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Preface
This text is for engineering students. It introduces the fundamental knowl-
edge used in vehicle dynamics. This knowledge can be utilized to develop
computer programs for analyzing the ride, handling, and optimization of
road vehicles.
Vehicle dynamics has been in the engineering curriculum for more than

a hundred years. Books on the subject are available, but most of them
are written for specialists and are not suitable for a classroom application.
A new student, engineer, or researcher would not know where and how
to start learning vehicle dynamics. So, there is a need for a textbook for
beginners. This textbook presents the fundamentals with a perspective on
future trends.
The study of classical vehicle dynamics has its roots in the work of

great scientists of the past four centuries and creative engineers in the
past century who established the methodology of dynamic systems. The
development of vehicle dynamics has moved toward modeling, analysis,
and optimization of multi-body dynamics supported by some compliant
members. Therefore, merging dynamics with optimization theory was an
expected development. The fast-growing capability of accurate positioning,
sensing, and calculations, along with intelligent computer programming are
the other important developments in vehicle dynamics. So, a textbook help
the reader to make a computer model of vehicles, which this book does.

Level of the Book
This book has evolved from nearly a decade of research in nonlinear

dynamic systems and teaching courses in vehicle dynamics. It is addressed
primarily to the last year of undergraduate study and the first year graduate
student in engineering. Hence, it is an intermediate textbook. It provides
both fundamental and advanced topics. The whole book can be covered
in two successive courses, however, it is possible to jump over some sec-
tions and cover the book in one course. Students are required to know the
fundamentals of kinematics and dynamics, as well as a basic knowledge of
numerical methods.
The contents of the book have been kept at a fairly theoretical-practical

level. Many concepts are deeply explained and their application empha-
sized, and most of the related theories and formal proofs have been ex-
plained. The book places a strong emphasis on the physical meaning and
applications of the concepts. Topics that have been selected are of high
interest in the field. An attempt has been made to expose students to a
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broad range of topics and approaches.
There are four special chapters that are indirectly related to vehicle dy-

namics: Applied Kinematics, Applied Mechanisms, Applied Dynamics, and
Applied Vibrations. These chapters provide the related background to un-
derstand vehicle dynamics and its subsystems.

Organization of the Book
The text is organized so it can be used for teaching or for self-study.

Chapter 1 “Fundamentals,” contains general preliminaries about tire and
rim with a brief review of road vehicle classifications.
Part I “One Dimensional Vehicle Dynamics,” presents forward vehicle

dynamics, tire dynamics, and driveline dynamics. Forward dynamics refers
to weight transfer, accelerating, braking, engine performance, and gear ratio
design.
Part II “Vehicle Kinematics,” presents a detailed discussion of vehicle

mechanical subsystems such as steering and suspensions.
Part III “Vehicle Dynamics,” employs Newton and Lagrange methods

to develop the maneuvering dynamics of vehicles.
Part IV “Vehicle Vibrations,” presents a detailed discussion of vehi-

cle vibrations. An attempt is made to review the basic approaches and
demonstrate how a vehicle can be modeled as a vibrating multiple degree-
of-freedom system. The concepts of the Newton-Euler dynamics and La-
grangian method are used equally for derivation of equations of motion.
The RMS optimization technique for suspension design of vehicles is intro-
duced and applied to vehicle suspensions. The outcome of the optimization
technique is the optimal stiffness and damping for a car or suspended equip-
ment.

Method of Presentation
This book uses a "fact-reason-application" structure. The "fact" is the

main subject we introduce in each section. Then the reason is given as a
"proof." The application of the fact is examined in some "examples." The
"examples" are a very important part of the book because they show how
to implement the "facts." They also cover some other facts that are needed
to expand the subject.

Prerequisites
Since the book is written for senior undergraduate and first-year graduate-

level students of engineering, the assumption is that users are familiar with
matrix algebra as well as basic dynamics. Prerequisites are the fundamen-
tals of kinematics, dynamics, vector analysis, and matrix theory. These
basics are usually taught in the first three undergraduate years.



Unit System
The system of units adopted in this book is, unless otherwise stated, the

international system of units (SI). The units of degree (deg) or radian ( rad)
are utilized for variables representing angular quantities.

Symbols

• Lowercase bold letters indicate a vector. Vectors may be expressed in
an n dimensional Euclidian space. Example:

r , s , d , a , b , c
p , q , v , w , y , z
ω , α , ² , θ , δ , φ

• Uppercase bold letters indicate a dynamic vector or a dynamic ma-
trix, such as force and moment. Example:

F , M

• Lowercase letters with a hat indicate a unit vector. Unit vectors are
not bolded. Example:

ı̂ , ĵ , k̂ , ê , û , n̂

Î , Ĵ , K̂ , êθ , êϕ , êψ

• Lowercase letters with a tilde indicate a 3×3 skew symmetric matrix
associated to a vector. Example:

ã =

⎡⎣ 0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤⎦ , a =

⎡⎣ a1
a2
a3

⎤⎦
• An arrow above two uppercase letters indicates the start and end
points of a position vector. Example:

−−→
ON = a position vector from point O to point N

• The length of a vector is indicated by a non-bold lowercase letter.
Example:

r = |r| , a = |a| , b = |b| , s = |s|

• Capital letter B is utilized to denote a body coordinate frame. Ex-
ample:

B(oxyz) , B(Oxyz) , B1(o1x1y1z1)

Preface xi
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• Capital letter G is utilized to denote a global, inertial, or fixed coor-
dinate frame. Example:

G , G(XY Z) , G(OXY Z)

• Right subscript on a transformation matrix indicates the departure
frames. Example:

RB = transformation matrix from frame B(oxyz)

• Left superscript on a transformation matrix indicates the destination
frame. Example:

GRB = transformation matrix from frame B(oxyz)

to frame G(OXY Z)

• Capital letter R indicates rotation or a transformation matrix, if it
shows the beginning and destination coordinate frames. Example:

GRB =

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦
• Whenever there is no sub or superscript, the matrices are shown in a
bracket. Example:

[T ] =

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦
• Left superscript on a vector denotes the frame in which the vector
is expressed. That superscript indicates the frame that the vector
belongs to; so the vector is expressed using the unit vectors of that
frame. Example:

Gr = position vector expressed in frame G(OXY Z)

• Right subscript on a vector denotes the tip point that the vector is
referred to. Example:

GrP = position vector of point P

expressed in coordinate frame G(OXY Z)

• Right subscript on an angular velocity vector indicates the frame that
the angular vector is referred to. Example:

ωB = angular velocity of the body coordinate frame B(oxyz)

xii
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• Left subscript on an angular velocity vector indicates the frame that
the angular vector is measured with respect to. Example:

GωB = angular velocity of the body coordinate frame B(oxyz)

with respect to the global coordinate frame G(OXY Z)

• Left superscript on an angular velocity vector denotes the frame in
which the angular velocity is expressed. Example:

B2

G ωB1 = angular velocity of the body coordinate frame B1
with respect to the global coordinate frame G,

and expressed in body coordinate frame B2

Whenever the subscript and superscript of an angular velocity are
the same, we usually drop the left superscript. Example:

GωB ≡ G
GωB

Also for position, velocity, and acceleration vectors, we drop the left
subscripts if it is the same as the left superscript. Example:

B
BvP ≡ BvP

• Left superscript on derivative operators indicates the frame in which
the derivative of a variable is taken. Example:

Gd

dt
x ,

Gd

dt
BrP ,

Bd

dt
G
BrP

If the variable is a vector function, and also the frame in which the
vector is defined is the same frame in which a time derivative is taken,
we may use the following short notation,

Gd

dt
GrP =

GṙP ,
Bd

dt
B
o rP =

B
o ṙP

and write equations simpler. Example:

Gv =
Gd

dt
Gr(t) = Gṙ

• If followed by angles, lowercase c and s denote cos and sin functions
in mathematical equations. Example:

cα = cosα , sϕ = sinϕ

i
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• Capital bold letter I indicates a unit matrix, which, depending on
the dimension of the matrix equation, could be a 3 × 3 or a 4 × 4
unit matrix. I3 or I4 are also being used to clarify the dimension of
I. Example:

I = I3 =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦
• An asterisk F indicates a more advanced subject or example that is
not designed for undergraduate teaching and can be dropped in the
first reading.
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Tire and Rim Fundamentals
We introduce and review some topics about tires, wheels, roads, vehicles,
and their interactions. These subjects are needed to understand vehicle
dynamics better.

1.1 Tires and Sidewall Information

Pneumatic tires are the only means to transfer forces between the road and
the vehicle. Tires are required to produce the forces necessary to control
the vehicle, and hence, they are an important component of a vehicle.
Figure 1.1 illustrates a cross section view of a tire on a rim to show the

dimension parameters that are used to standard tires.

Pan width

wT, Section width

hT, Section height

Tireprint width

Sidewall

FIGURE 1.1. Cross section of a tire on a rim to show tire height and width.

The section height, tire height, or simply height, hT , is a number that
must be added to the rim radius to make the wheel radius. The section
width, or tire width, wT , is the widest dimension of a tire when the tire is
not loaded.
Tires are required to have certain information printed on the tire sidewall.

Figure 1.2 illustrates a side view of a sample tire to show the important
information printed on a tire sidewall.
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FIGURE 1.2. Side view of a tire and the most important information printed on
a tire sidewall.

The codes in Figure 1.2 are:

1 Size number.
2 Maximum allowed inflation pressure.
3 Type of tire construction.
4 M&S denotes a tire for mud and snow.
5 E-Mark is the Europe type approval mark and number.
6 US Department of Transport (DOT) identification numbers.
7 Country of manufacture.
8 Manufacturers, brand name, or commercial name.

The most important information on the sidewall of a tire is the size
number, indicated by 1 . To see the format of the size number, an example
is shown in Figure 1.3 and their definitions are explained as follows.

P Tire type. The first letter indicates the proper type of car that the

tire is made for. P stands for passenger car. The first letter can also be

ST for special trailer, T for temporary, and LT for light truck.
215 Tire width. This three-number code is the width of the unloaded

tire from sidewall to sidewall measured in [mm].
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Passenger car

Tire width [mm]
Aspect ratio [%]
Radial

Rim diameter [in]

Load rating

Speed rating

P

215

60

R

15

96

H

P  215 / 60 R 15  96 H

FIGURE 1.3. A sample of a tire size number and its meaning.

60 Aspect ratio. This two-number code is the ratio of the tire section
height to tire width, expressed as a percentage. Aspect ratio is shown by
sT .

sT =
hT
wT

× 100 (1.1)

Generally speaking, tire aspect ratios range from 35, for race car tires, to
75 for tires used on utility vehicles.

R Tire construction type. The letter R indicates that the tire has

a radial construction. It may also be B for bias belt or bias ply, and

D for diagonal.
15 Rim diameter. This is a number in [ in] to indicate diameter of the

rim that the tire is designed to fit on.
96 Load rate or load index. Many tires come with a service description

at the end of the tire size. The service description is made of a two-digit
number (load index) and a letter (speed rating). The load index is a rep-
resentation of the maximum load each tire is designed to support.
Table 1.1 shows some of the most common load indices and their load-

carrying capacities. The load index is generally valid for speeds under
210 km/h (≈ 130mi/h).

H Speed rate. Speed rate indicates the maximum speed that the tire
can sustain for a ten minute endurance without breaking down.
Table 1.2 shows the most common speed rate indices and their meanings.

Example 1 Weight of a car and load index of its tire.
For a car that weighs 2 tons = 2000 kg, we need a tire with a load index

higher than 84. This is because we have about 500 kg per tire and it is in a
load index of 84.
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Table 1.1 - Maximum load-carrying capacity tire index.
Index Maximum load Index Maximum load
0 45 kg ≈ 99 lbf
· · · · · · 100 800 kg ≈ 1764 lbf
71 345 kg ≈ 761 lbf 101 825 kg ≈ 1819 lbf
72 355 kg ≈ 783 lbf 102 850 kg ≈ 1874 lbf
73 365 kg ≈ 805 lbf 103 875 kg ≈ 1929 lbf
74 375 kg ≈ 827 lbf 104 900 kg ≈ 1984 lbf
75 387 kg ≈ 853 lbf 105 925 kg ≈ 2039 lbf
76 400 kg ≈ 882 lbf 106 950 kg ≈ 2094 lbf
77 412 kg ≈ 908 lbf 107 975 kg ≈ 2149 lbf
78 425 kg ≈ 937 lbf 108 1000 kg ≈ 2205 lbf
79 437 kg ≈ 963 lbf 109 1030 kg ≈ 2271 lbf
80 450 kg ≈ 992 lbf 110 1060 kg ≈ 2337 lbf
81 462 kg ≈ 1019 lbf 111 1090 kg ≈ 2403 lbf
82 475 kg ≈ 1047 lbf 113 1120 kg ≈ 2469 lbf
83 487 kg ≈ 1074 lbf 113 1150 kg ≈ 2581 lbf
84 500 kg ≈ 1102 lbf 114 1180 kg ≈ 2601 lbf
85 515 kg ≈ 1135 lbf 115 1215 kg ≈ 2679 lbf
86 530 kg ≈ 1163 lbf 116 1250 kg ≈ 2806 lbf
87 545 kg ≈ 1201 lbf 117 1285 kg ≈ 2833 lbf
88 560 kg ≈ 1235 lbf 118 1320 kg ≈ 2910 lbf
89 580 kg ≈ 1279 lbf 119 1360 kg ≈ 3074 lbf
90 600 kg ≈ 1323 lbf 120 1400 kg ≈ 3086 lbf
91 615 kg ≈ 1356 lbf 121 1450 kg ≈ 3197 lbf
92 630 kg ≈ 1389 lbf 122 1500 kg ≈ 3368 lbf
93 650 kg ≈ 1433 lbf 123 1550 kg ≈ 3417 lbf
94 670 kg ≈ 1477 lbf 124 1600 kg ≈ 3527 lbf
95 690 kg ≈ 1521 lbf 125 1650 kg ≈ 3690 lbf
96 710 kg ≈ 1565 lbf 126 1700 kg ≈ 3748 lbf
97 730 kg ≈ 1609 lbf 127 1750 kg ≈ 3858 lbf
98 750 kg ≈ 1653 lbf 128 1800 kg ≈ 3968 lbf
99 775 kg ≈ 1709 lbf · · · · · ·

199 13600 kg ≈ 30000 lbf
Example 2 Height of a tire based on tire numbers.
A tire has the size number P215/60R15 96H. The aspect ratio 60 means

the height of the tire is equal to 60% of the tire width. To calculate the tire
height in [mm], we should multiply the first number (215) by the second
number (60) and divide by 100.

hT = 215×
60

100
= 129mm (1.2)

This is the tire height from rim to tread.
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Table 1.2 - Maximum speed tire index.
Index Maximum speed Index Maximum speed
B 50 km/h ≈ 31mi/h P 150 km/h ≈ 93mi/h
C 60 km/h ≈ 37mi/h Q 160 km/h ≈ 100mi/h
D 65 km/h ≈ 40mi/h R 170 km/h ≈ 106mi/h
E 70 km/h ≈ 43mi/h S 180 km/h ≈ 112mi/h
F 80 km/h ≈ 50mi/h T 190 km/h ≈ 118mi/h
G 90 km/h ≈ 56mi/h U 200 km/h ≈ 124mi/h
J 100 km/h ≈ 62mi/h H 210 km/h ≈ 130mi/h
K 110 km/h ≈ 68mi/h V 240 km/h ≈ 150mi/h
L 120 km/h ≈ 75mi/h W 270 km/h ≈ 168mi/h
M 130 km/h ≈ 81mi/h Y 300 km/h ≈ 188mi/h
N 140 km/h ≈ 87mi/h Z +240km/h ≈ +149mi/h

Example 3 Alternative tire size indication.
If the load index is not indicated on the tire, then a tire with a size number

such as 255/50R17 100V may also be numbered by 255/50V R17.

Example 4 Tire and rim widths.
The dimensions of a tire are dependent on the rim on which it is mounted.

For tires with an aspect ratio of 50 and above, the rim width is approxi-
mately 70% of the tire’s width, rounded to the nearest 0.5 in. As an example,
a P255/50R16 tire has a design width of 255mm = 10.04 in however, 70%
of 10.04 in is 7.028 in, which rounded to the nearest 0.5 in, is 7 in. Therefore,
a P255/50R16 tire should be mounted on a 7× 16 rim.
For tires with aspect ratio 45 and below, the rim width is 85% of the tire’s

section width, rounded to the nearest 0.5 in. For example, a P255/45R17
tire with a section width of 255mm = 10.04 in, needs an 8.5 in rim because
85% of 10.04 in is 8.534 in ≈ 8.5 in. Therefore, a P255/45R17 tire should
be mounted on an 812 × 17 rim.

Example 5 Calculating tire diameter and radius.
We are able to calculate the overall diameter of a tire using the tire size

numbers. By multiplying the tire width and the aspect ratio, we get the tire
height. As an example, we use tire number P235/75R15.

hT = 235× 75%
= 176.25mm ≈ 6.94 in (1.3)

Then, we add twice the tire height hT to the rim diameter to determine the
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tire’s unloaded diameter D = 2R and radius R.

D = 2× 6.94 + 15
= 28.88 in ≈ 733.8mm (1.4)

R = D/2 = 366.9mm (1.5)

Example 6 Speed rating code.
Two similar tires are coded as P235/70HR15 and P235/70R15 100H.

Both tires have code H ≡ 210 km/h for speed rating. However, the second
tire can sustain the coded speed only when it is loaded less than the specified
load index, so it states 100H ≡ 800 kg 210 km/h.
Speed ratings generally depend on the type of tire. Off road vehicles usu-

ally use Q-rated tires, passenger cars usually use R-rated tires for typical
street cars or T -rated for performance cars.

Example 7 Tire weight.
The average weight of a tire for passenger cars is 10− 12 kg. The weight

of a tire for light trucks is 14−16 kg, and the average weight of commercial
truck tires is 135− 180 kg.

Example 8 Effects of aspect ratio.
A higher aspect ratio provides a softer ride and an increase in deflection

under the load of the vehicle. However, lower aspect ratio tires are normally
used for higher performance vehicles. They have a wider road contact area
and a faster response. This results in less deflection under load, causing a
rougher ride to the vehicle.
Changing to a tire with a different aspect ratio will result in a different

contact area, therefore changing the load capacity of the tire.

Example 9 F BMW tire size code.
BMW, a European car, uses the metric system for sizing its tires. As

an example, TD230/55ZR390 is a metric tire size code. TD indicates the
BMW TD model, 230 is the section width in [mm], 55 is the aspect ratio in
percent, Z is the speed rating, R means radial, and 390 is the rim diameter
in [mm].

Example 10 F "MS," "M + S," "M/S," and "M&S" signs.
The sign "MS,"and "M + S," and "M/S," and "M&S" indicate that

the tire has some mud and snow capability. Most radial tires have one of
these signs.

Example 11 F U.S. DOT tire identification number.
The US tire identification number is in the format "DOT DNZE ABCD

1309." It begins with the letters DOT to indicate that the tire meets US fed-
eral standards. DOT stands for Department of Transportation. The next
two characters, DN , after DOT is the plant code, which refers to the man-
ufacturer and the factory location at which the tire was made.
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The next two characters, ZE, are a letter-number combination that refers
to the specific mold used for forming the tire. It is an internal factory code
and is not usually a useful code for customers.
The last four numbers, 1309, represents the week and year the tire was

built. The other numbers, ABCD, are marketing codes used by the man-
ufacturer or at the manufacturer’s instruction. An example is shown in
Figure 1.4.

DOT     DNZE     ABCD     1309  

FIGURE 1.4. An example of a US DOT tire identification number.

DN is the plant code for Goodyear-Dunlop Tire located in Wittlich, Ger-
many. ZE is the tire’s mold size, ABCD is the compound structure code,
13 indicates the 13th week of the year, and 09 indicates year 2009. So, the
tire is manufactured in the 13th week of 2009 at Goodyear-Dunlop Tire in
Wittlich, Germany.

Example 12 F Canadian tires identification number.
In Canada, all tires should have an identification number on the sidewall.

An example is shown in Figure 1.5.

DOT     B3CD     E52X     2112  

FIGURE 1.5. An example of a Canadian DOT tire identification number.

This identification number provides the manufacturer, time, and place
that the tire was made. The first two characters following DOT indicate
the manufacturer and plant code. In this case, B3 indicates Group Michelin
located at Bridgewater, Nova Scotia, Canada. The third and fourth charac-
ters, CD, are the tire’s mold size code. The fifth, sixth, seventh, and eighth
characters, E52X, are optional and are used by the manufacturer. The final
four numbers, 2112, indicates the manufacturing date. For example, 2112
indicate the twenty first week of year 2012. Finally, the maple leaf sign
or the flag sign following the identification number indicates that the tire
is manufactured in Canada. It also certifies that the tire meets Transport
Canada requirements.

Example 13 F E-Mark and international codes.
All tires sold in Europe after July 1997 must carry an E-mark. An ex-

ample is shown by 5 in Figure 1.2. The mark itself is either an upper
or lower case "E" followed by a number in a circle or rectangle, followed
by a further number. An "E" indicates that the tire is certified to com-
ply with the dimensional, performance and marking requirements of ECE
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regulation. ECE or UNECE stands for the united nations economic com-
mission for Europe. The number in the circle or rectangle is the country
code. Example: 11 is the UK. The first two digits outside the circle or
rectangle indicate the regulation series under which the tire was approved.
Example: "02" is for ECE regulation 30 governing passenger tires, and
"00" is for ECE regulation 54 governing commercial vehicle tires. The re-
maining numbers represent the ECE mark type approval numbers. Tires
may have also been tested and met the required noise limits. These tires
may have a second ECE branding followed by an "−s" for sound.
Table 1.3 indicates the European country codes for tire manufacturing.
Besides the DOT and ECE codes for US and Europe, we may also see

the other country codes such as: ISO−9001 for international standards or-
ganization, C.C.C for China compulsory product certification, JIS D 4230
for Japanese industrial standard.

Table 1.3 - European county codes for tire manufacturing.
Code Country Code Country
E1 Germany E14 Switzerland
E2 France E15 Norway
E3 Italy E16 Finland
E4 Netherlands E17 Denmark
E5 Sweden E18 Romania
E6 Belgium E19 Poland
E7 Hungary E20 Portugal
E8 Czech Republic E21 Russia
E9 Spain E22 Greece
E10 Yugoslavia E23 Ireland
E11 United Kingdom E24 Croatia
E12 Austria E25 Slovenia
E13 Luxembourg E26 Slovakia

Example 14 F Light truck tires.
The tire sizes for a light truck may be shown in two formats:

LT245/70R16

or
32× 11.50R16LT

In the first format, LT ≡light truck, 245 ≡tire width in millimeters,
70 ≡aspect ratio in percent, R ≡radial structure, and 16 ≡rim diameter in
inches.
In the second format, 32 ≡tire diameter in inches, 11.50 ≡tire width in

inches, R ≡radial structure, 16 ≡rim diameter in inches, and LT ≡light
truck.
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Example 15 F UTQG ratings.
Tire manufacturers may put some other symbols, numbers, and letters

on their tires supposedly rating their products for wear, wet traction, and
heat resistance. These characters are referred to as UTQG (Uniform Tire
Quality Grading), although there is no uniformity and standard in how they
appear. There is an index for wear to show the average wearing life time
in mileage. The higher the wear number, the longer the tire lifetime. An
index of 100 is equivalent to approximately 20000 miles or 30000 km. Other
numbers are indicated in Table 1.4.

Table 1.4 - Tread wear rating index.
Index Life (Approximate)
100 32000 km 20000mi
150 48000 km 30000mi
200 64000 km 40000mi
250 80000 km 50000mi
300 96000 km 60000mi
400 129000 km 80000mi
500 161000 km 100000mi

The UTQG also rates tires for wet traction and heat resistance. These
are rated in letters between "A" to "C," where "A" is the best, "B" is
intermediate and "C" is acceptable. An "A" wet traction rating is typically
an indication that the tire has a deep open tread pattern with lots of sipping,
which are the fine lines in the tread blocks.
An "A" heat resistance rating indicates two things: First, low rolling re-

sistance due to stiffer tread belts, stiffer sidewalls, or harder compounds;
second, thinner sidewalls, more stable blocks in the tread pattern. Temper-
ature rating is also indicated by a letter between "A" to "CM," where "A"
is the best, "B" is intermediate, and "C" is acceptable.
There might also be a traction rating to indicate how well a tire grips

the road surface. This is an overall rating for both dry and wet conditions.
Tires are rated as: "AA" for the best, "A" for better, "B" for good, and
"C" for acceptable.

Example 16 F Tire sidewall additional marks.
TL ≡ Tubeless
TT ≡ Tube type, tire with an inner-tube
Made in Country ≡ Name of the manufacturing country
C ≡ Commercial tires made for commercial trucks; Example: 185R14C
B ≡ Bias ply
SFI ≡ Side facing inwards
SFO ≡ Side facing outwards
TWI ≡ Tire wear index
It is an indicator in the main tire profile, which shows when the tire is

worn down and needs to be replaced.
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205/65 R15

205 mm 225 mm 245 mm

225/55 R16 245/45 R17

15 in 16 in 17 in

FIGURE 1.6. The plus one (+1) concept is a rule to find the tire to a rim with
a 1 inch increase in diameter.

SL ≡ Standard load; Tire for normal usage and loads
XL ≡ Extra load; Tire for heavy loads
rf ≡ Reinforced tires
Arrow ≡ Direction of rotation
Some tread patterns are designed to perform better when driven in a

specific direction. Such tires will have an arrow showing which way the tire
should rotate when the vehicle is moving forwards.

Example 17 F Plus one (+1) concept.
The plus one (+1) concept describes the sizing up of a rim and matching

it to a proper tire. Generally speaking, each time we add 1 in to the rim
diameter, we should add 20mm to the tire width and subtract 10% from
the aspect ratio. This compensates the increases in rim width and diameter,
and provides the same overall tire radius. Figure 1.6 illustrates the idea.
By using a tire with a shorter sidewall, we get a quicker steering response

and better lateral stability. However, we will have a stiffer ride.

Example 18 F Under- and over-inflated tire.
Overheat caused by improper inflation of tires is a common tire failure.

An under-inflated tire will support less of the vehicle weight with the air
pressure in the tire; therefore, more of the vehicle weight will be supported
by the tire. This tire load increase causes the tire to have a larger tireprint
that creates more friction and more heat.
In an over-inflated tire, too much of the vehicle weight is supported by the

tire air pressure. The vehicle will be bouncy and hard to steer because the
tireprint is small and only the center portion of the tireprint is contacting
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Cap/Base tread

Belt buffer

Sidewall

Bead bundle

Body plies/Carcass

Inner liner

Inner layer

FIGURE 1.7. Illustration of a sample radial tire interior components and arrange-
ment.

the road surface.
In a properly-inflated tire, approximately 95% of the vehicle weight is

supported by the air pressure in the tire and 5% is supported by the tire
wall.

1.2 Tire Components

A tire is an advanced engineering product made of rubber and a series
of synthetic materials cooked together. Fiber, textile, and steel cords are
some of the components that go into the tire’s inner liner, body plies, bead
bundle, belts, sidewalls, and tread. Figure 1.7 illustrates a sample of tire
interior components and their arrangement.
The main components of a tire are explained below.
Bead or bead bundle is a loop of high strength steel cable coated with

rubber. It gives the tire the strength it needs to stay seated on the wheel
rim and to transfer the tire forces to the rim.
Inner layers are made up of different fabrics, called plies. The most

common ply fabric is polyester cord. The top layers are also called cap
plies. Cap plies are polyesteric fabric that help hold everything in place.
Cap plies are not found on all tires; they are mostly used on tires with higher
speed ratings to help all the components stay in place at high speeds.
An inner liner is a specially compounded rubber that forms the inside

of a tubeless tire. It inhibits loss of air pressure.
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Belts or belt buffers are one or more rubber-coated layers of steel, poly-
ester, nylon, Kevlar or other materials running circumferentially around
the tire under the tread. They are designed to reinforce body plies to hold
the tread flat on the road and make the best contact with the road. Belts
reduce squirm to improve tread wear and resist damage from impacts and
penetration.
The carcass or body plies are the main part in supporting the tension

forces generated by tire air pressure. The carcass is made of rubber-coated
steel or other high strength cords tied to bead bundles. The cords in a
radial tire, as shown in Figure 1.7, run perpendicular to the tread. The
plies are coated with rubber to help them bond with the other components
and to seal in the air.
A tire’s strength is often described by the number of carcass plies. Most

car tires have two carcass plies. By comparison, large commercial jetliners
often have tires with 30 or more carcass plies.
The sidewall provides lateral stability for the tire, protects the body

plies, and helps to keep the air from escaping from the tire. It may contain
additional components to help increase the lateral stability.
The tread is the portion of the tire that comes in contact with the road.

Tread designs vary widely depending on the specific purpose of the tire. The
tread is made from a mixture of different kinds of natural and synthetic
rubbers. The outer perimeter of a tire is also called the crown.
The tread groove is the space or area between two tread rows or blocks.

The tread groove gives the tire traction and is especially useful during rain
or snow.

Example 19 Tire rubber main material.
There are two major ingredients in a rubber compound: the rubber and the

filler. They are combined in such a way to achieve different objectives. The
objective may be performance optimization, traction maximization, or better
rolling resistance. The most common fillers are different types of carbon
black and silica. The other tire ingredients are antioxidants, antiozonant,
and anti-aging agents.
Tires are combined with several components and cooked with a heat treat-

ment. The components must be formed, combined, assembled, and cured to-
gether. Tire quality depends on the ability to blend all of the separate com-
ponents into a cohesive product that satisfies the driver’s needs. A modern
tire is a mixture of steel, fabric, and rubber. Generally speaking, the weight
percentage of the components of a tire are:
1− Reinforcements: steel, rayon, nylon, 16%
2− Rubber: natural/synthetic, 38%
3− Compounds: carbon, silica, chalk, 30%
4− Softener: oil, resin, 10%
5− Vulcanization: sulfur, zinc oxide, 4%
6− Miscellaneous, 2%
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Example 20 Tire cords.
Because tires have to carry heavy loads, steel and fabric cords are used in

their construction to reinforce the rubber compound and provide strength.
The most common materials suitable for the tire application are cotton,
rayon, polyester, steel, fiberglass, and aramid.

Example 21 Bead components and preparation.
The bead component of tires is a non-extensible composite loop that an-

chors the carcass and locks the tire into the rim. The tire bead components
include the steel wire loop and apex or bead filler. The bead wire loop is
made from a steel wire covered by rubber and wound around the tire with
several continuous loops. The bead filler is made from a very hard rubber
compound, which is extruded to form a wedge.

Example 22 Tire ply construction.
The number of plies and cords indicates the number of layers of rubber-

coated fabric or steel cords in the tire. In general, the greater the number of
plies, the more weight a tire can support. Tire manufacturers also indicate
the number and type of cords used in the tire.

Example 23 F Tire tread extrusion.
Tire tread, or the portion of the tire that comes in contact with the road,

consists of the tread, tread shoulder, and tread base. Since there are at least
three different rubber compounds used in forming the tread profile, three
rubber compounds are extruded simultaneously into a shared extruder head.

Example 24 F Different rubber types used in tires.
There are five major rubbers used in tire production: natural rubber,

styrene-butadiene rubber (SBR), polybutadiene rubber (BR), butyl rubber,
and halogenated butyl rubber. The first three are primarily used for tread
and sidewall compounds, while butyl rubber and halogenated butyl rubber
are primarily used for the inner liner and the inside portion that holds the
compressed air inside the tire.

Example 25 F History of rubber.
About 2500 years ago, people living in Central and South America used

the sap and latex of a local tree to waterproof their shoes, and clothes. This
material was introduced to the first pilgrim travelers in the 17th century.
The first application of this new material was discovered by the English as
an eraser. This application supports the name rubber, because it was used
for rubbing out pencil marks. The rubber pneumatic tires were invented in
1845 and its production began in 1888.
The natural rubber is a mixture of polymers and isomers. The main rub-

ber isomer is shown in Figure 1.8 and is called isoprene. The natural
rubber may be vulcanized to make longer and stronger polyisopren, suitable
for tire production. Vulcanization is usually done by sulfur as cross-links.
Figure 1.9 illustrates a vulcanized rubber polymer.
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FIGURE 1.9. Illustration of a vulcanized rubber.

Example 26 F A world without rubber.
Rubber is the main material used to make a tire compliant. A compliant

tire can stick to the road surface while it goes out of shape and provides
distortion to move in another direction. The elastic characteristic of a tire
allows the tire to be pointed in a direction different than the direction the
car is pointed. There is no way for a vehicle to turn without rubber tires,
unless it moves at a very low speed. If vehicles were equipped with only
noncompliant wheels then trains moving on railroads would be the main
travelling vehicles. People could not live too far from the railways and there
would not be much use for bicycles and motorcycles.

1.3 Radial and Non-Radial Tires

Tires are divided in two classes: radial and non-radial, depending on the
angle between carcass metallic cords and the tire-plane. Each type of tire



1. Tire and Rim Fundamentals 15

Cap/Base tread

Belt buffer

Sidewall

Bead bundle

Body plies/Carcass

Inner liner

Inner layer

FIGURE 1.10. Examples of a non-radial tire’s interior components and arrange-
ment.

construction has its own set of characteristics that are the key to its per-
formance.
The radial tire is constructed with reinforcing steel cable belts that are

assembled in parallel and run side to side, from one bead to another bead at
an angle of 90 deg to the circumferential centerline of the tire. This makes
the tire more flexible radially, which reduces rolling resistance and improves
cornering capability. Figure 1.7 shows the interior structure and the carcass
arrangement of a radial tire.
The non-radial tires are also called bias-ply and cross-ply tires. The plies

are layered diagonal from one bead to the other bead at about a 30 deg
angle, although any other angles may also be applied. One ply is set on
a bias in one direction as succeeding plies are set alternately in opposing
directions as they cross each other. The ends of the plies are wrapped
around the bead wires, anchoring them to the rim of the wheel. Figure
1.10 shows the interior structure and the carcass arrangement of a non-
radial tire.
The most important difference in the dynamics of radial and non-radial

tires is their different ground sticking behavior when a lateral force is ap-
plied on the wheel. This behavior is shown in Figure 1.11. The radial tire,
shown in Figure 1.11(a), flexes mostly in the sidewall and keeps the tread
flat on the road. The bias-ply tire, shown in Figure 1.11(b) has less contact
with the road as both tread and sidewalls distort under a lateral load.
The radial arrangement of carcass in a radial tire allows the tread and

sidewall act independently. The sidewall flexes more easily under the weight
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(a) Radial tire (b) Non-Radial tire

FIGURE 1.11. Ground-sticking behavior of radial and non-radial tires in the
presence of a lateral force.

of the vehicle. So, more vertical deflection is achieved with radial tires. As
the sidewall flexes under the load, the belts hold the tread firmly and
evenly on the ground and reduces tread scrub. In a cornering maneuver,
the independent action of the tread and sidewalls keeps the tread flat on
the road. This allows the tire to hold its path. Radial tires are the preferred
tire in most applications today.
The cross arrangement of carcass in bias-ply tires allows it act as a unit.

When the sidewalls deflect or bend under load, the tread squeezes in and
distorts. This distortion affects the tireprint and decrease traction. Because
of the bias-ply inherent construction, sidewall strength is less than that of
a radial tire’s construction and cornering is less effective.

Example 27 Increasing the strength of tires.
The strength of bias-ply tires increases by increasing the number of plies

and bead wires. However, more plies means more mass, which increases heat
and reduces tire life. To increase a radial tire’s strength, larger diameter
steel cables are used in the tire’s carcass.

Example 28 Tubeless and tube-type tire construction.
A tubeless tire is similar in construction to a tube-type tire, except that a

thin layer of air and moisture-resistant rubber is used on the inside of the
tubeless tire from bead to bead to obtain an internal seal of the casing. This
eliminates the need for a tube and flap. Both tires, in equivalent sizes, can
carry the same load at the same inflation pressure.

Example 29 F New shallow tires.
Low aspect ratio tires are radial tubeless tires that have a section width

wider than their section height. The aspect ratio of these tires is between
50% to 30%. Therefore, shallow tires have shorter sidewall heights and
wider tread widths. This feature improves stability and handling from a
higher lateral spring rates.
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Example 30 F Tire function.
A tire is a pneumatic system to support a vehicle’s load. Tires support

a vehicle’s load by using compressed air to create tension in the carcass
plies. Tire carcass are a series of cords that have a high tension strength,
and almost no compression strength. So, it is the air pressure that creates
tension in the carcass and carries the load. In an inflated and unloaded tire,
the cords pull equally on the bead wire all around the tire. When the tire is
loaded, the tension in the cords between the rim and the ground is relieved
while the tension in other cords is unchanged. Therefore, the cords opposite
the ground pull the bead upwards. This is how pressure is transmitted from
the ground to the rim.
Besides vertical load carrying, a tire must transmit acceleration, braking,

and cornering forces to the road. These forces are transmitted to the rim
in a similar manner. Acceleration and braking forces also depend on the
friction between the rim and the bead. A tire also acts as a spring between
the rim and the road.

1.4 Tread

The tread pattern is made up of tread lugs and tread voids. The lugs are
the sections of rubber that make contact with the road and voids are the
spaces that are located between the lugs. Lugs are also called slots or blocks,
and voids are also called grooves. The tire tread pattern of block-groove
configurations affect the tire’s traction and noise level. Wide and straight
grooves running circumferentially have a lower noise level and high lateral
friction. More lateral grooves running from side to side increase traction
and noise levels. A sample of a tire tread is shown in Figure 1.12.
Tires need both circumferential and lateral grooves. The water on the

road is compressed into the grooves by the vehicle’s weight and is evacuated
from the tireprint region, providing better traction at the tireprint contact.
Without such grooves, the water would not be able to escape out to the
sides of the wheel. This would causes a thin layer of water to remain between
the road and the tire, which causes a loss of friction with the road surface.
Therefore, the grooves in the tread provide an escape path for water.
On a dry road, the tire treads reduce grip because they reduce the contact

area between the rubber and the road. This is the reason for using treadless
or slick tires at smooth and dry race tracks.
The mud-terrain tire pattern is characterized by large lugs and large

voids. The large lugs provide large bites in poor traction conditions and
the large voids allow the tire to clean itself by releasing and expelling the
mud and dirt. The all-terrain tire pattern is characterized by smaller voids
and lugs when compared to the mud terrain tire. A denser pattern of lugs
and smaller voids make all-terrain tires quieter on the street. However,



18 1. Tire and Rim Fundamentals
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FIGURE 1.12. A sample of tire tread to show lugs and voids.

smaller voids cannot clean themselves easily and if the voids fill up with
mud, the tire loses some of it’s traction. The all-terrain tire is good for
highway driving.

Example 31 Asymmetrical and directional tread design.
The design of the tread pattern may be asymmetric and change from one

side to the other. Asymmetric patterns are designed to have two or more
different functions and provide a better overall performance.
A directional tire is designed to rotate in only one direction for maximum

performance. Directional tread pattern is especially designed for driving on
wet, snowy, or muddy roads. A non-directional tread pattern is designed to
rotate in either direction without sacrificing in performance.

Example 32 Self-cleaning.
Self-cleaning is the ability of a tire’s tread pattern to release mud or

material from the voids of tread. This ability provides good bite on every
rotation of the tire. A better mud tire releases the mud or material easily
from the tread voids.

1.5 F Hydroplaning

Hydroplaning is sliding of a tire on a film of water. Hydroplaning can occur
when a car drives through standing water and the water cannot totally
escape out from under the tire. This causes the tire to lift off the ground
and slide on the water. The hydroplaning tire will have little traction and
therefore, the car will not obey the driver’s command.
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FIGURE 1.13. Illustration of hydroplaning phnomena.

Deep grooves running from the center front edge of the tireprint to the
corners of the back edges, along with a wide central channel help water
to escape from under the tire. Figure 1.13 illustrates the hydroplaning
phenomena when the tire is riding over a water layer.
There are three types of hydroplaning: dynamic, viscous, and rubber

hydroplaning. Dynamic hydroplaning occurs when standing water on a wet
road is not displaced from under the tires fast enough to allow the tire to
make pavement contact over the total tireprint. The tire rides on a wedge of
water and loses its contact with the road. The speed at which hydroplaning
happens is called hydroplaning speed.
Viscous hydroplaning occurs when the wet road is covered with a layer

of oil, grease, or dust. Viscous hydroplaning happens with less water depth
and at a lower speed than dynamic hydroplaning.
Rubber hydroplaning is generated by superheated steam at high pressure

in the tireprint, which is caused by the friction-generated heat in a hard
braking.

Example 33 Aeronautic hydroplaning speed.
In aerospace engineering the hydroplaning speed is estimated in [knots]

by
vH = 9

√
p (1.6)

where, p is tire inflation pressure in [psi].
For main wheels of a B757 aircraft, the hydroplaning speed would be

vH = 9
√
144

= 108 knots ≈ 55.5m/ s.

Equation (1.6) for a metric system would be

vx = 5.5753× 10−2
√
p (1.7)

where vx is in [m/ s] and p is in [ Pa]. As an example, the hydroplaning
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FIGURE 1.14. A tireprint.

speed of a car using tires with pressure 28psi ≈ 193053Pa is
vx = 5.5753× 10−2

√
193053

≈ 24.5m/ s (1.8)

≈ 47.6knots ≈ 88.2 km/h ≈ 54.8mi/h.

1.6 Tireprint

The contact area between a tire and the road is called the tireprint and is
shown by AP . At any point of a tireprint, the normal and friction forces are
transmitted between the road and tire. The effect of the contact forces can
be described by a resulting force system including force and torque vectors
applied at the center of the tireprint.
The tireprint is also called contact patch, contact region, or tire footprint.

A simplified model of tireprint is shown in Figure 1.14.
The area of the tireprint is inversely proportional to the tire pressure.

Lowering the tire pressure is a technique used for off-road vehicles in sandy,
muddy, or snowy areas, and for drag racing. Decreasing the tire pressure
causes the tire to slump so more of the tire is in contact with the surface,
giving better traction in low friction conditions. It also helps the tire grip
small obstacles as the tire conforms more to the shape of the obstacle, and
makes contact with the object in more places. Low tire pressure increases
fuel consumption, tire wear, and tire temperature.

Example 34 Uneven wear in front and rear tires.
In most vehicles, the front and rear tires will wear at different rates. So,

it is advised to swap the front and rear tires as they wear down to even out
the wear patterns. This is called rotating the tires.
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FIGURE 1.15. Illustration of a wheel and its dimensions.

Front tires, especially on front-wheel drive vehicles, wear out more quickly
than rear tires.

1.7 Wheel and Rim

When a tire is installed on a rim and is inflated, it is called a wheel. A wheel
is a combined tire and rim. The rim is the metallic cylindrical part where
the tire is installed. Most passenger cars are equipped with steel rims. The
steel rim is made by welding a disk to a shell. However, light alloy rims
made with light metals such as aluminium and magnesium are also popular.
Figure 1.15 illustrates a wheel and the most important dimensional names.
A rim has two main parts: flange and spider. The flange or hub is the ring

or shell on which the tire is mounted. The spider or center section is the
disc section that is attached to the hub. The rim width is also called pan
width and measured from inside to inside of the bead seats of the flange.
Flange provides lateral support to the tire. A flange has two bead seats
providing radial support to the tire. The well is the middle part between
the bead seats with sufficient depth and width to enable the tire beads to
be mounted and demounted on the rim. The rim hole or valve aperture is
the hole or slot in the rim that accommodates the valve for tire inflation.
There are two main rim shapes: 1− drop center rim (DC) and, 2− wide
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FIGURE 1.17. A sample rim number.

drop center rim (WDC). The WDC may also come with a hump. The
humped WDC may be called WDCH. Their cross sections are illustrated
in Figure 1.16.
Drop center (DC) rims usually are symmetric with a well between the

bead seats. The well is built to make mounting and demounting the tire
easy. The bead seats are around 5 deg tapered. Wide drop center rims
(WDC) are wider than DC rims and are built for low aspect ratio tires.
The well of WDC rims are shallower and wider. Today, most passenger
cars are equipped with WDC rims. The WDC rims may be manufactured
with a hump behind the bead seat area to prevent the bead from slipping
down.
A sample of rim numbering and its meaning is shown in Figure 1.17.

Rim width, rim diameter, and offset are shown in Figure 1.15. Offset is
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FIGURE 1.18. Illustration of a wheel attched to the spindle axle.

the distance between the inner plane and the center plane of the rim. A
rim may be designed with a negative, zero, or positive offset. A rim has a
positive offset if the spider is outward from the center plane.
The flange shape code signifies the tire-side profile of the rim and can be

B, C, D, E, F , G, J , JJ , JK, and K. Usually the profile code follows the
nominal rim width but different arrangements are also used. Figure 1.18
illustrates how a wheel is attached to the spindle axle.

Example 35 Wire spoke wheel.
A rim that uses wires to connect the center part to the exterior flange

is called a wire spoke wheel, or simply a wire wheel. The wires are called
spokes. This type of wheel is usually used on classic vehicles. The high-
power cars do not use wire wheels because of safety. Figure 1.19 depicts
two examples of wire spoke wheels.

Example 36 Light alloy rim material.
Metal is the main material for manufacturing, rims, however, new com-

posite materials are also used for rims occasionally. Composite material
rims are usually thermoplastic resin with glass fiber reinforcement, devel-
oped mainly for low weight. Their strength and heat resistance still need
improvement before being a proper substitute for metallic rims.
Other than steel and composite materials, light alloys such as aluminum,

magnesium, and titanium are used for manufacturing rims.
Aluminum is very good for its weight, thermal conductivity, corrosion re-

sistance, easy casting, low temperature, easy machine processing, and recy-
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FIGURE 1.19. Two samples of wire spoke wheel.
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FIGURE 1.20. The difference between aluminum, magnesium, and steel rims in
regaining road contact after a jump.

cling. Magnesium is about 30% lighter than aluminum, and is excellent for
size stability and impact resistance. However, magnesium is more expensive
and it is used mainly for luxury or racing cars. The corrosion resistance of
magnesium is not as good as aluminum. Titanium is much stronger than
aluminum with excellent corrosion resistance. However, titanium is expen-
sive and hard to be machine processed.
The difference between aluminum, magnesium, and steel rims is illus-

trated in Figure 1.20. Light weight wheels regain contact with the ground
quicker than heavier wheels.

Example 37 Spare tire.
Road vehicles typically carry a spare tire, which is already mounted on a

rim ready to use in the event of flat tire. After 1980, some cars have been
equipped with spare tires that are smaller than normal size. These spare
tires are called doughnuts or space-saver spare tires. Although the doughnut
spare tire is not very useful or popular, it can help to save a little space,



1. Tire and Rim Fundamentals 25

weight, cost, and gas mileage. Doughnut spare tires can not be driven far
or fast.

Example 38 Wheel history.
Stone and wooden wheels were invented and used somewhere in the Mid-

dle East about 5000 years ago. Hard wheels have some inefficient character-
istics namely poor traction, low friction, harsh ride, and poor load carrying
capacity.
Solid rubber tires and air tube tires began to be used in the late nineteen

and early twentieth century.

1.8 Vehicle Classifications

Road vehicles are usually classified based on their size and number of axles.
Although there is no standard or universally accepted classification method,
there are a few important and applied vehicle classifications.

1.8.1 ISO and FHWA Classification

ISO3833 classifies ground vehicles in 7 groups:

1− Motorcycles
2− Passenger cars
3− Busses
4− Trucks
5− Agricultural tractors
6− Passenger cars with trailer
7− Truck trailer/semi trailer road trains

The Federal Highway Administration (FHWA) classifies road vehicles
based on size and application. All road vehicles are classified in 13 classes
as described below:

1− Motorcycles
2− Passenger cars, including cars with a one-axle or two-axle trailer
3− Other two-axle vehicles, including: pickups, and vans, with a one-axle

or two-axle trailer
4− Buses
5− Two axle, six-tire single units
6− Three-axle single units
7− Four or more axle single units
8− Four or fewer axle single trailers
9− Five-axle single trailers
10− Six or more axle single trailers
11− Five or less axle multi-trailers
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12− Six-axle multi-trailers
13− Seven or more axle multi-trailers

Figure 1.21 illustrates the FHWA classification. The definition of FHWA
classes follow.
Motorcycles: Any motorvehicle having a seat or saddle and no more

than three wheels that touch the ground is a motorcycle. Motorcycles,
motor scooters, mopeds, motor-powered or motor-assisted bicycles, and
three-wheel motorcycles are in this class. Motorcycles are usually, but not
necessarily, steered by handlebars. Figure 1.22 depicts a three-wheel mo-
torcycle.
Passenger Cars : Street cars, including sedans, coupes, and station wag-

ons manufactured primarily for carrying passengers, are in this class. Fig-
ure 1.23 illustrates a two-door passenger car. Passenger cars are also called
street cars, automobiles, or autos.
Other Two-Axle, Four-Tire Single-Unit Vehicles: All two-axle, four-tire

vehicles other than passenger cars make up this class. This class includes
pickups, panels, vans, campers, motor homes, ambulances, hearses, car-
ryalls, and minibuses. Other two-axle, four-tire single-unit vehicles pulling
recreational or light trailers are also included in this class. Distinguishing
class 3 from class 2 is not clear, so these two classes may sometimes be
combined into class 2.
Buses: A motor vehicle able to carry more than ten persons is a bus.

