 6.39 illustrates an inverted slider-crank mechanism and a coupler
point at C. When the mechanism moves, the coupler point C will move on
a coupler point curve with the following parametric equation:

xc = acosby+ccos(m—a—04) (6.274)
Yo = asinfy+csin(m —a —0,) (6.275)

The angle 65 is the input angle and acts as a parameter, and 6, is the angle
of the output link, given by Equation (6.173).

0, = 2tan”! <_Hi VI — 4GI> (6.276)
2G

G = d—e—acosbs (6.277)

H = 2asinfy (6.278)

I = acosfy—d—e. (6.279)

Proof. We attach a planar Cartesian coordinate frame to the ground link
at M N. Drawing a vertical line through C defines the variable angle v =
ZACF as shown in Figure 6.39. We also define three angles 5, = ZANM,
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By = LANB, and 3 = ZBEF, to simplify the calculations. From AACE,
we find

y=m— B —« (6.280)
and from quadrilateral OFF N B, we find

B3+ ZEFN + 3y + 8, + ZEBN = 2. (6.281)
However,
0
/EBN = 5 (6.282)
/EFN = g (6.283)
and therefore,
53 + 52 + 51 =T. (6284)

The output angle 6, is equal to

0y =m—(By+B1), (6.285)

and thus,
04 = B5. (6.286)

Now the angle v may be written as
y=mm—0,—« (6.287)

where 60, is the output angle, found in Equation (6.173).
Therefore, the coordinates z¢- and yc can be calculated as two parametric
functions of 0, for a given set of a, d, ¢, e, and a. ®

6.6 Y Universal Joint Dynamics

The universal joint shown in Figure 6.40 is a mechanism used to connect
rotating shafts that intersect in an angle . The universal joint is also
known as Hook’s coupling, Hook joint, Cardan joint, or yoke joint.

Figure 6.41 illustrates a universal joint. There are four links in a universal
joint: link number 1 is the ground, which has a revolute joint with the
input link 2 and the output link 4. The input and the output links are
connected with a cross-link 3. The universal joint is a three-dimensional
four-bar linkage for which the cross-link acts as a coupler link.

The driver and driven shafts make a complete revolution at the same
time, but the velocity ratio is not constant throughout the revolution. The
angular velocity of the output shaft 4 relative to the input shaft 2 is called
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FIGURE 6.40. A universal joint.

@ Driven
)

Driver

Wy

)

Cross-link D

FIGURE 6.41. A universal joint with four links: link 1 is the ground, link 2 is the
input, link 4 is the output, and the cross-link 3 is a coupler link.
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FIGURE 6.42. A separate illustration of the input, output, and the cross links
for a universal joint.

speed ratio ) and is a function of the angular position of the input shaft 6,
and the angle between the shafts .
Q=2 _ ¢ (6.288)
wy 1 —sin”pcos?f
Proof. A universal joint may appear in many shapes, however, regardless
of how it is constructed, it has essentially the form shown in Figure 6.41.
Each connecting shaft ends in a U-shaped yoke. The yokes are connected
by a rigid cross-link. The ends of the cross-link are set in bearings in the
yokes. When the driver yoke turns, the cross-link rotates relative to the
yoke about its axis AB. Similarly, the cross-link rotates about the axis C D
and relative to the driven yoke.

Although the driver and driven shafts make a complete revolution at the
same time, the velocity ratio is not constant throughout the revolution. A
separate illustration of the input, output, and the cross links are shown in
Figure 6.42.

The angular velocity of the cross-link may be shown by

w3 = 1(.02—}—%(413
= w4+ w3 (6.289)
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FIGURE 6.43. A kinematic model for a universal joint.

where, jws is the angular velocity of the driver yoke about the x,-axis
and Jws is the angular velocity of the cross-link about the axis AB relative

to the drive yoke expressed in the ground coordinate frame.

Figure 6.43 shows that the unit vectors jo and j3 are along the arms of
the cross link, and the unit vectors 23 and i4 are along the shafts. Having

the angular velocity vectors,

1w2 =

1Wy4 =

2Ws3

2W3

4Ws3

4@W3

w21
0
0

w41
0
0

(6.290)

(6.291)

(6.292)

(6.293)

(6.294)

(6.295)
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we can simplify Equation (6.289) to
w32 i3 + wWay I = wWyay ig + W34 J3. (6.296)
However, because the cross-link coordinate frame is right-handed, we have
i3 X J3 = ks (6.297)
and therefore,
(w32 i3 4 wa 42) - k3 = (w41 b4 + waq J3) - ks (6.298)
that results in the following equation:

wa1dy - k3 = war iy - ks (6.299)

Now the required equation for the speed ratio 2 = w4y /wo; is

0 = “Yu
w21
-
= BXJhh (6.300)
13 X J3 4
The unit vector 73 is perpendicular to i3 and i4, we may write
Js = aiy X 13 (6.301)
where a is a coefficient. Now
i3 X J3 = 13 x (aig X i3)
= alig — (i3 - i4) i3] (6.302)
and because
i3 12 =0 (6.303)
we find
0 = Y4
w21
_ 7:2 - a [’24 — (’23 . ’24) ’23}
i3 - alig — (i3 - 24) 3]
B9 - iy
1— (i3 -44)°
Cos ¥
= —T . 6.304
1— (i3 - 44)° (6:504
If we show the angular position of the input yoke by 6, then
i3 = cosfi +sinfk (6.305)

iy = cospiy —sinpj (6.306)
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FIGURE 6.44. A three-dimensional plot for the speed ratio of a universal joint,
Q as a function of the input angle 6 and the angle between input and output
shafts .

and the final equation for the speed ratio is found as

Q0 wa
w21
cos
= —5 6.307
1 —sin? pcos? 6 ( )
This formula shows that although both shafts complete one revolution
at the same time, the ratio of their angular speed varies with the angle of
rotation (¢) of the driver and is a function also of the shaft angle . Thus,
even if the angular speed wo; of the drive shaft is constant, the angular
speed wyy of a driven shaft will not be uniform. m

Example 251 s Graphical illustration of the universal joint speed ratio
Q.

Figure 6.44 depicts a three-dimensional plot for Q. The Q-surface is plot-
ted for one revolution of the drive shaft and every possible angle between
the two shafts.

-T < O<m7
-T < <7

A two-dimensional view for Q2 is depicted in Figure 6.45. When ¢
10 deg there is not much fluctuation in speed ratio, however, when the angle
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FIGURE 6.45. A two-dimensional view of {2 as a function of the input angle 0
and the angle between input and output shafts .

between the two shafts is more than 10deg then the speed ratio £ cannot
be assumed constant. The universal joint stuck when ¢ = 90deg, because
theoretically

lim Q = indefinite. (6.308)
©—90
The behavior of Q as a function of 0 and ¢ can be better viewed in a
polar coordinate, as shown in Figure 6.46.