Buses are manufactured as traditional passenger-carrying vehicles with two
axles and six tires. However, buses with three or more axles are also man-
ufactured.
Two-Axle, Six-Tire, Single-Unit Trucks : Vehicles on a single frame in-

cluding trucks, camping and recreational vehicles, motor homes with two
axles, and dual rear wheels are in this class.
Three-Axle Single-Unit Trucks: Vehicles having a single frame including

trucks, camping, recreational vehicles, and motor homes with three axles
are in this class.
Four-or-More-Axle-Single-Unit Trucks: All trucks on a single frame with

four or more axles make up this class.
Four-or-Fewer-Axle Single-Trailer Trucks: Vehicles with four or fewer

axles consisting of two units, one of which is a tractor or straight truck
power unit, are in this class.
Five-Axle Single-Trailer Trucks: Five-axle vehicles consisting of two units,

one of which is a tractor or straight truck power unit, are in this class.
Six-or-More-Axle Single-Trailer Trucks: Vehicles with six or more axles

consisting of two units, one of which is a tractor or straight truck power
unit, are in this class.
Five-or-Fewer-Axle Multi-Trailer Trucks: Vehicles with five or fewer axles

consisting of three or more units, one of which is a tractor or straight truck
power unit, are in this class.
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FIGURE 1.21. The FHWA vehicle classification.
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FIGURE 1.22. A three-wheel motorcycle.

FIGURE 1.23. A two-door passenger car.

Six-Axle Multi-Trailer Trucks: Six-axle vehicles consisting of three or
more units, one of which is a tractor or straight truck power unit, are in
this class.
Seven or More Axle Multi-Trailer Trucks: Vehicles with seven or more

axles consisting of three or more units, one of which is a tractor or straight
truck power unit are in this class.
The classes 6 to 13 are also called truck. A truck is a motor vehicle

designed primarily for carrying load and/or property.

1.8.2 Passenger Car Classifications

A passenger car or automobile is a motorvehicle designed for carrying ten
or fewer persons. Automobiles may be classified based on their size and
weight. Size classification is based on wheelbase, the distance between front
and rear axles. Weight classification is based on curb weight, the weight of
an automobile with standard equipment, and a full complement of fuel
and other fluids, but with no load, persons, or property. The wheelbase is
rounded to the nearest inch and the curb weight to the nearest 100 lb ≈
50 kg before classification.
For a size classification, passenger car may be classified as a small, mid-

size, and large car. Small cars have a wheelbase of less than 99 in ≈ 2.5m,
midsize cars have a wheelbase of less than 109 in ≈ 2.8m and greater than
100 in ≈ 2.5m, and large cars have a wheelbase of more than 110 in ≈ 2.8m.
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Each class may also be divided further.
For a weight classification, passenger car may be classified as light, mid-

weight, and heavy. Light weight cars have a curb weight of less than 2400 lb ≈
1100 kg, midweight cars have a curb weight of less than 3400 lb ≈ 1550 kg
and more than 2500 lb ≈ 1150 kg, and heavy cars have a curb weight of
more than 3500 lb ≈ 1600 kg. Each class may also be divided in some sub-
divisions.
Dynamically, passenger cars may be classified by their type of suspension,

engine, driveline arrangement, weight distribution, or any other parameters
that affect the dynamics of a car. However, in the market, passenger cars
are usually divided into the following classes according to the number of
passengers and load capacity.

1− Economy
2− Compact
3− Intermediate
4− Standard Size
5− Full Size
6− Premium Luxury
7− Convertible Premium
8− Convertible
9− Minivan
10− Midsize
11− SUV
In another classification, cars are divided according to size and shape.

However, using size and shape to classify passenger cars is not clear-cut;
many vehicles fall in between classes. Also, not all are sold in all countries,
and sometimes their names differ between countries. Common entries in the
shape classification are the sedan, coupe, convertible, minivan/van, wagon,
and SUV.
A sedan is a car with a four-door body configuration and a conventional

trunk or a sloping back with a hinged rear cargo hatch that opens upward.
A coupe is a two-door car.
A convertible is a car with a removable or retractable top.
A minivan/van is a vehicle with a box-shaped body enclosing a large

cargo or passenger area. The identified gross weight of a van is less than
10 000 lb ≈ 4 500 kg. Vans can be identifiable by their enclosed cargo or pas-
senger area, short hood, and box shape. Vans can be divided into mini van,
small van, midsize van, full-size van, and large van. The van subdivision
has the same specifications as SUV subdivisions.
A wagon is a car with an extended body and a roofline that extends past

the rear doors.
An SUV (sport utility vehicle) is a vehicle with off-road capability. SUV

is designed for carrying ten or fewer persons, and generally considered a
multi-purpose vehicle. Most SUVs are four-wheel-drive with and increased
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ground clearance. The SUV is also known as 4-by-4, 4WD, 4 × 4 or 4x4.
SUVs can be divided into mini, small, midsize, full-size, and large SUV.
Mini SUVs are those with a wheelbase of less than or equal to 88 in ≈

224 cm. A mini SUV is typically a microcar with a high clearance, and
off-road capability. Small SUVs have a wheelbase of greater than 88 in ≈
224 cm with an overall width of less than 66 in ≈ 168 cm. Small SUVs
are short and narrow 4 × 4 multi-purpose vehicles. Midsize SUVs have a
wheelbase of greater than 88 in ≈ 224 cm with an overall width greater
than 66 in ≈ 168 cm, but less than 75 in ≈ 190 cm. Midsize SUVs are 4× 4
multi-purpose vehicles designed around a shortened pickup truck chassis.
Full-size SUVs are made with a wheelbase greater than 88 in ≈ 224 cm and
a width between 75 in ≈ 190 cm and 80 in ≈ 203 cm. Full-size SUVs are 4×4
multi-purpose vehicles designed around an enlarged pickup truck chassis.
Large SUVs are made with a wheelbase of greater than 88 in ≈ 224 cm and
a width more than 80 in ≈ 203 cm.
Because of better performance, the vehicle manufacturing companies are

going to make more cars four-wheel-drive. So, four-wheel-drive does not
refer to a specific class of cars anymore.
A truck is a vehicle with two or four doors and an exposed cargo box. A

light truck has a gross weight of less than 10 000 lb ≈ 4 500 kg. A medium
truck has a gross weight from 10 000 lb ≈ 4 500 kg to 26 000 lb ≈ 12 000 kg.
A heavy truck is a truck with a gross weight of more than 26 000 lb ≈
12 000 kg.

1.8.3 Passenger Car Body Styles

Passenger cars are manufactured in so many different styles and shapes.
Not all of those classes are made today, and some have new shapes and still
carry the same old names. Some of them are as follows:
Convertible or cabriolet cars are automobiles with removable or retractable

rooves. There are also the subdivisions cabrio coach or semi-convertible
with partially retractable rooves.
Coupé or coupe are two-door automobiles with two or four seats and a

fixed roof. In cases where the rear seats are smaller than regular size, it is
called a two-plus-two or 2 + 2. Coupé cars may also be convertible.
Crossover SUV or XUV cars are smaller sport utility vehicles based on

a car platform rather than truck chassis. Crossover cars are a mix of SUV,
minivan, and wagon to encompass some of the advantages of each.
Estate car or just estate is the British/English term for what North

Americans call a station wagon.
Hardtop cars are those having a removable solid roof on a convertible car.

However, today a fixed-roof car whose doors have no fixed window frame
are also called a hardtops.
Hatchback cars are identified by a rear door, including the back window

that opens to access a storage area that is not separated from the rest of
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the passenger compartment. A hatchback car may have two or four doors
and two or four seats. They are also called three-door, or five-door cars. A
hatchback car is called a liftback when the opening area is very sloped and
is lifted up to open.
A limousine is a chauffeur-driven car with a glass-window dividing the

front seats from the rear. Limousines are usually an extended version of a
luxury car.
Minivans are boxy wagon cars usually containing three rows of seats,

with a capacity of six or more passengers and extra luggage space.
An MPV (multi-purpose vehicle) is designed as large cars or small buses

having off-road capability and easy loading of goods. However, the idea
for a car with a multi-purpose application can be seen in other classes,
especially SUVs.
Notchback cars are something between the hatchback and sedan. Notch-

back is a sedan with a separate trunk compartment.
A pickup truck ( or simply pickup) is a small or medium-sized truck with

a separate cabin and rear cargo area. Pickups are made to act as a personal
truck, however they might also be used as light commercial vehicles.
Sedan is the most common body style that are cars with four or more

seats and a fixed roof that is full-height up to the rear window. Sedans can
have two or four doors.
Station wagon or wagon is a car with a full-height body all the way to the

rear; the load-carrying space created is accessed via a rear door or doors.

1.9 Summary

Tires are the only component of a vehicle to transfer forces between the road
and the vehicle. Tire classification parameters are indicated on the sidewall,
such as dimensions, maximum load-carrying capacity, and maximum speed
index. A sample of tire size and performance code is shown in Figure 1.24
and their definitions are explained as follows:

P  215 / 60 R 15  96 H

FIGURE 1.24. A sample of tire size.

P stands for passenger car. 215 is the unloaded tire width, in [mm].
60 is the aspect ratio of the tire, sT = hT

wT
× 100, which is the section

height to tire width, expressed as a percentage. R stands for radial.
15 is the rim diameter that the tire is designed to fit in [ in]. 96 is the

load index, and H is the speed rate index.
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Road vehicles are usually classified based on their size and number of
axles. There is no universally accepted standard classification, however,
ISO and FHWA present two important classifications in North America.
ISO3833 classifies ground vehicles into seven groups:

1- Motorcycles
2- Passenger cars
3- Busses
4- Trucks
5- Agricultural tractors
6- Passenger cars with trailer
7- Truck trailer/semitrailer road trains

FHWA classifies all road vehicles into 13 classes:Motorcycles

1- Motorcycles
2- Passenger cars with one or two axles trailer
3- Other two-axle four-wheel single units
4- Buses
5- Two-axle six-wheel single units
6- Three-axle single units
7- Four-or-more-axle single units
8-Four-or-less-axle single trailers
9-Five-axle single trailers
10-Six-or-more-axle single trailers
11-Five-or-less-axle multi-trailers
12-Six-axle-multi-trailers
13-Seven-or-more-axle multi-trailers
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1.10 Key Symbols

AP tireprint area
B bias ply tire
D tire diameter
D diagonal
DC drop center rim
DOT Department of Transportation
FHWA Federal Highway Administration
hT section height
H speed rate
WDCH humped wide drop center rim
LT light truck
M&S mud and snow
p tire inflation pressure
P passenger car
R radial tire
sT aspect ratio
ST special trailer
T temporary tire
vH hydroplaning speed
v, vx forward velocity of vehicle
wT tire width
WDC wide drop center rim
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Exercises

1. Problem of tire beads.

Explain what would be the possible problem for a tire that has tight
or loose beads.

2. Tire size codes.

Explain the meaning of the following tire size codes:

(a)
10.00R20 14(G)

(b)
18.4R46

(c)
480/80R46155A8

(d)
18.4− 38(10)

(e)
76× 50.00B32 = 1250/45B32

(f)
LT255/85B16

(g)
33x12.50R15LT

3. Tire height and diameter.

Find the tire height hT and diameter D for the following tires.

(a)
480/80R46 155A8

(b)
P215/65R15 96H

4. F Plus one.

Increase 1 in to the diameter of the rim of the following tires and find
a proper tire for the new rim.

P215/65R15 96H

P215/60R15 96H
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5. Tire of Porsche 911 turboTM .

A model of Porsche 911 turboTM uses the following tires.

front 235/35ZR19
rear 305/30ZR19

Determine and compare hT , and D for the front and rear tires.

6. Tire of Porsche Cayenne turboTM .

A model of Porsche Cayenne turboTM is an all-wheel-drive that uses
the following tire.

255/55R18

What is the angular velocity of its tires when it is moving at the top
speed v = 171mi/h ≈ 275 km/h?

7. Tire of Ferrari P 4/5 by PininfarinaTM .

A model of Ferrari P 4/5 by PininfarinaTM is a rear-wheel-drive sport
car that uses the following tires.

front 255/35ZR20
rear 335/30ZR20

What is the angular velocity of its tires when it is moving at the top
speed v = 225mi/h ≈ 362 km/h?

8. Tire of Mercedes-Benz SLR 722 EditionTM .

A model of Mercedes-Benz SLR 722 EditionTM uses the following
tires.

front 255/35R19
rear 295/30R19

What is the speed of this car if its rear tires are turning at

ω = 2000 rmp.

At that speed, what would be the angular velocity of the front tires?

9. Tire of Chevrolet Corvette Z06TM .

A model of Chevrolet Corvette Z06TM uses the following tires.

front 275/35ZR18
rear 325/30ZR19

What is the speed of this car if its rear tires are turning at

ω = 2000 rmp.

At that speed, what would be the angular velocity of the front tires?
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10. Tire of Koenigsegg CCXTM .

Koenigsegg CCXTM is a sport car, equipped with the following tires.

front 255/35R19
rear 335/30R20

What is the angular speed ratio of the rear tire to the front tire?
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Forward Vehicle Dynamics
Straight motion of an ideal rigid vehicle is the subject of this chapter.
We ignore air friction and examine the load variation under the tires to
determine the vehicle’s limits of acceleration, road grade, and kinematic
capabilities.

2.1 Parked Car on a Level Road

When a car is parked on level pavement, the normal force, Fz, under each
of the front and rear wheels, Fz1 , Fz2 , are

Fz1 =
1

2
mg

a2
l

(2.1)

Fz2 =
1

2
mg

a1
l

(2.2)

where, a1 is the distance of the car’s mass center, C, from the front axle,
a2 is the distance of C from the rear axle, and l is the wheel base.

l = a1 + a2 (2.3)

a1a2

2Fz2 2Fz1

x

z

C

mg

FIGURE 2.1. A parked car on level pavement.
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Proof. Consider a longitudinally symmetrical car as shown in Figure 2.1.
It can be modeled as a two-axel vehicle. A symmetric two-axel vehicle is
equivalent to a rigid beam having two supports. The vertical force under
the front and rear wheels can be determined using planar static equilibrium
equations. X

Fz = 0 (2.4)X
My = 0 (2.5)

Applying the equilibrium equations

2Fz1 + 2Fz2 −mg = 0 (2.6)

−2Fz1a1 + 2Fz2a2 = 0 (2.7)

provide the reaction forces under the front and rear tires.

Fz1 =
1

2
mg

a2
a1 + a2

=
1

2
mg

a2
l

(2.8)

Fz2 =
1

2
mg

a1
a1 + a2

=
1

2
mg

a1
l

(2.9)

Example 39 Reaction forces under wheels.
A car has 890 kg mass. Its mass center, C, is 78 cm behind the front

wheel axis, and it has a 235 cm wheel base.

a1 = 0.78m (2.10)

l = 2.35m (2.11)

m = 890kg (2.12)

The force under each front wheel is

Fz1 =
1

2
mg

a2
l

=
1

2
890× 9.81× 2.35− 0.78

2.35
= 2916.5N (2.13)

and the force under each rear wheel is

Fz2 =
1

2
mg

a1
l

=
1

2
890× 9.81× 0.78

2.35
= 1449N. (2.14)
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Example 40 Mass center position.
Equations (2.1) and (2.2) can be rearranged to calculate the position of

mass center.

a1 =
2l

mg
Fz2 (2.15)

a2 =
2l

mg
Fz1 (2.16)

Reaction forces under the front and rear wheels of a horizontally parked
car, with a wheel base l = 2.34m, are:

Fz1 = 2000N (2.17)

Fz2 = 1800N (2.18)

Therefore, the longitudinal position of the car’s mass center is at

a1 =
2l

mg
Fz2

= 2
2.34

2 (2000 + 1800)
× 1800 = 1.1084m (2.19)

a2 =
2l

mg
Fz1

= 2
2.34

2 (2000 + 1800)
× 2000 = 1.2316m. (2.20)

Example 41 Longitudinal mass center determination.
The position of mass center C can be determined experimentally. To

determine the longitudinal position of C, we should measure the total weight
of the car as well as the force under the front or the rear wheels. Figure 2.2
illustrates a situation in which we measure the force under the front wheels.

Assuming the force under the front wheels is 2Fz1 , the position of the
mass center is calculated by static equilibrium conditionsX

Fz = 0 (2.21)X
My = 0. (2.22)

Applying the equilibrium equations

2Fz1 + 2Fz2 −mg = 0 (2.23)

−2Fz1a1 + 2Fz2a2 = 0 (2.24)
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l

2Fz2 2Fz1

x
C

mg

a1a2

FIGURE 2.2. Measuring the force under the front wheels.

provide the longitudinal position of C and the reaction forces under the rear
wheels.

a1 =
2l

mg
Fz2

=
2l

mg
(mg − 2Fz1) (2.25)

Fz2 =
1

2
(mg − 2Fz1) (2.26)

Example 42 Lateral mass center determination.
Most cars are approximately symmetrical about the longitudinal center

plane passing the middle of the wheels, and therefore, the lateral position of
the mass center C is close to the center plane. However, the lateral position
of C may be calculated by weighing one side of the car.

Example 43 Height mass center determination.
To determine the height of mass center C, we should measure the force

under the front or rear wheels while the car is on an inclined surface. Ex-
perimentally, we use a device such as is shown in Figure 2.3. The car is
parked on a level surface such that the front wheels are on a scale jack. The
front wheels will be locked and anchored to the jack, while the rear wheels
will be left free to turn. The jack lifts the front wheels and the required
vertical force applied by the jacks is measured by a load cell.
Assume that we have the longitudinal position of C and the jack is lifted

such that the car makes an angle φ with the horizontal plane. The slope
angle φ is measurable using level meters. Assuming the force under the
front wheels is 2Fz1 , the height of the mass center can be calculated by
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x
z

mg

a2

a1

2Fz2

h

φ

H

2Fz1

C

cosh φ

( )sinh R− φ

( )sinh R− φ

FIGURE 2.3. Measuring the force under the wheels to find the height of the mass
center.

static equilibrium conditions X
FZ = 0 (2.27)X
My = 0. (2.28)

Applying the equilibrium equations

2Fz1 + 2Fz2 −mg = 0 (2.29)

−2Fz1 (a1 cosφ− (h−R) sinφ)

+2Fz2 (a2 cosφ+ (h−R) sinφ) = 0 (2.30)

provides the vertical position of C and the reaction forces under the rear
wheels.

Fz2 =
1

2
mg − Fz1 (2.31)

h =
Fz1 (R sinφ+ a1 cosφ) + Fz2 (R sinφ− a2 cosφ)

mg sinφ

= R+
a1Fz1 − a2Fz2

mg
cotφ

= R+

µ
2
Fz1
mg

l − a2

¶
cotφ (2.32)
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A car with the following specifications

m = 2000 kg

2Fz1 = 18000N

φ = 30deg ≈ 0.5236 rad (2.33)

a1 = 110 cm

l = 230 cm

R = 30 cm

has a C at height h.
h = 34 cm (2.34)

There are three assumptions in this calculation: 1− the tires are assumed
to be rigid disks with radius R, 2− fluid shift, such as fuel, coolant, and oil,
are ignored, and 3− suspension deflections are assumed to be zero.
Suspension deflection generates the maximum effect on height determi-

nation error. To eliminate the suspension deflection, we should lock the
suspension, usually by replacing the shock absorbers with rigid rods to keep
the vehicle at its ride height.

Example 44 Different front and rear tires.
Depending on the application, it is sometimes necessary to use different

type of tires and wheels for front and rear axles. When the longitudinal
position of C for a symmetric vehicle is determined, we can find the height
of C by measuring the load on only one axle. As an example, consider the
motorcycle in Figure 2.4. It has different front and rear tires.
Assume the load under the rear wheel of the motorcycle Fz is known.

The height h of C can be found by taking a moment of the forces about the
tireprint of the front tire.

h =
Fz2 (a1 + a2)

mg
− a1 cos

µ
sin−1

H

a1 + a2

¶
+

Rf +Rr

2
(2.35)

Example 45 Statically indeterminate.
A vehicle with more than three wheels is statically indeterminate. To

determine the vertical force under each tire, we need to know the mechanical
properties and conditions of the tires, such as the value of deflection at the
center of the tire, and its vertical stiffness.

2.2 Parked Car on an Inclined Road

When a car is parked on an inclined pavement as shown in Figure 2.5, the
normal force, Fz, under each of the front and rear wheels, Fz1 , Fz2 , is:
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C

mg

Fz2

Rf

φ

h

Fz1

Rr

H

a2

a1

FIGURE 2.4. A motorcycle with different front and rear tires.

Fz1 =
1

2
mg

a2
l
cosφ+

1

2
mg

h

l
sinφ (2.36)

Fz2 =
1

2
mg

a1
l
cosφ− 1

2
mg

h

l
sinφ (2.37)

l = a1 + a2

where, φ is the angle of the road with the horizon. The horizon is perpen-
dicular to the gravitational acceleration g.

Proof. Consider the car shown in Figure 2.5. Let us assume the parking
brake forces are applied on only the rear tires. It means the front tires are
free to spin. Applying the planar static equilibrium equationsX

Fx = 0 (2.38)X
Fz = 0 (2.39)X
My = 0 (2.40)

shows that

2Fx2 −mg sinφ = 0 (2.41)

2Fz1 + 2Fz2 −mg cosφ = 0 (2.42)

−2Fz1a1 + 2Fz2a2 − 2Fx2h = 0. (2.43)
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2Fx2

2Fz1

xz

C

mg

a2

a1

2Fz2

h

a

φ

FIGURE 2.5. A parked car on inclined pavement.

These equations provide the brake force and reaction forces under the front
and rear tires.

Fz1 =
1

2
mg

a2
l
cosφ− 1

2
mg

h

l
sinφ (2.44)

Fz2 =
1

2
mg

a1
l
cosφ+

1

2
mg

h

l
sinφ (2.45)

Fx2 =
1

2
mg sinφ (2.46)

Example 46 Increasing the inclination angle.
When φ = 0, Equations (2.36) and (2.37) reduce to (2.1) and (2.2). By

increasing the inclination angle, the normal force under the front tires of
a parked car decreases and the normal force and braking force under the
rear tires increase. The limit for increasing φ is where the weight vector
mg goes through the contact point of the rear tire with the ground. Such an
angle is called a tilting angle.

Example 47 Maximum inclination angle.
The required braking force Fx2 increases by the inclination angle. Be-

cause Fx2 is equal to the friction force between the tire and pavement, its
maximum depends on the tire and pavement conditions. There is a specific
angle φM at which the braking force Fx2 will saturate and cannot increase
any more. At this maximum angle, the braking force is proportional to the
normal force Fz2

Fx2 = μx2Fz2 (2.47)
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where, the coefficient μx2 is the x-direction friction coefficient for the rear
wheel. At φ = φM , the equilibrium equations will reduce to

2μx2Fz2 −mg sinφM = 0 (2.48)

2Fz1 + 2Fz2 −mg cosφM = 0 (2.49)

2Fz1a1 − 2Fz2a2 + 2μx2Fz2h = 0. (2.50)

These equations provide

Fz1 =
1

2
mg

a2
l
cosφM −

1

2
mg

h

l
sinφM (2.51)

Fz2 =
1

2
mg

a1
l
cosφM +

1

2
mg

h

l
sinφM (2.52)

tanφM =
a1μx2

l − μx2h
(2.53)

showing that there is a relation between the friction coefficient μx2 , max-
imum inclination φM , and the geometrical position of the mass center C.
The angle φM increases by decreasing h.
For a car having the specifications

μx2 = 1

a1 = 110 cm (2.54)

l = 230 cm

h = 35 cm

the tilting angle is
φM ≈ 0.514 rad ≈ 29.43 deg . (2.55)

Example 48 Front wheel braking.
When the front wheels are the only braking wheels Fx2 = 0 and Fx1 6= 0.

In this case, the equilibrium equations will be

2Fx1 −mg sinφ = 0 (2.56)

2Fz1 + 2Fz2 −mg cosφ = 0 (2.57)

−2Fz1a1 + 2Fz2a2 − 2Fx1h = 0. (2.58)

These equations provide the brake force and reaction forces under the front
and rear tires.

Fz1 =
1

2
mg

a2
l
cosφ− 1

2
mg

h

l
sinφ (2.59)

Fz2 =
1

2
mg

a1
l
cosφ+

1

2
mg

h

l
sinφ (2.60)

Fx1 =
1

2
mg sinφ (2.61)
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At the ultimate angle φ = φM

Fx1 = μx1Fz1 (2.62)

and

2μx1Fz1 −mg sinφM = 0 (2.63)

2Fz1 + 2Fz2 −mg cosφM = 0 (2.64)

2Fz1a1 − 2Fz2a2 + 2μx1Fz1h = 0. (2.65)

These equations provide

Fz1 =
1

2
mg

a2
l
cosφM −

1

2
mg

h

l
sinφM (2.66)

Fz2 =
1

2
mg

a1
l
cosφM +

1

2
mg

h

l
sinφM (2.67)

tanφM =
a2μx1

l − μx1h
. (2.68)

Let’s name the ultimate angle for the front wheel brake in Equation (2.53)
as φMf

, and the ultimate angle for the rear wheel brake in Equation (2.68)
as φMr

. Comparing φMf
and φMr

shows that

φMf

φMr

=
a1μx2

¡
l − μx1h

¢
a2μx1

¡
l − μx2h

¢ . (2.69)

We may assume the front and rear tires are the same and so,

μx1 = μx2 (2.70)

therefore,
φMf

φMr

=
a1
a2

. (2.71)

Hence, if a1 < a2 then φMf
< φMr

and therefore, a rear brake is more
effective than a front brake on uphill parking as long as φMr

is less than the
tilting angle, φMr

< tan−1 a2
h . At the tilting angle, the weight vector passes

through the contact point of the rear wheel with the ground.
Similarly we may conclude that when parked on a downhill road, the front

brake is more effective than the rear brake.

Example 49 Four-wheel braking.
Consider a four-wheel brake car, parked uphill as shown in Figure 2.6.

In these conditions, there will be two brake forces Fx1 on the front wheels
and two brake forces Fx1 on the rear wheels.
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2Fx1

2Fx2

2Fz1

xz

C

mg

a2

a1

2Fz2

h

a

φ

FIGURE 2.6. A four wheel brake car, parked uphill.

The equilibrium equations for this car are

2Fx1 + 2Fx2 −mg sinφ = 0 (2.72)

2Fz1 + 2Fz2 −mg cosφ = 0 (2.73)

−2Fz1a1 + 2Fz2a2 − (2Fx1 + 2Fx2)h = 0. (2.74)

These equations provide the brake force and reaction forces under the front
and rear tires.

Fz1 =
1

2
mg

a2
l
cosφ− 1

2
mg

h

l
sinφ (2.75)

Fz2 =
1

2
mg

a1
l
cosφ+

1

2
mg

h

l
sinφ (2.76)

Fx1 + Fx2 =
1

2
mg sinφ (2.77)

At the ultimate angle φ = φM , all wheels will begin to slide simultaneously
and therefore,

Fx1 = μx1Fz1 (2.78)

Fx2 = μx2Fz2 . (2.79)

The equilibrium equations show that

2μx1Fz1 + 2μx2Fz2 −mg sinφM = 0 (2.80)

2Fz1 + 2Fz2 −mg cosφM = 0 (2.81)

−2Fz1a1 + 2Fz2a2 −
¡
2μx1Fz1 + 2μx2Fz2

¢
h = 0. (2.82)
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a1a2

2Fz2 2Fz1

x

z
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mg
2Fx1

h
a

2Fx2

FIGURE 2.7. An accelerating car on a level pavement.

Assuming
μx1 = μx2 = μx (2.83)

will provide

Fz1 =
1

2
mg

a2
l
cosφM −

1

2
mg

h

l
sinφM (2.84)

Fz2 =
1

2
mg

a1
l
cosφM +

1

2
mg

h

l
sinφM (2.85)

tanφM = μx. (2.86)

2.3 Accelerating Car on a Level Road

When a car is speeding with acceleration a on a level road as shown in
Figure 2.7, the vertical forces under the front and rear wheels are

Fz1 =
1

2
mg

a2
l
− 1
2
mg

h

l

a

g
(2.87)

Fz2 =
1

2
mg

a1
l
+
1

2
mg

h

l

a

g
. (2.88)

The first terms, 12mg a2l and
1
2mg a1l , are called static parts, and the second

terms ±1
2mg hl

a
g are called dynamic parts of the normal forces.

Proof. The vehicle is considered as a rigid body that moves along a hor-
izontal road. The force at the tireprint of each tire may be decomposed
to a normal and a longitudinal force. The equations of motion for the ac-
celerating car come from Newton’s equation in x-direction and two static
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equilibrium equations. X
Fx = ma (2.89)X
Fz = 0 (2.90)X
My = 0. (2.91)

Expanding the equations of motion produces three equations for four
unknowns Fx1 , Fx2 , Fz1 , Fz2 .

2Fx1 + 2Fx2 = ma (2.92)

2Fz1 + 2Fz2 −mg = 0 (2.93)

−2Fz1a1 + 2Fz2a2 − 2 (Fx1 + Fx2)h = 0 (2.94)

However, it is possible to eliminate (Fx1 + Fx2) between the first and third
equations, and solve for the normal forces Fz1 , Fz2 .

Fz1 = (Fz1)st + (Fz1)dyn

=
1

2
mg

a2
l
− 1
2
mg

h

l

a

g
(2.95)

Fz2 = (Fz2)st + (Fz2)dyn

=
1

2
mg

a1
l
+
1

2
mg

h

l

a

g
(2.96)

The static parts

(Fz1)st =
1

2
mg

a2
l

(2.97)

(Fz2)st =
1

2
mg

a1
l

(2.98)

are weight distribution for a stationary car and depend on the horizontal
position of the mass center. However, the dynamic parts

(Fz1)dyn = −1
2
mg

h

l

a

g
(2.99)

(Fz2)dyn =
1

2
mg

h

l

a

g
(2.100)

indicate the weight distribution according to horizontal acceleration, and
depend on the vertical position of the mass center.
When accelerating a > 0, the normal forces under the front tires are less

than the static load, and under the rear tires are more than the static load.
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Example 50 Front-wheel-drive accelerating on a level road.
When the car is front-wheel-drive, Fx2 = 0. Equations (2.92) to (2.88)

will provide the same vertical tireprint forces as (2.87) and (2.88). However,
the required horizontal force to achieve the same acceleration, a, must be
provided by solely the front wheels.

Example 51 Rear-wheel drive accelerating on a level road.
If a car is rear-wheel drive then, Fx1 = 0 and the required force to achieve

the acceleration, a, must be provided only by the rear wheels. The vertical
force under the wheels will still be the same as (2.87) and (2.88).

Example 52 Maximum acceleration on a level road.
The maximum acceleration of a car is proportional to the friction under

its tires. We assume the friction coefficients at the front and rear tires are
equal and all tires reach their maximum tractions at the same time.

Fx1 = ±μxFz1 (2.101)

Fx2 = ±μxFz2 (2.102)

Newton’s equation (2.92) can now be written as

ma = ±2μx (Fz1 + Fz2) . (2.103)

Substituting Fz1 and Fz2 from (2.93) and (2.94) results in

a = ±μxg. (2.104)

Therefore, the maximum acceleration and deceleration depend directly on
the friction coefficient.

Example 53 Maximum acceleration for a single-axle drive car.
The maximum acceleration arwd for a rear-wheel-drive car is achieved

when we substitute Fx1 = 0, Fx2 = μxFz2 in Equation (2.92) and use
Equation (2.88)

μxmg

µ
a1
l
+

h

l

arwd
g

¶
= marwd (2.105)

and therefore,

arwd
g

=
a1μx

l − hμx

=
μx

1− μx
h

l

a1
l
. (2.106)

The front wheels can leave the ground when Fz1 = 0. Substituting Fz1 = 0
in Equation (2.88) provides the maximum acceleration at which the front
wheels are still on the road.

arwd
g
≤ a2

h
(2.107)
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a1/l

a/g

arwd/g afwd/g

FIGURE 2.8. Effect of mass center position on the maximum achievable acceler-
ation of a front- and a rear-wheel drive car.

Therefore, the maximum attainable acceleration would be the less value of
Equation (2.106) or (2.107).
Similarly, the maximum acceleration afwd for a front-wheel drive car is

achieved when we substitute Fx2 = 0, Fx1 = μxFz1 in Equation (2.92) and
use Equation (2.87).

afwd
g

=
a2μx

l + hμx

=
μx

1 + μx
h

l

³
1− a1

l

´
(2.108)

To see the effect of changing the position of mass center on the maximum
achievable acceleration, we plot Figure 2.8 for a sample car with

μx = 1

h = 0.56m (2.109)

l = 2.6m.

Passenger cars are usually in the range 0.4 < (a1/g) < 0.6, with (a1/g)→
0.4 for front-wheel-drive cars, and (a1/g) → 0.6 for rear-wheel-drive cars.
In this range, (arwd/g) > (afwd/g) and therefore rear-wheel-drive cars can
reach higher forward acceleration than front-wheel-drive cars. It is an im-
portant applied fact, especially for race cars.
The maximum acceleration may also be limited by the tilting condition

aM
g
≤ a2

h
. (2.110)
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Example 54 Minimum time for 0− 100 km/h on a level road.
Consider a car with the following characteristics:

length = 4245mm

width = 1795mm

height = 1285mm

wheel base = 2272mm

front track = 1411mm (2.111)

rear track = 1504mm

net weight = 1500 kg

h = 220mm

μx = 1

a1 = a2

Assume the car is rear-wheel-drive and its engine can provide the maximum
traction supported by friction. Equation (2.88) determines the load on the
rear wheels and therefore, the forward equation of motion is

2Fx2 = 2μx Fz2

= μxmg
a1
l
+ μxmg

h

l

1

g
a

= ma. (2.112)

Rearrangement provides the following differential equation to calculate ve-
locity and displacement:

a = ẍ =
μxg

a1
l

1− μxg
h

l

1

g

= gμx
a1

l − hμx
(2.113)

Taking an integral Z 27.78

0

dv =

Z t

0

a dt (2.114)

between v = 0 and v = 100km/h ≈ 27.78m/ s shows that the minimum
time for 0− 100 km/h on a level road is

t =
27.78

gμx
a1

l − hμx

≈ 5.11 s (2.115)
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If the same car was front-wheel-drive, then the traction force would be

2Fx1 = 2μx Fz1

= μxmg
a2
l
− μxmg

h

l

1

g
a

= ma. (2.116)

and the equation of motion would reduce to

a = ẍ =
μxg

a2
l

1 + μxg
h

l

1

g

= gμx
a2

l + hμx
. (2.117)

The minimum time for 0− 100 km/h on a level road for this front-wheel-
drive car is

t =
27.78

gμx
a2

l + hμx

≈ 6. 21 s. (2.118)

Now consider the same car to be four-wheel-drive. Then, the traction
force is

2Fx1 + 2Fx2 = 2μx (Fz1 + Fz2)

=
g

l
m (a1 + a2)

= ma. (2.119)

and the minimum time for 0−100 km/h on a level road for this four-wheel-
drive car can theoretically be reduced to

t =
27.78

g
≈ 2.83 s. (2.120)

2.4 Accelerating Car on an Inclined Road

When a car is accelerating on an inclined pavement with angle φ as shown
in Figure 2.9, the normal force under each of the front and rear wheels,
Fz1 , Fz2 , would be:

Fz1 =
1

2
mg

µ
a2
l
cosφ− h

l
sinφ

¶
− 1
2
ma

h

l
(2.121)

Fz2 =
1

2
mg

µ
a1
l
cosφ+

h

l
sinφ

¶
+
1

2
ma

h

l
(2.122)

l = a1 + a2
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FIGURE 2.9. An accelerating car on inclined pavement.

The dynamic parts, ±1
2mg hl

a
g , depend on acceleration a and height h of

mass center C and remain unchanged, while the static parts are influenced
by the slope angle φ and height h of mass center.

Proof. The Newton’s equation in x-direction and two static equilibrium
equations, must be examined to find the equation of motion and ground
reaction forces. X

Fx = ma (2.123)X
Fz = 0 (2.124)X
My = 0. (2.125)

Expanding these equations produces three equations for four unknowns
Fx1 , Fx2 , Fz1 , Fz2 .

2Fx1 + 2Fx2 −mg sinφ = ma (2.126)

2Fz1 + 2Fz2 −mg cosφ = 0 (2.127)

2Fz1a1 − 2Fz2a2 + 2 (Fx1 + Fx2)h = 0 (2.128)

It is possible to eliminate (Fx1 + Fx2) between the first and third equations,
and solve for the normal forces Fz1 , Fz2 .

Fz1 = (Fz1)st + (Fz1)dyn

=
1

2
mg

µ
a2
l
cosφ− h

l
sinφ

¶
− 1
2
ma

h

l
(2.129)
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Fz2 = (Fz2)st + (Fz2)dyn

=
1

2
mg

µ
a1
l
cosφ+

h

l
sinφ

¶
+
1

2
ma

h

l
(2.130)

Example 55 Front-wheel-drive car, accelerating on inclined road.
For a front-wheel-drive car, we may substitute Fx1 = 0 in Equations

(2.126) and (2.128) to have the governing equations. However, it does not
affect the ground reaction forces under the tires (2.129 and 2.130) as long
as the car is driven under its limit conditions.

Example 56 Rear-wheel-drive car, accelerating on inclined road.
Substituting Fx2 = 0 in Equations (2.126) and (2.128) and solving for the

normal reaction forces under each tire provides the same results as (2.129)
and (2.130). Hence, the normal forces applied on the tires do not sense if
the car is front-, rear-, or all-wheel drive. As long as we drive in a straight
path at low acceleration, the drive wheels can be the front or the rear ones.
However, the advantages and disadvantages of front-, rear-, or all-wheel
drive cars appear in maneuvering, slippery roads, or when the maximum
acceleration is required.

Example 57 Maximum acceleration on an inclined road.
The maximum acceleration depends on the friction under the tires. Let’s

assume the friction coefficients at the front and rear tires are equal. Then,
the front and rear traction forces are

Fx1 ≤ μxFz1 (2.131)

Fx2 ≤ μxFz2 . (2.132)

If we assume the front and rear wheels reach their traction limits at the
same time, then

Fx1 = ±μxFz1 (2.133)

Fx2 = ±μxFz2 (2.134)

and we may rewrite Newton’s equation (2.123) as

maM = ±2μx (Fz1 + Fz2)−mg sinφ (2.135)

where, aM is the maximum achievable acceleration.
Now substituting Fz1 and Fz2 from (2.129) and (2.130) results in

aM
g
= ±μx cosφ− sinφ. (2.136)

Accelerating on an uphill road (a > 0, φ > 0) and braking on a downhill
road (a < 0, φ < 0) are the extreme cases in which the car can stall. In
these cases, the car can move as long as

μx ≥ |tanφ| . (2.137)
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Example 58 Limits of acceleration and inclination angle.
Assuming Fz1 > 0 and Fz2 > 0, we can write Equations (2.121) and

(2.122) as

a

g
≤ a2

h
cosφ− sinφ (2.138)

a

g
≥ −a1

h
cosφ− sinφ. (2.139)

Hence, the maximum achievable acceleration (a > 0) is limited by a2, h, φ;
while the maximum deceleration (a < 0) is limited by a1, h, φ. These two
equations can be combined to result in

−a1
h
cosφ ≤ a

g
+ sinφ ≤ a2

h
cosφ. (2.140)

If a→ 0, then the limits of the inclination angle would be

−a1
h
≤ tanφ ≤ a2

h
. (2.141)

This is the maximum and minimum road inclination angles that the car
can stay on without tilting and falling.

Example 59 Maximum deceleration for a single-axle-brake car.
We can find the maximum braking deceleration afwb of a front-wheel-

brake car on a horizontal road by substituting φ = 0, Fx2 = 0, Fx1 =
−μxFz1 in Equation (2.126) and using Equation (2.121)

−μxmg

µ
a2
l
− h

l

arwb
g

¶
= mafwb (2.142)

therefore,
afwb
g

= − μx

1− μx
h

l

³
1− a1

l

´
. (2.143)

Similarly, the maximum braking deceleration arwb of a front-wheel-brake
car can be achieved when we substitute Fx2 = 0, Fx1 = μxFz1 .

arwb
g

= − μx

1 + μx
h

l

a1
l

(2.144)

The effect of changing the position of the mass center on the maximum
achievable braking deceleration is shown in Figure 2.10 for a sample car
with

μx = 1

h = 0.56m (2.145)

l = 2.6m.
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a1/l

a/g

afwd/g

arwd/g

FIGURE 2.10. Effect of mass center position on the maximum achievable deccel-
eration of a front-wheel and a rear-wheel-drive car.

Passenger cars are usually in the range 0.4 < (a1/l) < 0.6. In this range,
(afwb/g) < (arwb/g) and therefore, front-wheel-brake cars can reach better
forward deceleration than rear-wheel-brake cars. Hence, front brakes are
much more important than the rear brakes.

Example 60 F A car with a trailer.
Figure 2.11 depicts a car moving on an inclined road and pulling a trailer.

To analyze the car-trailer motion, we need to separate the car and trailer
to see the forces at the hinge, as shown in Figure 2.12. We assume the
mass center of the trailer Ct is at distance b3 in front of the only axle of
the trailer. If Ct is behind the trailer axle, then b3 should be negative in the
following equations.
For an ideal hinge between a car and a trailer moving in a straight path,

there must be a horizontal force Fxt and a vertical force Fzt .
Writing the Newton’s equation in x-direction and two static equilibrium

equations for both the trailer and the vehicleX
Fx = mta (2.146)X
Fz = 0 (2.147)X
My = 0 (2.148)

we find the following set of equations:

Fxt −mt g sinφ = mt a (2.149)

2Fz3 − Fzt −mt g cosφ = 0 (2.150)

2Fz3b3 − Fztb2 − Fxt (h2 − h1) = 0 (2.151)
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FIGURE 2.11. A car moving on an inclined road and pulling a trailer.

2Fx1 + 2Fx2 − Fxt −mg sinφ = ma (2.152)

2Fz1 + 2Fz2 − Fzt −mg cosφ = 0 (2.153)

2Fz1a1 − 2Fz2a2 + 2 (Fx1 + Fx2)h

−Fxt (h− h1) + Fzt (b1 + a2) = 0 (2.154)

If the value of traction forces Fx1and Fx2 are given, then these are six equa-
tions for six unknowns: a, Fxt , Fzt , Fz1 , Fz2 , Fz3 . Solving these equations
provide the following solutions:

a =
2

m+mt
(Fx1 + Fx2)− g sinφ (2.155)

Fxt =
2mt

m+mt
(Fx1 + Fx2) (2.156)

Fzt =
h1 − h2
b2 − b3

2mt

m+mt
(Fx1 + Fx2) +

b3
b2 − b3

mt g cosφ (2.157)

Fz1 =
b3
2l

µ
2a2 − b1
b2 − b3

mt +
a2
b3
m

¶
g cosφ

+

∙
2a2 − b1
b2 − b3

(h1 − h2)mt − h1mt − hm

¸
Fx1 + Fx2
l (m+mt)

(2.158)
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FIGURE 2.12. Free-body-diagram of a car and the trailer when moving on an
uphill road.

Fz2 =
b3
2l

µ
a1 − a2 + b1

b2 − b3
mt +

a1
b3
m

¶
g cosφ

+

∙
a1 − a2 + b1

b2 − b3
(h1 − h2)mt + h1mt + hm

¸
Fx1 + Fx2
l (m+mt)

(2.159)

Fz3 =
1

2

b2
b2 − b3

mt g cosφ+
h1 − h2
b2 − b3

mt

m+mt
(Fx1 + Fx2) (2.160)

l = a1 + a2. (2.161)

However, if the value of acceleration a is known, then unknowns are: Fx1+
Fx2 , Fxt , Fzt , Fz1 , Fz2 , Fz3 .

Fx1 + Fx2 =
1

2
(m+mt) (a+ g sinφ) (2.162)

Fxt = mt (a+ g sinφ) (2.163)

Fzt =
h1 − h2
b2 − b3

mt (a+ g sinφ) +
b3

b2 − b3
mt g cosφ (2.164)
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Fz1 =
b3
2l

µ
2a2 − b1
b2 − b3

mt +
a2
b3
m

¶
g cosφ (2.165)

+
1

2l

∙
2a2 − b1
b2 − b3

(h1 − h2)mt − h1mt − hm

¸
(a+ g sinφ)

Fz2 =
b3
2l

µ
a1 − a2 + b1

b2 − b3
mt +

a1
b3
m

¶
g cosφ (2.166)

+
1

2l

∙
a1 − a2 + b1

b2 − b3
(h1 − h2)mt + h1mt + hm

¸
(a+ g sinφ)

Fz3 =
1

2

mt

b2 − b3
(b2 g cosφ+ (h1 − h2) (a+ g sinφ)) (2.167)

l = a1 + a2.

Example 61 F Maximum inclination angle for a car with a trailer.
For a car and trailer as shown in Figure 2.11, the maximum inclina-

tion angle φM is the angle at which the car cannot accelerate the vehicle.
Substituting a = 0 and φ = φM in Equation (2.155) shows that

sinφM =
2

(m+mt) g
(Fx1 + Fx2) . (2.168)

The value of maximum inclination angle φM increases by decreasing the
total weight of the vehicle and trailer (m+mt) g or increasing the traction
force Fx1 + Fx2 .
The traction force is limited by the maximum torque on the drive wheel

and the friction under the drive tire. Let’s assume the vehicle is four-wheel-
drive and friction coefficients at the front and rear tires are equal. Then,
the front and rear traction forces are

Fx1 ≤ μxFz1 (2.169)

Fx2 ≤ μxFz2 . (2.170)

If we assume the front and rear wheels reach their traction limits at the
same time, then

Fx1 = μxFz1 (2.171)

Fx2 = μxFz2 (2.172)

and we may rewrite the Equation (2.168) as

sinφM =
2μx

(m+mt) g
(Fz1 + Fz2) . (2.173)

Now substituting Fz1 and Fz2 from (2.158) and (2.159) results in

(mb3 −mb2 −mtb3)μx cosφM + (b2 − b3) (m+mt) sinφM

= 2μx
mt (h1 − h2)

m+mt
(Fx1 + Fx2) . (2.174)
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If we arrange Equation (2.174) as

A cosφM +B sinφM = C (2.175)

then

φM = atan2(
C√

A2 +B2
,±
r
1− C2

A2 +B2
)− atan2(A,B) (2.176)

and

φM = atan2(
C√

A2 +B2
,±
p
A2 +B2 − C2)− atan2(A,B) (2.177)

where

A = (mb3 −mb2 −mtb3)μx (2.178)

B = (b2 − b3) (m+mt) (2.179)

C = 2μx
mt (h1 − h2)

m+mt
(Fx1 + Fx2) . (2.180)

For a rear-wheel-drive car pulling a trailer with the following character-
istics:

l = 2272mm

w = 1457mm

h = 230mm

a1 = a2

h1 = 310mm

b1 = 680mm

b2 = 610mm

b3 = 120mm (2.181)

h2 = 560mm

m = 1500 kg

mt = 150 kg

μx = 1

φ = 10deg

a = 1m/ s2

we find

Fz1 = 3441.78N

Fz2 = 3877.93N

Fz3 = 798.57N

Fzt = 147.99N (2.182)

Fxt = 405.52N

Fx2 = 2230.37N.
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To check if the required traction force Fx2 is applicable, we should compare
it to the maximum available friction force μFz2 and it must be

Fx2 ≤ μFz2 . (2.183)

Example 62 F Solution of equation a cos θ + b sin θ = c.
The first type of trigonometric equation is

a cos θ + b sin θ = c. (2.184)

It can be solved by introducing two new variables r and η such that

a = r sin η (2.185)

b = r cos η (2.186)

and therefore,

r =
p
a2 + b2 (2.187)

η = atan2(a, b). (2.188)

Substituting the new variables show that

sin(η + θ) =
c

r
(2.189)

cos(η + θ) = ±
r
1− c2

r2
. (2.190)

Hence, the solutions of the problem are

θ = atan2(
c

r
,±
r
1− c2

r2
)− atan2(a, b) (2.191)

and
θ = atan2(

c

r
,±
p
r2 − c2)− atan2(a, b). (2.192)

Therefore, the equation a cos θ + b sin θ = c has two solutions if r2 =
a2 + b2 > c2, one solution if r2 = c2, and no solution if r2 < c2.