Example 252 % Mazimum and minimum of w4y in one revolution.
The mazimum value of  is

Qu = (6.309)
Cos ¥
at
0=0,7 (6.310)
and the minimum value of €1 is
Q, = cos (6.311)
at 3
T 37
0=—,—. 6.312
i (6312

Example 253 % History of the universal joint.
The need to transmit a Totary motion from one shaft to another, which
are intersecting at an angle, was a problem for installing clocktowers in
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FIGURE 6.46. The behavior of speed ratio 2 as a function of § and ¢ in a polar
coordinate.

the 1300s. The transmission of the rotation to the hands should be dis-
placed because of tower construction. Cardano (1501 —1576) in 1550, Hook
(1635 — 1703) in 1663, and Schott (1608 — 1666) in 1664 used the joint
for transferring rotary motion. Hook was the first man who said that the
rotary motion between the input and output shafts is not uniform. How-
ever, Monge (1746 — 1818) is the first person to publish the mathematical
principles of the joint in 1794, and later by Poncelet (1788 —1867) in 1822.

Example 254 % Double universal joint.

To eliminate the non-uniform speed ratio between the input and output
shafts, connected by a universal joint, we can connect a second joint to
make the intermediate shaft have a variable speed ratio with respect to both
the input and the output shafts in such a way that the overall speed ratio
between the input and output shafts remain equal to one.

Example 255 % Alternative proof for universal joint equation.

Consider a universal joint such as that shown in Figure 6.41. Looking
along the azis of the input shaft, we see points A and B moving in a circle
and points C and D moving in an ellipse as shown in Figure 6.47(a). This
18 because A and B trace a circle in a normal plane, and C and D trace a
circle in a rotated plane by the angle . Assume the universal joint starts
rotating when the azis CD of the cross link is at the intersection of the
planes of motion CD and AB, as shown in Figure 6.47(a). If the axis AB
turns an angle 0, then the projection of the axis CD will turn the same
angle, as can be seen in Figure 6.47(b). However, the angle of rotation CD
is 04 different than 6 when we look at the axis C'D along the output shaft.
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(a) (b)
FIGURE 6.47. Rotation of the cross link from a viewpoint along the input shaft.

Looking along the input shaft, the axis AB starts from Ay B1 and moves
to Aa By after rotation ¢. From the same viewpoint, the axis CD starts
from C1Dy and moves to CoDs, however, CD would be at C,DY, if it
were looking along the output shaft. The geometric relationship between the
angles are

CLR

OR — tan 6, (6.313)
% = tané (6.314)
% = cosp. (6.315)
Therefore,
tan @ = tan 64 cos ¢ (6.316)
which after differentiation becomes
w2 Cos ¢ (6.317)

csc20  csc2,

Eliminating 04 between (6.316) and (6.317), we find the relationship be-
tween the input and output shafts’ angular velocities.

cos

= 6.318
sin? 6 4 cos? 6 cos? gawz ( )
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The speed ratio would then be the same as (6.288).

Wy oS

— = 6.319

wg  sin? 6 4 cos? O cos? p ( )
COoS

= —s 6.320

1 —sin? pcos? 6 ( )

Q:

Example 256 % Alternative proof for the universal joint speed ratio equa-
tion.

Poncelet (1788 — 1867) in 1824 used spherical trigonometry to find the
universal joint speed ratio equation.

The universal joint can be used to transfer torque at larger angles than
flexible couplings. One universal joint may be used to transmit power up to
a ¢ = 1bdeg depending on the application. Universal joints are available
in a wide variety of torque capacities.

6.7 Summary

Every movable component of a vehicle, such as the doors, hoods, wind-
shield wipers, axles, wheels, and suspensions, are connected to the vehicle
body using some mechanisms. The four-bar linkage and inverted slider-
crank mechanism are the two common mechanisms that we use to connect
wheels of independent suspensions to the vehicle’s body. There are ana-
lytic equations for determining position of the all links of a mechanism
with respect to one of the links that we call the input link.

The wheels are installed on a spindle, which is rigidly attached to the
coupler link of the mechanisms. The center of the wheel will move on a
coupler point curve, which depends on the links’ length.
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6.8 Key Symbols

a=1% acceleration

a,b,c,--- links’ length of a linkage

a acceleration vector

A B, coefficients of quadratic equations

b relative position of an inverted slider

b relative speed of a slider

b relative acceleration of a slider

C1,Co, - link acceleration parameters of linkages
d position vector of a moving frame
f=1T cyclic frequency [Hz]

g gravitational acceleration

7, j,/% unit vectors of Cartesian coordinate frames
1 instant center of rotation

Ji, Ja, - link position parameters of linkages

l length

l length of the longest link

n number of links

N number of instant center of rotations
P, q length of the middle links

r joint relative position vector

S displacement position of an slider

S length of the shortest link

S speed of a slider

5 acceleration of a slider

t time

T period

T,Y, 2, X displacement

T,Y, 2 Cartesian coordinates

To, Yo coupler point coordinates

v velocity vector

a angular acceleration vector

Q; angular acceleration of link number 4
0; angular position of link number ¢

0 angular position of input and output axles of a universal joint
%) angle between the input and output axles of a universal joint
w angular velocity vector

W; angular velocity of link number 4
Q angular velocity ratio
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Exercises

1. Two possible configurations for a four-bar linkage.

Consider a four-bar linkage with the following links.

a = 10cm
b = 25cm
c = 30cm
d = 25cm

If 65 = 30deg what would be the angles 03 and 6, for a convex
configuration?
2. Angular velocity of a four-bar linkage output link.

Consider a four-bar linkage with the following links.

10cm
= 25cm
= 30cm
= 25cm

& o o e

Determine the angular velocity of the output link wy at 63 = 30deg
if we = 27wrad/s.

3. Angular acceleration of a four-bar linkage output link.

Consider a four-bar linkage with the following links.

a = 10cm
b = 25cm
c = 30cm
d = 25cm

Determine the angular acceleration of the output link a4 at 6y =
30deg if as = 0.2rrad/s? and ws = 27 rad/s.

4. Grashoff criterion.

Consider a four-bar linkage with the following links.

a = 10cm
b = 25cm
c = 30cm

Determine the limit values of the length d to satisfy the Grashoff
criterion.
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. Limit and dead positions.

Consider a four-bar linkage with the following links.

a = 10cm
b = 25cm
c = 30cm
d = 25cm

Determine if there is any limit or dead positions for the linkage.

. % Limit position determination.

Explain how we may be able to determine the limit positions of a
four-bar linkage by the following condition.

de
~Z -0
dt
. Two possible configurations for a slider-crank mechanism.

Consider a slider-crank mechanism with the following links.