Example 63 F The function tan−12
y
x = atan2(y, x).

There are many situations in kinematics calculation in which we need
to find an angle based on the sin and cos functions of an angle. However,
tan−1 cannot show the effect of the individual sign for the numerator and
denominator. It always represents an angle in the first or fourth quadrant.
To overcome this problem and determine the angle in the correct quadrant,
the atan2 function is introduced as below.

atan2(y, x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
tan−1

y

x
if y > 0

tan−1
y

x
+ π sign y if y < 0

π

2
signx if y = 0

(2.193)
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In this text, whether it has been mentioned or not, wherever tan−1 y
x is

used, it must be calculated based on atan2(y, x).

Example 64 Zero vertical force at the hinge.
We can make the vertical force at the hinge equal to zero by examining

Equation (2.157) for the hinge vertical force Fzt .

Fzt =
h1 − h2
b2 − b3

2mt

m+mt
(Fx1 + Fx2) +

b3
b2 − b3

mt g cosφ (2.194)

To make Fzt = 0, it is enough to adjust the position of trailer mass center
Ct exactly on top of the trailer axle and at the same height as the hinge. In
these conditions we have

h1 = h2 (2.195)

b3 = 0 (2.196)

that makes
Fzt = 0. (2.197)

However, to increase safety, the load should be distributed evenly through-
out the trailer. Heavy items should be loaded as low as possible, mainly over
the axle. Bulkier and lighter items should be distributed to give a little pos-
itive b3. Such a trailer is called nose weight at the towing coupling.

2.5 Parked Car on a Banked Road

Figure 2.13 depicts the effect of a bank angle φ on the load distribution of
a vehicle. A bank causes the load on the lower tires to increase, and the
load on the upper tires to decrease. The tire reaction forces are:

Fz1 =
1

2

mg

w
(b2 cosφ− h sinφ) (2.198)

Fz2 =
1

2

mg

w
(b1 cosφ+ h sinφ) (2.199)

w = b1 + b2 (2.200)

Proof. Starting with equilibrium equationsX
Fy = 0 (2.201)X
Fz = 0 (2.202)X
Mx = 0. (2.203)
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FIGURE 2.13. Normal force under the uphill and downhill tires of a vehicle,
parked on banked road.

we can write

2Fy1 + 2Fy2 −mg sinφ = 0 (2.204)

2Fz1 + 2Fz2 −mg cosφ = 0 (2.205)

2Fz1b1 − 2Fz2b2 + 2 (Fy1 + Fy2)h = 0. (2.206)

We assumed the force under the lower tires, front and rear, are equal, and
also the forces under the upper tires, front and rear are equal. To calculate
the reaction forces under each tire, we may assume the overall lateral force
Fy1+Fy2 as an unknown. The solution of these equations provide the lateral
and reaction forces under the upper and lower tires.

Fz1 =
1

2
mg

b2
w
cosφ− 1

2
mg

h

w
sinφ (2.207)

Fz2 =
1

2
mg

b1
w
cosφ+

1

2
mg

h

w
sinφ (2.208)

Fy1 + Fy2 =
1

2
mg sinφ (2.209)

At the ultimate angle φ = φM , all wheels will begin to slide simultane-
ously and therefore,

Fy1 = μy1Fz1 (2.210)

Fy2 = μy2Fz2 . (2.211)
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The equilibrium equations show that

2μy1Fz1 + 2μy2Fz2 −mg sinφ = 0 (2.212)

2Fz1 + 2Fz2 −mg cosφ = 0 (2.213)

2Fz1b1 − 2Fz2b2 + 2
¡
μy1Fz1 + μy2Fz2

¢
h = 0. (2.214)

Assuming
μy1 = μy2 = μy (2.215)

will provide

Fz1 =
1

2
mg

b2
w
cosφM −

1

2
mg

h

w
sinφM (2.216)

Fz2 =
1

2
mg

b1
w
cosφM +

1

2
mg

h

w
sinφM (2.217)

tanφM = μy. (2.218)

These calculations are correct as long as

tanφM ≤ b2
h

(2.219)

μy ≤ b2
h
. (2.220)

If the lateral friction μy is higher than b2/h then the car will roll downhill.
To increase the capability of a car moving on a banked road, the car should
be as wide as possible with a mass center as low as possible.

Example 65 Tire forces of a parked car in a banked road.
A car having

m = 980 kg

h = 0.6m (2.221)

w = 1.52m

b1 = b2

is parked on a banked road with φ = 4deg. The forces under the lower and
upper tires of the car are:

Fz1 = 2265.2N

Fz2 = 2529.9N (2.222)

Fy1 + Fy2 = 335.3N

The ratio of the uphill force Fz1 to downhill force Fz2 depends on only
the mass center position.

Fz1
Fz2

=
b2 cosφ− h sinφ

b1 cosφ+ h sinφ
(2.223)
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FIGURE 2.14. Illustration of the force ratio Fz1/Fz2 as a function of road bank
angle φ.

Assuming a symmetric car with b1 = b2 = w/2 simplifies the equation to

Fz1
Fz2

=
w cosφ− 2h sinφ
w cosφ+ 2h sinφ

. (2.224)

Figure 2.14 illustrates the behavior of force ratio Fz1/Fz2 as a function of φ
for h = 0.6m and w = 1.52m. The rolling down angle φM = tan−1 (b2/h) =
51.71 deg indicates the bank angle at which the force under the uphill wheels
become zero and the car rolls down. The negative part of the curve indicates
the required force to keep the car on the road, which is not applicable in real
situations.

2.6 F Optimal Drive and Brake Force Distribution

A certain acceleration a can be achieved by adjusting and controlling the
longitudinal forces Fx1 and Fx2 . The optimal longitudinal forces under the
front and rear tires to achieve the maximum acceleration are

Fx1
mg

= −1
2

h

l

µ
a

g

¶2
+
1

2

a2
l

a

g

= −1
2
μ2x

h

l
+
1

2
μx

a2
l

(2.225)
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Fx2
mg

=
1

2

h

l

µ
a

g

¶2
+
1

2

a1
l

a

g

=
1

2
μ2x

h

l
+
1

2
μx

a1
l
. (2.226)

Proof. The longitudinal equation of motion for a car on a horizontal road
is

2Fx1 + 2Fx2 = ma (2.227)

and the maximum traction forces under each tire is a function of normal
force and the friction coefficient.

Fx1 ≤ ±μxFz1 (2.228)

Fx2 ≤ ±μxFz2 (2.229)

However, the normal forces are a function of the car’s acceleration and
geometry.

Fz1 =
1

2
mg

a2
l
− 1
2
mg

h

l

a

g
(2.230)

Fz2 =
1

2
mg

a1
l
+
1

2
mg

h

l

a

g
(2.231)

We may generalize the equations by making them dimensionless. Under
the best conditions, we should adjust the traction forces to their maximum

Fx1
mg

=
1

2
μx

µ
a2
l
− h

l

a

g

¶
(2.232)

Fx2
mg

=
1

2
μx

µ
a1
l
+

h

l

a

g

¶
(2.233)

and therefore, the longitudinal equation of motion (2.227) becomes

a

g
= μx. (2.234)

Substituting this result back into Equations (2.232) and (2.233) shows that

Fx1
mg

= −1
2

h

l

µ
a

g

¶2
+
1

2

a2
l

a

g
(2.235)

Fx2
mg

=
1

2

h

l

µ
a

g

¶2
+
1

2

a1
l

a

g
. (2.236)

Depending on the geometry of the car (h, a1, a2), and the acceleration a >
0, these two equations determine how much the front and rear driving
forces must be. The same equations are applied for deceleration a < 0, to
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FIGURE 2.15. Optimal driving and braking forces for a sample car.

determine the value of optimal front and rear braking forces. Figure 2.15
represents a graphical illustration of the optimal driving and braking forces
for a sample car using the following data:

μx = 1

h

l
=

0.56

2.6
= 0.21538 (2.237)

a1
l

=
a2
l
=
1

2
.

When accelerating a > 0, the optimal driving force on the rear tire grows
rapidly while the optimal driving force on the front tire drops after a max-
imum. The value (a/g) = (a2/h) is the maximum possible acceleration
at which the front tires lose their contact with the ground. The accelera-
tion at which front (or rear) tires lose their ground contact is called tilting
acceleration.
The opposite phenomenon happens when decelerating. For a < 0, the

optimal front brake force increases rapidly and the rear brake force goes to
zero after a minimum. The deceleration (a/g) = − (a1/h) is the maximum
possible deceleration at which the rear tires lose their ground contact.
The graphical representation of the optimal driving and braking forces

can be shown better by plotting Fx1/ (mg) versus Fx2/ (mg) using (a/g)
as a parameter.

Fx1 =

a2 −
a

g
h

a1 +
a

g
h
Fx2 (2.238)

Fx1
Fx2

=
a2 − μxh

a1 + μxh
(2.239)
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FIGURE 2.16. Optimal traction and braking force distribution between the front
and rear wheels.

Such a plot is shown in Figure 2.16. This is a design curve describing the
relationship between forces under the front and rear wheels to achieve the
maximum acceleration or deceleration.
Adjusting the optimal force distribution is not an automatic procedure

and needs a force distributor control system to measure and adjust the
forces.

Example 66 F Slope at zero.
The initial optimal traction force distribution is the slope of the optimal

curve (Fx1/ (mg) , Fx2/ (mg)) at zero.

d
Fx1
mg

d
Fx2
mg

= lim
a→0

−1
2

h

l

µ
a

g

¶2
+
1

2

a2
l

a

g

1

2

h

l

µ
a

g

¶2
+
1

2

a1
l

a

g

=
a2
a1

(2.240)

Therefore, the initial traction force distribution depends on only the position
of mass center C.

Example 67 F Brake balance and ABS.
When braking, a car is stable if the rear wheels do not lock. Thus, the

rear brake forces must be less than the maximum possible braking force at
all time. This means the brake force distribution should always be in the
shaded area of Figure 2.17, and below the optimal curve. This restricts the
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FIGURE 2.17. Optimal braking force distribution between the front and rear
wheels, along with a thre-line under estimation.

achievable deceleration, especially at low friction values, but increases the
stability of the car.
Whenever it is easier for a force distributor to follow a line, the optimal

brake curve is underestimated using two or three lines, and a control system
adjusts the force ratio Fx1/Fx2 . A sample of three-line approximation is
shown in Figure 2.17.
Distribution of the brake force between the front and rear wheels is called

brake balance. Brake balance varies with deceleration. The higher the stop,
the more load will transfer to the front wheels and the more braking effort
they can support. Meanwhile the rear wheels are unloaded and they must
have less braking force.

Example 68 F Best race car.
Racecars always work at the maximum achievable acceleration to finish

their race in minimum time. They are usually designed with rear-wheel-
drive and all-wheel-brake. However, if an all-wheel-drive race car is reason-
able to build, then a force distributor, to follow the curve shown in Figure
2.18, is what it needs to race better.

Example 69 F Effect of C location on braking.
Load is transferred from the rear wheels to the front when the brakes are

applied. The higher the C, the more load transfer. So, to improve braking,
the mass center C should be as low as possible and as back as possible.
This is not feasible for every vehicle, especially for forward-wheel drive
street cars. However, this fact should be taken into account when a car is
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FIGURE 2.18. Optimal traction force distribution between the front and rear
wheels.
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FIGURE 2.19. 180deg sliding rotation of a rear-wheel-locked car.

being designed for better braking performance.

Example 70 F Front and rear wheel locking.
The optimal brake force distribution is according to Equation (2.239) for

an ideal Fx1/Fx2 ratio. However, if the brake force distribution is not ideal,
then either the front or the rear wheels will lock up first. Locking the rear
wheels makes the vehicle unstable, and it loses directional stability. When
the rear wheels lock, they slide on the road and they lose their capacity to
support lateral force. The resultant shear force at the tireprint of the rear
wheels reduces to a dynamic friction force in the opposite direction of the
sliding.
A slight lateral motion of the rear wheels, by any disturbance, develops

a yaw motion because of unbalanced lateral forces on the front and rear
wheels. The yaw moment turns the vehicle about the z-axis until the rear
end leads the front end and the vehicle turns 180 deg. Figure 2.19 illustrates
a 180 deg sliding rotation of a rear-wheel-locked car.



74 2. Forward Vehicle Dynamics

The lock-up of the front tires does not cause a directional instability,
although the car would not be steerable and the driver would lose control.

2.7 F Vehicles With More Than Two Axles

If a vehicle has more than two axles, such as the three-axle car shown
in Figure 2.20, then the vehicle will be statically indeterminate and the
normal forces under the tires cannot be determined by static equilibrium
equations. We need to consider the suspensions’ deflection to determine
their applied forces.
The n normal forces Fzi under the tires can be calculated using the

following n algebraic equations.

2
nX
i=1

Fzi −mg cosφ = 0 (2.241)

2
nX
i=1

Fzixi + h (a+mg sinφ) = 0 (2.242)

Fzi
ki
− xi − x1

xn − x1

µ
Fzn
kn
− Fz1

k1

¶
− Fz1

k1
= 0 for i = 2, 3, · · · , n− 1

(2.243)

where Fxi and Fzi are the longitudinal and normal forces under the tires
attached to the axle number i, and xi is the distance of mass center C
from the axle number i. The distance xi is positive for axles in front of C,
and is negative for the axles in back of C. The parameter ki is the vertical
stiffness of the suspension at axle i.
Proof. For a multiple-axle vehicle, the following equationsX

Fx = ma (2.244)X
Fz = 0 (2.245)X
My = 0 (2.246)

provide the same sort of equations as (2.126)-(2.128). However, if the total
number of axles are n, then the individual forces can be substituted by a
summation.

2
nX
i=1

Fxi −mg sinφ = ma (2.247)

2
nX
i=1

Fzi −mg cosφ = 0 (2.248)
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FIGURE 2.20. A three-axle car moving on an inclined road.

2
nX
i=1

Fzixi + 2h
nX
i=1

Fxi = 0 (2.249)

The overall forward force Fx = 2
Pn

i=1 Fxi can be eliminated between
Equations (2.247) and (2.249) to make Equation (2.242). Then, there re-
main two equations (2.241) and (2.242) for n unknowns Fzi , i = 1, 2, · · · , n.
Hence, we need n − 2 extra equations to be able to find the wheel loads.
The extra equations come from the compatibility among the suspensions’
deflection.
We ignore the tires’ compliance, and use z to indicate the static vertical

displacement of the car at C. Then, if zi is the suspension deflection at the
center of axle i, and ki is the vertical stiffness of the suspension at axle i,
the deflections are

zi =
Fzi
ki

. (2.250)

For a flat road, and a rigid vehicle, we must have

zi − z1
xi − x1

=
zn − z1
xn − x1

for i = 2, 3, · · · , n− 1 (2.251)

which, after substituting with (2.250), reduces to Equation (2.243). The
n − 2 equations (2.251) along with the two equations (2.241) and (2.242)
are enough to calculate the normal load under each tire. The resultant set
of equations is linear and may be arranged in a matrix form

[A] [X] = [B] (2.252)
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where

[X] =
£
Fz1 Fz2 Fz3 · · · Fzn

¤T
(2.253)

[A] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 · · · · · · · · · · · · 2
2x1 2x2 · · · · · · · · · · · · 2xn

xn − x2
k1l

1

k2
· · · · · · · · · · · · x2 − x1

knl
· · · · · · · · · · · · · · · · · · · · ·

xn − xi
k1l

· · · · · · 1

ki
· · · · · · xi − x1

knl
· · · · · · · · · · · · · · · · · · · · ·

xn − xn−1
k1l

· · · · · · · · · · · · 1

kn−1

xn−1 − x1
knl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.254)

l = x1 − xn (2.255)

[B] =
£
mg cosφ −h (a+mg sinφ) 0 · · · 0

¤T
. (2.256)

Example 71 F Wheel reactions for a three-axle car.
Figure 2.20 illustrates a three-axle car moving on an inclined road. We

start counting the axles of a multiple-axle vehicle from the front axle as
axle-1, and move sequentially to the back as shown in the figure.
The set of equations for the three-axle car, as seen in Figure 2.20, is

2Fx1 + 2Fx2 + 2Fx3 −mg sinφ = ma (2.257)

2Fz1 + 2Fz2 + 2Fz3 −mg cosφ = 0 (2.258)

2Fz1x1 + 2Fz2x2 + 2Fz3x3 + 2h (Fx1 + Fx2 + Fx3) = 0 (2.259)
1

x2 − x1

µ
Fz2
k2
− Fz1

k1

¶
− 1

x3 − x1

µ
Fz3
k3
− Fz1

k1

¶
= 0 (2.260)

which can be simplified to

2Fz1 + 2Fz2 + 2Fz3 −mg cosφ = 0 (2.261)

2Fz1x1 + 2Fz2x2 + 2Fz3x3 + hm (a+ g sinφ) = 0 (2.262)

(x2k2k3 − x3k2k3)Fz1 + (x1k1k2 − x2k1k2)Fz3
− (x1k1k3 − x3k1k3)Fz2 = 0. (2.263)

The set of equations for wheel loads is linear and may be rearranged in a
matrix form

[A] [X] = [B] (2.264)
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where

[A] =

⎡⎣ 2 2 2
2x1 2x2 2x3

k2k3 (x2 − x3) k1k3 (x3 − x1) k1k2 (x1 − x2)

⎤⎦ (2.265)

[X] =

⎡⎣ Fz1
Fz2
Fz3

⎤⎦ (2.266)

[B] =

⎡⎣ mg cosφ
−hm (a+ g sinφ)

0

⎤⎦ . (2.267)

The unknown vector may be found using matrix inversion

[X] = [A]
−1
[B] . (2.268)

The solution of the equations are

1

k1m
Fz1 =

Z1
Z0

(2.269)

1

k2m
Fz2 =

Z2
Z0

(2.270)

1

k2m
Fz3 =

Z3
Z0

(2.271)

where,

Z0 = −4k1k2 (x1 − x2)
2−4k2k3 (x2 − x3)

2−4k1k3 (x3 − x1)
2 (2.272)

Z1 = g (x2k2 − x1k3 − x1k2 + x3k3)h sinφ

+a (x2k2 − x1k3 − x1k2 + x3k3)h

+g
¡
k2x

2
2 − x1k2x2 + k3x

2
3 − x1k3x3

¢
cosφ (2.273)

Z2 = g (x1k1 − x2k1 − x2k3 + x3k3)h sinφ

+a (x1k1 − x2k1 − x2k3 + x3k3)h

+g
¡
k1x

2
1 − x2k1x1 + k3x

2
3 − x2k3x3

¢
cosφ (2.274)

Z3 = g (x1k1 + x2k2 − x3k1 − x3k2)h sinφ

+a (x1k1 + x2k2 − x3k1 − x3k2)h

+g
¡
k1x

2
1 − x3k1x1 + k2x

2
2 − x3k2x2

¢
cosφ (2.275)

x1 = a1 (2.276)

x2 = −a2 (2.277)

x3 = −a3. (2.278)
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FIGURE 2.21. A cresting vehicle at a point where the hill has a radius of curvature
Rh.

2.8 F Vehicles on a Crest and Dip

When a road has an outward or inward curvature, we call the road is a
crest or a dip. The curvature can decrease or increase the normal forces
under the wheels.

2.8.1 F Vehicles on a Crest

Moving on the convex curve of a hill is called cresting. The normal force
under the wheels of a cresting vehicle is less than the force on a flat in-
clined road with the same slope, because of the developed centrifugal force
mv2/RH in the −z-direction.
Figure 2.21 illustrates a cresting vehicle at the point on the hill with a

radius of curvature RH . The traction and normal forces under its tires are
approximately equal to

Fx1 + Fx2 ≈ 1

2
m (a+ g sinφ) (2.279)

Fz1 ≈ 1

2
mg

∙µ
a2
l
cosφ+

h

l
sinφ

¶¸
−1
2
ma

h

l
− 1
2
m

v2

RH

a2
l

(2.280)
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Fz2 ≈ 1

2
mg

∙µ
a1
l
cosφ− h

l
sinφ

¶¸
+
1

2
ma

h

l
− 1
2
m

v2

RH

a1
l

(2.281)

l = a1 + a2. (2.282)

Proof. For the cresting car shown in Figure 2.21, the normal and tangential
directions are equivalent to the −z and x directions respectively. Hence, the
governing equation of motion for the car isX

Fx = ma (2.283)

−
X

Fz = m
v2

RH
(2.284)X

My = 0. (2.285)

Expanding these equations produces the following equations:

2Fx1 cos θ + 2Fx2 cos θ −mg sinφ = ma (2.286)

−2Fz1 cos θ − 2Fz2 cos θ +mg cosφ = m
v2

RH
(2.287)

2Fz1a1 cos θ − 2Fz2a2 cos θ + 2 (Fx1 + Fx2)h cos θ

+2Fz1a1 sin θ − 2Fz2a2 sin θ − 2 (Fx1 + Fx2)h sin θ = 0. (2.288)

We may eliminate (Fx1 + Fx2) between the first and third equations, and
solve for the total traction force Fx1 + Fx2 and wheel normal forces Fz1 ,
Fz2 .

Fx1 + Fx2 =
ma+mg sinφ

2 cos θ
(2.289)

Fz1 =
1

2
mg

∙µ
a2

l cos θ
cosφ+

h (1− sin 2θ)
l cos θ cos 2θ

sinφ

¶¸
−1
2
ma

h (1− sin 2θ)
l cos θ cos 2θ

− 1
2
m

v2

RH

a2
l cos θ

(2.290)

Fz2 =
1

2
mg

∙µ
a1

l cos θ
cosφ− h (1− sin 2θ)

l cos θ cos 2θ
sinφ

¶¸
+
1

2
ma

h (1− sin 2θ)
l cos θ cos 2θ

− 1
2
m

v2

RH

a1
l cos θ cos θ

(2.291)

If the car’s wheel base is much smaller than the radius of curvature, l ¿
RH , then the slope angle θ is too small, and we may use the following
trigonometric approximations.

cos θ ≈ cos 2θ ≈ 1 (2.292)

sin θ ≈ sin 2θ ≈ 0 (2.293)
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Substituting these approximations in Equations (2.289)-(2.291) produces
the following approximate results:

Fx1 + Fx2 ≈ 1

2
m (a+ g sinφ) (2.294)

Fz1 ≈ 1

2
mg

∙µ
a2
l
cosφ+

h

l
sinφ

¶¸
−1
2
ma

h

l
− 1
2
m

v2

RH

a2
l

(2.295)

Fz2 ≈ 1

2
mg

∙µ
a1
l
cosφ− h

l
sinφ

¶¸
+
1

2
ma

h

l
− 1
2
m

v2

RH

a1
l

(2.296)

Example 72 F Wheel loads of a cresting car.
Consider a car with the following specifications:

l = 2272mm

w = 1457mm

m = 1500 kg

h = 230mm (2.297)

a1 = a2

v = 15m/ s

a = 1m/ s2

which is cresting a hill at a point where the road has

RH = 40m

φ = 30deg (2.298)

θ = 2.5 deg .

The force information on the car is:

Fx1 + Fx2 = 4432.97N

Fz1 = 666.33N

Fz2 = 1488.75N

mg = 14715N (2.299)

Fz1 + Fz2 = 2155.08N

m
v2

RH
= 8437.5N
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If we simplifying the results by assuming small θ, the approximate values
of the forces are

Fx1 + Fx2 = 4428.75N

Fz1 ≈ 628.18N

Fz2 ≈ 1524.85N

mg = 14715N (2.300)

Fz1 + Fz2 ≈ 2153.03N

m
v2

RH
= 8437.5N.

Example 73 F Losing the road contact in a crest.
When a car goes too fast, it can lose its road contact. Such a car is called

a flying car. The condition to have a flying car is Fz1 = 0 and Fz2 = 0.
Assuming a symmetric car a1 = a2 = l/2 with no acceleration, and using

the approximate Equations (2.280) and (2.281)

1

2
mg

∙µ
a2
l
cosφ+

h

l
sinφ

¶¸
− 1
2
m

v2

RH

a2
l

= 0 (2.301)

1

2
mg

∙µ
a1
l
cosφ− h

l
sinφ

¶¸
− 1
2
m

v2

RH

a1
l

= 0 (2.302)

we can find the critical minimum speed vc to start flying. There are two
critical speeds vc1 and vc2 for losing the contact of the front and rear wheels
respectively.

vc1 =

s
2gRH

µ
h

l
sinφ+

1

2
cosφ

¶
(2.303)

vc2 =

s
−2gRH

µ
h

l
sinφ− 1

2
cosφ

¶
(2.304)

For any car, the critical speeds vc1 and vc2 are functions of the hill’s
radius of curvature RH and the angular position on the hill, indicated by φ.
The angle φ cannot be out of the tilting angles given by Equation (2.141).

−a1
h
≤ tanφ ≤ a2

h
(2.305)

Figure 2.22 illustrates a cresting car over a circular hill, and Figure 2.23
depicts the critical speeds vc1 and vc2 at a different angle φ for −1.371 rad ≤
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FIGURE 2.22. A cresting car over a circular hill.

φ ≤ 1.371 rad. The specifications of the car and the hill are:

l = 2272mm

h = 230mm

a1 = a2

a = 0m/ s2

RH = 100m.

At the maximum uphill slope φ = 1.371 rad ≈ 78.5 deg, the front wheels
can leave the ground at zero speed while the rear wheels are on the ground.
When the car moves over the hill and reaches the maximum downhill slope
φ = −1.371 rad ≈ −78.5 deg the rear wheels can leave the ground at zero
speed while the front wheels are on the ground. As long as the car is moving
uphill, the front wheels can leave the ground at a lower speed while going
downhill the rear wheels leave the ground at a lower speed. Hence, at each
slope angle φ the lower curve determines the critical speed vc.
To have a general image of the critical speed, we may plot the lower

values of vc as a function of φ using RH or h/l as a parameter. Figure
2.24 shows the effect of hill radius of curvature RH on the critical speed
vc for a car with h/l = 0.10123mm/mm and Figure 2.25 shows the effect
of a car’s high factor h/l on the critical speed vc for a circular hill with
RH = 100m.

2.8.2 F Vehicles on a Dip

Moving on the concave curve of a hill is called dipping. The normal force
under the wheels of a dipping vehicle is more than the force on a flat
inclined road with the same slope, because of the developed centrifugal
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FIGURE 2.23. Critical speeds vc1 and vc2 at different angle φ for a specific car
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FIGURE 2.24. Effect of hill radius of curvature Rh on the critical speed vc for a
car.
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FIGURE 2.25. Effect of a car’s height factor h/l on the critical speed vc for a
circular hill.

force mv2/RH in the z-direction.
Figure 2.26 illustrates a dipping vehicle at a point where the hill has a

radius of curvature RH . The traction and normal forces under the tires of
the vehicle are approximately equal to

Fx1 + Fx2 ≈ 1

2
m (a+ g sinφ) (2.306)

Fz1 ≈ 1

2
mg

∙µ
a2
l
cosφ+

h

l
sinφ

¶¸
−1
2
ma

h

l
+
1

2
m

v2

RH

a2
l

(2.307)

Fz2 ≈ 1

2
mg

∙µ
a1
l
cosφ− h

l
sinφ

¶¸
+
1

2
ma

h

l
+
1

2
m

v2

RH

a1
l

(2.308)

l = a1 + a2. (2.309)

Proof. To develop the equations for the traction and normal forces under
the tires of a dipping car, we follow the same procedure as a cresting car.
The normal and tangential directions of a dipping car, shown in Figure 2.21,
are equivalent to the z and x directions respectively. Hence, the governing
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FIGURE 2.26. A dipping vehicle at a point where the hill has a radius of curvature
Rh.

equations of motion for the car are

X
Fx = ma (2.310)X
Fz = m

v2

RH
(2.311)X

My = 0. (2.312)

Expanding these equations produces the following equations:

2Fx1 cos θ + 2Fx2 cos θ −mg sinφ = ma (2.313)

−2Fz1 cos θ − 2Fz2 cos θ +mg cosφ = m
v2

RH
(2.314)

2Fz1a1 cos θ − 2Fz2a2 cos θ + 2 (Fx1 + Fx2)h cos θ

+2Fz1a1 sin θ − 2Fz2a2 sin θ − 2 (Fx1 + Fx2)h sin θ = 0. (2.315)

The total traction force (Fx1 + Fx2) may be eliminated between the first
and third equations. Then, the resultant equations provide the following
forces for the total traction force Fx1 + Fx2 and wheel normal forces Fz1 ,
Fz2 :

Fx1 + Fx2 =
ma+mg sinφ

2 cos θ
(2.316)
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Fz1 =
1

2
mg

∙µ
a2

l cos θ
cosφ+

h (1− sin 2θ)
l cos θ cos 2θ

sinφ

¶¸
−1
2
ma

h (1− sin 2θ)
l cos θ cos 2θ

+
1

2
m

v2

RH

a2
l cos θ

(2.317)

Fz2 =
1

2
mg

∙µ
a1

l cos θ
cosφ− h (1− sin 2θ)

l cos θ cos 2θ
sinφ

¶¸
+
1

2
ma

h (1− sin 2θ)
l cos θ cos 2θ

+
1

2
m

v2

RH

a1
l cos θ cos θ

(2.318)

Assuming θ ¿ 1, these forces can be approximated to

Fx1 + Fx2 ≈ 1

2
m (a+ g sinφ) (2.319)

Fz1 ≈ 1

2
mg

∙µ
a2
l
cosφ+

h

l
sinφ

¶¸
−1
2
ma

h

l
+
1

2
m

v2

RH

a2
l

(2.320)

Fz2 ≈ 1

2
mg

∙µ
a1
l
cosφ− h

l
sinφ

¶¸
+
1

2
ma

h

l
+
1

2
m

v2

RH

a1
l
. (2.321)

Example 74 F Wheel loads of a dipping car.
Consider a car with the following specifications:

l = 2272mm

w = 1457mm

m = 1500 kg

h = 230mm (2.322)

a1 = a2

v = 15m/ s

a = 1m/ s2

that is dipping on a hill at a point where the road has

RH = 40m

φ = 30deg (2.323)

θ = 2.5 deg .
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The force information of the car is:

Fx1 + Fx2 = 4432.97N

Fz1 = 4889.1N

Fz2 = 5711.52N

mg = 14715N (2.324)

Fz1 + Fz2 = 10600.62N

m
v2

RH
= 8437.5N

If we ignore the effect of θ by assuming θ ¿ 1, then the approximate
value of the forces are

Fx1 + Fx2 = 4428.75N

Fz1 ≈ 4846.93N

Fz2 ≈ 1524.85N

mg = 5743.6N (2.325)

Fz1 + Fz2 ≈ 10590.53N

m
v2

RH
= 8437.5N.

2.9 Summary

For straight motion of a symmetric rigid vehicle, we may assume the forces
on the left wheel are equal to the forces on the right wheel, and simplify
the tire force calculation.
When a car is accelerating on an inclined road with angle φ, the normal

forces under the front and rear wheels, Fz1 , Fz2 , are:

Fz1 =
1

2
mg

µ
a2
l
cosφ− h

l
sinφ

¶
− 1
2
ma

h

l
(2.326)

Fz2 =
1

2
mg

µ
a1
l
cosφ+

h

l
sinφ

¶
+
1

2
ma

h

l
(2.327)

l = a1 + a2 (2.328)

where, 12mg
¡
a1
l cosφ±

h
l sinφ

¢
is the static part and ±1

2mg hl
a
g is the dy-

namic part, because it depends on the acceleration a.
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2.10 Key Symbols

a ≡ ẍ acceleration
afwd front wheel drive acceleration
arwd rear wheel drive acceleration
a1 distance of first axle from mass center
a2 distance of second axle from mass center
ai distance of axle number i from mass center
aM maximum acceleration
a, b arguments for atan2 (a, b)
A,B,C constant parameters
b1 distance of left wheels from mass center
b1 distance of hinge point from rear axle
b2 distance of right wheels from mass center
b2 distance of hinge point from trailer mass center
b3 distance of trailer axle from trailer mass center
C mass center of vehicle
Ct mass center of trailer
F force
Fx traction or brake force under a wheel
Fx1 traction or brake force under front wheels
Fx2 traction or brake force under rear wheels
Fxt horizontal force at hinge
Fz normal force under a wheel
Fz1 normal force under front wheels
Fz2 normal force under rear wheels
Fz3 normal force under trailer wheels
Fzt normal force at hinge
g, g gravitational acceleration
h height of C
H height
I mass moment of inertia
ki vertical stiffness of suspension at axle number i
l wheel base
m car mass
mt trailer mass
M moment
R tire radius
Rf front tire radius
Rr rear tire radius
RH radius of curvature
t time
v ≡ ẋ, v velocity
vc critical velocity
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w track
zi deflection of axil number i
x, y, z vehicle coordinate axes
X,Y,Z global coordinate axes

θ road slope
φ road angle with horizon
φM maximum slope angle
μ friction coefficient

Subscriptions
dyn dynamic
f front
fwd front-wheel-drive
M maximum
r rear
rwd rear-wheel-drive
st statics
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Exercises

1. Axle load.

Consider a car with the following specifications that is parked on a
level road. Find the load on the front and rear axles.

m = 1765 kg

l = 2.84m

a1 = 1.22m

a2 = 1.62m

2. Axle load.

Consider a car with the following specification, and find the axles
load.

m = 1245 kg

a1 = 1100mm

a2 = 1323mm

3. Mass center distance ratio.

Peugeot 907 ConceptTM approximately has the following specifica-
tions.

m = 1400 kg

l = 97.5 in

Assume a1/a2 ≈ 1.131 and determine the axles load.

4. Axle load ratio.

Jeep Commander XKTM approximately has the following specifica-
tions.

mg = 5091 lb

l = 109.5 in

Assume Fz1/Fz2 ≈ 1.22 and determine the axles load.

5. Axle load and mass center distance ratio.

The wheelbase of the 1981 DeLorean SportscarTM is

l = 94.89 in.

Find the axles load if we assume

a1/a2 ≈ 0.831

mg = 3000 lb.
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6. Mass center height.

McLaren SLR 722 SportscarTM has the following specifications.

front tire 255/35ZR19
rear tire 295/30ZR19

m = 1649 kg

l = 2700mm

When the front axle is lifted H = 540mm, assume that

a1 = a2

Fz2 = 0.68mg.

What is the height h of the mass center?

7. A parked car on an uphill road.

Specifications of Lamborghini GallardoTM are

m = 1430 kg

l = 2560mm.

Assume

a1 = a2

h = 520mm

and determine the forces Fz1 , Fz2 , and Fx2 if the car is parked on an
uphill with φ = 30deg and the hand brake is connected to the rear
wheels.

What would be the maximum road grade φM , that the car can be
parked, if μx2 = 1.

8. Parked on an uphill road.

Rolls-Royce PhantomTM has the following specifications

m = 2495 kg

l = 3570mm

Fz2 = 0.499mg.

Assume the car is parked on an uphill road and

a1 = a2

h = 670mm

φ = 30deg .

Determine the forces under the wheels if the car is
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(a) front wheel braking

(b) rear wheel braking

(c) four wheel braking.

9. A parked car on an downhill road.

Solve Exercise 7 if the car is parked on a downhill road.

10. Maximum acceleration.

Honda CR-VTM is a midsize SUV car with the following specifica-
tions.

m = 1550 kg

l = 2620mm

Assume

a1 = a2

h = 720mm

μx = 0.8

and determine the maximum acceleration of the car if

(a) the car is rear-wheel drive

(b) the car is front-wheel drive

(c) the car is four-wheel drive.

11. Minimum time for 0− 100 km/h.
RoadRazerTM is a light weight rear-wheel drive sportscar with

m = 300 kg

l = 2286mm

h = 260mm.

Assume a1 = a2. If the car can reach the speed 0 − 100 km/h in
t = 3.2 s, what would be the minimum friction coefficient?

12. Axle load of an all-wheel drive car.

Acura CourageTM is an all-wheel drive car with

m = 2058.9 kg

l = 2750.8mm.

Assume a1 = a2 and h = 760mm. Determine the axles load if the car
is accelerating at a = 1.7m/ s2.



2. Forward Vehicle Dynamics 93

13. A car with a trailer.

Volkswagen TouaregTM is an all-wheel drive car with

m = 2268 kg

l = 2855mm.

Assume a1 = a2 and the car is pulling a trailer with

mt = 600 kg

b1 = 855mm

b2 = 1350mm

b3 = 150mm

h1 = h2.

If the car is accelerating on a level road with acceleration a = 2m/ s2,
what would be the forces at the hinge.

14. A parked car on a banked road.

Cadillac EscaladeTM is a SUV car with

m = 2569.6 kg

l = 2946.4mm

wf = 1732.3mm

wr = 1701.8mm.

Assume b1 = b2, h = 940mm, and use an average track to determine
the wheels load when the car is parked on a banked road with φ =
12deg.

15. F A parked car on a banked road with wf 6= wr.

Determine the wheels load of a parked car on a banked road, if the
front and rear tracks of the car are different.

16. Optimal traction force.

Mitsubishi OutlanderTM is an all-wheel drive SUV car with the fol-
lowing specifications.

m = 1599.8 kg

l = 2669.6mm

w = 1539.3mm.

Assume

a1 = a2

h = 760mm

μx = 0.75
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and find the optimal traction force ratio Fx1/Fx2 to reach the maxi-
mum acceleration.

17. F A three-axle car.

Citroën Cruise CrosserTM is a three-axle off-road pick-up car. Assume

m = 1800 kg

a1 = 1100mm

a2 = 1240mm

a3 = 1500mm

k1 = 12800N/m

k2 = 14000N/m

k3 = 14000N/m

and find the axles load on a level road when the car is moving with
no acceleration.
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Tire Dynamics
The tire is the main component interacting with the road. The performance
of a vehicle is mainly influenced by the characteristics of its tires. Tires
affect a vehicle’s handling, traction, ride comfort, and fuel consumption.
To understand its importance, it is enough to remember that a vehicle can
maneuver only by longitudinal, vertical, and lateral force systems generated
under the tires.

Ground surface

Loaded tire

Tire axis

FIGURE 3.1. A vertically loaded stationary tire.

Figure 3.1 illustrates a model of a vertically loaded stationary tire. To
model the tire-road interactions, we determine the tireprint and describe
the forces distributed on the tireprint.

3.1 Tire Coordinate Frame and Tire Force System

To describe the tire-road interaction and force system, we attach a Carte-
sian coordinate frame at the center of the tireprint, as shown in Figure
3.2, assuming a flat and horizontal ground. The x-axis is along the inter-
section line of the tire-plane and the ground. Tire plane is the plane made
by narrowing the tire to a flat disk. The z-axis is perpendicular to the
ground, opposite to the gravitational acceleration g, and the y-axis makes
the coordinate system a right-hand triad.
To show the tire orientation, we use two angles: camber angle γ and

sideslip angle α. The camber angle is the angle between the tire-plane and
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y

z

Tire plane

Ground plane

Fx

Mx

Fy

My

Fz

Mz

Camber angle γ

v

Sideslip angle

α

x

Velocity vector

FIGURE 3.2. Tire coordinate system.

the vertical plane measured about the x-axis. The camber angle can be
recognized better in a front view as shown in Figure 3.3. The sideslip angle
α, or simply sideslip, is the angle between the velocity vector v and the
x-axis measured about the z-axis. The sideslip can be recognized better in
a top view, as shown in Figure 3.4.
The force system that a tire receives from the ground is assumed to be

located at the center of the tireprint and can be decomposed along x, y,
and z axes. Therefore, the interaction of a tire with the road generates a 3D
force system including three forces and three moments, as shown in Figure
3.2.

1. Longitudinal force Fx. It is a force acting along the x-axis. The resul-
tant longitudinal force Fx > 0 if the car is accelerating, and Fx < 0
if the car is braking. Longitudinal force is also called forward force.

2. Normal force Fz. It is a vertical force, normal to the ground plane.
The resultant normal force Fz > 0 if it is upward. Normal force is
also called vertical force or wheel load.

3. Lateral force Fy. It is a force, tangent to the ground and orthogonal
to both Fx and Fz. The resultant lateral force Fy > 0 if it is in the
y-direction.

4. Roll moment Mx. It is a longitudinal moment about the x-axis. The
resultant roll moment Mx > 0 if it tends to turn the tire about the
x-axis. The roll moment is also called the bank moment, tilting torque,
or overturning moment.
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z

y

γ

FIGURE 3.3. Front view of a tire and measurment of the camber angle.

xv

y

α

FIGURE 3.4. Top view of a tire and measurment of the side slip angle.
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5. Pitch moment My. It is a lateral moment about the y-axis. The resul-
tant pitch momentMy > 0 if it tends to turn the tire about the y-axis
and move forward. The pitch moment is also called rolling resistance
torque.

6. Yaw moment Mz. It is an upward moment about the z-axis. The
resultant yaw moment Mz > 0 if it tends to turn the tire about
the z-axis. The yaw moment is also called the aligning moment, self
aligning moment, or bore torque.

The moment applied to the tire from the vehicle about the tire axis is
called wheel torque T .

Example 75 Origin of tire coordinate frame.
For a cambered tire, it is not always possible to find or define a center

point for the tireprint to be used as the origin of the tire coordinate frame.
It is more practical to set the origin of the tire coordinate frame at the
center of the intersection line between the tire-plane and the ground. So,
the origin of the tire coordinate frame is at the center of the tireprint when
the tire is standing upright and stationary on a flat road.

Example 76 SAE tire coordinate system.
The tire coordinate system adopted by the Society of Automotive Engi-

neers (SAE) is shown in Figure 3.5. The origin of the coordinate system
is at the center of the tireprint when the tire is standing stationary. The
x-axis is at the intersection of the tire-plane and the ground plane. The
z-axis is downward and perpendicular to the tireprint. The y-axis is on the
ground plane and goes to the right to make the coordinate frame a right-
hand frame.
The sideslip angle α is considered positive if the tire is slipping to the

right, and the camber angle γ is positive when the tire leans to the right.
The SAE coordinate system is as good as the coordinate system in Fig-

ure 3.2 and may be used alternatively. However, having the z-axis directed
downward is sometimes inefficient and confusing. Furthermore, in SAE
convention, the camber angle for the left and right tires of a vehicle have
opposite signs. So, the camber angle of the left tire is positive when the tire
leans to the right and the camber angle of the right tire is positive when the
tire leans to the left.

3.2 Tire Stiffness

As an applied approximation, the vertical tire force Fz can be calculated
as a linear function of the normal tire deflection 4z measured at the tire
center.

Fz = kz4z (3.1)



3. Tire Dynamics 99

y

z

Tire plane

Ground plane

Fx

Mx

Fy

My

Fz

Mz

Camber angle γ

v

Sideslip angle

α

x

Velocity vector

FIGURE 3.5. SAE tire coordinate system.

The coefficient kz is called tire stiffness in the z-direction. Similarly, the
reaction of a tire to a lateral and a longitudinal force can be approximated
by

Fx = kx4x (3.2)

Fy = ky4y (3.3)

where the coefficient kx and ky are called tire stiffness in the x and y
directions.

Proof. The deformation behavior of tires to the applied forces in any three
directions x, y, and z are the first important tire characteristics in tire
dynamics. Calculating the tire stiffness is generally based on experiment
and therefore, they are dependent on the tire’s mechanical properties, as
well as environmental characteristics.
Consider a vertically loaded tire on a stiff and flat ground as shown in

Figure 3.6. The tire will deflect under the load and generate a pressurized
contact area to balance the vertical load.
Figure 3.7 depicts a sample of experimental stiffness curve in the (Fz,4z)

plane. The curve can be expressed by a mathematical function

Fz = f (4z) (3.4)

however, we may use a linear approximation for the range of the usual
application.

Fz =
∂f

∂ (4z)
4z (3.5)
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F1 F2 F3

F1 < F2 < F3

FIGURE 3.6. Vertically loaded tire at zero camber.
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FIGURE 3.7. A sample tire vertical stiffness curve.
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FIGURE 3.8. Vertical, longitudinal, and lateral stiffness curves.

The coefficient ∂f
∂(4z) is the slope of the experimental stiffness curve at zero

and is shown by a stiffness coefficient kz

kz = tan θ = lim
4z→0

∂f

∂ (4z)
. (3.6)

Therefore, the normal tire deflection 4z remains proportional to the ver-
tical tire force Fz.

Fz = kz4z (3.7)

The tire can apply only pressure forces to the road, so normal force is
restricted to Fz > 0.
The stiffness curve can be influenced by many parameters. The most

effective one is the tire inflation pressure.
Lateral and longitudinal force/deflection behavior is also determined ex-

perimentally by applying a force in the appropriate direction. The lateral
and longitudinal forces are limited by the sliding force when the tire is
vertically loaded. Figure 3.8 depicts a sample of longitudinal and lateral
stiffness curves compared to a vertical stiffness curve.
The practical part of a tire’s longitudinal and lateral stiffness curves is

the linear part and may be estimated by linear equations.

Fx = kx4x (3.8)

Fy = ky4y (3.9)

The coefficients kx and ky are called the tire stiffness in the x and y direc-
tions. They are measured by the slope of the experimental stiffness curves
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Fy

yΔxΔ

Fx

FIGURE 3.9. Illustration of laterally and longitudinally tire deformation.

in the (Fx,4x) and (Fy,4y) planes.

kx = lim
4x→0

∂f

∂ (4x)
(3.10)

ky = lim
4y→0

∂f

∂ (4y)
(3.11)

When the longitudinal and lateral forces increase, parts of the tireprint
creep and slide on the ground until the whole tireprint starts sliding. At
this point, the applied force saturates and reaches its maximum supportable
value.
Generally, a tire is most stiff in the longitudinal direction and least stiff

in the lateral direction.
kx > kz > ky (3.12)

Figure 3.9 illustrates tire deformation under a lateral and a longitudinal
force.

Example 77 F Nonlinear tire stiffness.
In a better modeling, the vertical tire force Fz is a function of the normal

tire deflection 4z, and deflection velocity 4ż.

Fz = Fz (4z,4ż) (3.13)

= Fzs + Fzd (3.14)

In a first approximation we may assume Fz is a combination of a static
and a dynamic part. The static part is a nonlinear function of the vertical
tire deflection and the dynamic part is proportional to the vertical speed of
the tire.

Fzs = k14z + k2 (4z)2 (3.15)

Fzd = k3ż (3.16)
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The constants k1 and k2 are calculated from the first and second slopes of
the experimental stiffness curve in the (Fz,4z) plane, and k3 is the first
slope of the curve in the (Fz, ż) plane, which indicates the tire damping.

k1 =
∂ Fz
∂4z

¯̄̄̄
4z=0

(3.17)

k2 =
1

2

∂2 Fz

∂ (4z)
2

¯̄̄̄
¯
4z=0

(3.18)

k3 =
∂ Fz
∂ ż

¯̄̄̄
ż=0

(3.19)

The value of k1 = 200000N/m is a good approximation for a 205/50R15
passenger car tire, and k1 = 1200000N/m is a good approximation for a
X31580R22.5 truck tire.
Tires with a larger number of plies have higher damping, because the

plies’ internal friction generates the damping. Tire damping decreases by
increasing speeds.

Example 78 F Hysteresis effect.
Because tires are made from rubber, which is a viscoelastic material, the

loading and unloading stiffness curves are not exactly the same. They are
similar to those in Figure 3.10, which make a loop with the unloading curve
below the loading. The area within the loop is the amount of dissipated en-
ergy during loading and unloading. As a tire rotates under the weight of a
vehicle, it experiences repeated cycles of deformation and recovery, and it
dissipates energy loss as heat. Such a behavior is a common property of hys-
teretic material and is called hysteresis. So, hysteresis is a characteristic
of a deformable material such as rubber, that the energy of deformation is
greater than the energy of recovery. The amount of dissipated energy de-
pends on the mechanical characteristics of the tire. Hysteretic energy loss
in rubber decreases as temperature increases.
The hysteresis effect causes a loaded rubber not to rebound fully after load

removal. Consider a high hysteresis race car tire turning over road irreg-
ularities. The deformed tire recovers slowly, and therefore, it cannot push
the tireprint tail on the road as hard as the tireprint head. The difference
in head and tail pressures causes a resistance force, which is called rolling
resistance.
Race cars have high hysteresis tires to increase friction and limit traction.

Street cars have low hysteresis tires to reduce the rolling resistance and low
operating temperature. Hysteresis level of tires inversely affect the stopping
distance. A high hysteresis tire makes the stopping shorter, however, it
wears rapidly and has a shorter life time.
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FIGURE 3.10. Histeresis loop in a vertically loading and unloading tire.

3.3 Tireprint Forces

The force per unit area applied on a tire in a tireprint can be decomposed
into a component normal to the ground and a tangential component on
the ground. The normal component is the contact pressure σz, while the
tangential component can be further decomposed in the x and y directions
to make the longitudinal and lateral shear stresses τx and τy. For a station-
ary tire under normal load, the tireprint is symmetrical. Due to equilibrium
conditions, the overall integral of the normal stress over the tireprint area
AP must be equal to the normal load Fz, and the integral of shear stresses
must be equal to zero. Z

AP

σz(x, y) dA = Fz (3.20)Z
AP

τx(x, y) dA = 0 (3.21)Z
AP

τy(x, y) dA = 0 (3.22)

3.3.1 Static Tire, Normal Stress

Figure 3.11 illustrates a stationary tire under a normal load Fz along with
the generated normal stress σz applied on the ground. The applied loads on
the tire are illustrated in the side view shown in Figure 3.12. For a station-
ary tire, the shape of normal stress σz(x, y) over the tireprint area depends
on tire and load conditions, however its distribution over the tireprint is
generally in the shape shown in Figure 3.13.
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Normal stress 
distribution
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loaded tire

z
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zσ

FIGURE 3.11. Normal stress σz applied on the round because of a stationary
tire under a normal load Fz.

x
Ground plane

z
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zσ

FIGURE 3.12. Side view of a normal force Fz and stress σz applied on a stationary
tire.
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z

yx
ab

FIGURE 3.13. A model of normal stress σz(x, y) in the tireprint area for a sta-
tionary tire.

The normal stress σz(x, y) may be approximated by the function

σz(x, y) = σzM

µ
1− x6

a6
− y6

b6

¶
(3.23)

where a and b indicate the dimensions of the tireprint, as shown in Figure
3.14. The tireprints may approximately be modeled by a mathematical
function

x2n

a2n
+

y2n

b2n
= 1 n ∈ N. (3.24)

For radial tires, n = 3 or n = 2 may be used,

x6

a6
+

y6

b6
= 1 (3.25)

while for non-radial tires n = 1 is a better approximation.

x2

a2
=

y2

b2
= 1. (3.26)

Example 79 Normal stress in tireprint.
A car weighs 800 kg. If the tireprint of each radial tire is AP = 4×a×b =

4 × 5 cm × 12 cm, then the normal stress distribution under each tire, σz,



3. Tire Dynamics 107

x

y

a

b
6 6

6 6

x y 1
a b

+ =

Tireprint

FIGURE 3.14. A mode for tireprint of stationary radial tires under normal load.

must satisfy the equilibrium equation.

Fz =
1

4
800× 9.81

=

Z
AP

σz(x, y) dA

=

Z 0.05

−0.05

Z 0.12

−0.12
σzM

µ
1− x6

0.056
− y6

0.126

¶
dy dx

= 1.7143× 10−2σzM (3.27)

Therefore, the maximum normal stress is

σzM =
Fz

1.7143× 10−2 = 1.1445× 10
5 Pa (3.28)

and the stress distribution over the tireprint is

σz(x, y) = 1.1445× 105
µ
1− x6

0.056
− y6

0.126

¶
Pa. (3.29)

Example 80 Normal stress in tireprint for n = 2.
The maximum normal stress σzM for an 800 kg car having an AP =

4× a× b = 4× 5 cm× 12 cm, can be found for n = 2 as

Fz =
1

4
800× 9.81

=

Z
AP

σz(x, y) dA

=

Z 0.05

−0.05

Z 0.12

−0.12
σzM

µ
1− x4

0.054
− y4

0.124

¶
dy dx

= 1.44× 10−2σzM (3.30)
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FIGURE 3.15. Direction of tangential stresses on the tireprint of a stationary
vertically loaded tire.

σzM =
Fz

1.44× 10−2 = 1.3625× 10
5 Pa. (3.31)

Comparing σzM = 1.3625 × 105 Pa for n = 2 to σzM = 1.1445 × 105 Pa
for n = 3 shows that maximum stress for n = 2 is

¡
1− 1.1445

1.3625

¢
×100 = 16%

more than n = 3.

3.3.2 Static Tire, Tangential Stresses

Because of geometry changes to a circular tire in contact with the ground, a
three-dimensional stress distribution will appear in the tireprint even for a
stationary tire. The tangential stress τ on the tireprint can be decomposed
in x and y directions. The tangential stress is also called shear stress or
friction stress.
The tangential stress on a tire is inward in x direction and outward in

y direction. Hence, the tire tries to stretch the ground in the x-axis and
compact the ground on the y-axis. Figure 3.15 depicts the shear stresses on
a vertically loaded stationary tire. The force distribution on the tireprint
is not constant and is influenced by tire structure, load, inflation pressure,
and environmental conditions:
The tangential stress τx in the x-direction may be modeled by the fol-

lowing equation.

τx(x, y) = −τxM
µ
x2n+1

a2n+1

¶
sin2

³x
a
π
´
cos
³ y

2b
π
´

n ∈ N (3.32)
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FIGURE 3.16. Absolute value of a τx distribution model for n = 1.

τx is negative for x > 0 and is positive for x < 0, showing an inward longi-
tudinal stress. Figure 3.16 illustrates the absolute value of a τx distribution
for n = 1.
The y-direction tangential stress τy may be modeled by the equation

τy(x, y) = −τyM
µ
x2n

a2n
− 1
¶
sin
³y
b
π
´

n ∈ N (3.33)

where τy is positive for y > 0 and negative for y < 0, showing an outward
lateral stress. Figure 3.17 illustrates the absolute value of a τy distribution
for n = 1.

3.4 Effective Radius

Consider a vertically loaded wheel that is turning on a flat surface as shown
in Figure 3.18. The effective radius of the wheel Rw, which is also called a
rolling radius, is defined by

Rw =
vx
ωw

(3.34)

where, vx is the forward velocity, and ωw is the angular velocity of the
wheel. The effective radius Rw is approximately equal to

Rw ≈ Rg −
Rg −Rh

3
(3.35)

and is a number between the unloaded or geometric radius Rg and the
loaded height Rh.

Rh < Rw < Rg (3.36)
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FIGURE 3.17. Absolute value of a τy distribution model for n = 1.

Proof. An effective radius Rw = vx/ωw is defined by measuring a wheel’s
angular velocity ωw and forward velocity vx. As the tire turns forward, each
part of the circumference is flattened as it passes through the contact area.
A practical estimate of the effective radius can be made by substituting the
arc with the straight length of tireprint. The tire vertical deflection is

Rg −Rh = Rg (1− cosϕ) (3.37)

and therefore

Rh = Rg cosϕ (3.38)

a = Rg sinϕ. (3.39)

If the motion of the tire is compared to the rolling of a rigid disk with
radius Rw, then the tire must move a distance a = Rwϕ for an angular
rotation ϕ.

a = Rg sinϕ = Rwϕ (3.40)

Hence,

Rw =
Rg sinϕ

ϕ
. (3.41)

Expanding sinϕ
ϕ in a Taylor series show that

Rw = Rg

µ
1− 1

6
ϕ2 +O

¡
ϕ4
¢¶

. (3.42)
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FIGURE 3.18. Effective radius Rw compared to tire radius Rg and loaded height
Rh.

Using Equation (3.37) we may approximate

cosϕ ≈ 1− 1
2
ϕ2 (3.43)

ϕ2 ≈ 2 (1− cosϕ)

≈ 2

µ
1− Rh

Rg

¶
(3.44)

and therefore,

Rw ≈ Rg

µ
1− 1

3

µ
1− Rh

Rg

¶¶
=

2

3
Rg +

1

3
Rh. (3.45)

Because Rh is a function of tire load Fz,

Rh = Rh (Fz)

= Rg −
Fz
kz

(3.46)

the effective radius Rw is also a function of the tire load. The angle ϕ is
called tireprint angle or tire contact angle.
The vertical stiffness of radial tires is less than non-radial tires under

the same conditions. So, the loaded height of radial tires, Rh, is less than
the non-radials’. However, the effective radius of radial tires Rw, is closer
to their unloaded radius Rg. As a good estimate, for a non-radial tire,
Rw ≈ 0.96Rg, and Rh ≈ 0.94Rg, while for a radial tire, Rw ≈ 0.98Rg, and
Rh ≈ 0.92Rg.
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Generally speaking, the effective radius Rw depends on the type of tire,
stiffness, load conditions, inflation pressure, and wheel’s forward velocity.

Example 81 Compression and expansion of tires in the tireprint zone.
Because of longitudinal deformation, the peripheral velocity of any point

of the tread varies periodically. When it gets close to the starting point of
the tireprint, it slows down and a circumferential compression results. The
tire treads are compressed in the first half of the tireprint and gradually
expanded in the second half. The treads in the tireprint contact zone almost
stick to the ground, and therefore their circumferential velocity is close
to the forward velocity of the tire center vx. The treads regain their initial
circumferential velocity Rgωw after expanding and leaving the contact zone.

Example 82 Tire rotation.
The geometric radius of a tire P235/75R15 is Rg = 366.9mm, because

hT = 235× 75%
= 176.25mm ≈ 6.94 in (3.47)

and therefore,

Rg =
2hT + 15

2

=
2× 6.94 + 15

2
= 14.44 in ≈ 366.9mm. (3.48)

Consider a vehicle with such a tire is traveling at a high speed such as
v = 50m/ s = 180 km/h ≈ 111.8mi/h. The tire is radial, and therefore the
effective tire radius Rw is approximately equal to

Rw ≈ 0.98Rg ≈ 359.6mm. (3.49)

After moving a distance d = 100 km, this tire must have been turned n1 =
44259 times because

n1 =
d

πD

=
100× 103

2π × 359.6× 10−3 = 44259. (3.50)

Now assume the vehicle travels the same distance d = 100 km at a low
inflation pressure, such that the effective radius of the tire remained close
to at the loaded radius

Rw ≈ Rh ≈ 0.92Rg

= 330.8mm. (3.51)
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FIGURE 3.19. Radial motion of the tire peripheral points in the contact area.

This tire must turn n2 = 48112 times to travel d = 100km, because,

n2 =
d

πD

=
100× 103

2π × 330.8× 10−3 = 48112. (3.52)

Example 83 F Radial motion of tire’s peripheral points in the tireprint.
The radial displacement of a tire’s peripheral points during road contact

may be modeled by a function

d = d (x, θ) . (3.53)

We assume that a peripheral point of the tire moves along only the radial
direction during contact with the ground, as shown in Figure 3.19.
Let’s show a radius at an angle θ, by r = r (x, θ). Knowing that

cos θ =
Rh

r
(3.54)

cosφ =
Rh

Rg
(3.55)

we can find

r = Rg
cosφ

cos θ
. (3.56)
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Thus, the displacement function is

d = Rg − r (x, θ)

= Rg

µ
1− Rh

Rg cos θ

¶
− φ < θ < φ. (3.57)

Example 84 Tread travel.
Let’s follow a piece of tire tread in its travel around the spin axis when

the vehicle moves forward at a constant speed. Although the wheel is turning
at constant angular velocity ωw, the tread does not travel at constant speed.
At the top of the tire, the radius is equal to the unloaded radius Rg and the
speed of the tread is Rgωw relative to the wheel center. As the tire turns, the
tread approaches the leading edge of tireprint, and slows down. The tread
is compacted radially, and gets squeezed in the heading part of the tireprint
area. Then, it is stretched out and unpacked in the tail part of the tireprint
as it moves to the tail edge. In the middle of the tireprint, the tread speed
is Rhωw relative to the wheel center.
The variable radius of a tire during the motion through the tireprint is

r = Rg
cosφ

cos θ
− φ < θ < φ (3.58)

where φ is the half of the contact angle, and θ is the angular rotation of the
tire, as shown in Figure 3.19. The angular velocity of the tire is ωw = θ̇
and is assumed to be constant. Then, the radial velocity ṙ and acceleration
r̈ of the tread with respect to the wheel center are

ṙ = Rgωw cosφ
sin θ

cos2 θ
(3.59)

r̈ =
1

2
Rgω

2
w

cosφ

cos3 θ
(3− cos 2θ) . (3.60)

Figure 3.20 depicts r, ṙ, and r̈ for a sample car with the following data:

Rg = 0.5m (3.61)

φ = 15deg (3.62)

ωw = 60 rad/ s (3.63)

3.5 Rolling Resistance

A turning tire on the ground generates a longitudinal force called rolling
resistance. The force is opposite to the direction of motion and is propor-
tional to the normal force on the tireprint.

Fr = −Fr ı̂ (3.64)

Fr = μr Fz (3.65)
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FIGURE 3.20. Radial displacement, velocity, and acceleration of tire treads in
the tireprint.

The parameter μr is called the rolling friction coefficient. μr is not constant
and mainly depends on tire speed, inflation pressure, sideslip and camber
angles. It also depends on mechanical properties, speed, wear, temperature,
load, size, driving and braking forces, and road condition.

Proof.When a tire is turning on the road, that portion of the tire’s circum-
ference that passes over the pavement undergoes a deflection. Part of the
energy that is spent in deformation will not be restored in the following re-
laxation. Hence, a change in the distribution of the contact pressure makes
normal stress σz in the heading part of the tireprint be higher than the
tailing part. The dissipated energy and stress distortion cause the rolling
resistance.
Figures 3.21 and 3.22 illustrate a model of normal stress distribution

across the tireprint and their resultant force Fz for a turning tire.
Because of higher normal stress in the front part of the tireprint, the

resultant normal force moves forward. Forward shift of the normal force
makes a resistance moment in the −y direction, opposing the forward ro-
tation.

Mr = −Mr ĵ (3.66)

Mr = Fz∆x (3.67)

The rolling resistance momentMr can be substituted by a rolling resistance



116 3. Tire Dynamics

z

yx
ab

FIGURE 3.21. A model of normal stress σz(x, y) in the tireprint area for a rolling
tire.
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FIGURE 3.22. Side view of a normal stress σz distribution and its resultant force
Fz on a rolling tire.
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force Fr parallel to the x-axis.

Fr = −Fr ı̂ (3.68)

Fr =
1

Rh
Mr =

∆x

Rh
Fz (3.69)

Practically the rolling resistance force can be defined using a rolling friction
coefficient μr.

Fr = μr Fz (3.70)

Example 85 A model for normal stress of a turning tire.
We may assume that the normal stress of a turning tire is expressed by

σz = σzm

µ
1− x2n

a2n
− y2n

b2n
+

x

4a

¶
(3.71)

where n = 3 or n = 2 for radial tires and n = 1 for non-radial tires.
We may determine the stress mean value σzm by knowing the total load
on the tire. As an example, using n = 3 for an 800 kg car with a tireprint
AP = 4× a× b = 4× 5 cm× 12 cm, we have

Fz =
1

4
800× 9.81

=

Z
AP

σz(x, y) dA

=

Z 0.05

−0.05

Z 0.12

−0.12
σzm

µ
1− x6

0.056
− y6

0.126
+

x

4× 0.05

¶
dy dx

= 1.7143× 10−2σzm (3.72)

and therefore,

σzm =
Fz

1.7143× 10−2 = 1.1445× 10
5 Pa (3.73)

Example 86 Deformation and rolling resistance.
The distortion of stress distribution is proportional to the tire-road de-

formation that is the reason for shifting the resultant force forward. Hence,
the rolling resistance increases with increasing deformation. A high pres-
sure tire on concrete has lower rolling resistance than a low pressure tire
on soil.
To model the mechanism of dissipation energy for a turning tire, we as-

sume there are many small dampers and springs in the tire structure. Pairs
of parallel dampers and springs are installed radially and circumstantially.
Figures 3.23 and 3.24 illustrate the damping and spring structure of a tire.
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FIGURE 3.23. Damping structure of a tire.
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FIGURE 3.24. Spring structure of a tire.
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3.5.1 F Effect of Speed on the Rolling Friction Coefficient

The rolling friction coefficient μr increases with a second degree of speed.
It is possible to express μr = μr(vx) by the function

μr = μ0 + μ1 v
2
x. (3.74)

Proof. The rolling friction coefficient increases by increasing speed exper-
imentally. We can use a polynomial function

μr =
nX
i=0

μi v
i
x (3.75)

to fit the experimental data. Practically, two or three terms of the polyno-
mial would be enough. The function

μr = μ0 + μ1 v
2
x (3.76)

is simple and good enough for representing experimental data and analytic
calculation. The values of

μ0 = 0.015 (3.77)

μ1 = 7× 10−6 s2/m2 (3.78)

are reasonable values for most passenger car tires. However, μ0 and μ1
should be determined experimentally for any individual tire. Figure 3.25
depicts a comparison between Equation (3.74) and experimental data for
a radial tire.
Generally speaking, the rolling friction coefficient of radial tires show to

be less than non-radials. Figure 3.26 illustrates a sample comparison.
Equation (3.74) is applied when the speed is below the tire’s critical

speed. Critical speed is the speed at which standing circumferential waves
appear and the rolling friction increases rapidly. The wavelength of the
standing waves are close to the length of the tireprint. Above the critical
speed, overheating happens and tire fails very soon. Figure 3.27 illustrates
the circumferential waves in a rolling tire at its critical speed.

Example 87 Rolling resistance force and vehicle velocity.
For computer simulation purposes, a fourth degree equation is presented

to evaluate the rolling resistance force Fr

Fr = C0 + C1 vx + C2 v
4
x. (3.79)

The coefficients Ci are dependent on the tire characteristics, however, the
following values can be used for a typical raided passenger car tire:

C0 = 9.91× 10−3

C1 = 1.95× 10−5 (3.80)

C2 = 1.76× 10−9
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FIGURE 3.25. Comparison between the analytic equation and experimental data
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non-radial tires.
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FIGURE 3.27. Illustration of circumferential waves in a rolling tire at its critical
speed.

Example 88 Road pavement and rolling resistance.
The effect of the pavement and road condition is introduced by assigning

a value for μ0 in equation μr = μ0 + μ1 v
2
x. Table 3.1 is a good reference.

Table 3.1 - The value of μ0 on different pavements.

Road and pavement condition μ0
Very good concrete 0.008− 0.1
Very good tarmac 0.01− 0.0125
Average concrete 0.01− 0.015
Very good pavement 0.015
Very good macadam 0.013− 0.016
Average tarmac 0.018
Concrete in poor condition 0.02
Good block paving 0.02
Average macadam 0.018− 0.023
Tarmac in poor condition 0.23
Dusty macadam 0.023− 0.028
Good stone paving 0.033− 0.055
Good natural paving 0.045
Stone pavement in poor condition 0.085
Snow shallow (5 cm) 0.025
Snow thick (10 cm) 0.037
Unmaintained natural road 0.08− 0.16
Sand 0.15− 0.3
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Example 89 Tire information tips.
A new front tire with a worn rear tire can cause instability.
Tires stored in direct sunlight for long periods of time will harden and

age more quickly than those kept in a dark area.
Prolonged contact with oil or gasoline causes contamination of the rubber

compound, making the tire life short.

Example 90 F Wave occurrence justification.
The normal stress will move forward when the tire is turning on a road.

By increasing the speed, the normal stress will shift more and concentrate
in the first half of the tireprint, causing low stress in the second half of the
tireprint. High stress in the first half along with no stress in the second half
is similar to hammering the tire repeatedly.

Example 91 F Race car tires.
Racecars have very smooth tires, known as slicks. Smooth tires reduce the

rolling friction and maximize straight line speed. The slick racing tires are
also pumped up to high pressure. High pressure reduces the tireprint area.
Hence, the normal stress shift reduces and the rolling resistance decreases.

Example 92 F Effect of tire structure, size, wear, and temperature on
the rolling friction coefficient.
The tire material and the arrangement of tire plies affect the rolling fric-

tion coefficient and the critical speed. Radial tires have around 20% lower
μr, and 20% higher critical speed.
Tire radius Rg and aspect ratio hT /wT are the two size parameters that

affect the rolling resistance coefficient. A tire with larger Rg and smaller
hT /wT has lower rolling resistance and higher critical speed.
Generally speaking, the rolling friction coefficient decreases with wear in

both radial and non-radial tires, and increases by increasing temperature.

3.5.2 F Effect of Inflation Pressure and Load on the Rolling
Friction Coefficient

The rolling friction coefficient μr decreases by increasing the inflation pres-
sure p. The effect of increasing pressure is equivalent to decreasing normal
load Fz.
The following empirical equation has been suggested to show the effects

of both pressure p and load Fz on the rolling friction coefficient.

μr =
K

1000

µ
5.1 +

5.5× 105 + 90Fz
p

+
1100 + 0.0388Fz

p
v2x

¶
(3.81)

The parameter K is equal to 0.8 for radial tires, and is equal to 1.0 for non-
radial tires. The value of Fz, p, and vx must be in [ N], [ Pa], and [m/ s]
respectively.
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FIGURE 3.28. Motorcycle rolling friction coefficient.

Example 93 Motorcycle rolling friction coefficient.
The following equations are suggested for calculating rolling friction coef-

ficient μr applicable to motorcycles. They can be only used as a rough lower
estimate for passenger cars. The equations consider the inflation pressure
and forward velocity of the motorcycle.

μr =

⎧⎪⎪⎨⎪⎪⎩
0.0085 +

1800

p
+
2.0606

p
v2x vx ≤ 46m/ s (≈ 165 km/h)

1800

p
+
3.7714

p
v2x vx > 46m/ s (≈ 165 km/h)

(3.82)

The speed vx must be expressed in m/ s and the pressure p must be in
Pa. Figure 3.28 illustrates this equation for vx ≤ 46m/ s (≈ 165 km/h).
Increasing the inflation pressure p decreases the rolling friction coefficient

μr.

Example 94 Dissipated power because of rolling friction.
Rolling friction reduces the vehicle’s power. The dissipated power because

of rolling friction is equal to the rolling friction force Fr times the forward
velocity vx. Using Equation (3.81), the rolling resistance power is

P = Fr vx

= −μr vx Fz

=
−K vx
1000

µ
5.1 +

5.5× 105 + 90Fz
p

+
1100 + 0.0388Fz

p
v2x

¶
Fz. (3.83)
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The resultant power P is in [W] when the normal force Fz is expressed in
[ N], velocity vx in [m/ s], and pressure p in [ Pa].
The rolling resistance dissipated power for motorcycles can be found based

on Equation (3.82).

P =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
µ
0.0085 +

1800

p
+
2.0606

p
v2x

¶
vxFz vx ≤ 46m/ s (≈ 165 km/h)µ

1800

p
+
3.7714

p
v2x

¶
vxFz vx > 46m/ s (≈ 165 km/h)

(3.84)

Example 95 Rolling resistance dissipated power.
If a vehicle is moving at 100 km/h ≈ 27.78m/ s ≈ 62mi/h and each

radial tire of the vehicle is pressurized up to 220 kPa ≈ 32 psi and loaded
by 220 kg, then the dissipated power, because of rolling resistance, is

P = 4× K vx
1000

µ
5.1 +

5.5× 105 + 90Fz
p

+
1100 + 0.0388Fz

p
v2x

¶
Fz

= 2424.1W ≈ 2.4 kW. (3.85)

To compare the given equations, assume the vehicle has motorcycle tires
with power loss given by Equation (3.84).

P =

µ
0.0085 +

1800

p
+
2.0606

p
v2x

¶
vxFz

= 5734.1W ≈ 5.7 kW. (3.86)

It shows that if the vehicle uses motorcycle tires, it dissipates more power.

Example 96 Effects of improper inflation pressure.
High inflation pressure increases stiffness, which reduces ride comfort

and generates vibration. Tireprint and traction are reduced when tires are
over inflated. Over-inflation causes the tire to transmit shock loads to the
suspension, and reduces the tire’s ability to support the required load for
cornerability, braking, and acceleration.
Under-inflation results in cracking and tire component separation. It also

increases sidewall flexing and rolling resistance that causes heat and me-
chanical failure. A tire’s load capacity is largely determined by its inflation
pressure. Therefore, under-inflation results in an overloaded tire that oper-
ates at high deflection with a low fuel economy, and low handling.
Figure 3.29 illustrates the effect of over and under inflation on tire-road

contact compared to a proper inflated tire.
Proper inflation pressure is necessary for optimum tire performance,

safety, and fuel economy. Correct inflation is especially significant to the
endurance and performance of radial tires because it may not be possible
to find a 5 psi ≈ 35 kPa under-inflation in a radial tire just by looking.
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Proper Inflation

Over Inflation Under Inflation

FIGURE 3.29. Tire-road contact of an over- and under-inflated tire compared to
a properly inflated tire.

However, under-inflation of 5 psi ≈ 35 kPa can reduce up to 25% of the tire
performance and life.
A tire may lose 1 to 2 psi (≈ 7 to 14 kPa) every month. The inflation

pressure can also change by 1 psi≈ 7 kPa for every 10 ◦F ≈ 5 ◦C of tem-
perature change. As an example, if a tire is inflated to 35 psi ≈ 240 kPa
on an 80 ◦F ≈ 26 ◦C summer day, it could have an inflation pressure of
23 psi ≈ 160 kPa on a 20 ◦F ≈ −6 ◦C day in winter. This represents a nor-
mal loss of 6 psi ≈ 40 kPa over the six months and an additional loss of
6 psi ≈ 40 kPa due to the 60 ◦F ≈ 30 ◦C change. At 23 psi ≈ 160 kPa, this
tire is functioning under-inflated.

Example 97 Small / large and soft / hard tires.
If the driving tires are small, the vehicle becomes twitchy with low traction

and low top speed. However, when the driving tires are big, then the vehicle
has slow steering response and high tire distortion in turns, decreasing the
stability.
Softer front tires show more steerability, less stability, and more wear

while hard front tires show the opposite. Soft rear tires have more rear
traction, but they make the vehicle less steerable, more bouncy, and less
stable. Hard rear tires have less rear traction, but they make the vehicle
more steerable, less bouncy, and more stable.

3.5.3 F Effect of Sideslip Angle on Rolling Resistance

When a tire is turning on the road with a sideslip angle α, a significant
increase in rolling resistance occurs. The rolling resistance force Fr would
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FIGURE 3.30. Effect of sideslip angle α on rolling resistance force Fr.

then be

Fr = Fx cosα+ Fy sinα (3.87)

≈ Fx − Cαα
2 (3.88)

where, Fx is the longitudinal force opposing the motion, and Fy is the
lateral force.

Proof. Figure 3.30 illustrates the top view of a turning tire on the ground
under a sideslip angle α. The rolling resistance force is defined as the force
opposite to the velocity vector of the tire, which has angle α with the x-
axis. Assume a longitudinal force Fx in −x-direction is applied on the tire.
Sideslip α increases Fx and generates a lateral force Fy. The sum of the
components of the longitudinal force Fx and the lateral force Fy makes the
rolling resistance force Fr.

Fr = Fx cosα+ Fy sinα (3.89)

For small values of the sideslip α, the lateral force is proportional to −α
and therefore,

Fr ≈ Fx − Cαα
2. (3.90)
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3.5.4 F Effect of Camber Angle on Rolling Resistance

When a tire travels with a camber angle γ, the component of rolling mo-
ment Mr on rolling resistance Fr will be reduced, however, a component
of aligning moment Mz on rolling resistance will appear.

Fr = −Fr ı̂ (3.91)

Fr =
1

Rh
Mr cos γ +

1

Rh
Mz sin γ (3.92)

Proof. Rolling moment Mr appears when the normal force Fz shifts for-
ward. However, only the component Mr cos γ is perpendicular to the tire-
plane and prevents the tire’s spin. Furthermore, when a moment in z-
direction is applied on the tire, only the component Mz sin γ will prevent
the tire’s spin. Therefore, the camber angle γ will affect the rolling resis-
tance according to

Fr = −Fr ı̂

Fr =
1

h
Mr cos γ

1

h
Mz sin γ (3.93)

where Mr may be substituted by Equation (3.66) to show the effect of
normal force Fz.

Fr =
∆x

h
Fz cos γ

1

h
Mz sin γ (3.94)

3.6 Longitudinal Force

The longitudinal slip ratio of a tire is

s =
Rgωw
vx

− 1 (3.95)

where, Rg is the tire’s geometric and unloaded radius, ωw is the tire’s
angular velocity, and vx is the tire’s forward velocity. Slip ratio is positive
for driving and is negative for braking.
To accelerate or brake a vehicle, longitudinal forces must develop between

the tire and the ground. When a moment is applied to the spin axis of
the tire, slip ratio occurs and a longitudinal force Fx is generated at the
tireprint. The force Fx is proportional to the normal force,

Fx = Fx ı̂ (3.96)

Fx = μx (s) Fz (3.97)

where the coefficient μx (s) is called the longitudinal friction coefficient and
is a function of slip ratio s as shown in Figure 3.31. The friction coefficient
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FIGURE 3.31. Longitudinal friction coefficient as a function of slip ratio s, in
driving and braking.

reaches a driving peak value μdp at s ≈ 0.1, before dropping to an al-
most steady-state value μds. The friction coefficient μx (s) may be assumed
proportional to s when s is very small

μx (s) = Cs s s << 1 (3.98)

where Cs is called the longitudinal slip coefficient.
The tire will spin when s & 0.1 and the friction coefficient remains almost

constant. The same phenomena happens in braking at the values μbp and
μbs.

Proof. Slip ratio, or simply slip, is defined as the difference between the
actual speed of the tire vx and the equivalent tire speeds Rwωw. Figure 3.32
illustrates a turning tire on the ground. The ideal distance that the tire
would freely travel with no slip is denoted by dF , while the actual distance
the tire travels is denoted by dA. Thus, for a slipping tire, dA > dF , and
for a spinning tire, dA < dF .
The difference dF − dA is the tire slip and therefore, the slip ratio of the

tire is

s =
dF − dA

dA
. (3.99)

To have the instant value of s, we must measure the travel distances in an
infinitesimal time length, and therefore,

s ≡ ḋF − ḋA

ḋA
. (3.100)
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FIGURE 3.32. A turning tire on the ground to show the no slip travel distance
dF , and the actual travel distance dA.

If the angular velocity of the tire is ωw then, ḋF = Rgωw and ḋA = Rwωw
where, Rg is the geometric tire radius and Rw is the effective radius. There-
fore, the slip ratio s can be defined based on the actual speed vx = Rwωw,
and the free speed Rgωw

s =
Rgωw −Rwωw

Rwωw

=
Rgωw
vx

− 1 (3.101)

A tire can exert longitudinal force only if a longitudinal slip is present.
Longitudinal slip is also called circumferential or tangential slip. During
acceleration, the actual velocity vx is less than the free velocity Rgωw, and
therefore, s > 0. However, during braking, the actual velocity vx is higher
than the free velocity Rgωw and therefore, s < 0.
The frictional force Fx between a tire and the road surface is a function of

normal load Fz, vehicle speed vx, and wheel angular speed ωw. In addition
to these variables there are a number of parameters that affect Fx, such as
tire pressure, tread design, wear, and road surface. It has been determined
empirically that a contact friction of the form Fx = μx(ωw, vx)Fz can model
experimental measurements obtained with constant vx, ωw.

Example 98 Slip ratio based on equivalent angular velocity ωeq.
It is possible to define an effective angular velocity ωeq as an equivalent

angular velocity for a tire with radius Rg to proceed with the actual speed
vx = Rgωeq. Using ωeq we have

vx = Rgωeq = Rwωw (3.102)
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and therefore,

s =
Rgωw −Rgωeq

Rgωeq

=
ωw
ωeq
− 1. (3.103)

Example 99 Slip ratio is −1 < s < 0 in braking.
When we brake, a braking moment is applied to the wheel axis. The tread

of the tire will be stretched circumstantially in the tireprint zone. Hence,
the tire is moving faster than a free tire

Rwωw > Rgωw (3.104)

and therefore, s < 0. The equivalent radius for a braking tire is more than
the free radius

Rw > Rg. (3.105)

Equivalently, we may express the condition using the equivalent angular
velocity ωe and deduce that a braking tire turns slower than a free tire

Rgωeq > Rgωw. (3.106)

The brake moment can be high enough to lock the tire. In this case ωw = 0
and therefore, s = −1. It shows that the longitudinal slip would be between
−1 < s < 0 when braking.

−1 < s < 0 for a < 0 (3.107)

Example 100 Slip ratio is 0 < s <∞ in driving.
When we drive, a driving moment is applied to the tire axis. The tread

of the tire will be compressed circumstantially in the tireprint zone. Hence,
the tire is moving slower than a free tire

Rwωw < Rgωw (3.108)

and therefore s > 0. The equivalent radius for a driving tire is less than the
free radius

Rw < Rg. (3.109)

Equivalently, we may express the condition using the equivalent angular
velocity ωe and deduce that a driving tire turns faster than a free tire

Rgωeq < Rgωw. (3.110)

The driving moment can be high enough to overcome the friction and turn
the tire on pavement while the car is not moving. In this case vx = 0
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and therefore, s = ∞. It shows that the longitudinal slip would be between
0 < s <∞ when accelerating.

0 < s <∞ for a > 0 (3.111)

The tire speed Rwωw equals vehicle speed vx only if acceleration is zero.
In this case, the normal force acting on the tire and the size of the tireprint
are constant in time. No element of the tireprint is slipping on the road.

Example 101 Power and maximum velocity.
Consider a moving car with power P = 100 kW ≈ 134 hp can attain

279 km/h ≈ 77.5m/ s ≈ 173.3mi/h. The total driving force must be

Fx =
P

vx
=
100× 103
77.5

= 1290.3N. (3.112)

If we assume that the car is rear-wheel-drive and the rear wheels are driving
at the maximum traction under the load 1600N, then the longitudinal fric-
tion coefficient μx is

μx =
Fx
Fz

=
1290.3

1600
≈ 0.806. (3.113)

Example 102 Slip of hard tire on hard road.
A tire with no slip cannot create any tangential force. Assume a toy

car equipped with steel tires is moving on a glass table. Such a car cannot
accelerate or steer easily. If the car can steer at very low speeds, it is because
there is sufficient microscopic slip to generate forces to steer or drive. The
glass table and the small contact area of the small metallic tires deform and
stretch each other, although such a deformation is very small. If there is any
friction between the tire and the surface, there must be slip to maneuver.

Example 103 Samples for longitudinal friction coefficients μdp and μds.
Table 3.2 shows the average values of longitudinal friction coefficients

μdp and μds for a passenger car tire 215/65R15. It is practical to assume
μdp = μbp, and μds = μbs.

Table 3.2 - Average of longitudinal friction coefficients.
Road surface Peak value, μdp Sliding value, μds
Asphalt, dry 0.8− 0.9 0.75
Concrete, dry 0.8− 0.9 0.76
Asphalt, wet 0.5− 0.7 0.45− 0.6
Concrete, wet 0.8 0.7

Gravel 0.6 0.55
Snow, packed 0.2 0.15

Ice 0.1 0.07
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FIGURE 3.33. The molecular binding between the tire and road surfaces.

Example 104 Friction mechanisms.
Rubber tires generate friction in three mechanisms: 1− adhesion, 2−

deformation, and 3− wear.

Fx = Fad + Fde + Fwe. (3.114)

Adhesion friction is equivalent to sticking. The rubber resists sliding
on the road because adhesion causes it stick to the road surface. Adhesion
occurs as a result of molecular binding between the rubber and surfaces.
Because the real contact area is much less than the observed contact area,
high local pressure make molecular binding, as shown in Figure 3.33. Bound
occurs at the points of contact and welds the surfaces together. The adhesion
friction is equal to the required force to break these molecular bounds and
separate the surfaces. The adhesion is also called cold welding and is
attributed to pressure rather than heat. Higher load increases the contact
area, makes more bounds, and increases the friction force. So the adhesion
friction confirms the friction equation

Fx = μx (s) Fz. (3.115)

The main contribution to tire traction force on a dry road is the adhesion
friction. The adhesion friction decreases considerably on a road covered by
water, ice, dust, or lubricant. Water on a wet road prevents direct contact
between the tire and road and reduces the formation of adhesion friction.
The main contribution to tire friction when it slides on a road surface is the
viscoelastic energy dissipation in the tireprint area. This dissipative energy
is velocity and is time-history dependent.
Deformation friction is the result of deforming rubber and filling the

microscopic irregularities on the road surface. The surface of the road has
many peaks and valleys called asperities. Movement of a tire on a rough
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surface results in the deformation of the rubber by peaks and high points on
the surface. A load on the tire causes the peaks of irregularities to penetrate
the tire and the tire drapes over the peaks. The deformation friction force,
needed to move the irregularities in the rubber, comes from the local high
pressure across the irregularities. Higher load increases the penetration of
the irregularities in the tire and therefore increases the friction force. So
the deformation friction confirms the friction equation (3.115).
The main contribution to the tire traction force on a wet road is the

deformation friction. The adhesion friction decreases considerably on a road
covered by water, ice, dust, or lubricant.
Deformation friction exists in relative movement between any contacted

surfaces. No matter how much care is taken to form a smooth surface, the
surfaces are irregular with microscopic peaks and valleys. Opposite peaks
interact with each other and cause damage to both surfaces.
Wear friction is the result of excessive local stress over the tensile

strength of the rubber. High local stresses deform the structure of the tire
surface past the elastic point. The polymer bonds break, and the tire surface
tears in microscopic scale. This tearing makes the wear friction mechanism.
Wear results in separation of material. Higher load eases the tire wear and
therefore increases the wear friction force. So the wear friction confirms the
friction equation (3.115).

Example 105 Empirical slip models.
Based on experimental data and curve fitting methods, some mathemati-

cal equations are presented to simulate the longitudinal tire force as a func-
tion of longitudinal slip s. Most of these models are too complicated to be
useful in vehicle dynamics. However, a few of them are simple and accurate
enough to be applied.
The Pacejka model, which was presented in 1991, has the form

Fx (s) = c1 sin
¡
c2 tan

−1 ¡c3s− c4
¡
c3s− tan−1 (c3s)

¢¢¢
(3.116)

where c1, c2, and c3 are three constants based on the tire experimental data.
The 1987 Burckhardt model is a simpler equation that needs three num-

bers.
Fx (s) = c1

¡
1− e−c2s

¢
− c3s (3.117)

There is another Burckhardt model that includes the velocity dependency.

Fx (s) =
¡
c1
¡
1− e−c2s

¢
− c3s

¢
e−c4v (3.118)

This model needs four numbers to be measured from experiment.
By expanding and approximating the 1987 Burckhardt model, the simpler

model by Kiencke and Daviss was suggested in 1994. This model is

Fx (s) = ks
s

1 + c1s+ c2s2
(3.119)
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where ks is the slope of Fx (s) versus s at s = 0

ks = lim
s→0

4Fs
4s

(3.120)

and c1, c2 are two experimental numbers.
Another simple model is the 2002 De-Wit model

Fx (s) = c1
√
s− c2s (3.121)

that is based on two numbers c1, c2.
In either case, we need at least one experimental curve such as shown

in Figure 3.31 to find the constant numbers ci. The constants ci are the
numbers that best fit the associated equation with the experimental curve.
The 1997 Burckhardt model (3.118) needs at least two similar tests at two
different speeds.

Example 106 F Alternative slip ratio.
An alternative method for defining the slip ratio is

s =

⎧⎪⎪⎨⎪⎪⎩
1− vx

Rgωw
Rgωw > vx driving

Rgωw
vx

− 1 Rgωw < vx braking
(3.122)

where vx is the speed of the wheel center, ωw is the angular velocity of the
wheel, and Rg is the tire radius.
In another alternative definition, the following equation is used for lon-

gitudinal slip:

s = 1−
µ
Rgωw
vx

¶n
where n =

½
+1 Rgωw ≤ vx
−1 Rgωw > vx

(3.123)

s ∈ [0, 1]

In this definition s is always between zero and one. When s = 1, then the
tire is either locked while the car is sliding, or the tire is spinning while the
car is not moving.

Example 107 F Tire on soft sand.
Figure 3.34 illustrates a tire turning on sand. The sand will be packed

when the tire passes. The applied stresses from the sand on the tire are
developed during the angle θ1 < θ < θ2 measured counterclockwise from
vertical direction.
It is possible to define a relationship between the normal stress σ and

tangential stress τ under the tire

τ = (c+ σ tan θ)
³
1− e

r
k [θ1−θ+(1−s)(sin θ)−sin θ1]

´
(3.124)
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FIGURE 3.34. A tire turning on sand.

where s is the slip ratio defined in Equation (3.122), and

τM = c+ σ tan θ (3.125)

is the maximum shear stress in the sand applied on the tire. In this equation,
c is the cohesion stress of the sand, and k is a constant.

Example 108 F Lateral slip ratio.
Analytical expressions can be established for the force contributions in x

and y directions using adhesive and sliding concept by defining longitudinal
and lateral slip ratios sx and sy

sx =
Rgωw
vx

− 1 (3.126)

sy =
Rgωw
vy

(3.127)

where vx is the longitudinal speed of the wheel and vy is the lateral speed of
the wheel. The unloaded geometric radius of the tire is denoted by Rg and
ωw is the rotation velocity of the wheel.
At very low slips, the resulting tire forces are proportional to the slip

Fx = Csx sx (3.128)

Fy = Csy sy (3.129)

where Csx is the longitudinal slip coefficient and Csy is the lateral slip
coefficient.

3.7 Lateral Force

When a turning tire is under a vertical force Fz and a lateral force Fy, its
path of motion makes an angle α with respect to the tire-plane. The angle
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FIGURE 3.35. Front view of a laterally deflected tire.

is called sideslip angle and is proportional to the lateral force

Fy = Fy ĵ (3.130)

Fy = −Cα α (3.131)

where Cα is called the cornering stiffness of the tire.

Cα = lim
α→0

∂ (−Fy)
∂α

=

¯̄̄̄
lim
α→0

∂Fy
∂α

¯̄̄̄
(3.132)

The lateral force Fy is at a distance axα behind the centerline of the
tireprint and makes a moment Mz called aligning moment.

Mz = Mz k̂ (3.133)

Mz = Fy axα (3.134)

For small α, the aligning moment Mz tends to turn the tire about the
z-axis and make the x-axis align with the velocity vector v. The aligning
moment always tends to reduce α.

Proof. When a wheel is under a constant load Fz and then a lateral force
is applied on the rim, the tire will deflect laterally as shown in Figure 3.35.
The tire acts as a linear spring under small lateral forces

Fy = ky∆y (3.135)

with a lateral stiffness ky.
The wheel will start sliding laterally when the lateral force reaches a

maximum value FyM . At this point, the lateral force approximately remains
constant and is proportional to the vertical load

FyM = μy Fz (3.136)
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FIGURE 3.36. Bottom view of a laterally deflected tire.

where, μy is the tire friction coefficient in the y-direction. A bottom view
of the tireprint of a laterally deflected tire is shown in Figure 3.36.
If the laterally deflected tire is turning forward on the road, the tireprint

will also flex longitudinally. A bottom view of the tireprint for such a lat-
erally deflected and turning tire is shown in Figure 3.37. Although the
tire-plane remains perpendicular to the road, the path of the wheel makes
an angle α with tire-plane. As the wheel turns forward, undeflected treads
enter the tireprint region and deflect laterally as well as longitudinally.
When a tread moves toward the end of the tireprint, its lateral deflection
increases until it approaches the tailing edge of the tireprint. The normal
load decreases at the tail of the tireprint, so the friction force is lessened and
the tread can slide back to its original position when leaving the tireprint
region. The point where the laterally deflected tread slides back is called
sliding line.
A turning tire under lateral force and the associated sideslip angle α

are shown in Figure 3.38. Lateral distortion of the tire treads is a result
of a tangential stress distribution τy over the tireprint. Assuming that the
tangential stress τy is proportional to the distortion, the resultant lateral
force Fy

Fy =

Z
AP

τy dAp (3.137)

is at a distance axα behind the center line.

axα =
1

Fy

Z
AP

x τy dAp (3.138)

The distance axα is called the pneumatic trail, and the resultant moment



138 3. Tire Dynamics

TireprintLaterally deflected 
rolling tire

Sticking 
region

Sliding 
region

Sliding line

FIGURE 3.37. Bottom view of a laterally deflected and turning tire.

Mz is called the aligning moment.

Mz = Mz k̂ (3.139)

Mz = Fy axα (3.140)

The aligning moment tends to turn the tire about the z-axis and make it
align with the direction of tire velocity vector v. A stress distribution τy,
the resultant lateral force Fy, and the pneumatic trail axα are illustrated
in Figure 3.38.
There is also a lateral shift in the tire vertical force Fz because of slip

angle α, which generates a slip moment Mx about the forward x-axis.

Mx = −Mx ı̂ (3.141)

Mx = Fz ayα (3.142)

The slip angle α always increases by increasing the lateral force Fy.
However, the sliding line moves toward the tail at first and then moves
forward by increasing the lateral force Fy. Slip angle α and lateral force Fy
work as action and reaction. A lateral force generates a slip angle, and a
slip angle generates a lateral force. Hence, we can steer the tires of a car
to make a slip angle and produce a lateral force to turn the car. Steering
causes a slip angle in the tires and creates a lateral force. The slip angle
α > 0 if the tire should be turned about the z-axis to be aligned with the
velocity vector v. A positive slip angle α generates a negative lateral force
Fy. Hence, steering to the right about the −z-axis makes a positive slip
angle and produces a negative lateral force to move the tire to the right.
A sample of measured lateral force Fy as a function of slip angle α for

a constant vertical load is plotted in Figure 3.39. The lateral force Fy is
linear for small slip angles, however the rate of increasing Fy decreases
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FIGURE 3.38. The stress distribution τy, the resultant lateral force Fy, and the
pneumatic trail ay for a turning tire going on a positive slip angle α.

for higher α. The lateral force remains constant or drops slightly when α
reaches a critical value at which the tire slides on the road. Therefore, we
may assume the lateral force Fy is proportional to the slip angle α for low
values of α.

Fy = −Cα α (3.143)

Cα = lim
α→0

∂ (−Fy)
∂α

(3.144)

The cornering stiffness Cα of radial tires are higher than Cα for non-radial
tires. This is because radial tires need a smaller slip angle α to produce the
same amount of lateral force Fy.
Examples of aligning moments for radial and non-radial tires are illus-

trated in Figure 3.40. The pneumatic trail axα increases for small slip angles
up to a maximum value, and decreases to zero and even negative values for
high slip angles. Therefore, the behavior of aligning momentMz is similar
to what is shown in Figure 3.40.
The lateral force Fy = −Cα α can be decomposed to Fy cosα, parallel to

the path of motion v, and Fy sinα, perpendicular to v as shown in Figure
3.41. The component Fy cosα, normal to the path of motion, is called
cornering force, and the component Fy sinα, along the path of motion, is
called drag force.
Lateral force Fy is also called side force or grip. We may combine the

lateral forces of all a vehicle’s tires and have them acting at the car’s mass
center C.
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FIGURE 3.39. Lateral force Fy as a function of slip angle α for a constant vertical
load.
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Example 109 Effect of tire load on lateral force curve.
When the wheel load Fz increases, the tire treads can stick to the road

better. Hence, the lateral force increases at a constant slip angle α, and the
slippage occurs at the higher slip angles. Figure 3.42 illustrates the lateral
force behavior of a sample tire for different normal loads.
Increasing the load not only increases the maximum attainable lateral

force, it also pushes the maximum of the lateral force to higher slip angles.
Sometimes the effect of load on lateral force is presented in a dimen-

sionless variable to make it more practical. Figure 3.43 depicts a sample.

Example 110 Gough diagram.
The slip angle α is the main affective parameter on the lateral force Fy

and aligning moment Mz = Fyaxα. However, Fz and Mz depend on many
other parameters such as speed v, pressure p, temperature, humidity, and
road conditions. A better method to show Fz and Mz is to plot them versus
each other for a set of parameters. Such a graph is called a Gough dia-
gram. Figure 3.44 depicts a sample Gough diagram for a radial passenger
car tire. Every tire has its own Gough diagram, although we may use an
average diagram for radial or non-radial tires.