= 10cm
b = 45cm
e = 0

If 85 = 30 deg what would be angle 63 and position of the slides s for
a convex configuration?

. Angular velocity and acceleration of the slider of a slider-crank mech-
anism.

Consider a slider-crank mechanism with the following links.

a = 10cm
b = 45cm
e = 0

Determine the angular velocity and acceleration of the slider at 63 =
30deg if wy = 27rad/s and ap = 0.2rrad/ s2.

. Quick return time.

Consider a slider-crank mechanism with the following links.

= 10cm
b = 45cm
e = 3cm

Determine the difference time between go and return half cycle of the
slider motion if wy = 27 rad/s.
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10. Two possible configurations for an inverted slider-crank mechanism.

Consider an inverted slider-crank mechanism with the following links.

a = 10cm
d = 45cm
= bcm

If 85 = 30 deg, what would be the angle 3 and position of the slides
b?
11. Instant center of rotation.

Find the instant center of rotations for the 6-bar linkage shown in
Figure 6.48.

© =
FIGURE 6.48. A 6-bar linkage.

12. A coupler point of a four-bar linkage.

Consider a four-bar linkage with the following links

= 10cm
= 25cm

= 30cm

Q& o o e

= 25cm
and a coupler point with the following parameters.

e = 10cm
a = 30deg

Determine the coordinates of the coupler point if 85 = 30 deg.

13. A coupler point of a slider-crank mechanism.



6. Applied Mechanisms 377

Consider a slider-crank mechanism with the following parameters.

a = 10cm
b = 45cm
e = 3cm

c = 10cm
« 30deg

Determine the coordinates of the coupler point.

14. A coupler point of an inverted slider-crank mechanism if 5 = 30 deg.

Consider an inverted slider-crank mechanism with the following pa-

rameters.
a 10cm
d = 45cm
e = b5cm
c = 10cm
a = 30deg

Determine the coordinates of the coupler point if 03 = 30 deg.
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Steering Dynamics

To maneuver a vehicle we need a steering mechanism to turn wheels. Steer-
ing dynamics which we review in this chapter, introduces new requirements
and challenges.

7.1 Kinematic Steering

Consider a front-wheel-steering 4W.S vehicle that is turning to the left, as
shown in Figure 7.1. When the vehicle is moving very slowly, there is a
kinematic condition between the inner and outer wheels that allows them
to turn slip-free. The condition is called the Ackerman condition and is
expressed by

cotd, —cotd; = ° (7.1)

l
where, §; is the steer angle of the inner wheel, and ¢, is the steer angle
of the outer wheel. The inner and outer wheels are defined based on the
turning center O.

A
Y

Q
I

R,

FIGURE 7.1. A front-wheel-steering vehicle and the Ackerman condition.

The distance between the steer axes of the steerable wheels is called the
track and is shown by w. The distance between the front and real axles
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Center of
rotation

FIGURE 7.2. A front-wheel-steering vehicle and steer angles of the inner and
outer wheels.

is called the wheelbase and is shown by [. Track w and wheelbase [ are
considered as kinematic width and length of the vehicle.
The mass center of a steered vehicle will turn on a circle with radius R,

R= /a2 +1%2cot?§ (7.2)

where J is the cot-average of the inner and outer steer angles.

cotd = M' (7.3)

The angle ¢ is the equivalent steer angle of a bicycle having the same
wheelbase [ and radius of rotation R.

Proof. To have all wheels turning freely on a curved road, the normal line
to the center of each tire-plane must intersect at a common point. This is
the Ackerman condition.

Figure 7.2 illustrates a vehicle turning left. So, the turning center O is on
the left, and the inner wheels are the left wheels that are closer to the center
of rotation. The inner and outer steer angles §; and §, may be calculated
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from the triangles AOAD and AOBC as follows:

tand; = ——— (7.4)
Ri-<
2
l
tan (So = —w (75)
R+ <
2
Eliminating R
1 l
R = =
! 2w tan 51
1 l
= —= 7.6
Zw + tan d, (7.6)

provides the Ackerman condition (7.1), which is a direct relationship be-
tween d; and §,.

cotd, — cot §; = % (7.7)

To find the vehicle’s turning radius R, we define an equivalent bicycle
model, as shown in Figure 7.3. The radius of rotation R is perpendicular
to the vehicle’s velocity vector v at the mass center C'. Using the geometry
shown in the bicycle model, we have

R*> = 4} +R? (7.8)
cotd = L0}
l
1

= §(cot(5¢—|—cot50) (7.9)

and therefore,
R = /a3 + 2 cot? 4. (7.10)

The Ackerman condition is needed when the speed of the vehicle is too
small, and slip angles are zero. There is no lateral force and no centrifugal
force to balance each other. The Ackerman steering condition is also called
the kinematic steering condition, because it is a static condition at zero
velocity.

A device that provides steering according to the Ackerman condition
(7.1) is called Ackerman steering, Ackerman mechanism, or Ackerman geom-
etry. There is no four-bar linkage steering mechanism that can provide the
Ackerman condition perfectly. However, we may design a multi-bar linkages
to work close to the condition and be exact at a few angles.

Figure 7.4 illustrates the Ackerman condition for different values of w/I.
The inner and outer steer angles get closer to each other by decreasing w/I.
[
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N \x\
QRS
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A

FIGURE 7.3. Equivalent bicycle model for a front-wheel-steering vehicle.
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FIGURE 7.4. Effect of w/l on the Ackerman condition for front-wheel-steering
vehicles.
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Example 257 Turning radius, or radius of rotation.
Consider a vehicle with the following dimensions and steer angle:

l 103.1in ~ 2.619m

w = 61.6in~ 1.565m
ay = 60in~1.524m
d; = 12deg ~ 0.209rad (7.11)

The kinematic steering characteristics of the vehicle would be

5, = cot™! (% + cot 51-)
= 0.186rad ~ 10.661 deg (7.12)

Ry

1
lcot d; + §w
516.9in ~ 13.129m (7.13)

B _1 [ cotd, + cotd;
6 = cot <—2 )

= 0.19684rad ~ 11.278 deg (7.14)

R = /a2 +12cot?§

= 520.46in ~ 13.219m. (7.15)

Example 258 w is the front track.

Most cars have different tracks in front and rear. The track w in the
kinematic condition (7.1) refers to the front track wy. The rear track has
no effect on the kinematic condition of a front-wheel-steering vehicle. The
rear track w, of a FW .S vehicle can be zero with the same kinematic steering
condition (7.1).

Example 259 Space requirement.

The kinematic steering condition can be used to calculate the space re-
quirement of a vehicle during a turn. Consider the front wheels of a two-azle
vehicle, steered according to the Ackerman geometry as shown in Figure 7.5.