Example 111 Effect of velocity.
The curve of lateral force as a function of the slip angle Fy (α) decreases

as velocity increases. Hence, we need to increase the sideslip angle at higher
velocities to generate the same lateral force. Sideslip angle increases by
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FIGURE 3.42. Lateral force behavior of a sample tire for different normal loads
as a function of slip angle α.

0            2             4             6             8             10           12

1.05

0.90

0.75

0.60

0.45

0.30

0.15

0

-F
y

/ F
z

[ ]degα

Fz =4000 N
Fz =5000 N

Fz =7000 N

Line of maxima

Fz =6000 N

FIGURE 3.43. Effect of load on lateral force as a function of slip angle α presented
in a dimensionless fashion.



3. Tire Dynamics 143

0            20           40           60          80           100         120

-F
y

[N
]

5 kN

Mz [Nm]
20

 m
m

6 kNa y =
10

 m
m

Fz =4 kN

30 m
m

7 kN 40 mm

55 mm

80 mm

100 mm

7000

6000

5000

4000

3000

2000

1000

0
2α = °

4°

6°

9°
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increasing the steer angle. Figure 3.45 illustrates the effect of velocity on Fy
for a radial passenger tire. Because of this behavior, a fixed steer angle, the
curvature of a one-wheel-car trajectory, increases by increasing the driving
speed.

Example 112 F A model for lateral force.
When the sideslip angle is not small, the linear approximation (3.131)

cannot model the tire behavior. Based on a parabolic normal stress distrib-
ution on the tireprint, the following third-degree function was presented in
the 1950s to calculate the lateral force at high sideslips

Fy = −Cα α

Ã
1− 1

3

¯̄̄̄
Cα α

FyM

¯̄̄̄
+
1

27

µ
Cα α

FyM

¶2!
(3.145)

where FyM is the maximum lateral force that the tire can support. FyM is
set by the tire load and the lateral friction coefficient μy. Let’s show the
sideslip angle at which the lateral force Fy reaches its maximum value FyM
by αM . Equation (3.145) shows that

αM =
3FyM
Cα

(3.146)

and therefore,

Fy = −Cα α

Ã
1− α

αM
+
1

3

µ
α

αM

¶2!
(3.147)

Fy
FyM

=
3α

αM

Ã
1− α

αM
+
1

3

µ
α

αM

¶2!
. (3.148)



144 3. Tire Dynamics

0            2             4             6             8             10           12

7000

6000

5000

4000

3000

2000

1000

0

-F
y

[N
]

[ ]degα

v =10 m/s
v =15 m/s

v =20 m/s

v =30 m/s

FIGURE 3.45. Effect of velocity on Fy and Mz for a radial tire.

Figure 3.46 shows the cubic curve model for lateral force as a function
of the sideslip angle. The Equation is applicable only for 0 ≤ α ≤ αM .

Example 113 F A model for lateral stress.
Consider a tire turning on a dry road at a low sideslip angle α. Assume

the developed lateral stress on tireprint can be expressed by the following
equation:

τy(x, y) = cτyM

³
1− x

a

´µ
1− x3

a3

¶
cos2

³ y

2b
π
´

(3.149)

The coefficient c is proportional to the tire load Fz sideslip α, and longitu-
dinal slip s. If the tireprint AP = 4 × a × b = 4 × 5 cm × 12 cm, then the
lateral force under the tire, Fy, for c = 1 is

Fy =

Z
AP

τy(x, y) dA

=

Z 0.05

−0.05

Z 0.12

−0.12
τyM

³
1− x

0.05

´µ
1− x3

0.053

¶
cos2

³ yπ

0.24

´
dy dx

= 0.0144τyM . (3.150)

If we calculate the lateral force Fy = 1000N by measuring the lateral accel-
eration, then the maximum lateral stress is

τyM =
Fz

0.014 4
= 69444Pa (3.151)

and the lateral stress distribution over the tireprint is

τy(x, y) = 69444
³
1− x

0.05

´µ
1− x3

0.053

¶
cos2

³ yπ

0.24

´
Pa. (3.152)
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3.8 Camber Force

Camber angle γ is the tilting angle of tire about the longitudinal x-axis.
Camber angle generates a lateral force Fy called camber trust or camber
force. Figure 3.47 illustrates a front view of a cambered tire and the gen-
erated camber force Fy. Camber angle is assumed positive γ > 0, when it
is in the positive direction of the x-axis, measured from the z-axis to the
tire. A positive camber angle generates a camber force along the −y-axis.
The camber force is proportional to γ at low camber angles, and depends

directly on the wheel load Fz. Therefore,

Fy = Fy ĵ (3.153)

Fy = −Cγ γ (3.154)

where Cγ is called the camber stiffness of tire.

Cγ = lim
γ→0

∂ (−Fy)
∂γ

(3.155)

In presence of both, camber γ and sideslip α, the overall lateral force Fy
on a tire is a superposition of the corner force and camber trust.

Fy = −Cγ γ − Cα α (3.156)

Proof. When a wheel is under a constant load and then a camber angle
is applied on the rim, the tire will deflect laterally such that it is longer in
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FIGURE 3.47. A front view of a cambered tire and the generated camber force.

the cambered side and shorter in the other side. Figure 3.48 compares the
tireprint of a straight and a cambered tire, turning slowly on a flat road. As
the wheel turns forward, undeflected treads enter the tireprint region and
deflect laterally as well as longitudinally. However, because of the shape of
the tireprint, the treads entering the tireprint closer to the cambered side,
have more time to be stretched laterally. Because the developed lateral
stress is proportional to the lateral stretch, the nonuniform tread stretching
generates an asymmetric stress distribution and more lateral stress will be
developed on the cambered side. The result of the nonuniform lateral stress
distribution over the tireprint of a cambered tire produces the camber trust
Fy in the cambered direction.

Fy = Fy ĵ (3.157)

Fy =

Z
AP

τy dA (3.158)

The camber trust is proportional to the camber angle for small angles.

Fy = −Cγ γ (3.159)

The camber trust Fy shifts a distance axγ forward when the cambered
tire turns on the road. The resultant moment

Mz = Mz k̂ (3.160)

Mz = Fy axγ (3.161)
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FIGURE 3.48. The tireprint of a straight and a cambered tire, turning slowly on
a flat road.

is called camber torque, and the distance axγ is called camber trail. Camber
trail is usually very small and hence, the camber torque can be ignored in
linear analysis of vehicle dynamics.
Because the tireprint of a cambered tire deforms to be longer in the

cambered side, the resultant vertical force Fz

Fz =

Z
AP

σz dA (3.162)

that supports the wheel load, shifts laterally to a distance ayγ from the
center of the tireprint.

ayγ =
1

Fz

Z
AP

y σz dAp (3.163)

The distance ayγ is called the camber arm, and the resultant moment Mx
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FIGURE 3.49. The camber force Fy for different camber angle γ at a constant
tire load.

is called the camber moment.

Mx = Mx k̂ (3.164)

Mx = −Fz ayγ (3.165)

The camber moment tends to turn the tire about the x-axis and make the
tire-plane align with the z-axis. The camber arm ayγ is proportional to the
camber angle γ for small angles.

ayγ = Cyγ γ (3.166)

Figure 3.49 shows the camber force Fy for different camber angle γ at a
constant tire load Fz = 4500N. Radial tires generate lower camber force
due to their higher flexibility.
It is better to illustrate the effect of Fz graphically to visualize the camber

force. Figure 3.50 depicts the variation of camber force Fy as a function of
normal load Fz at different camber angles for a sample radial tire.
If we apply a slip angle α to a turning cambered tire, the tireprint will

distort similar to the shape in Figure 3.51 and the path of treads become
more complicated. The resultant lateral force would be at a distance axγ
and ayγ from the center of the tireprint. Both distances axγ and ayγ are
functions of angles α and γ. Camber force due to γ, along with the corner
force due to α, give the total lateral force applied on a tire. Therefore, the
lateral force can be calculated as

Fy = −Cα α− Cγ γ (3.167)
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FIGURE 3.51. Tireprint of a cambered tire under a sideslip.
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that is acceptable for γ . 10 deg and α . 5 deg. Presence of both camber
angle γ and slip angle α makes the situation interesting because the total
lateral force can be positive or negative. Figure 3.52 illustrates an example
of lateral force as a function of γ and α at a constant load Fz = 4000N.
Similar to lateral force, the aligning moment Mz can be approximated as
a combination of the slip and camber angle effects

Mz = CMα α+ CMγ γ. (3.168)

For a radial tire, CMα ≈ 0.013Nm/deg and CMγ ≈ 0.0003Nm/deg, while
for a non-radial tire, CMα

≈ 0.01Nm/deg and CMγ
≈ 0.001Nm/deg.

Example 114 Banked road.
Consider a vehicle moving on a road with a transversal slope β, while

its tires remain vertical. There is a downhill component of weight, F1 =
mg sinβ, that pulls the vehicle down. There is also an uphill camber force
due to camber γ ≈ β of tires with respect to the road F2 = Cγ γ. The
resultant lateral force Fy = Cγ γ − mg sinβ depends on camber stiffness
Cγ and determines if the vehicle goes uphill or downhill. Since the camber
stiffness Cγ is higher for non-radial tires, it is more possible for a radial
tire to go downhill and a non-radial uphill.
The effects of cambering are particularly important for motorcycles that

produce a large part of the cornering force by cambering. For cars and
trucks, the cambering angles are much smaller and in many applications
their effect can be negligible. However, some suspensions are designed to
make the wheels camber when the axle load varies.
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Example 115 Camber importance and tireprint model.
Cambering of a tire creates a lateral force, even though there is no sideslip.

The effects of cambering are particularly important for motorcycles that
produce a large part of the lateral force by camber. The following equations
are presented to model the lateral deviation of a cambered tireprint from the
straight tireprint, and expressing the lateral stress τy due to camber

y = − sin γ
³q

R2g − x2 −
q
R2g − a2

´
(3.169)

τy = −γk
¡
a2 − x2

¢
(3.170)

where k is chosen such that the average camber defection is correct in the
tireprint Z a

−a
τy dx =

Z a

−a
y dx. (3.171)

Therefore,

k =
3 sin γ

4a3γ

µ
−a
q
R2g − a2 +R2g sin

−1 a

Rg

¶
(3.172)

≈ 3

4

Rg

q
R2g − a2

a2
(3.173)

and

τy = −
3

4
γ
Rg

q
R2g − a2

a2
¡
a2 − x2

¢
. (3.174)

3.9 Tire Force

Tires may be considered as a force generator with two major outputs: for-
ward force Fx, lateral force Fy, and three minor outputs: aligning moment
Mz, roll moment Mx, and pitch moment My. The input of the force gen-
erator is the tire load Fz, sideslip α, longitudinal slip s, and the camber
angle γ.

Fx = Fx (Fz, α, s, γ) (3.175)

Fy = Fy (Fz, α, s, γ) (3.176)

Mx = Mx (Fz, α, s, γ) (3.177)

My = My (Fz, α, s, γ) (3.178)

Mz = Mz (Fz, α, s, γ) (3.179)

Ignoring the rolling resistance and aerodynamic force, and when the tire
is under a load Fz plus only one more of the inputs α, s, or γ, the major
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output forces can be approximated by a set of linear equations

Fx = μx (s) Fz (3.180)

μx (s) = Cs s

Fy = −Cα α (3.181)

Fy = −Cγ γ (3.182)

where, Cs is the longitudinal slip coefficient, Cα is the lateral stiffness, and
Cγ is the camber stiffness.
When the tire has a combination of tire inputs, the tire forces are called

tire combined force. The most important tire combined force is the shear
force because of longitudinal and sideslips. However, as long as the angles
and slips are within the linear range of tire behavior, a superposition can
be utilized to estimate the output forces.
Driving and braking forces change the lateral force Fy generated at any

sideslip angle α. This is because the longitudinal force pulls the tireprint
in the direction of the driving or braking force and hence, the length of
lateral displacement of the tireprint will also change.
Figure 3.53 illustrates how a sideslip α affects the longitudinal force

ratio Fx/Fz as a function of slip ratio s. Figure 3.54 illustrates the effect
of sideslip α on the lateral force ratio Fy/Fz as a function of slip ratio s.
Figure 3.55 and 3.56 illustrate the same force ratios as Figures 3.53 and
3.54 when the slip ratio s is a parameter.

Proof. Consider a turning tire under a sideslip angle α. The tire devel-
ops a lateral force Fy = −Cα α. Applying a driving or braking force on
this tire will reduce the lateral force while developing a longitudinal force
Fx = μx (s) Fz. Experimental data shows that the reduction in lateral
force in presence of a slip ratio s is similar to Figure 3.54. Now assume
the sideslip α is reduced to zero. Reduction α will increase the longitudinal
force while decreasing the lateral force. Increasing the longitudinal force is
experimentally similar to Figure 3.55.
A turning tire under a slip ratio s develops a longitudinal force Fx =

μx (s) Fz. Applying a sideslip angle α will reduce the longitudinal force
while developing a lateral force. Experimental data shows that the reduc-
tion in longitudinal force in presence of a sideslip α is similar to Figure
3.53. Now assume the slip ratio s and hence, the driving or breaking force
is reduced to zero. Reduction s will increase the lateral force while decreas-
ing the longitudinal force. Increasing the lateral force is similar to Figure
3.54.

Example 116 Pacejka model.
An approximate equation is presented to describe force Equations (3.175)
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or (3.176). This equation is called the Pacejka model.

F = A sin
©
B tan−1

£
Cx−D

¡
Cx− tan−1 (Cx)

¢¤ª
(3.183)

A = μFz (3.184)

C =
Cα

AB
(3.185)

B,D = shape factors (3.186)

The Pacejka model is substantially empirical. However, when the para-
meters A, B, C, D, C1, and C2 are determined for a tire, the equation
expresses the tire behavior well enough. Figure 3.57 illustrates how the pa-
rameters can be determined from a test force-slip experimental result.

Example 117 Friction ellipse.
When the tire is under both longitudinal and sideslips, the tire is under

combined slip. The shear force on the tireprint of a tire under a combined
slip can approximately be found using a friction ellipse model.µ

Fy
FyM

¶2
+

µ
Fx
FxM

¶2
= 1 (3.187)

A friction ellipse is shown in Figure 3.58.

Proof. The shear force Fshear, applied on the tire at tireprint, parallel to
the ground surface, has two components: the longitudinal force Fx and the
lateral force Fy.

Fshear = Fx ı̂+ Fy ĵ (3.188)

Fx = Cs sFz (3.189)

Fy = −Cα α (3.190)
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These forces cannot exceed their maximum values FyM and FxM .

FyM = μy Fz

FxM = μx Fz

The tire shown in Figure 3.58 is moving along the velocity vector v at
a sideslip angle α. The x-axis indicates the tire-plane. When there is no
sideslip, the maximum longitudinal force is FxM = μx Fz =

−→
OA. Now, if a

sideslip angle α is applied, a lateral force Fy =
−−→
OE is generated, and the

longitudinal force reduces to Fx =
−−→
OB. The maximum lateral force would

be FyM = μy Fz =
−−→
OD when there is no longitudinal slip.

In presence of the longitudinal and lateral forces, we may assume that
the tip point of the maximum shear force vector is on the following friction
ellipse: µ

Fy
FyM

¶2
+

µ
Fx
FxM

¶2
= 1 (3.191)

When μx = μy = μ, the friction ellipse would be a circle and

Fshear = μFz. (3.192)
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Example 118 Wide tires.
A wide tire has a shorter tireprint than a narrow tire. Assuming the

same vehicle and same tire pressure, the area of tireprint would be equal in
both tires. The shorter tireprint at the same sideslip has more of its length
stuck to the road than longer tireprint. So, a wider tireprint generates more
lateral force than a narrower tireprint for the same tire load and sideslip.
Generally speaking, tire performance and maximum force capability de-

crease with increasing speed in both wide and narrow tires.

Example 119 sin tire forces model.
A few decades ago, a series of applied sine functions were developed based

on experimental data to model tire forces. The sine functions, which are
explained below, may be used to model tire forces, especially for computer
purposes, effectively.
The lateral force of a tire is

Fy = A sin
©
B tan−1 (CΦ)

ª
(3.193)

Φ = (1−E) (α+ δ)μFz (3.194)

C =
Cα

AB
(3.195)

Cα = C1 sin

µ
2 tan−1

Fz
C2

¶
(3.196)

A,B = Shape factors (3.197)

C1 = Maximum cornering stiffness (3.198)

C2 = Tire load at maximum cornerin stiffness (3.199)

3.10 Summary

We attach a coordinate frame (oxyz) to the tire at the center of the
tireprint, called the tire frame. The x-axis is along the intersection line of
the tire-plane and the ground. The z-axis is perpendicular to the ground,
and the y-axis makes the coordinate system right-hand. We show the tire
orientation using two angles: camber angle γ and sideslip angle α. The
camber angle is the angle between the tire-plane and the vertical plane
measured about the x-axis, and the sideslip angle α is the angle between
the velocity vector v and the x-axis measured about the z-axis.
A vertically loaded wheel turning on a flat surface has an effective radius

Rw, called rolling radius

Rw =
vx
ωw

(3.200)

where vx is the forward velocity, and ωw is the angular velocity of the
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wheel. The effective radius Rw is approximately equal to

Rw ≈ Rg −
Rg −Rh

3
(3.201)

and is a number between the unloaded or geometric radius Rg and the
loaded height Rh.

Rh < Rw < Rg (3.202)

A turning tire on the ground generates a longitudinal force called rolling
resistance. The force is opposite to the direction of motion and is propor-
tional to the normal force on the tireprint.

Fr = μr Fz (3.203)

The parameter μr is called the rolling friction coefficient and is a function
of tire mechanical properties, speed, wear, temperature, load, size, driving
and braking forces, and road condition.
The tire force in the x-direction is a combination of the longitudinal force

Fx and the roll resistance Fr. The longitudinal force is

Fx = μx (s) Fz (3.204)

where s is the longitudinal slip ratio of the tire

s =
Rgωw
vx

− 1 (3.205)

μx (s) = Cs s s << 1 (3.206)

The wheel force in the tire y-direction, Fy, is a combination of the lateral
force and the tire roll resistance Fr. The lateral force is

Fy = −Cγ γ − Cα α (3.207)

where −Cγγ is called the camber trust and Cαα is called the sideslip force.
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3.11 Key Symbols

a ≡ ẍ acceleration
a, b semiaxes of AP

axα
axγ camber trail
ayγ camber arm
AP tireprint area
c1, c2, c3, c4 coefficients of the function Fx = Fx (s)
C0, C1, C2 coefficients of the polynomial function Fr = Fr (vx)
Cs longitudinal slip coefficient
Csx , Csy longitudinal and lateral slip coefficients
Cα sideslip coefficient
Cγ camber stiffness
d distance of tire travel
dF no slip tire travel
dA actual tire travel
D tire diameter
E Young modulus
f function
fk spring force
Fr Fr rolling resistance force
Fx longitudinal force, forward force
Fy lateral force
FyM pneumatic trail
Fz normal force, vertical force, wheel load
g g gravitational acceleration
k stiffness
k1, k2, k3 nonlinear tire stiffness coefficients
keq equivalent stiffness
ks slope of Fx (s) versus s at s = 0
kx tire stiffness in the x-direction
ky tire stiffness in the y-direction
kz tire stiffness in the z-direction
K radial and non-radial tires parameter in μr = μr (p, vx)
m mass
Mr Mr rolling resistance moment
Mx, Mx roll moment, bank moment, tilting torque,
My pitch moment, rolling resistance torque
Mz yaw moment, aligning moment, self aligning moment, bore torque
n exponent for shape and stress distribution of AP

n1 number of tire rotations
p tire inflation pressure
P rolling resistance power
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r radial position of tire periphery
r = ω/ωn frequency ratio
Rg geometric radius
Rh loaded height
Rw rolling radius
s longitudinal slip
sy lateral slip
T wheel torque
v ≡ ẋ, v velocity
x, y, z, x displacement
x, y, z coordinate axes
4x tire deflection in the x-direction, rolling resistance arm
4y tire deflection in the y-direction
4z tire deflection in the z-direction
ż tire deflection rate in the z-direction

α sideslip angle
αM maximum sideslip angle
β transversal slope
γ camber angle
δ deflection
4x tire deflection in the x-direction, rolling resistance arm
4y tire deflection in the y-direction
4z tire deflection in the z-direction
θ tire angular rotation
μ0, μ1 nonlinear rolling friction coefficient
μr rolling friction coefficient
μx (s) longitudinal friction coefficient
μdp friction coefficient driving peak value
μds friction coefficient steady-state value
σzM maximum normal stress
σz(x, y) normal stress over the tireprint
σzm normal stress mean value
τx(x, y), τy(x, y) shear stresses over the tireprint
τxM , τyM maximum shear stresses
ϕ contact angle, angular length of AP

ωeq equivalent tire angular velocity
ωw angular velocity of a wheel
ωw actual tire angular velocity
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Exercises

1. Tireprint size and average normal stress.

The curb weight of a model of Land Rover LR3TM is

m = 2461 kg ≈ 5426 lb

while the gross vehicle weight can be

m = 3230 kg ≈ 7121 lb.

Assume a front to rear load ratio

Fzf
Fzr

=
1450 kg

1875 kg

and use the following data

l = 2885mm ≈ 113.6 in
Tires = 255/55R19

to determine the the size parameters of the tireprints a, and b, for the
front and rear tires. Assume a uniform normal stress on tireprints.

2. Tireprint size, radial tire.

Holden TK BarinaTM is a hatchback car with the following charac-
teristics.

m = 2461 kg ≈ 5426 lb
l = 2480mm

Tires = 185/55R15 82V

Assume

m = 860 kg
a1
a2

= 1.1

and determine the size of its tireprints for n = 3.

3. Rolling resistance coefficient.

Alfa Romeo SpiderTM has the following characteristics.

m = 1690 kg ≈ 3725.8 lb
l = 2530mm ≈ 99.6 in

Tires = P225/50R17
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Determine the rolling resistance coefficient μr for the front and rear
tires of the car at zero and at top speed vM .

vM = 235.0 km/h ≈ 146.0mi/h

Assume a1/a2 = 1.2 and use p = 27 psi.

4. Rolling resistance power.

A model of Mitsubishi GalantTM has the following specifications.

m = 1, 700 kg

l = 2750mm

Tires = P235/45R18

vM ≈ 190 km/h

Assume a1/a2 = 1.2 and p = 27 psi to find the rolling resistance
power at the maximum speed.

5. Longitudinal slip.

(a) Determine the longitudinal slip s for the tire P225/50R17 if
Rw = 0.98Rg.

(b) If the speed of the wheel is vx = 100km/h, what would be the
angular velocity ωw and equivalent angular velocity ωeq of the
tire.

6. Cornering and drag force on a tire.

Consider the tire for which we have estimated the lateral force be-
havior shown in Figure 3.42. If the sideslip angle α is 4 deg and
Fz = 5000N, calculate the cornering and drag force on the tire.

7. Required camber angle.

Consider the tire for which we have estimated the behavior shown
in Figure 3.52. Assume Fz = 4000N and we need a lateral force
Fy = −3000N. If α = 4deg, what would be the required camber
angle γ? Estimate the coefficients Cα and Cγ .

8. High camber angle.

Consider a tire with Cγ = 300N/deg and Cα = 700N/deg. If the
camber angle is γ = 18deg how much lateral force will develop for a
zero sideslip angle? How much sideslip angle is needed to reduce the
value of the lateral force to Fy = −3000N?
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9. Sideslip and longitudinal slip.

Consider the tire for which we have estimated the behavior shown in
Figure 3.54. Assume a vehicle with that tire is turning with a constant
speed on a circle such that α = 4deg. What should be the sideslip
angle α if we accelerate the vehicle such that s = 0.05, or decelerate
the vehicle such that s = −0.05?

10. F Motion of the air in tire.

What do you think about the motion of the pressurized air within
the tires, when the vehicle moves with constant velocity or constant
acceleration?
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Driveline Dynamics
The maximum achievable acceleration of a vehicle is limited by two fac-
tors: maximum torque at driving wheels, and maximum traction force at
tireprints. The first one depends on engine and transmission performance,
and the second one depends on tire-road friction. In this chapter, we ex-
amine engine and transmission performance.

4.1 Engine Dynamics

The maximum attainable power Pe of an internal combustion engine is a
function of the engine angular velocity ωe. This function must be deter-
mined experimentally, however, the function Pe = Pe (ωe), which is called
the power performance function, can be estimated by a third-order poly-
nomial
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FIGURE 4.1. A sample of power and torque performances for a spark ignition
engine.

Pe =
3X

i=1

Pi ω
i
e

= P1 ωe + P2 ω
2
e + P3 ω

3
e. (4.1)



166 4. Driveline Dynamics

If we use ωM to indicate the angular velocity, measured in [ rad/ s], at
which the engine power reaches the maximum value PM , measured in [W =
Nm/ s], then for spark ignition engines we use

P1 =
PM
ωM

(4.2)

P2 =
PM
ω2M

(4.3)

P3 = −PM
ω3M

. (4.4)

Figure 4.1 illustrates a sample for power performance of a spark ignition
engine that provides PM = 50 kW at ωM = 586 rad/ s ≈ 5600 rpm. The
curve begins at an angular velocity at which the engine starts running
smoothly.
For indirect injection Diesel engines we use

P1 = 0.6
PM
ωM

(4.5)

P2 = 1.4
PM
ω2M

(4.6)

P3 = −PM
ω3M

(4.7)

and for direct injection Diesel engines we use

P1 = 0.87
PM
ωM

(4.8)

P2 = 1.13
PM
ω2M

(4.9)

P3 = −PM
ω3M

. (4.10)

The driving torque of the engine Te is the torque that provides Pe

Te =
Pe
ωe

= P1 + P2 ωe + P3 ω
2
e. (4.11)

Example 120 Porsche 911TM and Corvette Z06TM engines.
A model of Porsche 911 turbo has a flat-6 cylinder, twin-turbo engine with

3596 cm3 ≈ 220 in3 total displacement. The engine provides a maximum
power PM = 353kW ≈ 480 hp at ωM = 6000 rpm ≈ 628 rad/ s, and a max-
imum torque TM = 620Nm ≈ 457 lb ft at ωe = 5000 rpm ≈ 523 rad/ s. The
car weighs around 1585 kg ≈ 3494 lb and can move from 0 to 96 km/h ≈
60mi/h in 3.7 s. Porsche 911 has a top speed of 310 km/h ≈ 193mi/h.
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The power performance equation for the Porsche 911 engine has the co-
efficients

P1 =
PM
ωM

=
353000

628
= 562.1W/ s (4.12)

P2 =
PM
ω2M

=
353000

6282
= 0.89507W/ s2 (4.13)

P3 = −PM
ω3M

= −353000
6283

= −1.4253× 10−3W/ s3 (4.14)

and, its power performance function is

Pe = 562.1ωe + 0.89507ω
2
e − 1.4253× 10−3 ω3e. (4.15)

A model of Corvette Z06 uses a V 8 engine with 6997 cm3 ≈ 427 in3 total
displacement. The engine provides a maximum power PM = 377 kW ≈
512 hp at ωM = 6300 rpm ≈ 660 rad/ s, and a maximum torque TM =
637Nm ≈ 470 lb ft at ωe = 4800 rpm ≈ 502 rad/ s. The Corvette weighs
around 1418 kg ≈ 3126 lb and can move from 0 to 100 km/h ≈ 62mi/h in
3.9 s in first gear. Its top speed is 320 km/h ≈ 198mi/h.
The power performance equation for the engine of Corvette Z06 has the

coefficients

P1 =
PM
ωM

=
377000

660
= 571.2W/ s (4.16)

P2 =
PM
ω2M

=
377000

6602
= 0.86547W/ s2 (4.17)

P3 = −PM
ω3M

= −377000
6603

= −1.3113× 10−3W/ s3 (4.18)

and, its power performance function is

Pe = 571.2ωe + 0.86547ω
2
e − 1.3113× 10−3 ω3e. (4.19)

The power performance curves for the Porsche 911 and Corvette Z06 are
plotted in Figure 4.2.
Although there is almost no limit for developing a powerful engine, any

engine with power around 100 hp would be enough for street cars with nor-
mal applications. It seems that engines with 600 hp reach the limit of appli-
cation for street cars. However, race cars may have higher power depending
on the race regulations. As an example, formula 1 regulations dictates the
type of engine permitted. It must be a four-stroke engine, less than 3000 cm3

swept volume, no more than ten cylinders, and no more than five valves per
cylinder, but there is no limit for power.
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FIGURE 4.2. Power performance curves for the Porsche 911 and Corvette Z06.

Example 121 Below the curves Pe = Pe (ωe) and Te = Te (ωe).
An engine can theoretically work at any point under the performance

curve Pe = Pe (ωe). Assume the angular velocity of an engine is kept con-
stant by applying a braking force. Then, by opening the throttle, we produce
more power until the throttle is wide open, and the maximum power at that
angular velocity is gained.
Power rises with ωe, and continues to climb until a maximum power PM ,

and then starts decreasing. The torque Te = Pe/ωe also increases with ωe
but reaches a maximum point before the maximum power. Hence, the torque
starts decreasing sooner than the power. When the power starts decreasing,
the torque is very far from its peak value.
Drivers usually cannot feel the engine power, however they may feel the

engine torque.

Example 122 Engine efficiency curves.
Engines are supposed to convert the chemical energy, embedded in the

fuel, into mechanical energy at the engine output shaft. Depending on the
working conditions, this conversion happens at a specific efficiency. The
constant efficiency contours can be added to the performance map of the
engine to show the efficiency at an operating condition. Hence, every point
under the curve Pe = Pe (ωe) can be an operating condition at a specific
efficiency. The maximum efficiency usually happens around the angular
velocity corresponding to the maximum torque when the throttle is almost
wide open. A sample of power performance of a spark ignition engine with
constant efficiency contours is shown in Figure 4.3.
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FIGURE 4.3. An example of power performance in a spark ignition engine with
constant efficiency contours.

Example 123 Power units.
There are many different units for expressing power. The metric unit for

power is Watt [W].

1W =
1J

1 s
=
1Nm

1 s
(4.20)

Horsepower [ hp] is also used in vehicle dynamics.

1W = 0.001341 hp (4.21)

1 hp = 745.699872W (4.22)

There are four definitions for horsepower: international, metric, water, and
electric. They slightly differ.

1 hp(international) = 745.699872W (4.23)

1 hp(electrical) = 746W (4.24)

1 hp(water) = 746.043W (4.25)

1 hp(metric) = 735.4988W (4.26)

Depending on the application, other units may also be useful.

1W = 0.239006 cal/ s (4.27)

1W = 0.000948Btu/ s (4.28)

1W = 0.737561 ft lb/s (4.29)
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James Watt (1736− 1819) experimented and concluded that a horse can
lift a weight of 550 lb for one foot in one second. It means the horse per-
forms work at the rate of 550 ft lb/ s ≈ 745.701W, or 33000 ft lb/min. Watt
then stated that 33000-foot-pounds per minute of work was equivalent to the
power of one horse, or, one horsepower. He said that 33000 ft lb/min is
equivalent to one horsepower. The following formulas apply for calculating
horsepower from a torque measurement in the English unit system:

P [ hp] =
T [ ft lb]ω[rpm]

5252
(4.30)

P [ hp] =
F [ lb] vx[mi/h]

374
(4.31)

Example 124 Fuel consumption at constant speed.
Consider a vehicle moving straight at a constant speed vx. The energy

required to travel can be calculated by multiplying the power at the drive
wheels by time

E = Pt

= P
d

vx
(4.32)

where d is the distance traveled and E is the needed energy to turn the
wheels. To find the actual energy needed to run the whole vehicle, we should
include the coefficients of efficiencies. We use ηe for engine efficiency, H
for thermal value of fuel, and ρf for density of the fuel. When the vehicle
moves at constant speed, the traction force Fx is equal to the resistance
forces. Therefore, the fuel consumption per unit distance, q, is

q =
Fx

ηe ηt ρf H
. (4.33)

The dimension of q in SI is
£
m3/m

¤
, however, liter per 100 km is more

common. In the United States, the fuel consumption of vehicles is called by
[mi/ gal].

Example 125 F Changing the curve Pe = Pe (ωe).
The whole power performance curve moves up when the engine’s com-

pression ratio increases. The angular velocity at which the engine’s peak
torque happens can be moved by changing the cam, header lengths, and
intake manifold runner lengths.
The wheel power curve, or the power delivered to the ground, may have

a different shape and a different peak ωe, because of transmission losses.
The best result is obtained from a power curve measured by a chassis dy-
namometer.
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Example 126 F Power peak versus torque peak.
When the engine is operating at its torque peak (say Pe = 173.4 kW ≈

232.5 hp at ωe = 3600 rpm) in a gear, it is generating some level of torque
(say TM = 460Nm ≈ 340 ft lb times the overall gearing ratio) at the drive
wheels. This is the best performance in that gear. By changing the gear
and making the engine to operate at the power peak (say Pe = 209 kW ≈
280 hp at ωe = 5000 rpm), it delivers less torque Te = 400Nm ≈ 295 ft lbf.
However, it will deliver more torque to the drive wheels, at the same car
speed. This is because we gear it up by nearly 39%(≈ [5000− 3600] /3600),
while the engine torque is dropped by 13%(≈ [460− 400] /460). Hence, we
gain 26% in drive wheel torque at the power peak versus the torque peak, at
a given car speed.
As long as the performance curves of engines are similar to those in

Figure 4.1, any engine speed, other than the power peak speed ωM , at a
given car speed will provide a lower torque value at the drive wheels. There-
fore, theoretically the best top speed will always occur when the vehicle is
operating at its power peak.
A car running at its power peak can accelerate no faster at the same

vehicle speed. There is no better gear to choose, even if another gear would
place the engine closer to its torque peak. A car running at peak power at a
given vehicle speed is delivering the maximum possible torque to the tires,
although the engine may not be running at its torque peak. The transmission
amplifies the torque coming from the engine by a factor equal to the gear
ratio.

Example 127 F Ideal engine performance.
It is said that an ideal engine is one that produces a constant power

regardless of speed. For this kind of ideal engine we have

Pe = P0 (4.34)

Te =
P0
ωe

. (4.35)

Figure 4.4 depicts a sample of the power and torque performance curves
for an ideal engine having P0 = 50 kW.
In vehicle dynamics, we introduce a gearbox to keep the engine running

at the maximum power or in a working range around the maximum power.
So, practically we keep the power of the engine, and therefore, the power
at wheels constant at the maximum value. Hence, the torque at the wheels
should be similar to the torque of an ideal engine. A constant power per-
formance is an applied approximation for electrical motors.
Another ideal engine would generate a linear torque-speed relationship.

For such an ideal engine we have

Te = Ce ωe (4.36)

Pe = Ce ω
2
e. (4.37)
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FIGURE 4.4. Power and torque performance curves for an ideal engine.

However, internal combustion engines do not work like this ideal engine.
Figure 4.5 illustrates such an ideal performance for Ce = 0.14539.

Example 128 F Maximum power and torque at the same ωM .
Ideal performance for an engine would be having maximum power and

maximum torque at the same angular velocity ωM . However, it is impossible
to have such an engine because the maximum torque TM of a spark ignition
engine occurs at

dTe
dωe

= P2 + 2P3 ωe = 0 (4.38)

ωe =
−P2
2P3

=

PM
ω2M

2
PM
ω3M

=
1

2
ωM (4.39)

that is half of the speed at which the power is maximum.
When the torque is maximum, the power is at

Pe = P1
ωM
2
+ P2

³ωM
2

´2
+ P3

³ωM
2

´3
=

5

8
PM . (4.40)

However, when the power is maximum at ωe = ωM , the torque is

Te =
1

ωM
PM . (4.41)
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FIGURE 4.5. Performance curves of an ideal engine having a linear torque-speed
relationship Te = 0.14539ωe.

4.2 Driveline and Efficiency

We use the word driveline, equivalent to transmission, to call the systems
and devices that transfer torque and power from the engine to the drive
wheels of a vehicle. Most vehicles use one of two common transmission
types: manual gear transmission, and automatic transmission with torque
convertor. A driveline includes the engine, clutch, gearbox, propeller shaft,
differential, drive shafts, and drive wheels. Figure 4.6 illustrates how the
driveline for a rear-wheel-drive vehicle is assembled.
The engine is the power source in the driveline. The output from the

engine is an engine torque Te, at an associated engine speed ωe.
The clutch connects and disconnects the engine to the rest of the driveline

when the vehicle is equipped with a manual gearbox.
The gearbox can be used to change the transmission ratio between the

engine and the drive wheels.
The propeller shaft connects the gearbox to the differential. The propeller

shaft does not exist in front-engined front-wheel-drive and rear-engined
rear-wheel-drive vehicles. In those vehicles, the differential is integrated
with the gearbox in a unit that is called the transaxle.
The differential is a constant transmission ratio gearbox that allows the

drive wheels to have different speeds. So, they can handle the car in a curve.

The drive shafts connect the differential to the drive wheels.
The drive wheels transform the engine torque to a traction force on the
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FIGURE 4.6. Driveline components of a rear wheel drive vehicle.

road.
The input and output torque and angular velocity for each device in a

driveline are indicated in Figure 4.7.
The available power at the drive wheels is

Pw = ηPe (4.42)

where η < 1 indicates the overall efficiency between the engine and the
drive wheels

η = ηc ηt. (4.43)

ηc < 1 is the convertor efficiency and ηt < 1 is the transmission efficiency.

The relationship between the angular velocity of the engine and the ve-
locity of the vehicle is

vx =
Rw ωe
ng nd

(4.44)

where ng is the transmission ratio of the gearbox, nd is the transmission
ratio of the differential, ωe is the engine angular velocity, and Rw is the
effective tire radius.
Transmission ratio or gear reduction ratio of a gearing device, n, is the

ratio of the input velocity to the output velocity

n =
ωin
ωout

(4.45)

while the speed ratio ωr is the ratio of the output velocity to the input
velocity.

ωr =
ωout
ωin

(4.46)
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Proof. The engine is connected to the drive wheels through a driveline.
Because of friction in the driveline, especially in the gearbox and torque
convertor, the power at the drive wheels is always less than the power at
the engine output shaft. The ratio of output power to input power is a
number called efficiency

η =
Pout
Pin

. (4.47)

If we show the efficiency of transmission by ηt and the efficiency of torque
convertor by ηc, then the overall efficiency of the driveline is η = ηc ηt. The
power at the wheel is the output power of driveline Pout = Pw and the
engine power is the input power to the driveline Pin = Pe. Therefore,

Pw = ηPe. (4.48)

Figure 4.8 illustrates a driving wheel with radius Rw that is turning with
angular velocity ωw on the ground and moving with velocity vx.

vx = Rw ωw (4.49)

There are two gearing devices between the engine and the drive wheel:
gearbox and differential. Assigning ng for the transmission ratio of the
gearbox and nd for the transmission ratio of the differential, the overall
transmission ratio of the driveline is

n = ng nd. (4.50)

So, the angular velocity of the engine ωe is n times of the angular velocity
of the drive wheel ωw.

ωe = nωw

= ng nd ωw (4.51)



176 4. Driveline Dynamics

v

Rw

wω

Tw

FIGURE 4.8. A tire with radius Rw rolling on the ground and moving with
velocity v and angular velocity ωw.

Therefore,

vx =
Rw ωe
ng nd

. (4.52)

Example 129 Front and rear-engined, front and rear drive.
The engine may be installed in the front or back of a car. They are called

front-engined and rear-engined vehicle respectively. The driving wheels may
also be the front, the rear, or all wheels. Therefore, there are six possible
combinations. Out of those six combinations, the front-engined front-wheel-
drive, front-engined rear-wheel-drive, and front-engined all-wheel-drive ve-
hicles are the most common. There are only a few manufacturers that make
cars with rear-engined rear-wheel-drive. However, there is no rear-engined
front-wheel-drive vehicle.

Example 130 Torque at the wheel.
The power at the wheel is Pw = ηPe, and the angular velocity at the

wheel is ωw = ωe/ (ng nd). Knowing P = Tω, we find out that the available
torque at the wheel, Tw, is

Tw =
Pw
ωw

= η ng nd
Pe
ωe

= η ng nd Te. (4.53)

Example 131 Power law.
For any mechanical device in the driveline of a car, there is a simple law

to remember.

Power in = Power out minus losses

Pin = Pout − Ploss (4.54)
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Also, because of

Power = Torque× angular velocity

P = Tω (4.55)

any gearing device in the driveline of a car can reduce or increase the input
torque in by increasing or decreasing the angular velocity.

Example 132 F Volumetric, thermal, and mechanical efficiencies.
There is an efficiency between the attainable power in fuel and the power

available at the engine’s output shaft.

η0 = ηV ηT ηM . (4.56)

ηV is the engine volumetric efficiency, ηT is the thermal efficiency,
and ηM is the mechanical efficiency.
Volumetric efficiency ηV identifies how much fueled air gets into the

cylinder.
The fueled air mixture that fills the cylinder volume in the intake stroke

is what will be used to create the power. Volumetric efficiency ηV indicates
the amount of fueled air in the cylinder relative to atmospheric air. If the
cylinder is filled with fueled air at atmospheric pressure, then the engine
has 100% volumetric efficiency. Super and turbo chargers increase the pres-
sure entering the cylinder, giving the engine a volumetric efficiency greater
than 100%. However, if the cylinder is filled with less than the atmospheric
pressure, then the engine has less than 100% volumetric efficiency. Engines
typically run between 80% and 100% of ηV .
Volumetric efficiency ηV can be changed by any occurrence that affects

the fueled air flow into the cylinder. The power of an engine is proportion-
ally dependent on the mass ratio of fuel/air that gets into the cylinders of
the engine.
Thermal efficiency ηT identifies how much of the fuel is converted to

usable power.
Although having more fueled air into the cylinder means more fuel en-

ergy is available to make power, not all of the available energy converts
to mechanical energy. The best engines can convert only about 1/3 of the
chemical energy to mechanical energy.
Thermal efficiency is changed by the compression ratio, ignition timing,

plug location, and chamber design. Low compression engines may have an
ηT ≈ 0.26. A high compression racing engine may have an ηT ≈ 0.34.
Therefore, racing engines may produce about 30% more power because of
their higher ηT .
Any improvement in the thermal efficiency ηT significantly improves the

final power that the engine produces. Therefore, a huge investment is ex-
pended in research to improve ηT .
Mechanical efficiency ηM identifies how much power is consumed by

the engine to run itself.
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Some of the produced power is consumed by the engine’s moving parts.
It takes power to overcome the friction between parts and to run engine ac-
cessories. So, depending on how much fuel goes into the cylinder and how
much converts to power, some of this power is used by the engine to run it-
self. The leftover power is what we can measure on an engine dynamometer.
The difference between the engine output power and the generated power in
the cylinders is the mechanical efficiency ηM .
Mechanical efficiency is affected by mechanical components of the engine

or the devices attached to the engine. It also depends on the engine speed.
The greater the speed, the more power it takes to turn the engine. This
means the ηM drops with speed. The mechanical efficiency ηM is also called
friction power because it indicates how much power is needed to overcome
the engine friction.
The engine power performance curve supplied by a car manufacturer is

usually the gross engine performance and does not include the mechanical
efficiency. Therefore, the effective engine power available at the transmis-
sion input shaft is reduced by the power needed for accessories such as the
fan, electric alternator, power steering pump, water pump, braking system,
and air conditioning compressor.

4.3 Gearbox and Clutch Dynamics

The internal combustion engine cannot operate below a minimum engine
speed ωmin. Consequently, the vehicle cannot move slower than a minimum
speed vmin while the engine is connected to the drive wheels.

vmin =
Rw ωmin

ng nd
(4.57)

At starting and stopping stages of motion, the vehicle needs to have speeds
less than vmin. A clutch or a torque converter must be used for starting,
stopping, and gear shifting.
Consider a vehicle with only one drive wheel. Then, the forward velocity

vx of the vehicle is proportional to the angular velocity of the engine ωe,
and the tire traction force Fx is proportional to the engine torque Te

ωe =
ni nd
Rw

vx (4.58)

Te =
1

η

Rw

nind
Fx (4.59)

where Rw is the effective tire radius, nd is the differential transmission
ratio, ni is the gearbox transmission ratio in gear number i, and η is the
overall driveline efficiency. Equation (4.58) is called the speed equation, and
Equation (4.59) is called the traction equation.
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Proof. The froward velocity vx of a driving wheel with radius Rw is

vx = Rw ωw (4.60)

and the traction force Fx on the driving wheel is

Fx =
Tw
Rw

. (4.61)

Tw is the applied spin torque on the wheel, and ωw is the wheel angular
velocity.
The wheel inputs Tw and ωw are the output torque and angular velocity

of differential. The differential input torque Td and angular velocity ωd are

Td =
1

ηd nd
Tw (4.62)

ωd = nd ωw (4.63)

where nd is the differential transmission ratio and ηd is the differential
efficiency.
The differential inputs Td and ωd are the output torque and angular

velocity of the vehicle’s gearbox. The engine’s torque Te and angular ve-
locity ωe are the inputs of the gearbox. The input-output relationships for
a gearbox depend on the engaged gear ratio ni.

Te =
1

ηg ni
Td (4.64)

ωe = ni ωd (4.65)

ηg is the gearbox efficiency, and ni is the gear reduction ratio in the gear
number i. Therefore, the forward velocity of a driving wheel vx, is propor-
tional to the engine angular velocity ωe, and the tire traction force Fx is
proportional to the engine torque Te, when the driveline is engaged to the
engine.

ωe =
ni nd
Rw

vx (4.66)

Te =
1

ηgηd

1

nind
Tw

=
1

ηgηd

Rw

nind
Fx

=
1

η

Rw

nind
Fx (4.67)

Having the torque performance function Te = Te (ωe) enables us to de-
termine the wheel torque Tw as a function of vehicle speed vx at each gear
ratio ni.

Tw = η nind Te (ωe) (4.68)
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Using the approximate equation (4.11) for Te provides

Tw = η nind

Ã
P1 + P2

µ
ni nd
Rw

vx

¶
+ P3

µ
ni nd
Rw

vx

¶2!

= η

µ
P1ndni + η

P2
Rw

n2dn
2
i vx + η

P3
R2w

n3dn
3
i v
2
x

¶
. (4.69)

Example 133 A six-gear gearbox.
Consider a inefficient passenger car with the following specifications:

m = 1550 kg

Rw = 0.326m

η = 0.24

torque = 392Nm at 4400 rpm ≈ 460.7 rad/ s
power = 206000W at 6800 rpm ≈ 712.1 rad/ s

1st gear ratio = n1 = 3.827

2nd gear ratio = n2 = 2.36 (4.70)

3rd gear ratio = n3 = 1.685

4th gear ratio = n4 = 1.312

5th gear ratio = n5 = 1

6th gear ratio = n6 = 0.793

reverse gear ratio = nr = 3.28

final drive ratio = nd = 3.5451

Based on the speed equation (4.58),

ωe =
ni nd
Rw

vx

=
3.5451ni
0.326

vx

= 10.875ni vx (4.71)

we can find the gear-speed plot that is shown in Figure 4.9. The angular
velocities associated to maximum power and maximum torque are indicated
by dashed lines.
The power and torque performance equations for the engine can be ap-

proximated by

Pe = 289.29ωe + 0.40624ω
2
e − 5.7049× 10−4 ω3e (4.72)

Te = 289.29 + 0.406 24ωe − 5.704 9× 10−4ω2e (4.73)
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FIGURE 4.9. A sample of a gear-speed plot for a gearbox.

because

P1 =
PM
ωM

=
206000

712.1
= 289.29W/ s (4.74)

P2 =
PM
ω2M

=
206000

712.12
= 0.40624W/ s2 (4.75)

P3 = −PM
ω3M

= −206000
712.13

= −5.7049× 10−4W/ s3. (4.76)

Using the torque equation (4.73) and the traction equation (4.71), we can
plot the wheel torque as a function of vehicle speed at different gears.

Tw = η nind Te

= η nind
¡
289.29 + 0.406 24ωe − 5.704 9× 10−4ω2e

¢
= −5.7405× 10−2n3i v2x + 3.758 8n2i vx + 246.13ni (4.77)

Figure 4.10 shows the wheel torque-speed Equation (4.77) at each gear ni.
The envelope curve for the series of torque-speed equations is similar to the
torque curve of a constant power ideal engine.

Example 134 F Envelope curve for torque-speed family.
Assume the torque-speed equation of a car is similar to Equation (4.77)

that is a second degree of speed having the gear ratio n = ni as a parameter.

T = an3v2 + bn2v + cn (4.78)

A variation of the parameter generates a series of curves called family. An
envelope is a curve tangent to all members of the family. To find the enve-
lope of a family, we should eliminate the parameter between the equation of
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FIGURE 4.10. Wheel torque-speed Equation (4.77) at each gear ni of a gearbox,
and the envelope curve simulating an ideal engine behavior.

the family and its derivative with respect to the parameter. The derivative
of the family (4.78) with respect to the parameter n

∂T

∂n
= 3an2v2 + 2bnv + c = 0 (4.79)

leads to

n =
−b±

√
b2 − 3ac
3av

. (4.80)

Substituting the parameter back into the equation of the family provides the
equation of the envelop analytically.

T =
b

27a2v

³
b−

p
b2 − 3ac

´µ
b−

p
b2 − 3ac− 6ac

b

¶
(4.81)

The equation of envelope for the wheel torque-speed family at different gears
is equivalent to

T ≡ C

v
(4.82)

where C is a constant. Such a torque equation belongs to an ideal constant
power device introduced in Example 127.

Example 135 Mechanical and hydraulic clutches.
Mechanical clutches are widely used in passenger cars and are normally

in the form of a dry single-disk clutch. The adhesion between input and
output shafts is produced by circular disks that rub against each other.
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Engagement begins with the engine running at ωe = ωmin and the clutch
being released gradually from time t = 0 to t = t1 such that the transmitted
torque Tc from the engine to the gearbox increases almost linearly in time
from Tc = 0 to the maximum value Tc = Tc1 that can be handled in slipping
mode. The transmitted torque remains constant until the input and output
disks stick together and a speed equality is achieved. At this time, the clutch
is rigid and Tc = Te.
The transmitted torque Tc should overcome the resistance force and the

vehicle should accelerate sometime in 0 < t ≤ t1. The magnitude of the
transferable torque depends on the applied force between the disks, the fric-
tional coefficient between clutch disks, the effective frictional area, and the
number of frictional pairs. The axial force is generally produced by a pre-
loaded spring. The driver can control the spring force by using the clutch
pedal, and adjust the transferred torque.
The hydraulic clutch consists of a pump wheel connected to the engine

and a clutch-ended turbine that is equipped with radial vanes. A torque is
transferred between the pump wheel and the turbine over a fluid, which
is accelerated by the pump and decelerated in the turbine. The hydraulic
clutch is also called Foettinger clutch.
The transferred torque can be calculated according to the Foettinger’s law

Tc = Ccρω
2
pD

2 (4.83)

where Cc is slip factor, ρ is the oil density, ωp is the pump angular velocity,
and D is the clutch diameter.

Example 136 Acceleration capacity at different speed.
Assume an engine is working at speed ωM associated to the maximum

power PM .

PM = Te ωM

=
1

η
Fx vx (4.84)

Substituting
Fx = max (4.85)

indicates that
PM =

m

η
ax vx (4.86)

and therefore,

ax = PM
η

m

1

vx
. (4.87)

Equation (4.87) is called acceleration capacity and expresses the achiev-
able acceleration of a vehicle at speed vx. The acceleration capacity de-
creases by increasing velocity. As an example, Figure 4.11 depicts the ac-
celeration capacity ax as a function of the forward speed vx for a vehicle
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with mass m = 860kg, maximum power PM = 180 kW ≈ 241.4 hp at
ωM = 4600 rpm ≈ 481.7 rad/ s, and efficiency η = 0.25.

Example 137 Power-limited and traction-limited accelerations.
Acceleration capacity is power-limited acceleration and is based on the

assumption that the driving force does not reach the tire traction limit.
Therefore, the vehicle reaches its peak acceleration because the engine can-
not deliver any more power.
The traction-limited acceleration happens when the engine delivers more

power, but vehicle acceleration is limited because the tires cannot transmit
any more driving force to the ground. Equation Fx = μxFz gives the max-
imum transmittable force. If more driving torque is applied to the wheel,
the tire slips and enters the dynamic friction regime where the coefficient
of friction, and hence the traction force, are less.

Example 138 F Gearbox stability condition.
Consider a vehicle moving at speed vx when the gearbox is engaged in

gear number i with transmission ratio ni. To be safe, we have to select the
transmission ratios such that when the engine reaches the maximum torque
it can shift to a lower gear ni−1 without reaching the maximum permissible
engine speed. The maximum permissible engine speed is usually indicated
by a red line or red region.
Let’s show the engine speed for the maximum torque TM by ωe = ωT .
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The speed of the vehicle at ωe = ωT is

vx =
Rw

ni nd
ωT . (4.88)

When we shift the gear to ni−1 the engine speed ωe jumps to a higher speed
ωe = ωi−1 > ωT at the same vehicle speed

ωi−1 =
ni−1 nd
Rw

vx. (4.89)

The stability condition requires that ωi−1 be less than the maximum per-
missible engine speed ωMax

ωi−1 ≤ ωMax. (4.90)

Using Equations (4.88) and (4.89), we may define the following condition
between transmission ratios at two successive gears and the engine speed:

ωi−1
ωi

=
ωMax

ωT
=

ni−1
ni

(4.91)

A constant relative gear ratio, at a constant vehicle speed, can be a simple
rule for a stable gearbox design

ni−1
ni

= cg. (4.92)

Example 139 Transmission ratios and stability condition.
Consider a passenger car with the following gearbox transmission ratios:

1st gear ratio = n1 = 3.827

2nd gear ratio = n2 = 2.36

3rd gear ratio = n3 = 1.685

4th gear ratio = n4 = 1.312

5th gear ratio = n5 = 1

6th gear ratio = n6 = 0.793

final drive ratio = nd = 3.5451 (4.93)

The stability condition requires that ni−1/ni = cte. We examine the gear
ratios and find out that the relative gear ratios are not constant.

n5
n6

=
1

0.793
= 1.261

n4
n5

=
1.312

1
= 1.312



186 4. Driveline Dynamics

n3
n4

=
1.685

1.312
= 1.284 3

n2
n3

=
2.36

1.685
= 1.4

n1
n2

=
3.827

2.36
= 1.621 6 (4.94)

We may change the gear ratios to have ni−1/ni = cte. Let’s start from
the higher gear and find the lower gears using cg = n6/n5 = 1.261.

n6 = 0.793

n5 = 1

n4 = cgn5 = 1.261

n3 = cgn4 = 1.261× 1.261 = 1.59
n2 = cgn3 = 1.261× 1.59 = 2
n1 = cgn2 = 1.261× 2 = 2.522 (4.95)

We may also start from the first two gears and find the higher gears using
cg = n1/n2 = 3.827/2.36 = 1.6216.

n1 = 3.827

n2 = 2.36

n3 =
n2
cg
=

2.36

1.6216
= 1.455

n4 =
n3
cg
=
1.455

1.6216
= 0.897

n5 =
n4
cg
=
0.897

1.6216
= 0.553

n6 =
n5
cg
=
0.553

1.6216
= 0.341 (4.96)

None of these two sets shows a practical design. The best way to apply
a constant relative ratio is to use the first and final gears and fit four
intermittent gears such that ni−1/ni = cte. Using n1 and n6 we have,

n1
n6

=
3.827

0.793

=
n1
n2

n2
n3

n3
n4

n4
n5

n5
n6

= c5g (4.97)

and therefore,
cg = 1.37. (4.98)
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Now we are able to find the gear ratios.

n1 = 3.827

n2 =
n1
cg
=
3.827

1.37
= 2.793

n3 =
n2
cg
=
2.793

1.37
= 2.039

n4 =
n3
cg
=
2.039

1.37
= 1.488

n5 =
n4
cg
=
1.488

1.37
= 1.086

n6 = 0.793 (4.99)

4.4 Gearbox Design

The speed and traction equations (4.58) and (4.59) can be used to calculate
the gear ratios of a gearbox as well as vehicle performance. Theoretically
the engine should work at its maximum power to have the best perfor-
mance. However, to control the speed of the vehicle, we need to vary the
engine’s angular velocity. Hence, we pick an angular velocity range (ω1, ω2)
around ωM , which is associated to the maximum power PM , and sweep the
range repeatedly at different gears. The range (ω1, ω2) is called the engine’s
working range.
As a general guideline, we may use the following recommendations to

design the transmission ratios of a vehicle gearbox:

1. We may design the differential transmission ratio nd and the final gear
nn such that the final gear nn is a direct gear, nn = 1, when the ve-
hicle is moving at the moderate highway speed. Using nn = 1 implies
that the input and output of the gearbox are directly connected with
each other. Direct engagement maximizes the mechanical efficiency
of the gearbox.

2. We may design the differential transmission ratio nd and the final
gear nn such that the final gear nn is a direct gear, nn = 1, when the
vehicle is moving at the maximum attainable speed.

3. The first gear n1 may be designed by the maximum desired torque
at driving wheels. Maximum torque is determined by the slope of a
desired climbing road.

4. We can find the intermediate gears using the gear stability condition.
Stability condition provides that the engine speed must not exceed
the maximum permissible speed if we gear down from ni to ni−1,
when the engine is working at the maximum torque in ni.
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FIGURE 4.12. A gear-speed plot for a geometric gearbox design.

5. The value of cg for relative gear ratios

ni−1
ni

= cg (4.100)

can be chosen in the range.

1 ≤ cg ≤ 2 (4.101)

To determine the middle gear ratios, there are two recommended meth-
ods:
1− Geometric ratios
2− Progressive ratios

4.4.1 Geometric Ratio Gearbox Design

When the jump of engine speed in any two successive gears is constant at
a vehicle speed, we call the gearbox geometric. The design condition for a
geometric gearbox is

ni =
ni−1
cg

(4.102)

where cg is the constant relative gear ratio and is called step jump.

Proof. A geometric gearbox has constant engine speed jump in any gear
shift. So, a geometric gearbox must have a gear-speed plot such as that
shown in Figure 4.12.
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The engine working range is defined by two speeds (ω1, ω2)

{(ω1, ω2) , ω1 < ωM < ω2} . (4.103)

When the engine reaches the maximum speed ω2 in the gear number i with
ratio ni, we gear up to ni+1 to jump the engine speed down to ω1. The
engine’s speed jump is kept constant for any gear change from ni to ni+1.
Employing the speed equation (4.58), we have

4ω = ω2 − ω1

=
ni−1 nd
Rw

vx −
ni nd
Rw

vx

= (ni−1 − ni)
nd
Rw

vx (4.104)

and therefore,

ω2 − ω1
ω1

=
ni−1 − ni

ni
ω2
ω1
− 1 =

ni−1
ni
− 1

ω2
ω1

=
ni−1
ni

= cte. (4.105)

Let’s indicate the maximum vehicle speed in gear ni by vi and in gear
ni−1 by vi−1, then,

ω2 =
ni nd
Rw

vi

=
ni−1 nd
Rw

vi−1 (4.106)

and therefore, the maximum speed in gear i to the maximum speed in gear
i− 1 is inverse of the gear ratios

cg =
ni−1
ni

=
vi
vi−1

. (4.107)

The change in vehicle speed between gear ni−1 and ni is indicated by

4vi = vi − vi−1 (4.108)

and is called speed span.
Having the step jump cg, and knowing the maximum speed vi of the

vehicle in gear ni, are enough to find the maximum velocity of the car in
the other gears

vi = cg vi−1 (4.109)

vi−1 =
1

cg
vi (4.110)

vi+1 = cg vi. (4.111)
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4.4.2 F Progressive Ratio Gearbox Design

When the speed span of a vehicle in any two successive gears is kept con-
stant, we call the gearbox progressive. The design condition for a progressive
gearbox is

ni+1 =
nini−1

2ni−1 − ni
(4.112)

where ni−1, ni, and ni+1 are the transmission ratios of three successive
gears.

Proof. A progressive gearbox has constant vehicle speed span in any gear.
So, a progressive gearbox must have a gear-speed plot such as that shown
in Figure 4.13.
Indicating the maximum vehicle speed in gear ni by vi, in gear ni−1 by

vi−1, and in gear ni+1 by vi+1, we have

ω2 =
ni nd
Rw

vi

=
ni−1 nd
Rw

vi−1

=
ni+1 nd
Rw

vi+1. (4.113)

The difference in vehicle speed at maximum engine speed is

4v = vi − vi−1

= vi+1 − vi (4.114)
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and therefore,

vi+1 + vi−1 = 2vi (4.115)
vi+1
vi

+
vi−1
vi

= 2 (4.116)

ni
ni+1

+
ni
ni−1

= 2 (4.117)

ni+1 =
nini−1

2ni−1 − ni
. (4.118)

The step jump of a progressive gearbox decreases in higher gears. If the
step jump cgi between ni and ni+1 is

ni
ni+1

= cgi (4.119)

then,

cgi = 2−
1

cgi−1
. (4.120)

Example 140 A gearbox with three gears.
Consider an m = 860 kg car having an engine with η = ηd ηg = 0.84 and

the power-speed relationship

Pe = 100−
100

3982
(ωe − 398)2 kW (4.121)

where ωe is in [ rad/ s]. We define the working range for the engine

272 rad/ s (≈ 2600 rpm) ≤ ωe ≤ 524 rad/ s (≈ 5000 rpm) (4.122)

when the power is 100 kW ≥ Pe ≥ 90 kW. The power performance curve
(4.121) is illustrated in Figure 4.14 and the working range is shaded.
The differential of the vehicle uses nd = 4, and the effective tire radius is

Rw = 0.326m. We like to design a three-gear geometric gearbox to have the
minimum time required to reach the speed vx = 100 km/h ≈ 27.78m/ s ≈
62mi/h. We assume that the total resistance force is constant, and the
engine cannot accelerate the car at vx = 180 km/h = 50m/ s ≈ 112mi/h
anymore. Assume that every gear change takes 0.47 s and we need t0 =
2.58 s to adjust the engine speed with the car speed in first gear.
Using the speed equation (4.58), the relationship between vehicle and en-

gine speeds is

vx =
Rw

nd ni
ωe

=
0.326

4ni
ωe. (4.123)
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FIGURE 4.14. The power performance curve (4.121) and its working range.

At the maximum speed vx = 50m/ s, the engine is rotating at the upper
limit of the working range ωe = 524 rad/ s and the gearbox is operating in
third gear. Therefore, Equation (4.123) provides that

n3 =
0.326

4

ωe
vx

=
0.326

4

524

50
= 0.85412. (4.124)

The speed equation

vx =
0.326

4× 0.85412ωe (4.125)

is applied as long as the gearbox is operating in third gear ni = n3, and ωe is
in the working range. By decreasing ωe and sweeping down over the working
range, the speed of the car will reduce. At the lower range ωe = 272 rad/ s,
the vehicle speed is

vx =
0.326

4× 0.85412 × 272

= 25.95m/ s (4.126)

≈ 93.43 km/h ≈ 58mi/h.

At this speed we should gear down to n2 and jump to the higher range
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ωe = 524 rad/ s. This provides that

n2 =
0.326

4

ωe
vx

=
0.326

4

524

25.95
= 1.6457. (4.127)

Therefore, the engine and vehicle speed relationship in second gear is

vx =
0.326

4× 1.6457ωe (4.128)

that is applicable as long as ni = n2, and ωe is in the working range.
Sweeping down the engine’s angular velocity reduces the vehicle speed to

vx =
0.326

4× 1.6457 × 272

= 13.47m/ s (4.129)

≈ 48.49 km/h ≈ 30.1mi/h.

At this speed we should gear down to n1 and jump again to the higher range
ωe = 524 rad/ s. This provides that

n1 =
0.326

4

ωe
vx

=
0.326

4

524

13.47
= 3.1705 (4.130)

and therefore, the speed equation for the first gear is

vx =
0.326

4× 3.1705ωe. (4.131)

At the lower range of the engine’s speed in the first gear ni = n1, the speed
of the vehicle is

vx =
0.326

4× 3.1705 × 272

= 7m/ s (4.132)

≈ 25.2 km/h ≈ 15.6mi/h.

Therefore, the three-gear gearbox uses the following gear ratios:

n1 = 3.1705

n2 = 1.6457

n3 = 0.85412 (4.133)

The speed equations for the three gears are plotted in Figure 4.15. Such a
plot is called a gear-speed plot. Figure 4.15 also shows the gear switching
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FIGURE 4.15. The gear-speed plot for a three-gear gearbox.

points and how the vehicle speed is reducing from vx = 50m/ s to vx =
7m/ s.
To evaluate the required time to reach the desired speed, we need to find

the traction force Fx from the traction equation and integrate.

Fx = η
nind
Rw

Pe
ωe

=
η

ωe

nind
Rw

µ
100− 100

3982
(ωe − 398)2

¶
=

25

39 601

η

R2w
ndni (796Rw − ndnivx) kN. (4.134)

At the maximum speed, the gearbox is in the third gear and the traction
force Fx is equal to the total resistance force FR.

Fx = FR =
ηPe
vx

=
0.84× 90
50

= 1.512 kN (4.135)

Therefore, the traction force in the first gear is

Fx =
25

39601

η

R2w
ndn1 (796Rw − ndn1vx)

=
25

39601

0.84

0.3262
× 4× 3.1705 (796× 0.326− 4× 3.1705vx)

= 16.421− 0.80252vx kN. (4.136)



4. Driveline Dynamics 195

Based on Newton’s equation of motion

Fx − FR = m
dvx
dt

(4.137)

we can evaluate the required time to sweep the velocity from zero to vx =
13.47m/ s

t1 = m

Z 13.47

0

1

Fx − FR
dvx

= 860

Z 13.47

0

10−3

16.421− 0.80252vx − 1.512
dvx

= 1.3837 s. (4.138)

In second gear, we have

Fx =
25

39601

η

R2w
ndn2 (796Rw − ndn2vx)

=
25

39601

0.84

0.3262
× 4× 1.6457 (796× 0.326− 4× 1.6457vx)

= 8.5235− 0.21622vx kN (4.139)

and therefore, the sweep time in the second gear is

t2 = m

Z 25.95

13.47

1

Fx − FR
dvx

= 860

Z 25.95

13.47

10−3

8.5235− 0.21622vx − 1.512
dvx

= 4.2712 s. (4.140)

Finally, the traction equation in the third gear is

Fx =
25

39601

η

R2w
ndn3 (796Rw − ndn3vx)

=
25

39601

0.84

0.3262
× 4× 0.85412 (796× 0.326− 4× 0.85412vx)

= 4.4237− 5.8242× 10−2vx kN (4.141)

and the sweep time is

t3 = m

Z 27.78

25.95

1

Fx − FR
dvx

= 860

Z 27.78

25.95

10−3

4.4237− 5.8242× 10−2vx − 1.512
dvx

= 1.169 s. (4.142)
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The total time to reach the speed vx = 100 km/h ≈ 27.78m/ s is then
equal to

t = t0 + t1 + t2 + t3 + 3× 0.47
= 2.58 + 1.3837 + 4.2712 + 1.169 + 3× 0.47
= 10.814 s (4.143)

Example 141 Better performance with a four-gear gearbox.
A car equipped with a small engine has the following specifications:

m = 860kg

Rw = 0.326m

η = 0.84

nd = 4 (4.144)

and the engine operates based on the following performance equation:

Pe = 100−
100

3982
(ωe − 398)2 kW (4.145)

where ωe is in [ rad/ s]. Assuming the engine works well in the range

272 rad/ s (≈ 2600 rpm) ≤ ωe ≤ 524 rad/ s (≈ 5000 rpm) (4.146)

when the power is 100 kW ≥ Pe ≥ 90 kW. We would like to design a gearbox
to minimize the time to reach vx = 100 km/h ≈ 27.78m/ s ≈ 62mi/h.
The power performance equation (4.145) is illustrated in Figure 4.14 and

the working range is shaded. To make this example comparable to Example
140 we assume that the total resistance force is constant, and the engine
cannot accelerate the car at vx = 180 km/h. Furthermore, we assume that
every gear change takes 0.47 s and a time t0 = 2.58 s is needed to adjust the
engine speed need in first gear.
Let’s design a four-gear gearbox and set the third gear such that we reach

the desired speed vx = 27.78m/ s at the higher limit of working range ωe =
524 rad/ s. The gear-speed plot for such a design is plotted in Figure 4.16.
Using the speed equation (4.58), the relationship between vehicle and en-

gine speeds is

vx =
Rw

nd ni
ωe

=
0.326

4ni
ωe. (4.147)

At the speed vx = 100km/h ≈ 27.78m/ s, the engine is rotating at the up-
per limit of the working range ωe = 524 rad/ s and the gearbox is operating
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FIGURE 4.16. The gear-speed plot for Example 141.

in third gear ni = n3. Therefore,

n3 =
0.326

4

ωe
vx

=
0.326

4

524

27.78
= 1.5373 (4.148)

and the speed equation in the third gear ni = n3 is

vx =
0.326

4× 1.5373ωe (4.149)

while ωe is in the working range. By sweeping down to the lower limit of
the working range ωe = 272 rad/ s, the speed of the car will reduce to

vx =
0.326

4× 1.5373 × 272

= 14.42m/ s (4.150)

≈ 51.91 km/h ≈ 32.25mi/h.

At this speed we should gear down to n2 and jump to the higher range
ωe = 524 rad/ s. This provides that

n2 =
0.326

4

ωe
vx

=
0.326

4

524

14.42
= 2.9616. (4.151)
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Therefore, the gear-speed relationship in second gear ni = n2 is

vx =
0.326

4× 2.9616ωe. (4.152)

Sweeping down the engine’s angular velocity to ωe = 272 rad/ s, reduces the
vehicle speed to

vx =
0.326

4× 2.9616 × 272

= 7.48m/ s (4.153)

≈ 26.9 km/h ≈ 16.7mi/h.

At this speed, we gear down to n1 and jump again to the higher range
ωe = 524 rad/ s. This provides that

n1 =
0.326

4

ωe
vx

=
0.326

4

524

7.48
= 5.7055 (4.154)

and therefore the speed equation for first gear is

vx =
0.326

4× 5.7055ωe. (4.155)

In first gear, ni = n1, and the vehicle’s speed at the lower range of the
engine’s speed is

vx =
0.326

4× 5.7055 × 272

= 3.88m/ s (4.156)

≈ 14 km/h ≈ 8.7mi/h.

To calculate the fourth gear ni = n4 we may use the gear-speed equation
and set the engine speed to the lower limit ωe = 272 rad/ s while the car is
moving at the maximum speed in third gear. Therefore,

n4 =
0.326

4

ωe
vx

=
0.326

4

272

27.78
= 0.79798. (4.157)

The four-gear gearbox uses the following ratios:

n1 = 5.7055

n2 = 2.9616

n3 = 1.5373

n4 = 0.79798 (4.158)
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To calculate the required time to reach the desired speed vx = 100 km/h ≈
27.78m/ s, we need to use the traction equations and find the traction force
Fx

Fx = η
nind
Rw

Pe
ωe

=
η

ωe

nind
Rw

µ
100− 100

3982
(ωe − 398)2

¶
=

25

39 601

η

R2w
ndni (796Rw − ndnivx) kN. (4.159)

At the maximum speed, the gearbox is in fourth gear and the traction force
Fx is equal to the total resistance force FR.

Fx = FR =
ηPe
vx

=
0.84× 90
50

= 1.512 kN (4.160)

Therefore, the traction force in the first gear is

Fx =
25

39601

η

R2w
ndn1 (796Rw − ndn1vx)

=
25

39601

0.84

0.3262
× 4× 5.7055 (796× 0.326− 4× 5.7055vx)

= 29.55− 2.5989vx kN. (4.161)

Using Newton’s equation of motion

Fx − FR = m
dvx
dt

(4.162)

we can evaluate the required time to reach the velocity vx = 7.48m/ s

t1 = m

Z 7.48

0

1

Fx − FR
dvx

= 860

Z 7.48

0

10−3

29.55− 2.5989vx − 1.512
dvx

= 0.39114 s. (4.163)

In second gear we have

Fx =
25

39601

η

R2w
ndn2 (796Rw − ndn2vx)

=
25

39601

0.84

0.3262
× 4× 2.9616 (796× 0.326− 4× 2.9616vx)

= 15.339− 0.70025vx kN (4.164)
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and therefore, the sweep time in second gear is

t2 = m

Z 14.42

7.48

1

Fx − FR
dvx

= 860

Z 14.42

7.48

10−3

15.339− 0.70025vx − 1.512
dvx

= 1.0246 s. (4.165)

The traction equation in third gear is

Fx =
25

39601

η

R2w
ndn3 (796Rw − ndn3vx)

=
25

39601

0.84

0.3262
× 4× 1.5373 (796× 0.326− 4× 1.5373vx)

= 7.9621− 0.18868vx kN (4.166)

and the sweep time is

t3 = m

Z 27.78

14.42

1

Fx − FR
dvx

= 860

Z 27.78

14.42

10−3

7.9621− 0.18868vx − 1.512
dvx

= 5.1359 s. (4.167)

The total time to reach the speed vx = 100 km/h ≈ 27.78m/ s is then
equal to

t = t0 + t1 + t2 + t3 + 3× 0.07
= 2.58 + 0.39114 + 1.0246 + 5.1359 + 3× 0.47
= 10.542 s (4.168)

Example 142 Working range.
Consider that a car equipped with a small engine has the following spec-

ifications:

m = 860kg

Rw = 0.326m

η = 0.84

nd = 4. (4.169)

The performance equation of the engine is

Pe = 100−
100

3982
(ωe − 398)2 kW (4.170)
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where ωe is in [ rad/ s]. The engine provides a maximum power PM =
100kW at ωM = 400 rad/ s.
The total resistance force is assumed to be constant, and the maximum

attainable speed is assumed to be vx = 180 km/h. Furthermore, we assume
that every gear change takes 0.07 s and a minimum time t0 = 0.18 s is
needed to adjust the engine speed with that car speed in the first gear.
We would like to design a four-gear gearbox to minimize the time to reach

vx = 100 km/h ≈ 27.78m/ s.
To find the best working range for the engine, we set third gear to reach

the desired speed vx = 100 km/h at the upper limit of the working range.
Therefore, fourth gear starts with the lower limit of the working range when
we gear up. If fourth gear is set such that the car reaches the maximum speed
vx = 180 km/h ≈ 50m/ s at the upper limit of the working range, then the
gear-speed equation

ωe =
ni nd
Rw

vx (4.171)

provides

ωMax =
4n4
0.326

× 50 (4.172)

ωmin =
4n4
0.326

× 27.78. (4.173)

By setting ωmin and ωMax to an equal distance from ωM = 400 rad/ s,

ωMax + ωmin

2
= 400 (4.174)

we find

n4 = 0.83826 (4.175)

ωmin = 285.73 rad/ s (4.176)

ωMax = 514.27 rad/ s. (4.177)

We are designing a gearbox such that the ratio ωe/vx is kept constant in
each gear. The engine speed jumps up from ωmin to ωMax when we gear
down from n4 to n3 at ωmin, hence,

ωMax =
4n3
0.326

× 27.78 = 514.27 (4.178)

n3 = 1.5087. (4.179)

Therefore, the speed of the car in third gear at the lower limit of the engine
speed is

vx = 27.78
ωmin

ωMax

= 27.78× 27.78
50

= 15.435m/ s. (4.180)
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The engine’s speed jumps again to ωMax when we gear it down from n3 to
n2, hence,

ωMax =
4n2
0.326

× 15.435 = 514.27 (4.181)

n2 = 2.715 5. (4.182)

Finally the speed of the car in second gear at the lower limit of the engine
speed is

vx = 15.435
ωmin

ωMax

= 15.435× 27.78
50

= 8.5757m/ s. (4.183)

that provides the following gear ratio in first gear

ωMax =
4n1
0.326

× 8.5757 = 514.27 (4.184)

n1 = 4.8874. (4.185)

The speed of the car in first gear at the lower limit of the engine speed is
then equal to

vx = 8.5757
ωmin

ωMax

= 8.5757× 27.78
50

= 4.7647m/ s. (4.186)

Therefore, the four gears of the gearbox have the following ratios:

n1 = 4.8874

n2 = 2.7155

n3 = 1.5087

n4 = 0.83826 (4.187)

and the working range for the engine is

285.73 rad/ s (≈ 2730 rpm) ≤ ωe ≤ 514.27 rad/ s (≈ 4911 rpm) .
(4.188)

The power performance curve (4.170) is illustrated in Figure 4.17 and the
working range is shaded. The gear-speed plot of this design is also plotted
in Figure 4.18.
Balance of the traction force Fx and the total resistance force FR at the

maximum speed provides

Fx = FR =
ηPe
vx

=
0.84× 90
50

= 1.512 kN. (4.189)
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FIGURE 4.17. The power performance curve (4.170) and its working range.
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FIGURE 4.18. The gear-speed plot for Example 142.
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The traction force in first gear is

Fx =
25

39601

η

R2w
ndn1 (796Rw − ndn1vx)

=
25

39601

0.84

0.3262
× 4× 4.8874 (796× 0.326− 4× 4.8874vx)

= 25.313− 1.907vx kN. (4.190)

The time in first gear n1 can be calculated by integrating Newton’s equation
of motion

Fx − FR = m
dvx
dt

(4.191)

and sweep the velocity from vx = 0 to vx = 8.5757m/ s

t1 = m

Z 8.5757

0

1

Fx − FR
dvx

= 860

Z 8.5757

0

10−3

25.313− 1.907vx − 1.512
dvx

= 0.52398 s. (4.192)

In second gear, the traction force is

Fx =
25

39601

η

R2w
ndn2 (796Rw − ndn2vx)

=
25

39601

0.84

0.3262
× 4× 2.7155 (796× 0.326− 4× 2.7155vx)

= 14.064− 0.5887vx kN (4.193)

and therefore, the sweep time in second gear is

t2 = m

Z 15.435

8.5757

1

Fx − FR
dvx

= 860

Z 15.435

8.5757

10−3

14.064− 0.5887vx − 1.512
dvx

= 1.1286 s. (4.194)

In third gear, the traction force is

Fx =
25

39601

η

R2w
ndn3 (796Rw − ndn3vx)

=
25

39601

0.84

0.3262
× 4× 1.5087 (796× 0.326− 4× 1.5087vx)

= 7.814− 0.18172vx kN (4.195)
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and the third sweep time is

t3 = m

Z 27.78

15.435

1

Fx − FR
dvx

= 860

Z 27.78

15.435

10−3

7.814− 0.18172vx − 1.512
dvx

= 4.8544 s. (4.196)

The total time to reach the speed vx = 100 km/h ≈ 27.78m/ s is then
equal to

t = t0 + t1 + t2 + t3 + 3× 0.07
= 2.58 + 0.52398 + 1.1286 + 4.8544 + 3× 0.47
= 10.497 s (4.197)

4.5 Summary

The maximum attainable power Pe of an internal combustion engine is a
function of the engine angular velocity ωe. This function must be deter-
mined by experiment however, the function Pe = Pe (ωe), which is called
the power performance, can be estimated by a mathematical function such
as

Pe = P1 ωe + P2 ω
2
e + P3 ω

3
e (4.198)

where,

P1 =
PM
ωM

(4.199)

P2 =
PM
ω2M

(4.200)

P3 = −PM
ω3M

. (4.201)

ωM is the angular velocity, measured in [ rad/ s], at which the engine
power reaches the maximum value PM , measured in [W = Nm/ s].
The engine torque Te is the torque that provides Pe

Te =
Pe
ωe

= P1 + P2 ωe + P3 ω
2
e. (4.202)

An ideal engine is the one that produces a constant power regardless of
speed. For the ideal engine, we have

Pe = P0 (4.203)

Te =
P0
ωe

. (4.204)



206 4. Driveline Dynamics

We use a gearbox to make the engine approximately work at a constant
power close to the PM . To design a gearbox we use two equations: the speed
equation

ωe =
ni nd
Rw

vx (4.205)

and the traction equation

Te =
1

η

Rw

nind
Fx (4.206)

These equations state that the forward velocity vx of a vehicle is propor-
tional to the angular velocity of the engine ωe, and the tire traction force
Fx is proportional to the engine torque Te, where, Rw is the effective tire ra-
dius, nd is the differential transmission ratio, ni is the gearbox transmission
ratio in gear number i, and η is the overall driveline efficiency.
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4.6 Key Symbols

a ≡ ẍ acceleration
ai, i = 0, · · · , 6 coefficients of function Te = Te (ωe)
ax acceleration capacity
AWD all-wheel-drive
cg constant relative gear ratio
Cc slip factor
d distance traveled
D clutch diameter
E energy
Fx traction force
FWD front-wheel-drive
H thermal value of fuel
m vehicle mass
n = ωin/ωout gear reduction ratio
ni gearbox transmission ratio in gear number i
nd transmission ratio
ng overall transmission ratio
P power
P0 ideal engine constant power
P1, P2, P3 coefficients of the power performance function
Pe maximum attainable power of an engine
Pe = Pe (ωe) power performance function
PM maximum power
q fuel consumption per unit distance
r = ω/ωn frequency ratio
RWD rear-wheel-drive
Td differential input torque
Te engine torque
TM maximum torque
Tw wheel torque
v ≡ ẋ, v velocity
vmin minimum vehicle speed corresponding to ωmin

4v difference in maximum vehicle speed at two different gears
x, y, z, x displacement

η overall efficiency
ηc convertor efficiency
ηe engine efficiency
ηM mechanical efficiency
ηt transmission efficiency
ηt thermal efficiency
ηT thermal efficiency
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ηV volumetric efficiency
μx traction coefficient
ρ oil density
ρf fuel density
φ slope of the road
ωd differential input angular velocity
ωe engine angular velocity
ωmin minimum engine speed
ωM engine angular velocity at maximum power
ωMax maximum engine speed
ωp pump angular velocity
ωr =

ωout
ωin

speed ratio
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Exercises

1. Power performance.

Audi R8TM with m = 1558 kg, has a V 8 engine with

PM = 313 kW ≈ 420 hp at ωM = 7800 rpm

and Audi TT CoupeTM with m = 1430 kg, has a V 6 engine with

PM = 184 kW ≈ 250 hp at ωM = 6300 rpm.

Determine the power performance equations of their engines and com-
pare the power mass ratio, PM/m of the cars.

2. Power and torque performance.

A model of Nissan NISMO 350Z withm = 1522 kg, has a V 6 engine
with

PM = 228 kW ≈ 306 hp at ωM = 6800 rpm

TM = 363Nm ≈ 268 lb ft at ω = 4800 rpm.

Determine the power and torque performance equations, and compare
TM from the torque equation with the above reported number.

3. Fuel consumption conversion.

A model of Subaru Impreza WRX STITM with m = 1521 kg, has a
turbocharged flat-4 engine with

PM = 219 kW ≈ 293 hp at ωM = 6000 rpm.

Fuel consumption of the car is 19 mi/ gal in city and 25 mi/ gal in
highway. Determine the fuel consumption in liter per 100 km.

4. Fuel consumption conversion.

A model of Mercedes-Benz SLR 722 EditionTM with m = 1724 kg,
has a supercharged V 8 engine with

PM = 485 kW ≈ 650 hp at ωM = 6500 rpm.

The maximum speed of the car is

vM = 337 km/h ≈ 209mi/h.

Assume the maximum speed happens at the maximum power and use
an overall efficiency η = 0.75 to determine the traction force at the
maximum speed.
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5. Car speed and engine speed.

A model of Toyota CamryTM has a 3.5-liter, 6-cylinder engine with

PM = 268hp at ωM = 6200 rpm.

The car uses transaxle/front-wheel drive and is equipped with a six-
speed ECT-i automatic transmission.

1st gear ratio = n1 = 3.300

2nd gear ratio = n2 = 1.900

3rd gear ratio = n3 = 1.420

4th gear ratio = n4 = 1.000

5th gear ratio = n5 = 0.713

6th gear ratio = n6 = 0.609

reverse gear ratio = nr = 4.148

final drive ratio = nd = 3.685

Determine the speed of the car at each gear, when the engine is
running at ωM , and it is equipped with

(a) P215/55R17 tires

(b) P215/60R16 tires.

6. Geer-speed equations.

A model of Ford MondeoTM is equipped with a 2.0-liter, which has

TM = 185Nm at ωe = 4500 rpm.

It has a manual five-speed gearbox.

1st gear ratio = n1 = 3.42

2nd gear ratio = n2 = 2.14

3rd gear ratio = n3 = 1.45

4th gear ratio = n4 = 1.03

5th gear ratio = n5 = 0.81

reverse gear ratio = nr = 3.46

final drive ratio = nd = 4.06

If the tires of the car are 205/55R16, determine the gear-speed equa-
tions for each gear.
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7. Final drive and gear ratios.

A model of Renault/Dacia LoganTM with m = 1115 kg, has a four-
cylinder engine with

PM = 77kW ≈ 105 hp at ωM = 5750 rpm

TM = 148Nm at ωe = 3750 rpm

vM = 183km/h

T ires = 185/65R15.

It has a five-speed gearbox. When the engine is running at 1000 rpm
the speed of the car at each gear is as follow.

1st gear ratio = n1 = 7.25 km/h

2nd gear ratio = n2 = 13.18 km/h

3rd gear ratio = n3 = 19.37 km/h

4th gear ratio = n4 = 26.21 km/h

5th gear ratio = n5 = 33.94 km/h

Assume that the top speed happens when the car is in the final gear
and the engine is at the maximum power. Evaluate the final drive
ratio, nd and gear ratios ni, i = 1, 2, · · · 5.

8. Traction equation.

A model of Jeep WranglerTM is equipped with a V 6 engine and has
the following specifications.

PM = 153 kW ≈ 205 hp at ωM = 5200 rpm

TM = 325Nm ≈ 240 lb ft at ωe = 4000 rpm

A model of the car may have a six-speed manual transmission with
the following gear ratios

1st gear ratio = n1 = 4.46

2nd gear ratio = n2 = 2.61

3rd gear ratio = n3 = 1.72

4th gear ratio = n4 = 1.25

5th gear ratio = n5 = 1.00

6th gear ratio = n6 = 0.84

reverse gear ratio = nr = 4.06

final drive ratio = nd = 3.21
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or a four-speed automatic transmission with the following gear ratios.

1st gear ratio = n1 = 2.84

2nd gear ratio = n2 = 1.57

3rd gear ratio = n3 = 1.0

4th gear ratio = n4 = 0.69

reverse gear ratio = nr = 2.21

final drive ratio = nd = 4.10

Assume

η = 0.8

Tires = 245/75R16

and determine the traction equation for the two models.

9. Acceleration capacity.

Lamborghini MurcielagoTM is equipped with a 6.2-liter V 12 engine
and has the following specifications.

PM = 631 hp at ωM = 8000 rpm

TM = 487 lb ft at ωe = 6000 rpm

m = 3638 lb

Front tire = P245/35ZR18

Rear tire = P335/30ZR18

The gearbox of the car uses ratios close to the following values.

1st gear ratio = n1 = 2.94

2nd gear ratio = n2 = 2.056

3rd gear ratio = n3 = 1.520

4th gear ratio = n4 = 1.179

5th gear ratio = n5 = 1.030

6th gear ratio = n6 = 0.914

reverse gear ratio = nr = 2.529

final drive ratio = nd = 3.42

If η = 0.8, then

(a) determine the wheel torque function at each gear

(b) determine the acceleration capacity of the car.



4. Driveline Dynamics 213

10. F Gearbox stability.

A model of Jaguar XJTM is a rear-wheel drive car with a 4.2-liter
V 8 engine. Some of the car’s specifications are close to the following
values.

m = 3638 lb

l = 119.4 in

Front tire = P235/50R18

Rear tire = P235/50R18

PM = 300 hp at ωM = 6000 rpm

If gear ratios of the car’s gearbox are

1st gear ratio = n1 = 4.17

2nd gear ratio = n2 = 2.34

3rd gear ratio = n3 = 1.52

4th gear ratio = n4 = 1.14

5th gear ratio = n5 = 0.87

6th gear ratio = n6 = 0.69

reverse gear ratio = nr = 3.40

final drive ratio = nd = 2.87

check the gearbox stability condition. In case the relative gear ratio
is not constant, determine the new gear ratios using the relative ratio
of the first two gears.

11. F Geometric gearbox design.

Lamborghini DiabloTM is a rear-wheel drive car that was built in
years 1990 − 2000. The car is equipped with a 5.7-liter V 12 engine.
Some of the car’s specifications are given.

PM = 492 hp at ωM = 7000 rpm

TM = 580Nm ≈ 428 lb ft at ωe = 5200 rpm
vM = 328 km/h ≈ 203mi/h

m = 1576 kg ≈ 3474 lb
l = 2650mm ≈ 104 in

wf = 1540mm ≈ 60.6 in
wr = 1640mm ≈ 64.6 in

Front tire = 245/40ZR17

Rear tire = 335/35ZR17
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The gear ratios of the car’s gearbox are close to the following values.

1st gear ratio = n1 = 2.31 vM = 97.3 km/h ≈ 60.5mi/h
2nd gear ratio = n2 = 1.52 vM = 147.7 km/h ≈ 91.8mi/h
3rd gear ratio = n3 = 1.12 vM = 200.2 km/h ≈ 124mi/h
4th gear ratio = n4 = 0.88 vM = 254.8 km/h ≈ 158.4mi/h
5th gear ratio = n5 = 0.68 vM = 325 km/h ≈ 202mi/h

reverse gear ratio = nr = 2.12 vM = 105.7 km/h ≈ 65.7mi/h
final drive ratio = nd = 2.41

Assume η = 0.9 and

(a) Determine the step jump cg for each gear change.

(b) Determine the speed span for each gear change.

(c) Determine the engine speed at the maximum car speed for each
gear.

(d) Determine the power performance equation and find the engine
power at the maximum car speed for each gear.

(e) There is a difference between the car’s top speed and the maxi-
mum speed in the 5th gear. Find the engine power at the car’s
top speed. Based on the top speed, determine the overall resis-
tance forces.

(f) Accept the 1st gear data and assume a symmetric working range
around the maximum power. Determine the other gear ratios
based on a geometric design.

12. Manual and auto transmission comparison.

A model of Nissan U12 PintaraTM may come with manual or auto
transmission. A model with a manual transmission has gear ratios
and characteristics close to the following values

1st gear ratio = n1 = 3.285

2nd gear ratio = n2 = 1.850

3rd gear ratio = n3 = 1.272

4th gear ratio = n4 = 0.954

5th gear ratio = n5 = 0.740

reverse gear ratio = nr = 3.428

final drive ratio = nd = 3.895
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and the model with an auto transmission has gear ratios close to the
following values.

1st gear ratio = n1 = 2.785

2nd gear ratio = n2 = 1.545

3rd gear ratio = n3 = 1.000

4th gear ratio = n4 = 0.694

reverse gear ratio = nr = 2.272

final drive ratio = nd = 3.876

Compare the transmissions according to geometric design condition
and determine which one has the maximum deviation.

13. F Progressive and geometric gearbox design.

An all wheel drive model of Hyundai Santa FeTM has specifications
close to the following numbers.

PM = 242 hp at ωM = 6000 rpm

TM = 226 lb ft at ωe = 4500 rpm

m = 1724 kg ≈ 4022 lb
l = 2700mm ≈ 106.3 in

Tires = P235/70R16

1st gear ratio = n1 = 3.79

2nd gear ratio = n2 = 2.06

3rd gear ratio = n3 = 1.42

4th gear ratio = n4 = 1.03

5th gear ratio = n5 = 0.73

reverse gear ratio = nr = 3.81

final drive ratio = nd = 3.68

Assume that the car can reach a speed v = 200.2 km/h ≈ 124mi/h
at the maximum power PM in the final gear n5 = 0.73. Accept n5
and redesign the gear ratios based on a progressive and a geometric
gearbox.

14. F Engine performance estimation.

Consider a RWD vehicle with the following specifications.

m = 6300 lb

l = 153 in

Fz1/Fz2 = 4410/6000

T ires = 245/75R16



216 4. Driveline Dynamics

If an experiment shows that

vM = 62.6mi/h at 3% slope
vM = 52.1mi/h at 6% slope
vM = 0 at 33.2% slope

estimate the maximum power of the vehicle. Assume η = 0.85.

Hint: assume that when the vehicle is stuck on a road with the max-
imum slope, the engine is working at the maximum torque. However,
when the vehicle is moving on a slope at the maximum speed, the
engine is working at the maximum power. Slope 3% means the angle
of the road with horizon is

φ = tan−1
3

100
.

15. F Gearbox design.

Consider a RWD vehicle with the following specifications.

PM = 141 kW ≈ 189 hp at ωM = 7800 rpm

TM = 181Nm ≈ 133 lb ft at ωe = 6800 rpm
vM = 237 km/h ≈ 147mi/h
η = 0.90

m = 875 kg

l = 2300mm

Front tirest = 195/50R16

Rear tirest = 225/45R17

1st gear ratio = n1 = 3.116

2nd gear ratio = n2 = 2.050

3rd gear ratio = n3 = 1.481

4th gear ratio = n4 = 1.166

5th gear ratio = n5 = 0.916

6th gear ratio = n6 = 0.815

reverse gear ratio = nr = 3.250

final drive ratio = nd = 4.529

(a) Based on the maximum velocity at the 6th gear n6, redesign
the gear ratios. Use ±20% around the maximum power for the
working range.

(b) Assume the car is supposed to be able to run on a 28% slope
with zero acceleration, and redesign the gear ratios.
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Applied Kinematics
Position, velocity, and acceleration are called kinematics information. Ro-
tational position analysis is the key to calculate kinematics of relatively
moving rigid bodies. In this chapter, we review kinematics and show applied
methods to calculate the relative kinematic information of rigid bodies. A
vehicle has many moving sub-systems such as suspensions, and the vehicle
can be treated as a moving rigid body in an inertia coordinate frame.

5.1 Rotation About Global Cartesian Axes

Consider a Cartesian coordinate frame Oxyz fixed to a rigid body B that
is attached to the ground G at the origin point O. The orientation of the
rigid body B with respect to the global coordinate frame OXY Z fixed to
the ground is known when the orientation of Oxyz with respect to OXY Z
is determined. Figure 5.1 illustrates a body coordinate B rotating about
point O in global coordinate frame G.

y
Y

Z

X

x

z
B

G

O

FIGURE 5.1. A body coordinate B rotating about point O in global coordinate
frame G.

If the rigid body, B rotates α degrees about the Z-axis of the global
coordinate frame, then coordinates of any point P of the rigid body in the
local and global coordinate frames are related by the equation

Gr = RZ,α
Br (5.1)
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where

RZ,α =

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦ (5.2)

and

Gr =

⎡⎣ X
Y
Z

⎤⎦ (5.3)

Br =

⎡⎣ x
y
z

⎤⎦ . (5.4)

Similarly, rotation β degrees about the Y -axis, and γ degrees about the
X-axis of the global frame relate the local and global coordinates of point
P by the following equations:

Gr = RY,β
Br (5.5)

Gr = RX,γ
Br (5.6)

where

RY,β =

⎡⎣ cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

⎤⎦ (5.7)

RX,γ =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦ . (5.8)

Proof. Let (̂ı, ĵ, k̂) and (Î , Ĵ , K̂) be the unit vectors along the coordinate
axes of Oxyz and OXY Z respectively. The rigid body has a space fixed
point at O, which is the common origin of Oxyz and OXY Z. The dashed
lines in Figure 5.2 illustrate the top view of the coordinate frames at initial
position.
The initial position of a body point P is indicated by P1. The position

vector r1 of P1 can be expressed in body and global coordinate frames by

Br1 = x1ı̂+ y1ĵ+ z1k̂ (5.9)
Gr1 = X1Î + Y1Ĵ + Z1K̂ (5.10)

where Br1 refers to the position vector r1 expressed in the body coordinate
frame B, and Gr1 refers to the position vector r1 expressed in the global
coordinate frame G.
If the rigid body undergoes a rotation α about the Z-axis, then the local

frame Oxyz, and point P will be seen in a second position, as shown by
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P1

r1

X1

P2

r2

Y

X

y2=y1 x

y

X2

Y2

αx2=x1

Y1

GB

FIGURE 5.2. Position vectors of point P before and after the rotation of the
local frame about the Z-axis of the global frame.

the solid lines in Figure 5.2. Now the position vector r2 of P2 is expressed
in both coordinate frames by

Br2 = x2ı̂+ y2ĵ+ z2k̂ (5.11)
Gr2 = X2Î + Y2Ĵ + Z2K̂. (5.12)

Using Equation (5.11) and the definition of the inner product, we may
write

X2 = Î · r2
= Î · x2ı̂+ Î · y2ĵ+ Î · z2k̂ (5.13)

Y2 = Ĵ · r2
= Ĵ · x2ı̂+ Ĵ · y2ĵ+ Ĵ · z2k̂ (5.14)

Z2 = K̂ · r2
= K̂ · x2ı̂+ K̂ · y2ĵ+ K̂ · z2k̂ (5.15)

or equivalently⎡⎣ X2

Y2
Z2

⎤⎦ =
⎡⎣ Î · ı̂ Î · ĵ Î · k̂

Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦⎡⎣ x2
y2
z2

⎤⎦ . (5.16)

The elements of the Z-rotation matrix, RZ,α, are called the direction
cosines of Br2 with respect to OXY Z. Figure 5.2 shows the top view of
the initial and final configurations of r in both coordinate systems Oxyz
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and OXY Z. Analyzing Figure 5.2 indicates that

Î · ı̂ = cosα, Î · ĵ = − sinα, Î · k̂ = 0
Ĵ · ı̂ = sinα, Ĵ · ĵ = cosα, Ĵ · k̂ = 0
K̂ · ı̂ = 0, K̂ · ĵ = 0, K̂ · k̂ = 1.