The outer point of the front of the vehicle will run on the mazimum radius
Raraz, whereas a point on the inner side of the vehicle at the location of the
rear axle will run on the minimum radius R,;,. The front outer point has
an overhang distance g from the front axle. The mazimum radius Ryrq. 1S

RMa:c = \/(Rmin + w)2 + (l =+ 9)2' (716)
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FIGURE 7.5. The required space for a turning two-axle vehicle.

Therefore, the required space for turning is a ring with a width AR, which

is a function of the vehicle’s geometry.

AR = RMa:c - Rmzn

(7.17)

The required space AR can be calculated based on the steer angle by

substituting Rin

1
Rmin = Rl - 5 w

l

tand;

l
tand,

and getting

l

 tan 0;

l 2
AR = < +m0 +(+g)°

tand;

I
I

I ? 2 1
<tan60 +w> Fltg) - tand, w

(7.18)

(7.19)

(7.20)

(7.21)
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FIGURE 7.6. A trapezoidal steering mechanism.

In this example the width of the car w, and the track w are assumed to
be equal. The width of vehicles are always greater than their track.

Wy > W (7.22)

Example 260 Trapezoidal steering mechanism.

Figure 7.6 illustrates a symmetric four-bar linkage, called a trapezoidal
steering mechanism, that has been used for more than 100 years. The
mechanism has two characteristic parameters: angle 5 and offset arm length
d. A steered position of the trapezoidal mechanism is shown in Figure 7.7
to illustrate the inner and outer steer angles §; and 6.

The relationship between the inner and outer steer angles of a trapezoidal
steering mechanism is

sin (8 + 0;) + sin (8 — d,)

2

= % + \/(% - QSinB) — (cos (B —8,) —cos (B+ ;)% (7.23)

To prove this equation, we examine Figure 7.8. In the triangle ANABC
we can write

(w—2dsinB)’ = (w—dsin(8+6;)—dsin(8—6,))>
+(dcos (B —8,) — dcos (8 +6;))° (7.24)

and derive Equation (7.23) with some manipulation.

The functionality of a trapezoidal steering mechanism, compared to the
associated Ackerman condition, is shown in Figure 7.9 for x = 24m =
7.87ft and d = 0.4m ~ 1.3ft. The horizontal axis shows the inner steer
angle and the vertical axis shows the outer steer angle. It depicts that for
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FIGURE 7.7. Steered configuration of a trapezoidal steering mechanism.

FIGURE 7.8. Trapezoidal steering triangle ABC.
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FIGURE 7.9. Behavior of a trapezoidal steering mechanism, compared to the
associated Ackerman mechanism.

a given I and w, a mechanism with 5 ~ 10deg is the best simulator of an
Ackerman mechanism if §; < 50deg.

To examine the trapezoidal steering mechanism and compare it with the
Ackerman condition, we define an error parameter e = dp,—da,. The error
e is the difference between the outer steer angles calculated by the trapezoidal
mechanism and the Ackerman condition at the same inner steer angle ;.

e = Ab,
= 0p,—0a, (7.25)

Figure 7.10 depicts the error e for a sample steering mechanism using the
angle B as a parameter.

Example 261 % Locked rear azle.

Sometimes in a simple design of vehicles, we eliminate the differential
and use a locked rear azle in which no relative rotation between the left and
right wheels is possible. Such a simple design is usually used in toy cars, or
small off-road vehicles such as a mini Baja.

Consider the vehicle shown in Figure 7.2. In a slow left turn, the speed
of the inner rear wheel should be

Vpj = (Rl - %) 7= Rywri (7.26)
and the speed of the outer rear wheel should be
Vro = (R1 + %) r = Rywro (7.27)

where, 7 is the yaw velocity of the vehicle, Ry, is rear wheels radius, and
Wri, Wro should be the angular velocity of the rear inner and outer wheels
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FIGURE 7.10. The error parameter e = dp, — d4, for a sample trapezoidal
steering mechanism.

about their common axle. If the rear azle is locked, we have
Wi = Wro = W (7.28)

however,

(71 - %) # (R + %) (7.29)

which shows it is impossible to have a locked azle for a nonzero w.

Turning with a locked rear axle reduces the load on the inner wheels and
makes the rear inner wheel overcome the friction force and spin. Hence,
the traction of the inner wheel drops to the mazimum friction force under
a reduced load. However, the load on the outer wheels increases and hence,
the friction limit of the outer wheel helps to have higher traction force on
the outer rear wheel.

Eliminating the differential and using a locked drive azle is an impractical
design for street cars. However, it can be an acceptable design for small
and light cars moving on dirt or slippery surfaces. It reduces the cost and
simplifies the design significantly.

In a conventional two-wheel-drive motor vehicle, the rear wheels are
driven using a differential, and the vehicle is steered by changing the di-
rection of the front wheels. With an ideal differential, equal torque is de-
livered to each drive wheel. The rotational speed of the drive wheels are
determined by the differential and the tire-road characteristics. However,
a vehicle using a differential has disadvantages when one wheel has lower
traction. Differences in traction characteristics of each of the drive wheels
may come from different tire-road characteristics or weight distribution.
Because a differential delivers equal torque, the wheel with greater tractive
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FIGURE 7.11. A rear-wheel-steering vehicle.

ability can deliver only the same amount of torque as the wheel with the
lower traction. The steering behavior of a vehicle with a differential is rela-
tively stable under changing tire-road conditions. However, the total thrust
may be reduced when the traction conditions are different for each drive
wheel.

Example 262 % Rear-wheel-steering.
Rear-wheel-steering is used where high maneuverability is a necessity on
a low-speed wvehicle, such as forklifts. Rear-wheel-steering is not used on
street vehicles because it is unstable at high speeds. The center of rotation
for a rear-wheel-steeringe vehicle is always a point on the front axle.
Figure 7.11 illustrates a rear-wheel-steering vehicle. The kinematic steer-
ing condition (7.1) remains the same for a rear-wheel steering vehicle.

cotd, — cot d; = % (7.30)
Example 263 % Alternative kinematic steer angles equation.

Consider a rear-wheel-drive vehicle with front steerable wheels as shown
in Figure 7.12. Assume that the front and rear tracks of the vehicle are
equal and the drive wheels are turning without slip. If we show the angular
velocities of the inner and outer drive wheels by w; and w,, respectively,
the kinematical steer angles of the front wheels can be expressed by

tan ™! <% (% - 1>> (7.31)
tan ™! (% (1 - :—0>> . (7.32)

0;

do
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FIGURE 7.12. Kinematic condition of a F'W S vehicle using the angular velocity
of the inner and outer wheels.

To prove these equations, we may start from the following equation, which
is the non-slipping condition for the drive wheels:

Ru) o Rw i
Po = wi (7.33)
Ry + 3 Ry — 3

Equation (7.33) can be rearranged to

w Ry + %
= == W (734)
Wi Rl _ 5

and substituted in Equations (7.81) and (7.32) to reduce them to Equations
(7.4) and (7.5).
The equality (7.33) is the yaw rate of the vehicle, which is the vehicle’s
angular velocity about the center of rotation.
Rw o Rw i
p= e _ Twii (7.35)

= o =
R1+5 Rl_?
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FIGURE 7.13. Kinematic steering condition for a vehicle with different tracks in
the front and in the back.

Example 264 % Unequal front and rear tracks.

It is possible to design a vehicle with different tracks in the front and
rear. It is a common design for race cars, which are usually equipped with
wider and larger rear tires to increase traction and stability. For street cars
we use the same tires in the front and rear, however, it is common to have
a few centimeters of larger track in the back. Such a vehicle is illustrated
in Figure 7.13.

The angular velocity of the vehicle is

T = Ru} wo = Rw wi (7.36)

and the kinematic steer angles of the front wheels are
1 20 (wo + w;)
wy (wo — w;i) + Wy (Wo + wi)
1 2l (wo — wy)
wr (Wo — wi) + wy (Wo + w;)
To show these equations, we should find Ry from Equation (7.36)
Wy Wy + Wy

Ri=—— 7.39
! 2 W, — wj ( )

0; = tan

(7.37)

do = tan (7.38)
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and substitute it in the following equations.

tand;, — — (7.40)
R - 2L
2
l
tand, = — (7.41)
Ry + %

In the above equations, wy is the front track, w, is the rear track, and R,
is the wheel radius.

Example 265 % Independent rear-wheel-drive.

For some special-purpose vehicles, such as moon rovers and autonomous
mobile robots, we may attach each drive wheel to an independently con-
trolled motor to apply any desired angular velocity. Furthermore, the steer-
able wheels of such vehicles are able to turn more than 90deg to the left
and right. Such a vehicle is highly maneuverable at a low speed.

Figure 7.14 illustrates the advantages of such a steerable vehicle and its
possible turnings. Figures 7.14 (a)-(c) illustrate forward maneuvering. The
arrows by the rear wheels, illustrate the magnitude of the angular velocity
of the wheel, and the arrows on the front wheels illustrate the direction of
their motion. The maneuvering in backward motion is illustrated in Figures
7.14(d)-(f). Having such a vehicle allows us to turn the vehicle about any
point on the rear axle including the inner points. In Figure 7.1/(g) the
vehicle is turning about the center of the rear right wheel, and in Figure
7.14(h) about the center of the rear left wheel. Figure 7.14(i) illustrates a
rotation about the center point of the rear axle.

In any of the above scenarios, the steer angle of the front wheels should
be determined using a proper equation, such as (7.40) and (7.41). The ratio
of the outer to inner angular velocities of the drive wheels w,/w; may be
determined using either the outer or inner steer angles.

oWy —wy) —21

0
=2 = 42
w; do (wg +wy) — 21 (7.42)
Wo di (wy +wy) + 21
o0 _ 4
w; di (wy —wy) + 21 (7.43)

Example 266 % Race car steering.

The Ackerman or kinematic steering is a correct condition when the turn-
ing speed of the vehicle is slow. When the vehicle turns fast, significant
lateral acceleration is needed, and therefore, the wheels operate at high slip
angles. Furthermore, the loads on the inner wheels will be much lower than
the outer wheels. Tire performance curves show that by increasing the wheel
load, less slip angle is required to reach the peak of the lateral force. Un-
der these conditions the inner front wheel of a kinematic steering vehicle
would be at a higher slip angle than required for maximum lateral force.
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FIGURE 7.14. A highly steerable vehicle.
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Ackerman Parallel Reverse

FIGURE 7.15. By increasing the speed at a turn, parallel or reverse steering is
needed instead of Ackerman steering.

Therefore, the inner wheel of a vehicle in a high speed turn must operate
at a lower steer angle than kinematic steering. Reducing the steer angle of
the inner wheel reduces the difference between steer angles of the inner and
outer wheels.

For race cars, it is common to use parallel or reverse steering. Ackerman,
parallel, and reverse Ackerman steering are illustrated in Figure 7.15.

The correct steer angle is a function of the instant wheel load, road condi-
tion, speed, and tire characteristics. Furthermore, the vehicle must also be
able to turn at a low speed under an Ackerman steering condition. Hence,
there is no ideal steering mechanism unless we control the steer angle of
each steerable wheel independently using a smart system.

Example 267 % Speed dependent steering system.

There is a speed adjustment idea that says it is better to have a harder
steering system at high speeds. This idea can be applied in power steering
systems to make them speed dependent, such that the steering be heavily
assisted at low speeds and lightly assisted at high speeds. The idea is sup-
ported by this fact that the drivers might need large steering for parking,
and small steering when traveling at high speeds.

Example 268 % Ackerman condition history.

Correct steering geometry was a magjor problem in the early days of car-
riages, horse-drawn vehicles, and cars. Four- or siz-wheel cars and car-
riages always left rubber marks behind. This is why there were so many
three-wheeled cars and carriages in the past. The problem was making a
mechanism to give the inner wheel a smaller turning radius than the out-
side wheel when the vehicle was driven in a circle.

The required geometric condition for a front-wheel-steering four-wheel-
carriage was introduced in 1816 by George Langensperger in Munich, Ger-
many. Langensperger’s mechanism is illustrated in Figure 7.16.

Rudolf Ackerman met Langensperger and saw his invention. Ackerman
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FIGURE 7.16. Langensperger invention for the steering geometry condition.

acted as Langensperger’s patent agent in London and introduced the in-
vention to British carriage builders. Car manufacturers have been adopting
and improving the Ackerman geometry for their steering mechanisms since
1881.

The basic design of vehicle steering systems has changed little since the
invention of the steering mechanism. The driver’s steering input is trans-
mitted by a shaft through some type of gear reduction mechanism to generate
steering motion at the front wheels.

7.2 Vehicles with More Than Two Axles

If a vehicle has more than two axles, all the axles, except one, must be
steerable to provide slip-free turning at zero velocity. When an n-axle ve-
hicle has only one non-steerable axle, there are n — 1 geometric steering
conditions. A three-axle vehicle with two steerable axles is shown in Figure
7.17.

To indicate the geometry of a multi-axle vehicle, we start from the front
axle and measure the longitudinal distance a; between axle ¢ and the mass
center C. Hence, a; is the distance between the front axle and C, and as is
the distance between the second axle and C'. Furthermore, we number the
wheels in a clockwise rotation starting from the driver’s wheel as number
1.