(5.17)

Combining Equations (5.16) and (5.17) shows that⎡⎣ X2

Y2
Z2

⎤⎦ =
⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦⎡⎣ x2
y2
z2

⎤⎦ (5.18)

which can also be shown in the following short notation:
Gr2 = RZ,α

Br2 (5.19)

RZ,α =

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦ . (5.20)

Equation (5.19) states that the vector r at the second position in the
global coordinate frame is equal to RZ times the position vector in the
local coordinate frame. Hence, we are able to find the global coordinates of
a point of a rigid body after rotation about the Z-axis, if we have its local
coordinates.
Similarly, rotation β about the Y -axis and rotation γ about the X-axis

are described by the Y -rotation matrix RY,β and the X-rotation matrix
RX,γ respectively.

RY,β =

⎡⎣ cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

⎤⎦ (5.21)

RX,γ =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦ (5.22)

The rotation matrices RZ,α, RY,β , and RX,γ are called basic global ro-
tation matrices. We usually refer to the first, second, and third rotations
about the axes of the global coordinate frame by α, β, and γ respectively.

Example 143 Successive rotation about global axes.
The final position of the point P (1, 2, 3) after a 30 deg rotation about

the Z-axis, followed by 30 deg about the X-axis, and then 90 deg about the
Y -axis can be found by first multiplying RZ,30 by [1, 2, 3]T to get the new
global position after first rotation⎡⎣ X2

Y2
Z2

⎤⎦ =
⎡⎣ cos 30 − sin 30 0
sin 30 cos 30 0
0 0 1

⎤⎦⎡⎣ 1
2
3

⎤⎦ =
⎡⎣ −0.1342.23

3

⎤⎦ (5.23)
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and then multiplying RX,30 by [−0.134, 2.23, 3]T to get the position of P
after the second rotation⎡⎣ X3

Y3
Z3

⎤⎦ =
⎡⎣ 1 0 0
0 cos 30 − sin 30
0 sin 30 cos 30

⎤⎦⎡⎣ −0.1342.23
3

⎤⎦ =
⎡⎣ −0.1340.433

3.714

⎤⎦
(5.24)

and finally multiplying RY,90 by [−0.134, 0.433, 3.714]T to get the final po-
sition of P after the third rotation.⎡⎣ X4

Y4
Z4

⎤⎦ =
⎡⎣ cos 90 0 sin 90

0 1 0
− sin 90 0 cos 90

⎤⎦⎡⎣ −0.1340.433
3.714

⎤⎦ =
⎡⎣ 3.714
0.433
0.134

⎤⎦
(5.25)

Example 144 Global rotation, local position.
If a point P is moved to Gr2 = [2, 3, 2]

T after a 60 deg rotation about the
Z-axis, its position in the local coordinate is

Br2 = R−1Z,60
Gr2⎡⎣ x2

y2
z2

⎤⎦ =

⎡⎣ cos 60 − sin 60 0
sin 60 cos 60 0
0 0 1

⎤⎦−1 ⎡⎣ 2
3
2

⎤⎦ =
⎡⎣ 3.6
−0.23
2

⎤⎦ . (5.26)

The local coordinate frame was coincident with the global coordinate frame
before rotation, thus the global coordinates of P before rotation was also
Gr1 = [3.6,−0.23, 2]T .

5.2 Successive Rotation About Global Cartesian
Axes

The final global position of a point P in a rigid body B with position vector
r, after a sequence of rotations R1, R2, R3, ..., Rn about the global axes
can be found by

Gr = GRB
Br (5.27)

where,

GRB = Rn · · ·R3R2R1 (5.28)

and Gr and Br indicate the position vector r expressed in the global and
local coordinate frames. GRB is called the global rotation matrix. It maps
the local coordinates to their corresponding global coordinates.
Because matrix multiplications do not commute, the sequence of per-

forming rotations is important. A rotation matrix is orthogonal that means
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its transpose RT is equal to its inverse R−1.

RT = R−1 (5.29)

Example 145 Successive global rotation matrix.
The global rotation matrix after a rotation RZ,α followed by RY,β and

then RX,γ is

GRB = RX,γRY,βRZ,α

=

⎡⎣ cαcβ −cβsα sβ
cγsα+ cαsβsγ cαcγ − sαsβsγ −cβsγ
sαsγ − cαcγsβ cαsγ + cγsαsβ cβcγ

⎤⎦ . (5.30)

Example 146 Successive global rotations, global position.
The point P of a rigid body that is attached to the global frame at O is

located at ⎡⎣ X1

Y1
Z1

⎤⎦ =
⎡⎣ 0.0
0.26
0.97

⎤⎦ . (5.31)

The rotation matrix to find the new position of the point after a −29 deg
rotation about the X-axis, followed by 30 deg about the Z-axis, and again
132 deg about the X-axis is

GRB = RX,132RZ,30RX,−29

=

⎡⎣ 0.87 −0.44 −0.24
−0.33 −0.15 −0.93
0.37 0.89 −0.27

⎤⎦ . (5.32)

Therefore, its new position is at⎡⎣ X2

Y2
Z2

⎤⎦ =
⎡⎣ 0.87 −0.44 −0.24
−0.33 −0.15 −0.93
0.37 0.89 −0.27

⎤⎦⎡⎣ 0.0
0.26
0.97

⎤⎦ =
⎡⎣ −0.35−0.94
−0.031

⎤⎦ . (5.33)
Example 147 Order of rotation, and order of matrix multiplication.
Changing the order of global rotation matrices is equivalent to changing

the order of rotations.
The position of a point P of a rigid body B is located at BrP =

£
1 2 3

¤T
.

Its global position after rotation 30 deg about the X-axis and then 45 deg
about the Y -axis is at¡

GrP
¢
1
= RY,45RX,30

BrP

=

⎡⎣ 0.53 −0.84 0.13
0.0 0.15 0.99
−0.85 −0.52 0.081

⎤⎦⎡⎣ 1
2
3

⎤⎦ =
⎡⎣ −0.763.27
−1.64

⎤⎦ (5.34)



5. Applied Kinematics 225

and if we change the order of rotations, then its position would be at¡
GrP

¢
2
= RX,30RY,45

BrP

=

⎡⎣ 0.53 0.0 0.85
−0.84 0.15 0.52
−0.13 −0.99 0.081

⎤⎦⎡⎣ 1
2
3

⎤⎦ =
⎡⎣ 3.08

1.02
−1.86

⎤⎦ . (5.35)

These two final positions of P are d =
¯̄¡
GrP

¢
1
−
¡
GrP

¢
2

¯̄
= 4.456 apart.

Example 148 Global roll-pitch-yaw angles.
The rotation about the X-axis of the global coordinate frame is called

roll, the rotation about the Y -axis of the global coordinate frame is called
pitch, and the rotation about the Z-axis of the global coordinate frame is
called yaw. The global roll-pitch-yaw rotation matrix is

GRB = RZ,γRY,βRX,α

=

⎡⎣ cβcγ −cαsγ + cγsαsβ sαsγ + cαcγsβ
cβsγ cαcγ + sαsβsγ −cγsα+ cαsβsγ
−sβ cβsα cαcβ

⎤⎦ . (5.36)

Given the roll, pitch, and yaw angles, we can compute the overall rotation
matrix using Equation (5.36). Also, we are able to compute the equivalent
roll, pitch, and yaw angles when a rotation matrix is given. Suppose that rij
indicates the element of row i and column j of the roll-pitch-yaw rotation
matrix (5.36), then the roll angle is

α = tan−1
µ
r32
r33

¶
(5.37)

and the pitch angle is
β = − sin−1 (r31) (5.38)

and the yaw angle is

γ = tan−1
µ
r21
r11

¶
(5.39)

provided that cosβ 6= 0.

5.3 Rotation About Local Cartesian Axes

Consider a rigid body B with a space-fixed point at point O. The local body
coordinate frame B(Oxyz) is coincident with a global coordinate frame
G(OXY Z), where the origin of both frames are on the fixed point O. If
the body undergoes a rotation ϕ about the z-axis of its local coordinate
frame, as can be seen in the top view shown in Figure 5.3, then coordinates
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of any point of the rigid body in the local and global coordinate frames are
related by the equation

Br = Rz,ϕ
Gr. (5.40)

The vectors Gr and Br are the position vectors of the point in the global
and local frames respectively

Gr =
£
X Y Z

¤T
(5.41)

Br =
£
x y z

¤T
(5.42)

and Rz,ϕ is the z-rotation matrix

Rz,ϕ =

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦ . (5.43)

Similarly, rotation θ about the y-axis and rotation ψ about the x-axis
are described by the y-rotation matrix Ry,θ and the x-rotation matrix Rx,ψ

respectively.

Ry,θ =

⎡⎣ cos θ 0 − sin θ
0 1 0
sin θ 0 cos θ

⎤⎦ (5.44)

Rx,ψ =

⎡⎣ 1 0 0
0 cosψ sinψ
0 − sinψ cosψ

⎤⎦ (5.45)

Proof. Vector r indicates the position of a point P of the rigid body B
where it is initially at P1. Using the unit vectors (̂ı, ĵ, k̂) along the axes
of local coordinate frame B(Oxyz), and (Î , Ĵ , K̂) along the axes of global
coordinate frame B(OXY Z), the initial and final position vectors r1 and
r2 in both coordinate frames can be expressed by

Br1 = x1ı̂+ y1ĵ+ z1k̂ (5.46)
Gr1 = X1Î + Y1Ĵ + Z1K̂ (5.47)

Br2 = x2ı̂+ y2ĵ+ z2k̂ (5.48)
Gr2 = X2Î + Y2Ĵ + Z2K̂. (5.49)

The vectors Br1 and Br2 are the initial and final positions of the vector r
expressed in body coordinate frame Oxyz, and Gr1 and Gr2 are the initial
and final positions of the vector r expressed in the global coordinate frame
OXY Z.
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P1

r1

X1

P2

r2

Y

X

y2=Y1 x

y

X2

Y2

ϕx2=X1

Y1

G
B

FIGURE 5.3. Position vectors of point P before and after rotation of the local
frame about the z-axis of the local frame.

The components of Br2 can be found if we have the components of Gr2.
Using Equation (5.49) and the definition of the inner product, we may write

x2 = ı̂ · r2 = ı̂ ·X2Î + ı̂ · Y2Ĵ + ı̂ · Z2K̂ (5.50)

y2 = ĵ · r2 = ĵ ·X2Î + ĵ · Y2Ĵ + ĵ · Z2K̂ (5.51)

z2 = k̂ · r2 = k̂ ·X2Î + k̂ · Y2Ĵ + k̂ · Z2K̂ (5.52)

or equivalently⎡⎣ x2
y2
z2

⎤⎦ =
⎡⎣ ı̂ · Î ı̂ · Ĵ ı̂ · K̂

ĵ · Î ĵ · Ĵ ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦⎡⎣ X2

Y2
Z2

⎤⎦ . (5.53)

The elements of the z-rotation matrix Rz,ϕ are the direction cosines of
Gr2 with respect to Oxyz. So, the elements of the matrix in Equation (5.53)
are

ı̂ · Î = cosϕ, ı̂ · Ĵ = sinϕ, ı̂ · K̂ = 0

ĵ · Î = − sinϕ, ĵ · Ĵ = cosϕ, ĵ · K̂ = 0

k̂ · Î = 0, k̂ · Ĵ = 0, k̂ · K̂ = 1

. (5.54)

Combining Equations (5.53) and (5.54), we can find the components of
Br2 by multiplying z-rotation matrix Rz,ϕ and vector Gr2.⎡⎣ x2

y2
z2

⎤⎦ =
⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦⎡⎣ X2

Y2
Z2

⎤⎦ . (5.55)

It can also be shown in the following short form:
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Br2 = Rz,ϕ
Gr2 (5.56)

where

Rz,ϕ =

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦ . (5.57)

Equation (5.56) says that after rotation about the z-axis of the local
coordinate frame, the position vector in the local frame is equal to Rz,ϕ

times the position vector in the global frame. Hence, after rotation about
the z-axis, we are able to find the coordinates of any point of a rigid body
in a local coordinate frame, if we have its coordinates in the global frame.
Similarly, rotation θ about the y-axis and rotation ψ about the x-axis

are described by the y-rotation matrix Ry,θ and the x-rotation matrix Rx,ψ

respectively.

Ry,θ =

⎡⎣ cos θ 0 − sin θ
0 1 0
sin θ 0 cos θ

⎤⎦ (5.58)

Rx,ψ =

⎡⎣ 1 0 0
0 cosψ sinψ
0 − sinψ cosψ

⎤⎦ (5.59)

We indicate the first, second, and third rotations about the local axes by
ϕ, θ, and ψ respectively.

Example 149 Local rotation, local position.
If a local coordinate frame Oxyz has been rotated 60 deg about the z-

axis and a point P in the global coordinate frame OXY Z is at (4, 3, 2), its
coordinates in the local coordinate frame Oxyz are⎡⎣ x

y
z

⎤⎦ =
⎡⎣ cos 60 sin 60 0
− sin 60 cos 60 0
0 0 1

⎤⎦⎡⎣ 4
3
2

⎤⎦ =
⎡⎣ 4.60
−1.97
2.0

⎤⎦ . (5.60)

Example 150 Local rotation, global position.
If a local coordinate frame Oxyz has been rotated 60 deg about the z-axis

and a point P in the local coordinate frame Oxyz is at (4, 3, 2), its position
in the global coordinate frame OXY Z is at⎡⎣ X

Y
Z

⎤⎦ =
⎡⎣ cos 60 sin 60 0
− sin 60 cos 60 0
0 0 1

⎤⎦T ⎡⎣ 4
3
2

⎤⎦ =
⎡⎣ −0.604.96

2.0

⎤⎦ . (5.61)
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Example 151 Successive local rotation, global position.
First we turn a rigid body −90 deg about the y-axis and then 90 deg about

the x-axis. If a body point P is at BrP =
£
9.5 −10.1 10.1

¤T
, then its

position in the global coordinate frame is at

Gr2 = [Rx,90Ry,−90]
−1 BrP

= R−1y,−90R
−1
x,90

BrP

= RT
y,−90R

T
x,90

BrP

=

⎡⎣ 10.1
−10.1
9.5

⎤⎦ . (5.62)

Example 152 Global position and postmultiplication of rotation matrix.
The local position of a point P after rotation is at Br =

£
1 2 3

¤T
.

If the local rotation matrix to transform Gr to Br is given as

BRz,ϕ =

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦ =
⎡⎣ cos 30 sin 30 0
− sin 30 cos 30 0
0 0 1

⎤⎦ (5.63)

then we may find the global position vector Gr by postmultiplication BRz,ϕ

by the local position vector BrT ,

GrT = BrT BRz,ϕ

=
£
1 2 3

¤⎡⎣ cos 30 sin 30 0
− sin 30 cos 30 0
0 0 1

⎤⎦
=

£
−0.13 2.23 3.0

¤
(5.64)

instead of premultiplication of BR−1z,ϕ by
Br.

Gr = BR−1z,ϕ
Br

=

⎡⎣ cos 30 − sin 30 0
sin 30 cos 30 0
0 0 1

⎤⎦⎡⎣ 1
2
3

⎤⎦ =
⎡⎣ −0.132.23

3

⎤⎦ (5.65)

5.4 Successive Rotation About Local Cartesian
Axes

The final global position of a point P in a rigid body B with position
vector r, after some rotations R1, R2, R3, ..., Rn about the local axes, can
be found by

Br = BRG
Gr (5.66)
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where

BRG = Rn · · ·R3R2R1. (5.67)
BRG is called the local rotation matrix and it maps the global coordinates
to their corresponding local coordinates.

Example 153 Successive local rotation, local position.
A local coordinate frame B(Oxyz) that initially is coincident with a global

coordinate frame G(OXY Z) undergoes a rotation ϕ = 30deg about the
z-axis, then θ = 30deg about the x-axis, and then ψ = 30deg about the
y-axis. The local coordinates of a point P located at X = 5, Y = 30, Z = 10
can be found by

£
x y z

¤T
= Ry,ψRx,θRz,ϕ

£
5 30 10

¤T
. The local

rotation matrix is

BRG = Ry,30Rx,30Rz,30 =

⎡⎣ 0.63 0.65 −0.43
−0.43 0.75 0.50
0.65 −0.125 0.75

⎤⎦ (5.68)

and coordinates of P in the local frame are⎡⎣ x
y
z

⎤⎦ =
⎡⎣ 0.63 0.65 −0.43
−0.43 0.75 0.50
0.65 −0.125 0.75

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ 18.35
25.35
7.0

⎤⎦ . (5.69)

Example 154 Successive local rotation.
The rotation matrix for a body point P (x, y, z) after rotation Rz,ϕ fol-

lowed by Rx,θ and Ry,ψ is

BRG = Ry,ψRx,θRz,ϕ

=

⎡⎣ cϕcψ − sθsϕsψ cψsϕ+ cϕsθsψ −cθsψ
−cθsϕ cθcϕ sθ

cϕsψ + sθcψsϕ sϕsψ − cϕsθcψ cθcψ

⎤⎦ . (5.70)
Example 155 Local roll-pitch-yaw angles
Rotation about the x-axis of the local frame is called roll or bank, rota-

tion about y-axis of the local frame is called pitch or attitude, and rotation
about the z-axis of the local frame is called yaw, spin, or heading. The
local roll-pitch-yaw angles are shown in Figure 5.4.
The local roll-pitch-yaw rotation matrix is

BRG = Rz,ψRy,θRx,ϕ

=

⎡⎣ cθcψ cϕsψ + sθcψsϕ sϕsψ − cϕsθcψ
−cθsψ cϕcψ − sθsϕsψ cψsϕ+ cϕsθsψ
sθ −cθsϕ cθcϕ

⎤⎦ . (5.71)
Note the difference between roll-pitch-yaw and Euler angles, although we
show both utilizing ϕ, θ, and ψ.
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FIGURE 5.4. Local roll-pitch-yaw angles.

5.5 F Euler Angles

The rotation about the Z-axis of the global coordinate is called precession,
the rotation about the x-axis of the local coordinate is called nutation,
and the rotation about the z-axis of the local coordinate is called spin.
The precession-nutation-spin rotation angles are also called Euler angles.
Rotation matrix based on Euler angles has application in rigid body kine-
matics. To find the Euler angles rotation matrix to go from the global
frame G(OXY Z) to the final body frame B(Oxyz), we employ a body
frame B0(Ox0y0z0) as shown in Figure 5.5 that before the first rotation co-
incides with the global frame. Let there be at first a rotation ϕ about the
z0-axis. Because Z-axis and z0-axis are coincident, by our theory

B0
r = B0

RG
Gr (5.72)

B0
RG = Rz,ϕ =

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦ . (5.73)

Next we consider the B0(Ox0y0z0) frame as a new fixed global frame and
introduce a new body frame B00(Ox00y00z00). Before the second rotation, the
two frames coincide. Then, we execute a θ rotation about x00-axis as shown
in Figure 5.6. The transformation between B0(Ox0y0z0) and B00(Ox00y00z00)
is

B00
r = B00

RB0
B0
r (5.74)

B00
RB0 = Rx,θ =

⎡⎣ 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎤⎦ . (5.75)

Finally, we consider the B00(Ox00y00z00) frame as a new fixed global frame
and consider the final body frame B(Oxyz) to coincide with B00 before the
third rotation. We now execute a ψ rotation about the z00-axis as shown in
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FIGURE 5.6. Second Euler angle.
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FIGURE 5.7. Third Euler angle.

Figure 5.7. The transformation between B00(Ox00y00z00) and B(Oxyz) is

Br = BRB00 B
00
r (5.76)

BRB00 = Rz,ψ =

⎡⎣ cosψ sinψ 0
− sinψ cosψ 0
0 0 1

⎤⎦ . (5.77)

By the rule of composition of rotations, the transformation fromG(OXY Z)
to B(Oxyz) is

Br = BRG
Gr (5.78)

where

BRG = Rz,ψRx,θRz,ϕ

=

⎡⎣ cϕcψ − cθsϕsψ cψsϕ+ cθcϕsψ sθsψ
−cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ sθcψ

sθsϕ −cϕsθ cθ

⎤⎦ (5.79)

and therefore,

BR−1G = BRT
G =

GRB = [Rz,ψRx,θRz,ϕ]
T

=

⎡⎣ cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ
cψsϕ+ cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ

⎤⎦ . (5.80)

Given the angles of precession ϕ, nutation θ, and spin ψ, we can compute
the overall rotation matrix using Equation (5.79). Also we are able to com-
pute the equivalent precession, nutation, and spin angles when a rotation
matrix is given.
If rij indicates the element of row i and column j of the precession-

nutation-spin rotation matrix, then,

θ = cos−1 (r33) (5.81)
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ϕ = − tan−1
µ
r31
r32

¶
(5.82)

ψ = tan−1
µ
r13
r23

¶
(5.83)

provided that sin θ 6= 0.

Example 156 F Euler angle rotation matrix.
The Euler or precession-nutation-spin rotation matrix for ϕ = 79.15 deg,

θ = 41.41 deg, and ψ = −40.7 deg would be found by substituting ϕ, θ, and
ψ in Equation (5.79).

BRG = Rz,−40.7Rx,41.41Rz,79.15 (5.84)

=

⎡⎣ 0.63 0.65 −0.43
−0.43 0.75 0.50
0.65 −0.125 0.75

⎤⎦
Example 157 F Euler angles of a local rotation matrix.
The local rotation matrix after a rotation 30 deg about the z-axis, 30 deg

about the x-axis, and 30 deg about the y-axis is

BRG = Ry,30Rx,30Rz,30

=

⎡⎣ 0.63 0.65 −0.43
−0.43 0.75 0.50
0.65 −0.125 0.75

⎤⎦ (5.85)

and therefore, the local coordinates of a sample point at X = 5, Y = 30,
and Z = 10 are⎡⎣ x

y
z

⎤⎦ =
⎡⎣ 0.63 0.65 −0.43
−0.43 0.75 0.50
0.65 −0.125 0.75

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ 18.35
25.35
7.0

⎤⎦ . (5.86)

The Euler angles of the corresponding precession-nutation-spin rotation
matrix are

θ = cos−1 (0.75) = 41.41 deg (5.87)

ϕ = − tan−1
µ

0.65

−0.125

¶
= 79.15 deg (5.88)

ψ = tan−1
µ
−0.43
0.50

¶
= −40.7 deg . (5.89)

Hence, Ry,30Rx,30Rz,30 = Rz,ψRx,θRz,ϕ when ϕ = 79.15 deg, θ = 41.41 deg,
and ψ = −40.7 deg. In other words, the rigid body attached to the local
frame moves to the final configuration by undergoing either three consecu-
tive rotations ϕ = 79.15 deg, θ = 41.41 deg, and ψ = −40.7 deg about the
z, x, and z axes respectively, or three consecutive rotations 30 deg, 30 deg,
and 30 deg about the z, x, and y axes.
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Example 158 F Relative rotation matrix of two bodies.
Consider a rigid body B1 with an orientation matrix B1RG made by Euler

angles ϕ = 30deg, θ = −45 deg, ψ = 60deg, and another rigid body B2
having ϕ = 10deg, θ = 25deg, ψ = −15 deg, with respect to the global
frame. To find the relative rotation matrix B1RB2

to map the coordinates
of the second body frame B2 to the first body frame B1, we need to find the
individual rotation matrices first.

B1RG = Rz,60Rx,−45Rz,30

=

⎡⎣ 0.127 0.78 −0.612
−0.927 −0.127 −0.354
−0.354 0.612 0.707

⎤⎦ (5.90)

B2RG = Rz,10Rx,25Rz,−15

=

⎡⎣ 0.992 −6.33× 10−2 −0.109
0.103 0.907 0.408

7.34× 10−2 −0.416 0.906

⎤⎦ (5.91)

The desired rotation matrix B1RB2 may be found by

B1RB2 =
B1RG

GRB2 (5.92)

which is equal to

B1RB2
= B1RG

B2RT
G

=

⎡⎣ 0.992 0.103 7.34× 10−2
−6.33× 10−2 0.907 −0.416
−0.109 0.408 0.906

⎤⎦ . (5.93)

Example 159 F Euler angles rotation matrix for small angles.
The Euler rotation matrix BRG = Rz,ψRx,θRz,ϕ for very small Euler

angles ϕ, θ, and ψ is approximated by

BRG =

⎡⎣ 1 γ 0
−γ 1 θ
0 −θ 1

⎤⎦ (5.94)

where
γ = ϕ+ ψ. (5.95)

Therefore, wen the angles of rotation are small, the angles ϕ and ψ are
indistinguishable.
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FIGURE 5.8. Euler angles frame êϕ, êθ, êψ.

Example 160 F Small second Euler angle.
If θ→ 0 then the Euler rotation matrix BRG = Rz,ψRx,θRz,ϕ approaches

to

BRG =

⎡⎣ cϕcψ − sϕsψ cψsϕ+ cϕsψ 0
−cϕsψ − cψsϕ −sϕsψ + cϕcψ 0

0 0 1

⎤⎦
=

⎡⎣ cos (ϕ+ ψ) sin (ϕ+ ψ) 0
− sin (ϕ+ ψ) cos (ϕ+ ψ) 0

0 0 1

⎤⎦ (5.96)

and therefore, the angles ϕ and ψ are indistinguishable even if the value of
ϕ and ψ are finite. Hence, the Euler set of angles in rotation matrix (5.79)
is not unique when θ = 0.

Example 161 F Angular velocity vector in terms of Euler frequencies.
A Eulerian local frame E (o, êϕ, êθ, êψ) can be introduced by defining unit

vectors êϕ, êθ, and êψ as shown in Figure 5.8. Although the Eulerian frame
is not necessarily orthogonal, it is very useful in rigid body kinematic analy-
sis.
The angular velocity vector GωB of the body frame B(Oxyz) with respect

to the global frame G(OXY Z) can be written in Euler angles frame E as
the sum of three Euler angle rate vectors:

E
GωB = ϕ̇êϕ + θ̇êθ + ψ̇êψ. (5.97)

where the rate of Euler angles, ϕ̇, θ̇, and ψ̇ are called Euler frequencies.
To find GωB in the body frame we must express the unit vectors êϕ,

êθ, and êψ shown in Figure 5.8, in the body frame. The unit vector êϕ =
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0 0 1

¤T
= K̂ is in the global frame and can be transformed to the

body frame after three rotations

B êϕ = BRG K̂

= Rz,ψRx,θRz,ϕK̂

=

⎡⎣ sin θ sinψ
sin θ cosψ
cos θ

⎤⎦ . (5.98)

The unit vector êθ =
£
1 0 0

¤T
= ı̂0 is in the intermediate frame

Ox0y0z0 and needs to get two rotations Rx,θ and Rz,ψ to be transformed
to the body frame

B êθ = BROx0y0z0 ı̂
0

= Rz,ψ Rx,θ ı̂
0

=

⎡⎣ cosψ
− sinψ
0

⎤⎦ . (5.99)

The unit vector êψ is already in the body frame, êψ =
£
0 0 1

¤T
= k̂.

Therefore, GωB is expressed in the body coordinate frame as

B
GωB = ϕ̇

⎡⎣ sin θ sinψ
sin θ cosψ
cos θ

⎤⎦+ θ̇

⎡⎣ cosψ
− sinψ
0

⎤⎦+ ψ̇

⎡⎣ 0
0
1

⎤⎦
=

³
ϕ̇ sin θ sinψ + θ̇ cosψ

´
ı̂

+
³
ϕ̇ sin θ cosψ − θ̇ sinψ

´
ĵ

+
³
ϕ̇ cos θ + ψ̇

´
k̂ (5.100)

and therefore, components of GωB in body frame Oxyz are related to the
Euler angle frame Oϕθψ by the following relationship:

B
GωB = BRE

E
GωB (5.101)⎡⎣ ωx

ωy
ωz

⎤⎦ =

⎡⎣ sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0
cos θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ . (5.102)

Then, GωB can be expressed in the global frame using an inverse transfor-



238 5. Applied Kinematics

mation of Euler rotation matrix (5.79)

G
GωB = BR−1G

B
GωB

= BR−1G

⎡⎣ ϕ̇ sin θ sinψ + θ̇ cosψ

ϕ̇ sin θ cosψ − θ̇ sinψ

ϕ̇ cos θ + ψ̇

⎤⎦ (5.103)

=
³
θ̇ cosϕ+ ψ̇ sin θ sinϕ

´
Î

+
³
θ̇ sinϕ− ψ̇ cosϕ sin θ

´
Ĵ

+
³
ϕ̇+ ψ̇ cos θ

´
K̂ (5.104)

and hence, components of GωB in global coordinate frame OXY Z are re-
lated to the Euler angle coordinate frame Oϕθψ by the following relation-
ship:

G
GωB = GRE

E
GωB (5.105)⎡⎣ ωX

ωY
ωZ

⎤⎦ =

⎡⎣ 0 cosϕ sin θ sinϕ
0 sinϕ − cosϕ sin θ
1 0 cos θ

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ . (5.106)

Example 162 F Euler frequencies based on a Cartesian angular velocity
vector.
The vector B

GωB, that indicates the angular velocity of a rigid body B
with respect to the global frame G written in frame B, is related to the
Euler frequencies by

B
GωB = BRE

E
GωB

B
GωB =

⎡⎣ ωx
ωy
ωz

⎤⎦ =
⎡⎣ sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0
cos θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ . (5.107)
The matrix of coefficients is not an orthogonal matrix because,

BRT
E 6= BR−1E (5.108)

BRT
E =

⎡⎣ sin θ sinψ sin θ cosψ cos θ
cosψ − sinψ 0
0 0 1

⎤⎦ (5.109)

BR−1E =
1

sin θ

⎡⎣ sinψ cosψ 0
sin θ cosψ − sin θ sinψ 0
− cos θ sinψ − cos θ cosψ 1

⎤⎦ . (5.110)

It is because the Euler angles coordinate frame Oϕθψ is not an orthogonal
frame. For the same reason, the matrix of coefficients that relates the Euler
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frequencies and the components of GGωB

G
GωB = GRE

E
GωB (5.111)

G
GωB =

⎡⎣ ωX
ωY
ωZ

⎤⎦ =
⎡⎣ 0 cosϕ sin θ sinϕ
0 sinϕ − cosϕ sin θ
1 0 cos θ

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (5.112)

is not an orthogonal matrix. Therefore, the Euler frequencies based on local
and global decomposition of the angular velocity vector GωB must solely be
found by the inverse of coefficient matrices

E
GωB = BR−1E

B
GωB (5.113)⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ =
1

sin θ

⎡⎣ sinψ cosψ 0
sin θ cosψ − sin θ sinψ 0
− cos θ sinψ − cos θ cosψ 1

⎤⎦⎡⎣ ωx
ωy
ωz

⎤⎦ (5.114)

and

E
GωB = GR−1E

G
GωB (5.115)⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ =
1

sin θ

⎡⎣ − cos θ sinϕ cos θ cosϕ 1
sin θ cosϕ sin θ sinϕ 0
sinϕ − cosϕ 0

⎤⎦⎡⎣ ωX
ωY
ωZ

⎤⎦ . (5.116)
Using (5.113) and (5.115), it can be verified that the transformation ma-
trix BRG =

BRE
GR−1E would be the same as Euler transformation matrix

(5.79).
The angular velocity vector can thus be expressed as

GωB =
£
ı̂ ĵ k̂

¤⎡⎣ ωx
ωy
ωz

⎤⎦
=

£
Î Ĵ K̂

¤⎡⎣ ωX
ωY
ωZ

⎤⎦
=

£
K̂ êθ k̂

¤⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ . (5.117)

Example 163 F Angular velocity and local roll-pitch-yaw rate.
Using the roll-pitch-yaw frequencies, the angular velocity of a body B with

respect to the global reference frame is

GωB = ωxı̂+ ωy ĵ+ ωz k̂

= ϕ̇êϕ + θ̇êθ + ψ̇êψ. (5.118)
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Relationships between the components of GωB in body frame and roll-pitch-
yaw components are found when the local roll unit vector êϕ and pitch
unit vector êθ are transformed to the body frame. The roll unit vector
êϕ =

£
1 0 0

¤T
transforms to the body frame after rotation θ and then

rotation ψ

B êϕ = Rz,ψRy,θ

⎡⎣ 1
0
0

⎤⎦ =
⎡⎣ cos θ cosψ
− cos θ sinψ

sin θ

⎤⎦ . (5.119)

The pitch unit vector êθ =
£
0 1 0

¤T
transforms to the body frame after

rotation ψ

B êθ = Rz,ψ

⎡⎣ 0
1
0

⎤⎦ =
⎡⎣ sinψ
cosψ
0

⎤⎦ . (5.120)

The yaw unit vector êψ =
£
0 0 1

¤T
is already along the local z-axis.

Hence, GωB can be expressed in body frame Oxyz as

B
GωB =

⎡⎣ ωx
ωy
ωz

⎤⎦
= ϕ̇

⎡⎣ cos θ cosψ
− cos θ sinψ

sin θ

⎤⎦+ θ̇

⎡⎣ sinψ
cosψ
0

⎤⎦+ ψ̇

⎡⎣ 0
0
1

⎤⎦
=

⎡⎣ cos θ cosψ sinψ 0
− cos θ sinψ cosψ 0

sin θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (5.121)

and therefore, GωB in global frame OXY Z in terms of local roll-pitch-yaw
frequencies is

G
GωB =

⎡⎣ ωX
ωY
ωZ

⎤⎦ = BR−1G

⎡⎣ ωx
ωy
ωz

⎤⎦
= BR−1G

⎡⎣ θ̇ sinψ + ϕ̇ cos θ cosψ

θ̇ cosψ − ϕ̇ cos θ sinψ

ψ̇ + ϕ̇ sin θ

⎤⎦
=

⎡⎣ ϕ̇+ ψ̇ sin θ

θ̇ cosϕ− ψ̇ cos θ sinϕ

θ̇ sinϕ+ ψ̇ cos θ cosϕ

⎤⎦
=

⎡⎣ 1 0 sin θ
0 cosϕ − cos θ sinϕ
0 sinϕ cos θ cosϕ

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ . (5.122)



5. Applied Kinematics 241

5.6 General Transformation

Consider a general situation in which two coordinate frames, G(OXY Z)
and B(Oxyz) with a common origin O, are employed to express the com-
ponents of a vector r. There is always a transformation matrix GRB to
map the components of r from the reference frame B(Oxyz) to the other
reference frame G(OXY Z).

Gr = GRB
Br (5.123)

In addition, the inverse map, Br =GR−1B
Gr, can be done by BRG

Br = BRG
Gr (5.124)

where, ¯̄
GRB

¯̄
=
¯̄
BRG

¯̄
= 1 (5.125)

and
BRG =

GR−1B = GRT
B. (5.126)

Proof. Decomposition of the unit vectors of G(OXY Z) along the axes of
B(Oxyz)

Î = (Î · ı̂)̂ı+ (Î · ĵ)ĵ+ (Î · k̂)k̂ (5.127)

Ĵ = (Ĵ · ı̂)̂ı+ (Ĵ · ĵ)ĵ+ (Ĵ · k̂)k̂ (5.128)

K̂ = (K̂ · ı̂)̂ı+ (K̂ · ĵ)ĵ+ (K̂ · k̂)k̂ (5.129)

introduces the transformation matrix GRB to map the local frame to the
global frame⎡⎣ Î

Ĵ

K̂

⎤⎦ =
⎡⎣ Î · ı̂ Î · ĵ Î · k̂

Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦⎡⎣ ı̂
ĵ

k̂

⎤⎦ = GRB

⎡⎣ ı̂
ĵ

k̂

⎤⎦ (5.130)

where

GRB =

⎡⎣ Î · ı̂ Î · ĵ Î · k̂
Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦
=

⎡⎣ cos(Î , ı̂) cos(Î , ĵ) cos(Î , k̂)

cos(Ĵ , ı̂) cos(Ĵ , ĵ) cos(Ĵ , k̂)

cos(K̂, ı̂) cos(K̂, ĵ) cos(K̂, k̂)

⎤⎦ . (5.131)

The elements of GRB are direction cosines of the axes of G(OXY Z) in
frame B(Oxyz). This set of nine direction cosines then completely specifies
the orientation of the frame B(Oxyz) in the frame G(OXY Z), and can
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be used to map the coordinates of any point (x, y, z) to its corresponding
coordinates (X,Y,Z).
Alternatively, using the method of unit vector decomposition to develop

the matrix BRG leads to
Br = BRG

Gr =GR−1B
Gr

BRG =

⎡⎣ ı̂ · Î ı̂ · Ĵ ı̂ · K̂
ĵ · Î ĵ · Ĵ ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦
=

⎡⎣ cos(̂ı, Î) cos(̂ı, Ĵ) cos(̂ı, K̂)

cos(ĵ, Î) cos(ĵ, Ĵ) cos(ĵ, K̂)

cos(k̂, Î) cos(k̂, Ĵ) cos(k̂, K̂)

⎤⎦ (5.132)

and shows that the inverse of a transformation matrix is equal to the trans-
pose of the transformation matrix,

GR−1B = GRT
B . (5.133)

A matrix with condition (5.133) is called orthogonal. Orthogonality of
R comes from the fact that it maps an orthogonal coordinate frame to
another orthogonal coordinate frame.
The transformation matrix R has only three independent elements. The

constraint equations among the elements of R will be found by applying
the orthogonality condition (5.133).

GRB · GRT
B = I (5.134)⎡⎣ r11 r12 r13

r21 r22 r23
r31 r32 r33

⎤⎦⎡⎣ r11 r21 r31
r12 r22 r32
r13 r23 r33

⎤⎦ =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ . (5.135)
Therefore, the dot product of any two different rows of GRB is zero, and
the dot product of any row of GRB with the same row is one.

r211 + r212 + r213 = 1

r221 + r222 + r223 = 1

r231 + r232 + r233 = 1

r11r21 + r12r22 + r13r23 = 0

r11r31 + r12r32 + r13r33 = 0

r21r31 + r22r32 + r23r33 = 0 (5.136)

These relations are also true for columns of GRB, and evidently for rows
and columns of BRG. The orthogonality condition can be summarized in
the following equation:

r̂Hi · r̂Hj = r̂
T
Hi
r̂Hj =

3X
i=1

rijrik = δjk (j, k = 1, 2, 3) (5.137)
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where rij is the element of row i and column j of the transformation matrix
R, and δjk is the Kronecker’s delta

δjk = 1 if j = k, and δjk = 0 if j 6= k. (5.138)

Equation (5.137) gives six independent relations satisfied by nine direction
cosines. It follows that there are only three independent direction cosines.
The independent elements of the matrix R cannot obviously be in the same
row or column, or any diagonal.
The determinant of a transformation matrix is equal to one,¯̄

GRB

¯̄
= 1 (5.139)

because of Equation (5.134), and noting that¯̄
GRB · GRT

B

¯̄
=

¯̄
GRB

¯̄
·
¯̄
GRT

B

¯̄
=

¯̄
GRB

¯̄
·
¯̄
GRB

¯̄
=

¯̄
GRB

¯̄2
= 1. (5.140)

Using linear algebra and row vectors r̂H1 , r̂H2 , and r̂H3 of
GRB , we know

that ¯̄
GRB

¯̄
= r̂TH1

· (r̂H2 × r̂H3) (5.141)

and because the coordinate system is right handed, we have r̂H2×r̂H3 = r̂H1

so
¯̄
GRB

¯̄
= r̂TH1

· r̂H1
= 1.

Example 164 Elements of the transformation matrix.
The position vector r of a point P may be expressed in terms of its

components with respect to either G (OXY Z) or B (Oxyz) frames. If Gr =
100Î − 50Ĵ + 150K̂, and we are looking for components of r in the Oxyz
frame, then we have to find the proper rotation matrix BRG first. Assume
that the angle between the x and X axes is 40 deg, and the angle between
the y and Y axes is 60 deg.
The row elements of BRG are the direction cosines of the Oxyz axes in

the OXY Z coordinate frame. The x-axis lies in the XZ plane at 40 deg
from the X-axis, and the angle between y and Y is 60 deg. Therefore,

BRG =

⎡⎣ ı̂ · Î ı̂ · Ĵ ı̂ · K̂
ĵ · Î ĵ · Ĵ ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦
=

⎡⎣ cos 40 0 sin 40

ĵ · Î cos 60 ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦
=

⎡⎣ 0.766 0 0.643

ĵ · Î 0.5 ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦ (5.142)



244 5. Applied Kinematics

and by using BRG
GRB =

BRG
BRT

G = I

⎡⎣ 0.766 0 0.643
r21 0.5 r23
r31 r32 r33

⎤⎦⎡⎣ 0.766 r21 r31
0 0.5 r32

0.643 r23 r33

⎤⎦ =
⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ (5.143)

we obtain a set of equations to find the missing elements.

0.766 r21 + 0.643 r23 = 0

0.766 r31 + 0.643 r33 = 0

r221 + r223 + 0.25 = 1 (5.144)

r21r31 + 0.5r32 + r23r33 = 0

r231 + r232 + r233 = 1

Solving these equations provides the following transformation matrix:

BRG =

⎡⎣ 0.766 0 0.643
0.557 0.5 −0.663
−0.322 0.866 0.383

⎤⎦ (5.145)

and then we can find the components of Br.

Br = BRG
Gr

=

⎡⎣ 0.766 0 0.643
0.557 0.5 −0.663
−0.322 0.866 0.383

⎤⎦⎡⎣ 100
−50
150

⎤⎦
=

⎡⎣ 173.05
−68.75
−18.05

⎤⎦ (5.146)

Example 165 Global position, using Br and BRG.
The position vector r of a point P may be described in either G (OXY Z)

or B (Oxyz) frames. If Br = 100ı̂− 50ĵ+ 150k̂, and the following BRG is
the transformation matrix to map Gr to Br

Br = BRG
Gr

=

⎡⎣ 0.766 0 0.643
0.557 0.5 −0.663
−0.322 0.866 0.383

⎤⎦ Gr (5.147)
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then the components of Gr in G (OXY Z) would be

Gr = GRB
Br

= BRT
G
Br

=

⎡⎣ 0.766 0.557 −0.322
0 0.5 0.866

0.643 −0.663 0.383

⎤⎦⎡⎣ 100
−50
150

⎤⎦
=

⎡⎣ 0.45
104.9
154.9

⎤⎦ . (5.148)

Example 166 Two points transformation matrix.
The global position vector of two points, P1 and P2, of a rigid body B are

GrP1 =

⎡⎣ 1.077
1.365
2.666

⎤⎦ (5.149)

GrP2 =

⎡⎣ −0.4732.239
−0.959

⎤⎦ . (5.150)

The origin of the body B (Oxyz) is fixed on the origin of G (OXY Z), and
the points P1 and P2 are lying on the local x-axis and y-axis respectively.
To find GRB, we use the local unit vectors Gı̂ and Gĵ

Gı̂ =
GrP1
|GrP1 |

=

⎡⎣ 0.338
0.429
0.838

⎤⎦ (5.151)

Gĵ =
GrP2
|GrP2 |

=

⎡⎣ −0.1910.902
−0.387

⎤⎦ (5.152)

to obtain Gk̂

Gk̂ = ı̂× ĵ = ı̃ ĵ

=

⎡⎣ 0 −0.838 0.429
0.838 0 −0.338
−0.429 0.338 0

⎤⎦⎡⎣ −0.1910.902
−0.387

⎤⎦
=

⎡⎣ −0.922−0.029
0.387

⎤⎦ (5.153)

where ı̃ is the skew-symmetric matrix corresponding to ı̂, and ı̃ ĵ is an
alternative for ı̂× ĵ.



246 5. Applied Kinematics

Hence, the transformation matrix using the coordinates of two points
GrP1 and

GrP2 would be

GRB =
£

Gı̂ Gĵ Gk̂
¤

=

⎡⎣ 0.338 −0.191 −0.922
0.429 0.902 −0.029
0.838 −0.387 0.387

⎤⎦ . (5.154)

Example 167 Length invariant of a position vector.
Describing a vector in different frames utilizing rotation matrices does

not affect the length and direction properties of the vector. Therefore, the
length of a vector is an invariant

|r| =
¯̄
Gr
¯̄
=
¯̄
Br
¯̄
. (5.155)

The length invariant property can be shown by

|r|2 = GrT Gr

=
£
GRB

Br
¤T GRB

Br

= BrT GRT
B
GRB

Br

= BrT Br. (5.156)

Example 168 F Skew symmetric matrices for ı̂, ĵ, and k̂.
The definition of skew symmetric matrix ã corresponding to a vector a

is defined by

ã =

⎡⎣ 0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤⎦ . (5.157)

Hence,

ı̃ =

⎡⎣ 0 0 0
0 0 −1
0 1 0

⎤⎦ (5.158)

j̃ =

⎡⎣ 0 0 1
0 0 0
−1 0 0

⎤⎦ (5.159)

k̃ =

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ . (5.160)

Example 169 Inverse of Euler angles rotation matrix.
Precession-nutation-spin or Euler angle rotation matrix (5.79)
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BRG = Rz,ψRx,θRz,ϕ

=

⎡⎣ cϕcψ − cθsϕsψ cψsϕ+ cθcϕsψ sθsψ
−cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ sθcψ

sθsϕ −cϕsθ cθ

⎤⎦ (5.161)

must be inverted to be a transformation matrix to map body coordinates to
global coordinates.

GRB = BR−1G = RT
z,ϕR

T
x,θR

T
z,ψ

=

⎡⎣ cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ
cψsϕ+ cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ

⎤⎦ (5.162)

The transformation matrix (5.161) is called a local Euler rotation matrix,
and (5.162) is called a global Euler rotation matrix.

Example 170 F Alternative proof for transformation matrix.
Starting with an identity

£
ı̂ ĵ k̂

¤⎡⎣ ı̂
ĵ

k̂

⎤⎦ = 1 (5.163)

we may write ⎡⎣ Î

Ĵ

K̂

⎤⎦ =
⎡⎣ Î

Ĵ

K̂

⎤⎦ £ ı̂ ĵ k̂
¤⎡⎣ ı̂

ĵ

k̂

⎤⎦ . (5.164)

Since matrix multiplication can be performed in any order, we find⎡⎣ Î

Ĵ

K̂

⎤⎦ =

⎡⎣ Î · ı̂ Î · ĵ Î · k̂
Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦⎡⎣ ı̂
ĵ

k̂

⎤⎦
= GRB

⎡⎣ ı̂
ĵ

k̂

⎤⎦ (5.165)

where,

GRB =

⎡⎣ Î

Ĵ

K̂

⎤⎦ £ ı̂ ĵ k̂
¤
. (5.166)

Following the same method we can show that

BRG =

⎡⎣ ı̂
ĵ

k̂

⎤⎦ £ Î Ĵ K̂
¤
. (5.167)
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FIGURE 5.9. A rotating rigid body B(Oxyz) with a fixed point O in a global
frame G(OXY Z).

5.7 Angular Velocity

Consider a rotating rigid body B(Oxyz) with a fixed point O in a reference
frame G(OXY Z) as shown in Figure 5.9. The motion of the body can be
described by a time varying rotation transformation matrix between the
global and body frames to map the instantaneous coordinates of any fixed
point in body frame B into their coordinates in the global frame G

Gr(t) = GRB(t)
Br. (5.168)

The velocity of a body point in the global frame is

Gṙ(t) = Gv(t) (5.169)

= GṘB(t)
Br (5.170)

= Gω̃B
Gr(t) (5.171)

= GωB × Gr(t) (5.172)

where GωB is the angular velocity vector of B with respect to G. It is equal
to a rotation with angular rate φ̇ about an instantaneous axis of rotation
û.