For the three-axle vehicle shown in Figure 7.17, there are two indepen-
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FIGURE 7.17. Steering of a three-axle vehicle.
dent Ackerman conditions:
w
cotdg —cotd; = ——— (7.44)
a; +as
w
cotds —cotdg = ———. (7.45)
az + as

Example 269 A siz-wheel vehicle with one steerable axle.

When a multi-azle vehicle has only one steerable azle, slip-free rotation is
impossible for the non-steering wheels. The kinematic length or wheelbase
of the wvehicle is not clear, and it is not possible to define an Ackerman
condition. Strong wear occurs for the tires, especially at low speeds and large
steer angles. Hence, such a combination is not recommended. However, in
case of a long three-azle vehicle with two nonsteerable axles close to each
other, an approzimated analysis is possible for low-speed steering.

Figure 7.18 illustrates a siz-wheel vehicle with only one steerable axle in
front. We design the steering mechanism such that the center of rotation O
is on a lateral line, called the midline, between the couple rear axles. The
kinematic length of the vehicle, 1, is the distance between the front azle and

the midline. For this design we have

cotd, — cot d; =

z (7.46)
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FIGURE 7.18. A six-wheel vehicle with one steerable axle in front.

e | T

and

Ry = lcot&o—%

= lcotd; + % (7.47)

The center of the front axle and the mass center of the vehicle are turning
about O by radii Ry and R.

Ry

Ccos (tan_l L)
Ry

R = L (7.49)

_1 @3 — Qa2
cos [ tan™! ——=
(1o 255

If the radius of rotation is large compared to the wheelbase, we may approz-
imate Equations (7.48) and (7.49).

Ry (7.48)

(7.50)
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FIGURE 7.19. A self-steering axle mechanism for locomotive wagons.

R
R~ — 1 (7.51)
cos [ B_ %2
2R,
R = i (cot &, + cot d;) (7.52)

2

To avoid strong wear, it is possible to lift an axle when the vehicle is
not carrying heavy loads. For such a vehicle, we may design the steering
mechanism to follow an Ackerman condition based on a wheelbase for the
non-lifted axle. However, when this vehicle is carrying a heavy load and
using all the azles, the liftable axle encounters huge wear in large steer
angles.

Another option for multi-axle vehicles is to use self-steering wheels
that can adjust themselves to minimize sideslip. Such wheels cannot provide
lateral force, and hence, cannot help in maneuvers very much. Self-steering
wheels may be installed on buggies and trailers. Such a self-steering axle
mechanism for locomotive wagons is shown in Figure 7.19.

7.3 Y Vehicle with Trailer

If a four-wheel vehicle has a trailer with one axle, it is possible to derive a
kinematic condition for slip-free steering. Figure 7.20 illustrates a vehicle
with a one-axle trailer. The mass center of the vehicle is turning on a circle
with radius R, while the trailer is turning on a circle with radius R;.

1 2

2
Rt = \/(l cot 60 - %w) + b% - b% (754)

At a steady-state condition, the angle between the trailer and the vehicle
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FIGURE 7.20. A vehicle with a one-axle trailer.
is
1

Qtanfl [m (Rt—\/RtQ—b%+b§):| bl—bg#o

2tan~!

0= (7.55)

— (b b by —by=0
2Rt(1+ 2) 1 2

Proof. Using the right triangle AOAB in Figure 7.20, we may write the
trailer’s radius of rotation as

Ry = \/R? + b2 — 12 (7.56)

because the length OB is
OB" = RI+03
= R? 02 (7.57)

Substituting Ry from Equation (7.6) shows that the trailer’s radius of ro-



400 7. Steering Dynamics

FIGURE 7.21. Two possible angle 6 for a set of (R, b1, b2).

tation is related to the vehicle’s geometry by

2
1

1 \2
R, = \/(l cot &, — §w> + b2 — b2 (7.59)

R, = (/R —a}+03 13 (7.60)

Using the equation
R;sinf = by + by cosf (7.61)

and employing trigonometry, we may calculate the angle 6§ between the
trailer and the vehicle as (7.55).

The minus sign, in case by — by # 0, is the usual case in forward motion,
and the plus sign is a solution associated with a backward motion. Both
possible configuration 0 for a set of (Ry, by, bs) are shown in Figure 7.21.
The 0, is called a jackknifing configuration. m
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Example 270 % Two possible trailer-vehicle angles.
Consider a four-wheel vehicle that is pulling a one-azle trailer with the

following dimensions:

l
w
by
ba
i

103.1in ~ 2.619m
61.6in ~ 1.565 m
24in ~ 0.61 m
90in ~ 2.286 m
12deg ~ 0.209 rad

The kinematic steering characteristics of the vehicle would be

Ry

do

Ry

cot™! (

cot™? (E + cot 51-)

l

0.186rad =~ 10.661 deg

2
1
\/(lcotéi—k §w) + b3 — b3

509.57in ~ 12.943 m

1
lcotd; + §w
516.9in =~ 13.129m

cot &, + cot 6i)
2

= 0.19684rad ~ 11.278 deg

\/a2 + 12 cot?§

= 520.46in ~ 13.219m

g

2tan~! [

1
- (Rtiq/be%ergﬂ

—3.0132rad = —172.64 deg
0.22121rad ~ 12.674 deg

Example 271 % Space requirement.

The kinematic steering condition can be used to calculate the space re-
quirement of a vehicle with a trailer during a turn. Consider that the front
wheels of a two-axle vehicle with a trailer are steered according to the Ack-
erman geometry, as shown in Figure 7.22.

The outer point of the front of the vehicle will run on the mazimum radius
Rarar, whereas a point on the inner side of the wheel at the trailer’s rear

401

(7.62)

(7.63)

(7.64)

(7.65)

(7.66)

(7.67)

(7.68)
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FIGURE 7.22. A two-axle vehicle with a trailer is steered according to the Ack-
erman condition.

azle will run on the minimum radius R,,;,. The mazximum radius Ry, 1S

Ritaz = \/(R1 + %)2 +(+g)? (7.69)

where

and the width of the vehicle is shown by w,.

The required space for turning the vehicle and trailer is a ring with a
width AR, which is a function of the vehicle and trailer geometry.

AR = Ryag — Rinin (7.71)

The required space AR can be calculated based on the steer angle by
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substituting Roin

1
Ryin = Rt_§'wt

1\’ 1
<l cot §; + §w> + b2 — b3 — Wi
1\? 1
\/(lcot5o—§w) +b%—b§—§wt

1
= R a3+ B S (7.72)

7.4 Steering Mechanisms

A steering system begins with the steering wheel or steering handle. The
driver’s steering input is transmitted by a shaft through a gear reduction
system, usually rack-and-pinion or recirculating ball bearings. The steering
gear output goes to steerable wheels to generate motion through a steering
mechanism. The lever, which transmits the steering force from the steering
gear to the steering linkage, is called Pitman arm.

The direction of each wheel is controlled by one steering arm. The steer-
ing arm is attached to the steerable wheel hub by a keyway, locking taper,
and a hub. In some vehicles, it is an integral part of a one-piece hub and
steering knuckle.

To achieve good maneuverability, a minimum steering angle of approxi-
mately 35deg must be provided at the front wheels of passenger cars.

A sample parallelogram steering mechanism and its components are
shown in Figure 7.23. The parallelogram steering linkage is common on in-
dependent front-wheel vehicles. There are many varieties of steering mech-
anisms each with some advantages and disadvantages.

Example 272 Steering ratio.

The Steering ratio is the rotation angle of a steering wheel divided by
the steer angle of the front wheels. The steering ratio of street cars is around
10 : 1 steering ratio of race cars varies between 5 : 1 to 20 : 1.

The steering ratio of Ackerman steering is different for inner and outer
wheels. Furthermore, it has a nonlinear behavior and is a function of the
wheel angle.

Example 273 Rack-and-pinton steering.

Rack-and-pinion is the most common steering system of passenger cars.
Figure 7.24 illustrates a sample rack-and-pinion steering system. The rack
is either in front or behind the steering axle. The driver’s rotary steering
command dg is transformed by a steering box to translation ur = ug (0g)
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FIGURE 7.23. A sample parallelogram steering linkage and its components.
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FIGURE 7.24. A rack-and-pinion steering system.

of the racks, and then by the drag links to the wheel steering §; = 6; (ug),
0o =0, (ur). The drag link is also called the tie rod.

The overall steering ratio depends on the ratio of the steering box and on
the kinematics of the steering linkage.

Example 274 Lever arm steering system.

Figure 7.25 illustrates a steering linkage that sometimes is called a lever
arm steering system. Using a lever arm steering system, large steering an-
gles at the wheels are possible. This steering system is used on trucks with
large wheel bases and independent wheel suspension at the front axle. The
steering box and triangle can also be placed outside of the axle’s center.

Example 275 Drag link steering system.

It is sometimes better to send the steering command to only one wheel
and connect the other one to the first wheel by a drag link, as shown in
Figure 7.26. Such steering linkages are usually used for trucks and busses
with a front solid azxle. The rotations of the steering wheel are transformed
by a steering box to the rotation of the steering arm and then to the rotation
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FIGURE 7.25. A lever arm steering system.

Drag link j

FIGURE 7.26. A drag link steering system.

of the left wheel. A drag link transmits the rotation of the left wheel to the
right wheel.

Figure 7.27 shows a sample for connecting a steering mechanism to the
Pitman arm of the left wheel and using a trapezoidal linkage to connect the
right wheel to the left wheel.

Example 276 Multi-link steering mechanism.

In busses and big trucks, the driver may sit more than 2m =~ 7ft in front
of the front azle. These vehicles need large steering angles at the front wheels
to achieve good maneuverability. So a more sophisticated multi-link steering
mechanism needed. A sample multi-link steering mechanism is shown in
Figure 7.28.

The rotations of the steering wheel are transformed by the steering box to
a steering lever arm. The lever arm is connected to a distributing linkage,
which turns the left and right wheels by a long tire rod.

Example 277 % Reverse efficiency.

The ability of the steering mechanism to feedback the road inputs to the
driver is called reverse efficiency. Feeling the applied steering torque or
aligning moment helps the driver to make smoother turn.

Rack-and-pinion and recirculating ball steering gears have a feedback of
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FIGURE 7.28. A multi-link steering mechanism.
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the wheels steering torque to the driver. However, worm and sector steering
gears have very weak feedback. Low feedback may be desirable for off-road
vehicles, to reduce the driver’s fatigue.

Because of safety, the steering torque feedback should be proportional to
the speed of the vehicle. In this way, the required torque to steer the vehicle
is higher at higher speeds. Such steering prevents a sharp and high steer
angle. A steering damper with a damping coefficient increasing with speed
is the mechanism that provides such behavior. A steering damper can also
reduce shimmy vibrations.

Example 278 s Power steering.

Power steering has been developed in the 1950s when a hydraulic power
steering assist was first introduced. Since then, power assist has become a
standard component in automotive steering systems. Using hydraulic pres-
sure, supplied by an engine-driven pump, amplifies the driver-applied torque
at the steering wheel. As a result, the steering effort is reduced.

In recent years, electric torque amplifiers were introduced in automotive
steering systems as a substitute for hydraulic amplifiers. FElectrical steer-
ing eliminates the need for the hydraulic pump. Electric power steering is
more efficient than conventional power steering, because the electric power
steering motor needs to provide assistance when only the steering wheel is
turned, whereas the hydraulic pump runs constantly. The assist level is also
tunable by vehicle type, road speed, and driver preference.

Example 279 Bump steering.

The steer angle generated by the vertical motion of the wheel with re-
spect to the body is called bump steering. Bump steering is usually an
undesirable phenomenon and is a function of the suspension and steering
mechanisms. If the vehicle has a bump steering character, then the wheel
steers when it runs over a bump or when the vehicle rolls in a turn. As a
result, the vehicle will travel in a path not selected by the driver.

Bump steering occurs when the end of the tie rod is not at the instant
center of the suspension mechanism. Hence, in a suspension deflection, the
suspension and steering mechanisms will rotate about different centers.

Example 280 % Offset steering axis.

Theoretically, the steering axis of each steerable wheel must vertically go
through the center of the wheel at the tire-plane to minimize the required
steering torque. Figure 7.27 is an example of matching the center of a wheel
with the steering axis. However, it is possible to attach the wheels to the
steering mechanism, using an offset design, as shown in Figure 7.29.

Figure 7.30 depicts a steered trapezoidal mechanism with an offset wheel
attachment. The path of motion for the center of the tireprint for an offset
design is a circle with radius e equal to the value of the offset arm. Such
a design is not recommended for street vehicles, especially because of the
huge steering torque in stationary vehicle. However, the steering torque
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FIGURE 7.29. An offset design for wheel attachment to an steering mechanism.
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FIGURE 7.30. Offset attachment of steerable wheels to a trapezoidal steering
mechanism.
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FIGURE 7.31. A positive four-wheel steering vehicle.

reduces dramatically to an acceptable value when the vehicle is moving.
Furthermore, an offset design sometimes makes more room to attach the
other devices, and simplifies manufacturing. So, it may be used for small
off-road vehicles, such as a mini Baja, and toy vehicles.

7.5 Y Four wheel steering.

At very low speeds, the kinematic steering condition that the perpendicular
lines to each tire meet at one point, must be applied. The intersection point
is the turning center of the vehicle.

Figure 7.31 illustrates a positive four-wheel steering vehicle, and Fig-
ure 7.32 illustrates a megative 4W.S vehicle. In a positive 4W .S situation
the front and rear wheels steer in the same direction, and in a negative
4W S situation the front and rear wheels steer opposite to each other. The
kinematic condition between the steer angles of a 4W S vehicle is

_wy Wy Ccotdop —cotdip
cot (Sof — cot (51f = T - Tm (773)
where, wy and w, are the front and rear tracks, d;; and d,5 are the steer
angles of the front inner and outer wheels, d;,. and §,, are the steer angles
of the rear inner and outer wheels, and [ is the wheelbase of the vehicle.
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FIGURE 7.32. A negative four-wheel steering vehicle.

We may also use the following more general equation for the kinematic
condition between the steer angles of a 4W .S vehicle
_wy  wpcotdyp. —cotdyp
COt(SfT—COt(Sfl = T—Tm (774)
where, 05 and dy, are the steer angles of the front left and front right
wheels, and §,; and ¢, are the steer angles of the rear left and rear right
wheels.

If we define the steer angles according to the sign convention shown in
Figure 7.33 then, Equation (7.73) expresses the kinematic condition for
both, positive and negative 4W S systems. Employing the wheel coordinate
frame (z, Yw, 2w), we define the steer angle as the angle between the vehicle
z-axis and the wheel x,,-axis, measured about the z-axis. Therefore, a steer
angle is positive when the wheel is turned to the left, and it is negative when
the wheel is turned to the right.

Proof. The slip-free condition for wheels of a 4WS in a turn requires that
the normal lines to the center of each tire-plane intersect at a common
point. This is the kinematic steering condition.

Figure 7.34 illustrates a positive 4WS vehicle in a left turn. The turning
center O is on the left, and the inner wheels are the left wheels that are
closer to the turning center. The longitudinal distance between point O
and the axles of the car are indicated by ¢1, and ¢ measured in the body
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FIGURE 7.33. Sign convention for steer angles.

coordinate frame.

The front inner and outer steer angles 6,7, d,5 may be calculated from
the triangles AOAE and AOBF, while the rear inner and outer steer
angles d;,, d, may be calculated from the triangles AODG and AOCH

as follows.
¢
tand;y =
R -
2
tan 50]0 = C—lu)f
R+ —
2
tand;, = @ T
Ry — 5
tand,, = 2 w
Ry + 7
Eliminating R;
1 C1
R = =
! wa tand,y
1 + C1
= ——w
2 f tan 50]0

(7.75)

(7.76)

(7.77)

(7.78)

(7.79)

(7.80)
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FIGURE 7.34. Illustration of a negative four-wheel steering vehicle in a left turn.

between (7.75) and (7.76) provides the kinematic condition between the

front steering angles ;5 and do.

cotdof —cotd;f = s
C1
Similarly, we may eliminate R
1 Co
R, = =
! 2wr + tan d;,
1 + Co
= ——w
2" tand,,

(7.81)

(7.82)

(7.83)

between (7.77) and (7.78) to provide the kinematic condition between the

rear steering angles §;, and §,,..

Wy
cot by — cOt 05 = —
C2

Using the following constraint

6176221

(7.84)

(7.85)
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FIGURE 7.35. Illustration of a positive four-wheel steering vehicle in a left turn.

we may combine Equations (7.81) and (7.84)

wy Wy

— =1 7.86
cotdof —cotd;f  cotdor — cot Gy ( )

to find the kinematic condition (7.73) between the steer angles of the front
and rear wheels for a positive 4W .S vehicle.

Figure 7.35 illustrates a negative 4W .S vehicle in a left turn. The turning
center O is on the left, and the inner wheels are the left wheels that are
closer to the turning center. The front inner and outer steer angles d;f, do¢
may be calculated from the triangles AOAE and AOBF, while the rear
inner and outer steer angles d;,., 4, may be calculated from the triangles
AODG and AOCH as follows.

C1
tand;; = — (7.87)
R _F
2
C1
tandor = ——pr (7.88)
R1+ﬂ
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—tand, = — (7.89)
Ry — -5
—tandy, = — - (7.90)
Ry +—
2
Eliminating R,
1 C1
R = = 7.91
! 2wf tan 51']0 ( )
1 C1
= —= 7.92
2 wr tan 0oy ( )

between (7.87) and (7.88) provides the kinematic condition between the
front steering angles d;r and d,y.

cotdof —cotdif = &r (7.93)

C1

Similarly, we may eliminate R
1 Co

= = .94
& 2 + tan d;, (7.94)

1 Co
= ——w, 7.95
2w + tan d,, ( )

between (7.89) and (7.90) to provide the kinematic condition between the
rear steering angles §; and §y-.
cot 0o — cOt 04 = % (7.96)
2

Using the following constraint
Cl — Cy = l (797)

we may combine Equations (7.93) and (7.96)

wy Wy

cot 0pf — COtS;f €Ot Gop — COt Gy l (7.98)
to find the kinematic condition (7.73) between the steer angles of the front
and rear wheels for a negative 4W S vehicle.

Using the sign convention shown in Figure 7.33, we may re-examine Fig-
ures 7.35 and 7.34. When the steer angle of the front wheels are positive
then, the steer angle of the rear wheels are negative in a negative 4W.S
system, and are positive in a positive 4W S system. Therefore, Equation
(7.74)

wy wrCOt(Sfr*COt(Sfl

cot (Sfr — cot (Sfl = T I m (799)
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can express the kinematic condition for both, positive and negative 4W .S
systems. Similarly, the following equations can uniquely determine ¢; and
co regardless of the positive or negative 4W S system.
wy
AT ot dfr —cotdp (7.100)
Wy
2T o Opr — COt 0y (7.101)
Four-wheel steering or all wheel steering AWS may be applied on ve-
hicles to improve steering response, increase the stability at high speeds
maneuvering, or decrease turning radius at low speeds. A negative 4W .S
has shorter turning radius R than a front-wheel steering FW.S vehicle.
For a FWS vehicle, the perpendicular to the front wheels meet at a
point on the extension of the rear axle. However, for a 4W.S vehicle, the
intersection point can be any point in the xy plane. The point is the turning
center of the car and its position depends on the steer angles of the wheels.
Positive steering is also called same steer, and a negative steering is also
called counter steer. m

Example 281 % Steering angles relationship.
Consider a car with the following dimensions.

| = 28m
wy = 1.35m
w, = 14m (7.102)

The set of equations (7.75)-(7.78) which are the same as (7.87)-(7.90) must
be used to find the kinematic steer angles of the tires. Assume one of the
angles, such as

0;5 = 15deg (7.103)

is a known input steer angle. To find the other steer angles, we need to know
the position of the turning center O. The position of the turning center can
be determined if we have one of the three parameters c1, ca, R1. To clarify
this fact, let’s assume that the car is turning left an