ω =

⎡⎣ ω1
ω2
ω3

⎤⎦ = φ̇ û (5.173)

The angular velocity vector is associated with a skew symmetric matrix
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Gω̃B called the angular velocity matrix

ω̃ =

⎡⎣ 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

⎤⎦ (5.174)

where

Gω̃B = GṘB
GRT

B (5.175)

= φ̇ ũ. (5.176)

Proof. Consider a rigid body with a fixed point O and an attached frame
B(Oxyz) as shown in Figure 5.9. The body frame B is initially coincident
with the global frame G. Therefore, the position vector of a body point P
is

Gr(t0) =
Br. (5.177)

The global time derivative of Gr is

Gv = Gṙ

=
Gd

dt
Gr(t)

=
Gd

dt

£
GRB(t)

Br
¤

=
Gd

dt

£
GRB(t)

Gr(t0)
¤

= GṘB(t)
Br. (5.178)

Eliminating Br between (5.168) and (5.178) determines the velocity of the
point in global frame

Gv = GṘB(t)
GRT

B(t)
Gr(t). (5.179)

We denote the coefficient of Gr(t) by ω̃

Gω̃B =
GṘB

GRT
B (5.180)

and write Equation (5.179) as

Gv = Gω̃B
Gr(t) (5.181)

or as
Gv = GωB × Gr(t). (5.182)

The time derivative of the orthogonality condition, GRB
GRT

B = I, in-
troduces an important identity

GṘB
GRT

B +
GRB

GṘT
B = 0 (5.183)
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which can be utilized to show that Gω̃B = [GṘB
GRT

B] is a skew-symmetric
matrix because

GRB
GṘT

B =
h
GṘB

GRT
B

iT
. (5.184)

The vector GGωB is called the instantaneous angular velocity of the body B
relative to the global frame G as seen from the G frame.
Since a vectorial equation can be expressed in any coordinate frame, we

may use any of the following expressions for the velocity of a body point
in body or global frames

G
GvP = G

GωB × GrP (5.185)
B
GvP = B

GωB × BrP (5.186)

where G
GvP is the global velocity of point P expressed in the global frame

and B
GvP is the global velocity of point P expressed in the body frame.

G
GvP = GRB

B
GvP

= GRB

¡
B
GωB × BrP

¢
(5.187)

G
GvP and

B
GvP can be converted to each other using a rotation matrix

B
GvP = GRT

B
G
GvP (5.188)

= GRT
B Gω̃B

G
GrP

= GRT
B

GṘB
GRT

B
G
GrP

= GRT
B

GṘB
B
GrP . (5.189)

showing that
B
Gω̃B =

GRT
B

GṘB (5.190)

which is called the instantaneous angular velocity of B relative to the global
frame G as seen from the B frame. From the definitions of Gω̃B and B

Gω̃B
we are able to transform the two angular velocity matrices by

Gω̃B =
GRB

B
Gω̃B

GRT
B (5.191)

B
Gω̃B =

GRT
B

G
Gω̃B

GRB (5.192)

or equivalently
GṘB = Gω̃B

GRB (5.193)
GṘB =

GRB
B
Gω̃B (5.194)

Gω̃B
GRB =

GRB
B
Gω̃B. (5.195)

The angular velocity of B in G is negative of the angular velocity of G
in B if both are expressed in the same coordinate frame.

G
Gω̃B = −G

Bω̃G (5.196)
B
Gω̃B = −B

Bω̃G. (5.197)
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GωB and can always be expressed in the form

GωB = ωû (5.198)

where û is a unit vector parallel to GωB and indicates the instantaneous
axis of rotation.

Example 171 Rotation of a body point about a global axis.
Consider a rigid body is turning about the Z-axis with α̇ = 10deg /s. The

global velocity of a point P (5, 30, 10), when the body is turned α = 30deg,
is

GvP = GṘB(t)
BrP (5.199)

=
Gd

dt

⎛⎝⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦⎞⎠⎡⎣ 5
30
10

⎤⎦
= α̇

⎡⎣ − sinα − cosα 0
cosα − sinα 0
0 0 0

⎤⎦⎡⎣ 5
30
10

⎤⎦
=

10π

180

⎡⎣ − sin π
6 − cos π6 0

cos π6 − sin π
6 0

0 0 0

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ −4.97−1.86

0

⎤⎦
at this moment, point P is at

GrP = GRB
BrP (5.200)

=

⎡⎣ cos π6 − sin π
6 0

sin π
6 cos π6 0
0 0 1

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ −10.6728.48

10

⎤⎦ .
Example 172 Rotation of a global point about a global axis.
A point P of a rigid body is at BrP =

£
5 30 10

¤T
. When it is turned

α = 30deg about the Z-axis, the global position of P is

GrP = GRB
BrP (5.201)

=

⎡⎣ cos π6 − sin π
6 0

sin π
6 cos π6 0
0 0 1

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ −10.6728.48

10

⎤⎦ .
If the body is turning with α̇ = 10deg / s, the global velocity of the point P
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would be

GvP = GṘB
GRT

B
GrP (5.202)

=
10π

180

⎡⎣ −sπ6 −cπ6 0
cπ6 −sπ6 0
0 0 0

⎤⎦⎡⎣ cπ6 −sπ6 0
sπ6 cπ6 0
0 0 1

⎤⎦T ⎡⎣ −10.6728.48
10

⎤⎦
=

⎡⎣ −4.97−1.86
0

⎤⎦ .
Example 173 F Principal angular velocities.
The principal rotational matrices about the axes X, Y , and Z are

RX,γ =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦ (5.203)

RY,β =

⎡⎣ cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

⎤⎦ (5.204)

RZ,α =

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦ . (5.205)

and hence, their time derivatives are

ṘX,γ = γ̇

⎡⎣ 0 0 0
0 − sin γ − cos γ
0 cos γ − sin γ

⎤⎦ (5.206)

ṘY,β = β̇

⎡⎣ − sinβ 0 cosβ
0 0 0

− cosβ 0 − sinβ

⎤⎦ (5.207)

ṘZ,α = α̇

⎡⎣ − sinα − cosα 0
cosα − sinα 0
0 0 0

⎤⎦ . (5.208)

Therefore, the principal angular velocity matrices about axes X, Y , and Z
are

Gω̃X = ṘX,γR
T
X,γ = γ̇

⎡⎣ 0 0 0
0 0 −1
0 1 0

⎤⎦ (5.209)

Gω̃Y = ṘY,βR
T
Y,β = β̇

⎡⎣ 0 0 1
0 0 0
−1 0 0

⎤⎦ (5.210)
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Gω̃Z = ṘZ,αR
T
Z,α = α̇

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ (5.211)

which are equivalent to

Gω̃X = γ̇Ĩ (5.212)

Gω̃Y = β̇J̃ (5.213)

Gω̃Z = α̇K̃ (5.214)

and therefore, the principal angular velocity vectors are

GωX = ωX Î = γ̇Î (5.215)

GωY = ωY Ĵ = β̇Ĵ (5.216)

GωZ = ωZ K̂ = α̇K̂. (5.217)

Utilizing the same technique, we can find the following principal angular
velocity matrices about the local axes:

B
Gω̃x = RT

x,ψ Ṙx,ψ = ψ̇

⎡⎣ 0 0 0
0 0 −1
0 1 0

⎤⎦ = ψ̇ ı̃ (5.218)

B
Gω̃y = RT

y,θṘy,θ = θ̇

⎡⎣ 0 0 1
0 0 0
−1 0 0

⎤⎦ = θ̇ j̃ (5.219)

B
Gω̃z = RT

z,ϕṘz,ϕ = ϕ̇

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ = ϕ̇ k̃ (5.220)

Example 174 Decomposition of an angular velocity vector.
Every angular velocity vector can be decomposed to three principal angu-

lar velocity vectors.

GωB =
³
GωB · Î

´
Î +

³
GωB · Ĵ

´
Ĵ +

³
GωB · K̂

´
K̂ (5.221)

= ωX Î + ωY Ĵ + ωZ K̂

= γ̇Î + β̇Ĵ + α̇K̂

= ωX + ωY + ωZ

Example 175 Combination of angular velocities.
Starting from a combination of rotations

0R2 =
0R1

1R2 (5.222)

and taking a time derivative, we find

0Ṙ2 =
0Ṙ1

1R2 +
0R1

1Ṙ2. (5.223)
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Now, substituting the derivative of rotation matrices with

0Ṙ2 = 0ω̃2
0R2 (5.224)

0Ṙ1 = 0ω̃1
0R1 (5.225)

1Ṙ2 = 1ω̃2
1R2 (5.226)

results in

0ω̃2
0R2 = 0ω̃1

0R1
1R2 +

0R1 1ω̃2
1R2

= 0ω̃1
0R2 +

0R1 1ω̃2
0RT

1
0R1

1R2

= 0ω̃1
0R2 +

0
1ω̃2

0R2 (5.227)

where
0R1 1ω̃2

0RT
1 =

0
1ω̃2. (5.228)

Therefore, we find

0ω̃2 = 0ω̃1 +
0
1ω̃2 (5.229)

which indicates that the angular velocities may be added relatively:

0ω2 = 0ω1 +
0
1ω2 (5.230)

This result also holds for any number of angular velocities

0ωn = 0ω1 +
0
1ω2 +

0
2ω3 + · · ·+ 0

n−1ωn (5.231)

=
nX
i=1

0
i−1ωi.

Example 176 F Angular velocity in terms of Euler frequencies.
The angular velocity vector can be expressed by Euler frequencies. There-

fore,

B
GωB = ωx ı̂+ ωy ĵ+ ωzk̂

= ϕ̇êϕ + θ̇êθ + ψ̇êψ

= ϕ̇

⎡⎣ sin θ sinψ
sin θ cosψ
cos θ

⎤⎦+ θ̇

⎡⎣ cosψ
− sinψ
0

⎤⎦+ ψ̇

⎡⎣ 0
0
1

⎤⎦
=

⎡⎣ sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0
cos θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (5.232)
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and

G
GωB = BR−1G

B
GωB

= BR−1G

⎡⎣ ϕ̇ sin θ sinψ + θ̇ cosψ

ϕ̇ sin θ cosψ − θ̇ sinψ

ϕ̇ cos θ + ψ̇

⎤⎦
=

⎡⎣ 0 cosϕ sin θ sinϕ
0 sinϕ − cosϕ sin θ
1 0 cos θ

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (5.233)

where the inverse of the Euler transformation matrix is

BR−1G =

⎡⎣ cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ
cψsϕ+ cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ

⎤⎦ . (5.234)

Example 177 F Angular velocity in terms of rotation frequencies.
Consider the Euler angles transformation matrix:

BRG = Rz,ψRx,θRz,ϕ (5.235)

The angular velocity matrix is then equal to

Bω̃G = BṘG
BRT

G

=

µ
ϕ̇ Rz,ψRx,θ

dRz,ϕ

dt
+ θ̇ Rz,ψ

dRx,θ

dt
Rz,ϕ + ψ̇

dRz,ψ

dt
Rx,θRz,ϕ

¶
× (Rz,ψRx,θRz,ϕ)

T

= ϕ̇Rz,ψRx,θ
dRz,ϕ

dt
RT
z,ϕR

T
x,θR

T
z,ψ

+θ̇ Rz,ψ
dRx,θ

dt
RT
x,θR

T
z,ψ

+ψ̇
dRz,ψ

dt
RT
z,ψ (5.236)

which, in matrix form, is

Bω̃G = ϕ̇

⎡⎣ 0 cos θ − sin θ cosψ
− cos θ 0 sin θ sinψ
sin θ cosψ − sin θ sinψ 0

⎤⎦
+θ̇

⎡⎣ 0 0 sinψ
0 0 cosψ

− sinψ − cosψ 0

⎤⎦+ ψ̇

⎡⎣ 0 1 0
−1 0 0
0 0 0

⎤⎦ (5.237)
or

Bω̃G =

⎡⎣ 0 ψ̇ + ϕ̇cθ θ̇sψ − ϕ̇sθcψ

−ψ̇ − ϕ̇cθ 0 θ̇cψ + ϕ̇sθsψ

−θ̇sψ + ϕ̇sθcψ −θ̇cψ − ϕ̇sθsψ 0

⎤⎦ . (5.238)
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The corresponding angular velocity vector is

BωG = −

⎡⎣ θ̇cψ + ϕ̇sθsψ

−θ̇sψ + ϕ̇sθcψ

ψ̇ + ϕ̇cθ

⎤⎦
= −

⎡⎣ sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0
cos θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ . (5.239)

However,
B
Bω̃G = −B

Gω̃B (5.240)
B
BωG = −B

GωB (5.241)

and therefore,

B
GωB =

⎡⎣ sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0
cos θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ . (5.242)

Example 178 F Coordinate transformation of angular velocity.
Angular velocity 1

1ω2 of coordinate frame B2 with respect to B1 and ex-
pressed in B1 can be expressed in base coordinate frame B0 according to

0R1 1ω̃2
0RT

1 =
0
1ω̃2. (5.243)

To show this equation, it is enough to apply both sides on an arbitrary
vector 0r. Therefore, the left-hand side would be

0R1 1ω̃2
0RT

1
0r = 0R1 1ω̃2

1R0
0r

= 0R1 1ω̃2
1r

= 0R1
¡
1ω2 × 1r

¢
= 0R1 1ω2 × 0R1

1r

= 0
1ω2 × 0r (5.244)

which is equal to the right-hand side after applying on the vector 0r
0
1ω̃2

0r = 0
1ω2 × 0r. (5.245)

Example 179 F Time derivative of unit vectors.
Using Equation (5.186) we can define the time derivative of unit vectors

of a body coordinate frame B(̂ı, ĵ, k̂), rotating in the global coordinate frame
G(Î , Ĵ , K̂)

Gdı̂

dt
= B

GωB × ı̂ (5.246)

Gdĵ

dt
= B

GωB × ĵ (5.247)

Gdk̂

dt
= B

GωB × k̂. (5.248)
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Example 180 F Elements of the angular velocity matrix.
Utilizing the permutation symbol

�ijk =
1

2
(i− j)(j − k)(k − i) , i, j, k = 1, 2, 3 (5.249)

allows us to find the elements of the angular velocity matrix, ω̃, when the
angular velocity vector, ω =

£
ω1 ω2 ω3

¤T
, is given.

ω̃ij = �ijk ωk (5.250)

We may verify that following relationship between permutation symbol
�ijk and Kronecker’s delta δmn.

�ijk�imn = δjmδkn − δjnδkm (5.251)

5.8 F Time Derivative and Coordinate Frames

The time derivative of a vector depends on the coordinate frame in which
we are taking the derivative. The time derivative of a vector r in the global
frame is called the G-derivative and is denoted by

Gd

dt
r

while the time derivative of the vector in the body frame is called the
B-derivative and is denoted by

Bd

dt
r.

The left superscript on the derivative symbol indicates the frame in which
the derivative is taken, and hence, its unit vectors are considered constant.
Time derivative is straightforward if the vector is expressed in the same

coordinate frame that we are taking the derivative, because the unit vec-
tors are constant and scalar coefficients are the only time variables. The
derivatives of BrP in B and GrP in G are

Bd

dt
BrP = B ṙP =

BvP = ẋ ı̂+ ẏ ĵ+ ż k̂ (5.252)

Gd

dt
GrP = GṙP =

GvP = Ẋ Î + Ẏ Ĵ + Ż K̂. (5.253)

It is also possible to find the G-derivative of BrP and the B-derivative
of GrP . We define the G-derivative of a body vector BrP by

B
GvP =

Gd

dt
BrP (5.254)
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and similarly, a B-derivative of a global vector GrP by

G
BvP =

Bd

dt
GrP . (5.255)

When point P is moving in frame B while B is rotating in G, the G-
derivative of BrP (t) is defined by

Gd

dt
BrP (t) = B ṙP +

B
GωB × BrP

= B
GṙP (5.256)

and the B-derivative of GrP is defined by

Bd

dt
GrP (t) = GṙP − GωB × GrP

= G
B ṙP . (5.257)

Proof. Let G(OXY Z) with unit vectors Î, Ĵ , and K̂ be the global co-
ordinate frame, and let B(Oxyz) with unit vectors ı̂, ĵ, and k̂ be a body
coordinate frame. The position vector of a moving point P , as shown in
Figure 5.10, can be expressed in the body and global frames

BrP (t) = x (t) ı̂+ y (t) ĵ+ z (t) k̂ (5.258)
GrP (t) = X (t) Î + Y (t) Ĵ + Z (t) K̂. (5.259)

The time derivative of BrP in B and GrP in G are

Bd

dt
BrP = B ṙP =

BvP = ẋ ı̂+ ẏ ĵ+ ż k̂ (5.260)

Gd

dt
GrP = GṙP =

GvP = Ẋ Î + Ẏ Ĵ + Ż K̂ (5.261)

because the unit vectors of B in Equation (5.258) and the unit vectors of
G in Equation (5.259) are considered constant.
Using Equation (5.186) for the global velocity of a body fixed point P ,

expressed in body frame

B
GvP = B

GωB × BrP

=
Gd

dt
BrP (5.262)

and definition (5.254), we can find the G-derivative of the position vector
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FIGURE 5.10. A moving body point P at Br(t) in the rotating body frame B.

BrP as

Gd

dt
BrP =

Gd

dt

³
xı̂+ yĵ+ zk̂

´
= ẋ ı̂+ ẏ ĵ+ ż k̂ + x

Gdı̂

dt
+ y

Gdĵ

dt
+ z

Gdk̂

dt

= B ṙP + xB
GωB × ı̂+ y BGωB × ĵ+ z BGωB × k̂

= B ṙP +
B
GωB ×

³
xı̂+ yĵ+ zk̂

´
= B ṙP +

B
GωB × BrP

=
Bd

dt
BrP +

B
GωB × BrP . (5.263)

We achieved this result because the x, y, and z components of BrP are
scalar. Scalars are invariant with respect to frame transformations. There-
fore, if x is a scalar then,

Gd

dt
x =

Bd

dt
x = ẋ. (5.264)

The B-derivative of GrP can be found similarly

Bd

dt
GrP =

Bd

dt

³
XÎ + Y Ĵ + ZK̂

´
= Ẋ Î + Ẏ Ĵ + Ż K̂ +X

BdÎ

dt
+ Y

BdĴ

dt
+ Z

BdK̂

dt

= GṙP +
G
BωG × GrP (5.265)

and therefore,
Bd

dt
GrP =

GṙP − GωB × GrP . (5.266)
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The angular velocity of B relative to G is a vector quantity and can be
expressed in either frames.

G
GωB = ωX Î + ωY Ĵ + ωZ K̂ (5.267)
B
GωB = ωx ı̂+ ωy ĵ+ ωzk̂. (5.268)

Example 181 F Time derivative of a moving point in B.
Consider a local frame B, rotating in G by α̇ about the Z-axis, and a

moving point at BrP (t) = t̂ı . Therefore,

GrP = GRB
BrP = RZ,α(t)

BrP

=

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦⎡⎣ t
0
0

⎤⎦
= t cosαÎ + t sinαĴ. (5.269)

The angular velocity matrix is

Gω̃B = GṘB
GRT

B

= α̇K̃ (5.270)

that gives

GωB = α̇K̂. (5.271)

It can also be verified that

B
Gω̃B = GRT

B
G
Gω̃B

GRB

= α̇k̃ (5.272)

and therefore,
B
GωB = α̇k̂. (5.273)

Now we can find the following derivatives:

Bd

dt
BrP = B ṙP

= ı̂ (5.274)

Gd

dt
GrP = GṙP

= (cosα− tα̇ sinα) Î + (sinα+ tα̇ cosα) Ĵ . (5.275)
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For the mixed derivatives, we start with

Gd

dt
BrP =

Bd

dt
BrP +

B
GωB × BrP

=

⎡⎣ 1
0
0

⎤⎦+ α̇

⎡⎣ 0
0
1

⎤⎦×
⎡⎣ t
0
0

⎤⎦
=

⎡⎣ 1
tα̇
0

⎤⎦ = ı̂+ tα̇ĵ = B
GṙP (5.276)

which is the global velocity of P expressed in B. We may, however, trans-
form B

GṙP to the global frame and find the global velocity expressed in G.

GṙP = GRB
B
GṙP

=

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦⎡⎣ 1
tα̇
0

⎤⎦
=

⎡⎣ cosα− tα̇ sinα
sinα+ tα̇ cosα

0

⎤⎦
= (cosα− tα̇ sinα) Î + (sinα+ tα̇ cosα) Ĵ (5.277)

The next derivative is
Bd

dt
GrP = GṙP − GωB × GrP

=

⎡⎣ cosα− tα̇ sinα
sinα+ tα̇ cosα

0

⎤⎦− α̇

⎡⎣ 0
0
1

⎤⎦×
⎡⎣ t cosα

t sinα
0

⎤⎦
=

⎡⎣ cosα
sinα
0

⎤⎦ = (cosα) Î + (sinα) Ĵ
= G

B ṙP (5.278)

which is the velocity of P relative to B and expressed in G. To express this
velocity in B we apply a frame transformation

B ṙP = GRT
B

G
B ṙP

=

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦T ⎡⎣ cosα
sinα
0

⎤⎦
=

⎡⎣ 1
0
0

⎤⎦ = ı̂. (5.279)
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Sometimes it is more applied if we transform the vector to the same frame in
which we are taking the derivative and then apply the differential operator.
Therefore,

Gd

dt
BrP =

Gd

dt

¡
GRB

BrP
¢
=

Gd

dt

⎡⎣ t cosα
t sinα
0

⎤⎦
=

⎡⎣ cosα− tα̇ sinα
sinα+ tα̇ cosα

0

⎤⎦ (5.280)

and
Bd

dt
GrP =

Bd

dt

¡
GRT

B
GrP

¢
=

Bd

dt

⎡⎣ t
0
0

⎤⎦ =
⎡⎣ 1
0
0

⎤⎦ . (5.281)

Example 182 F Orthogonality of position and velocity vectors.
If the position vector of a body point in global frame is denoted by r then

dr

dt
· r = 0. (5.282)

To show this property we may take a derivative from

r · r = r2 (5.283)

and find

d

dt
(r · r) =

dr

dt
· r+ r · dr

dt

= 2
dr

dt
· r

= 0. (5.284)

Equation (5.282) is correct in every coordinate frame and for every con-
stant length vector, as long as the vector and the derivative are expressed
in the same coordinate frame.

Example 183 F Derivative transformation formula.
The global velocity of a fixed point in the body coordinate frame B (Oxyz)

can be found by Equation (5.172). Now consider a point P that can move
in B (Oxyz). In this case, the body position vector BrP is not constant, and
therefore, the global velocity of such a point expressed in B is

Gd

dt
BrP =

Bd

dt
BrP +

B
GωB × BrP (5.285)

= B
GṙP . (5.286)
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Sometimes the result of Equation (5.285) is utilized to define transfor-
mation of the differential operator from a body to a global coordinate frame

Gd

dt
¤ =

Bd

dt
¤+ B

GωB × B¤ (5.287)

= B
G¤̇ (5.288)

however, special attention must be paid to the coordinate frame in which the
vector ¤ and the final result are expressed. The final result is B

G¤̇ showing
the global (G) time derivative expressed in body frame (B). The vector ¤
might be any vector such as position, velocity, angular velocity, momentum,
angular velocity, or even a time-varying force vector.
Equation (5.287) is called the derivative transformation formula

and relates the time derivative of a vector as it would be seen from frame G
to its derivative as seen in frame B. The derivative transformation formula
(5.287) is more general and can be applied to every vector for derivative
transformation between every two relatively moving coordinate frames.

Example 184 F Differential equation for rotation matrix.
Equation (5.175) for defining the angular velocity matrix may be written

as a first-order differential equation

d

dt
GRB − GRB Gω̃B = 0. (5.289)

The solution of the equation confirms the exponential definition of the ro-
tation matrix as

GRB = eω̃t (5.290)

or

ω̃t = φ̇ ũ

= ln
¡
GRB

¢
. (5.291)

Example 185 F Acceleration of a body point in the global frame.
The angular acceleration vector of a rigid body B(Oxyz) in the global

frame G(OXY Z) is denoted by GαB and is defined as the global time deriv-
ative of GωB.

GαB =
Gd

dt
GωB (5.292)

Using this definition, the acceleration of a fixed body point in the global
frame is

GaP =
Gd

dt

¡
GωB × GrP

¢
= GαB × GrP + GωB × (GωB × GrP ). (5.293)
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FIGURE 5.11. A body coordinate frame moving with a fixed point in the global
coordinate frame.

Example 186 F Alternative definition of angular velocity vector.
The angular velocity vector of a rigid body B(̂ı, ĵ, k̂) in global frame

G(Î , Ĵ , K̂) can also be defined by

B
GωB = ı̂(

Gdĵ

dt
· k̂) + ĵ(

Gdk̂

dt
· ı̂) + k̂(

Gdı̂

dt
· ĵ). (5.294)

Proof. Consider a body coordinate frame B moving with a fixed point in
the global coordinate frame G. The fixed point of the body is taken as the
origin of both coordinate frames, as shown in Figure 5.11. To describe the
motion of the body, it is sufficient to describe the motion of the local unit
vectors ı̂, ĵ, k̂ . Let rP be the position vector of a body point P . Then, BrP
is a vector with constant components.

BrP = xı̂+ yĵ+ zk̂ (5.295)

When the body moves, it is only the unit vectors ı̂, ĵ, and k̂ that vary
relative to the global coordinate frame. Therefore, the vector of differential
displacement is

drP = x dı̂+ y dĵ+ z dk̂ (5.296)

which can also be expressed by

drP = (drP · ı̂) ı̂+ (drP · ĵ) ĵ+
³
drP · k̂

´
k̂. (5.297)

Substituting (5.296) in the right-hand side of (5.297) results in

drP =
³
xı̂ · dı̂+ yı̂ · dĵ+ zı̂ · dk̂

´
ı̂

+
³
xĵ · dı̂+ yĵ · dĵ+ zĵ · dk̂

´
ĵ

+
³
xk̂ · dı̂+ yk̂ · dĵ+ zk̂ · dk̂

´
k̂. (5.298)
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Utilizing the unit vectors’ relationships

ĵ · dı̂ = −ı̂ · dĵ (5.299)

k̂ · dĵ = −ĵ · dk̂ (5.300)

ı̂ · dk̂ = −k̂ · dı̂ (5.301)

ı̂ · dı̂ = ĵ · dĵ = k̂ · dk̂ = 0 (5.302)

ı̂ · ĵ = ĵ · k̂ = k̂ · ı̂ = 0 (5.303)

ı̂ · ı̂ = ĵ · ĵ = k̂ · k̂ = 1 (5.304)

the drP reduces to

drP =
³
zı̂ · dk̂ − yĵ · dı̂

´
ı̂

+
³
xĵ · dı̂− zk̂ · dĵ

´
ĵ

+
³
yk̂ · dĵ− xı̂ · dk̂

´
k̂. (5.305)

This equation can be rearranged to be expressed as a vector product

drP =
³
(k̂ · dĵ)̂ı+ (̂ı · dk̂)ĵ+ (ĵ · dı̂)k̂

´
×
³
xı̂+ yĵ+ zk̂

´
(5.306)

or

B
GṙP =

Ã
(k̂ ·

Gdĵ

dt
)̂ı+ (̂ı ·

Gdk̂

dt
)ĵ+ (ĵ ·

Gdı̂

dt
)k̂

!
×
³
xı̂+ yĵ+ zk̂

´
.

(5.307)
Comparing this result with

ṙP = GωB × rP (5.308)

shows that

B
GωB = ı̂

µ
Gdĵ

dt
· k̂
¶
+ ĵ

Ã
Gdk̂

dt
· ı̂
!
+ k̂

µ
Gdı̂

dt
· ĵ
¶
. (5.309)

Example 187 F Alternative proof for angular velocity definition (5.294).

The angular velocity definition presented in Equation (5.294) can also be
shown by direct substitution for GRB in the angular velocity matrix B

Gω̃B

B
Gω̃B =

GRT
B
GṘB . (5.310)
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Therefore,

B
Gω̃B =

⎡⎣ ı̂ · Î ı̂ · Ĵ ı̂ · K̂
ĵ · Î ĵ · Ĵ ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦ · Gd
dt

⎡⎣ Î · ı̂ Î · ĵ Î · k̂
Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ
ı̂ ·

Gdı̂

dt

¶ µ
ı̂ ·

Gdĵ

dt

¶ Ã
ı̂ ·

Gdk̂

dt

!
µ
ĵ ·

Gdı̂

dt

¶ µ
ĵ ·

Gdĵ

dt

¶ Ã
ĵ ·

Gdk̂

dt

!
µ
k̂ ·

Gdı̂

dt

¶ µ
k̂ ·

Gdĵ

dt

¶ Ã
k̂ ·

Gdk̂

dt

!

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.311)

which shows that

B
GωB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ
Gdĵ

dt
· k̂
¶

Ã
Gdk̂

dt
· ı̂
!

µ
Gdı̂

dt
· ĵ
¶

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.312)

Example 188 F Second derivative.
In general, Gd r/dt is a variable vector in G(OXY Z) and in any other

coordinate frame such as B (oxyz). Therefore, it can be differentiated in
either coordinate frames G or B. However, the order of differentiating is
important. In general,

Bd

dt

Gdr

dt
6=

Gd

dt

Bdr

dt
. (5.313)

As an example, consider a rotating body coordinate frame about the Z-axis,
and a variable vector as

Gr = tÎ. (5.314)

Therefore,
Gdr

dt
= Gṙ = Î (5.315)

and hence,

B

µ
Gdr

dt

¶
= B

Gṙ = RT
Z,ϕ

h
Î
i

=

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦⎡⎣ 1
0
0

⎤⎦
= cosϕı̂− sinϕĵ (5.316)
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which provides
Bd

dt

Gdr

dt
= −ϕ̇ sinϕı̂− ϕ̇ cosϕĵ (5.317)

and
G

µ
Bd

dt

Gdr

dt

¶
= −ϕ̇Ĵ . (5.318)

Now
Br = RT

Z,ϕ

h
tÎ
i
= t cosϕı̂− t sinϕĵ (5.319)

that provides

Bdr

dt
= (−tϕ̇ sinϕ+ cosϕ) ı̂− (sinϕ+ tϕ̇ cosϕ) ĵ (5.320)

and

G

µ
Bdr

dt

¶
= G

B ṙ

= RZ,ϕ ((−tϕ̇ sinϕ+ cosϕ) ı̂− (sinϕ+ tϕ̇ cosϕ) ĵ)

=

⎡⎣ cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

⎤⎦⎡⎣ −tϕ̇ sinϕ+ cosϕ− sinϕ− tϕ̇ cosϕ
0

⎤⎦
= Î − tϕ̇Ĵ (5.321)

which shows

Gd

dt

Bdr

dt
= − (ϕ̇+ tϕ̈) Ĵ (5.322)

6=
Bd

dt

Gdr

dt
.

5.9 Rigid Body Velocity

Consider a rigid body with an attached local coordinate frame B (oxyz)
moving freely in a fixed global coordinate frame G(OXY Z), as shown in
Figure 5.12. The rigid body can rotate in the global frame, while the origin
of the body frame B can translate relative to the origin of G. The coor-
dinates of a body point P in local and global frames are related by the
following equation:

GrP =
GRB

BrP +
GdB (5.323)

where GdB indicates the position of the moving origin o relative to the
fixed origin O.
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FIGURE 5.12. A rigid body with an attached coordinate frame B (oxyz) moving
freely in a global coordinate frame G(OXY Z).

The velocity of the point P in G is
GvP = GṙP

= GṘB
BrP + GḋB

= Gω̃B
G
BrP +

GḋB

= Gω̃B
¡
GrP − GdB

¢
+ GḋB

= GωB ×
¡
GrP − GdB

¢
+ GḋB . (5.324)

Proof. Direct differentiating shows

GvP =
Gd

dt
GrP =

GṙP

=
Gd

dt

¡
GRB

BrP +
GdB

¢
= GṘB

BrP +
GḋB. (5.325)

The local position vector BrP can be substituted from (5.323) to obtain
GvP = GṘB

GRT
B

¡
GrP − GdB

¢
+ GḋB

= Gω̃B
¡
GrP − GdB

¢
+ GḋB

= GωB ×
¡
GrP − GdB

¢
+ GḋB. (5.326)

It may also be written using relative position vector
GvP = GωB × G

BrP +
GḋB . (5.327)
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FIGURE 5.13. Geometric interpretation of rigid body velocity.

Example 189 Geometric interpretation of rigid body velocity.
Figure 5.13 illustrates a body point P of a moving rigid body. The global

velocity of point P
GvP = GωB × G

BrP +
GḋB

is a vector addition of rotational and translational velocities, both expressed
in the global frame. At the moment, the body frame is assumed to be coin-
cident with the global frame, and the body frame has a velocity GḋB with
respect to the global frame. The translational velocity GḋB is a common
property for every point of the body, but the rotational velocity GωB × G

BrP
differs for different points of the body.

Example 190 Velocity of a moving point in a moving body frame.
Assume that point P in Figure 5.12 is moving in frame B, indicated by

time varying position vector BrP (t). The global velocity of P is a composi-
tion of the velocity of P in B, rotation of B relative to G, and velocity of
B relative to G.

Gd

dt
GrP =

Gd

dt

¡
GdB + GRB

BrP
¢

=
Gd

dt
GdB +

Gd

dt

¡
GRB

BrP
¢

= GḋB +
G
B ṙP + GωB × G

BrP (5.328)

Example 191 Velocity of a body point in multiple coordinate frames.
Consider three frames, B0, B1 and B2, as shown in Figure 5.14. The

velocity of point P should be measured and expressed in a coordinate frame.
If the point is stationary in a frame, say B2, then the time derivative of
2rP in B2 is zero. If frame B2 is moving relative to frame B1, then, the



270 5. Applied Kinematics

X Y

Z

x

y
0d1

B0 B2

0rP

z

P
2rP

x

y

B1 z

1d2

FIGURE 5.14. A rigid body coordinate frame B2 is moving in a frame B1 that
is moving in the base coordinate frame B0.

time derivative of 1rP is a combination of the rotational component due to
rotation of B2 relative to B1 and the velocity of B2 relative to B1. In forward
velocity kinematics, the velocities must be measured in the base frame B0.
Therefore, the velocity of point P in the base frame is a combination of the
velocity of B2 relative to B1 and the velocity of B1 relative to B0.
The global coordinate of the body point P is

0rP = 0d1 +
0
1d2 +

0
2rP (5.329)

= 0d1 +
0R1

1d2 +
0R2

2rP . (5.330)

Therefore, the velocity of point P can be found by combining the relative
velocities

0ṙP = 0ḋ1 + (
0Ṙ1

1d2 +
0R1

1ḋ2) +
0Ṙ2

2rP

= 0ḋ1 +
0
0ω1 × 0

1d2 +
0R1

1ḋ2 +
0
0ω2 × 0

2rP (5.331)

Most of the time, it is better to use a relative velocity method and write

0
0vP =

0
0v1 +

0
1v2 +

0
2vP (5.332)

because

0
0v1 = 0

0ḋ1 (5.333)
0
1v2 = 0

0ω1 × 0
1d2 +

0R1
1ḋ2 (5.334)

0
2vP = 0

0ω2 × 0
2rP (5.335)
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and therefore,

0vP =
0ḋ1 +

0
0ω1 × 0

1d2 +
0R1

1ḋ2 +
0
0ω2 × 0

2rP . (5.336)

Example 192 Velocity vectors are free vectors.
Velocity vectors are free, so to express them in different coordinate frames

we need only to premultiply them by a rotation matrix. Hence, considering
k
jvi as the velocity of the origin of the Bi coordinate frame with respect to
the origin of frame Bj expressed in frame Bk, we can write

k
jvi = − k

i vj (5.337)

and
k
jvi =

kRm
m
j vi (5.338)

and therefore,
id

dt
i
irP =

ivP =
i
jvP +

i
iωj × i

jrP . (5.339)

Example 193 F Zero velocity points.
To answer whether there is a point with zero velocity at each time, we

may utilize Equation (5.324) and write

Gω̃B
¡
Gr0 − GdB

¢
+ GḋB = 0 (5.340)

to search for Gr0 which refers to a point with zero velocity

Gr0 =
GdB − Gω̃

−1
B

GḋB (5.341)

however, the skew symmetric matrix Gω̃B is singular and has no inverse.
In other words, there is no general solution for Equation (5.340).
If we restrict ourselves to planar motions, say XY -plane, then GωB =

ωK̂ and Gω̃
−1
B = 1/ω. Hence, in 2D space there is a point at any time with

zero velocity at position Gr0 given by

Gr0(t) =
GdB(t)−

1

ω
GḋB(t). (5.342)

The zero velocity point is called the pole or instantaneous center of
rotation. The position of the pole is generally a function of time and the
path of its motion is called a centroid.

Example 194 F Eulerian and Lagrangian view points.
When a variable quantity is measured within the stationary global coor-

dinate frame, it is called absolute or the Lagrangian viewpoint. When the
variable is measured within a moving body coordinate frame, it is called
relative or the Eulerian viewpoint.
In 2D planar motion of a rigid body, there is always a pole of zero velocity

at
Gr0 =

GdB −
1

ω
GḋB. (5.343)
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FIGURE 5.15. A rotating rigid body B(Oxyz) with a fixed point O in a reference
frame G(OXY Z).

The position of the pole in the body coordinate frame can be found by sub-
stituting for Gr from (5.323)

GRB
Br0 +

GdB =
GdB − Gω̃

−1
B

GḋB (5.344)

and solving for the position of the zero velocity point in the body coordinate
frame Br0.

Br 0 = −GRT
B Gω̃

−1
B

GḋB

= −GRT
B

h
GṘB

GRT
B

i−1
GḋB

= −GRT
B

h
GRB

GṘ−1B

i
GḋB

= −GṘ−1B
GḋB (5.345)

Therefore, Gr0 indicates the path of motion of the pole in the global frame,
while Br0 indicates the same path in the body frame. The Gr0 refers to the
Lagrangian centroid and Br0 refers to the Eulerian centroid.

5.10 Angular Acceleration

Consider a rotating rigid body B(Oxyz) with a fixed point O in a reference
frame G(OXY Z) as shown in Figure 5.15.
Equation (5.172), for the velocity vector of a point in a fixed origin body

frame,

Gṙ(t) = Gv(t)

= Gω̃B
Gr(t)

= GωB × Gr(t) (5.346)
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can be utilized to find the acceleration vector of the body point

Gr̈ =
Gd

dt
Gṙ(t)

= GαB × Gr+ GωB ×
¡
GωB × Gr

¢
(5.347)

=
³
φ̈û+ φ̇u̇

´
× Gr+ φ̇

2
û×

¡
û× Gr

¢
. (5.348)

GαB is the angular acceleration vector of the body with respect to the G
frame.

GαB =
Gd

dt
GωB (5.349)

Proof. Differentiating Equation (5.346) gives
Gr̈ = Gω̇B × Gr+ GωB × Gṙ

= GαB × Gr+ GωB ×
¡
GωB × Gr

¢
(5.350)

and because

ω = φ̇û (5.351)

α = φ̈û+ φ̇u̇ (5.352)

we derive Equation (5.348). Therefore, the position, velocity, and accelera-
tion vectors of a body point are

BrP = xı̂+ yĵ+ zk̂ (5.353)

GvP = GṙP =
Gd

dt
BrP

= GωB × Gr (5.354)

GaP = Gv̇P =
Gr̈P =

Gd2

dt2
BrP

= GαB × Gr+ GωB × Gṙ

= GαB × Gr+ GωB × (GωB × Gr). (5.355)

The angular acceleration expressed in the body frame is the body derivative
of the angular velocity vector. To show this, we use the derivative transport
formula (5.287)

B
GαB =

Gd

dt
B
GωB

=
Bd

dt
B
GωB +

B
GωB × B

GωB

=
Bd

dt
B
GωB

= B
Gω̇B. (5.356)
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FIGURE 5.16. Illustration of a simple pendulum.

The angular acceleration of B in G can always be expressed in the form

GαB = GαB ûα (5.357)

where ûα is a unit vector parallel to GαB. The angular velocity and angular
acceleration vectors are not parallel in general, and therefore,

ûα 6= ûω (5.358)

GαB 6= Gω̇B. (5.359)

However, the only special case is when the axis of rotation is fixed in both
G and B frames. In this case

GαB = α û = ω̇ û = φ̈ û. (5.360)

Example 195 Velocity and acceleration of a simple pendulum.
A point mass attached to a massless rod and hanging from a revolute joint

is called a simple pendulum. Figure 5.16 illustrates a simple pendulum. A
local coordinate frame B is attached to the pendulum that rotates in a global
frame G. The position vector of the bob and the angular velocity vector GωB

are

Br = lı̂ (5.361)

Gr = GRB
Br =

⎡⎣ l sinφ
−l cosφ
0

⎤⎦ (5.362)

B
GωB = φ̇k̂ (5.363)

GωB = GRT
B

B
GωB = φ̇ K̂. (5.364)
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GRB =

⎡⎣ cos
¡
3
2π + φ

¢
− sin

¡
3
2π + φ

¢
0

sin
¡
3
2π + φ

¢
cos
¡
3
2π + φ

¢
0

0 0 1

⎤⎦
=

⎡⎣ sinφ cosφ 0
− cosφ sinφ 0
0 0 1

⎤⎦ (5.365)

Its velocity is therefore given by

B
Gv = B ṙ+ B

GωB × B
Gr

= 0 + φ̇k̂ × lı̂

= l φ̇ĵ (5.366)

Gv = GRB
Bv =

⎡⎣ l φ̇ cosφ

l φ̇ sinφ
0

⎤⎦ . (5.367)

The acceleration of the bob is then equal to

B
Ga = B

Gv̇ +
B
GωB × B

Gv

= l φ̈ĵ+ φ̇k̂ × l φ̇ĵ

= l φ̈ĵ− l φ̇
2
ı̂ (5.368)

Ga = GRB
Ba =

⎡⎢⎣ l φ̈ cosφ− l φ̇
2
sinφ

l φ̈ sinφ+ l φ̇
2
cosφ

0

⎤⎥⎦ . (5.369)

Example 196 Motion of a vehicle on the Earth.
Consider the motion of a vehicle on the Earth at latitude 30 deg and

heading north, as shown in Figure 5.17. The vehicle has the velocity v =
B
E ṙ = 80 km/h = 22.22m/ s and acceleration a =

B
E r̈ = 0.1m/ s

2, both with
respect to the road. The radius of the Earth is R, and hence, the vehicle’s
kinematics are

B
Er = Rk̂ m (5.370)
B
E ṙ = 22.22ı̂ m/ s (5.371)
B
E r̈ = 0.1ı̂ m/ s2 (5.372)

θ̇ =
v

R
rad/ s (5.373)

θ̈ =
a

R
rad/ s2. (5.374)

There are three coordinate frames involved. A body coordinate frame B is
attached to the vehicle as shown in the figure. A global coordinate G is set
up at the center of the Earth. Another local coordinate frame E is rigidly
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FIGURE 5.17. The motion of a vehicle at 30 deg latitude and heading north on
the Earth.

attached to the Earth and turns with the Earth. The frames E and G are
assumed coincident at the moment. The angular velocity of B is

B
GωB = GωE +

G
EωB

= BRG

³
ωE K̂ + θ̇Î

´
= (ωE cos θ) ı̂+ (ωE sin θ) k̂ + θ̇ĵ

= (ωE cos θ) ı̂+ (ωE sin θ) k̂ +
v

R
ĵ. (5.375)

Therefore, the velocity and acceleration of the vehicle are

B
Gv = B ṙ+ B

GωB × B
Gr

= 0 + B
GωB × Rk̂

= vı̂− (RωE cos θ) ĵ (5.376)
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B
Ga = B

Gv̇+
B
GωB × B

Gv

= aı̂+
³
RωE θ̇ sin θ

´
ĵ+

⎡⎢⎣ ωE cos θ
v

R
ωE sin θ

⎤⎥⎦×
⎡⎣ v
−RωE cos θ

0

⎤⎦
= aı̂+

³
RωE θ̇ sin θ

´
ĵ+

⎡⎣ Rω2E cos θ sin θ
vωE sin θ

− 1
Rv

2 −Rω2E cos
2 θ

⎤⎦
=

⎡⎣ a+Rω2E cos θ sin θ

2RωE θ̇ sin θ
− 1

Rv
2 −Rω2E cos

2 θ

⎤⎦ . (5.377)

The term aı̂ is the acceleration relative to Earth, (2RωE θ̇ sin θ)ĵ is the
Coriolis acceleration, −v2

R k̂ is the centrifugal acceleration due to traveling,
and −(Rω2E cos2 θ) is the centrifugal acceleration due to Earth’s rotation.
Substituting the numerical values and accepting R = 6.3677× 106m pro-

vides

B
Gv = 22.22ı̂− 6.3677× 106

µ
2π

24× 3600
366.25

365.25

¶
cos

π

6
ĵ

= 22.22ı̂− 402.13ĵ m/ s (5.378)

B
Ga = 1.5662× 10−2ı̂+ 1.6203× 10−3ĵ− 2.5473× 10−2k̂ m/ s2. (5.379)

Example 197 F Combination of angular accelerations.
It is shown that the angular velocity of several bodies rotating relative to

each other can be related according to (5.231)

0ωn = 0ω1 +
0
1ω2 +

0
2ω3 + · · ·+ 0

n−1ωn. (5.380)

However, in general, there is no such equation for angular accelerations

0αn 6= 0α1 +
0
1α2 +

0
2α3 + · · ·+ 0

n−1αn. (5.381)

To show this, consider a pair of rigid links connected by revolute joints.
The angular velocities of the links are

0ω1 = θ̇1
0k̂0 (5.382)

0
1ω2 = θ̇2

0k̂1 (5.383)

0ω2 = 0ω1 +
0
1ω2

= θ̇1
0k̂0 + θ̇2

0k̂1

= θ̇1
0k̂0 + θ̇2

0R1
1k̂1 (5.384)
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however, the angular accelerations show that

0α1 =
0d

dt
0ω1 = 0ω̇1

0k̂0 (5.385)

0α2 =
0d

dt
0ω2 =

0d

dt

³
θ̇1

0k̂0 + θ̇2
0R1

1k̂1

´
= θ̈1

0k̂0 + θ̈2
0R1

1k̂1 + 0ω1 × θ̇2
0R1

1k̂1

= θ̈1
0k̂0 + θ̈2

0k̂1 + θ̇1 θ̇2
0k̂0 × 0k̂1

= 0α1 +
0
1α2 + 0ω1 × 0

1ω2 (5.386)

and therefore,
0α2 6= 0α1 +

0
1α2. (5.387)

Equation (5.386) is the relative acceleration equation. It expresses the
relative accelerations for connected rigid bodies.

Example 198 F Angular acceleration and Euler angles.
The angular velocity B

GωB in terms of Euler angles is

G
GωB =

⎡⎣ ωX
ωY
ωZ

⎤⎦ =
⎡⎣ 0 cosϕ sin θ sinϕ
0 sinϕ − cosϕ sin θ
1 0 cos θ

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦
=

⎡⎣ θ̇ cosϕ+ ψ̇ sin θ sinϕ

θ̇ sinϕ− ψ̇ cosϕ sin θ

ϕ̇+ ψ̇ cos θ

⎤⎦ . (5.388)

The angular acceleration is then equal to

G
GαB =

Gd

dt
G
GωB (5.389)

=

⎡⎢⎢⎣
cosϕ

³
θ̈ + ϕ̇ψ̇ sin θ

´
+ sinϕ

³
ψ̈ sin θ + θ̇ψ̇ cos θ − θ̇ϕ̇

´
sinϕ

³
θ̈ + ϕ̇ψ̇ sin θ

´
+ cosϕ

³
θ̇ϕ̇− ψ̈ sin θ − θ̇ψ̇ cos θ

´
ϕ̈+ ψ̈ cos θ − θ̇ψ̇ sin θ

⎤⎥⎥⎦ .
The angular acceleration vector in the body coordinate frame is then equal
to
B
GαB = GRT

B
G
GαB (5.390)

=

⎡⎣ cϕcψ − cθsϕsψ cψsϕ+ cθcϕsψ sθsψ
−cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ sθcψ

sθsϕ −cϕsθ cθ

⎤⎦ G
GαB

=

⎡⎢⎢⎣
cosψ

³
θ̈ + ϕ̇ψ̇ sin θ

´
+ sinψ

³
ϕ00 sin θ + θ̇ϕ̇ cos θ − θ̇ψ̇

´
cosψ

³
ϕ̈ sin θ + θ̇ϕ̇ cos θ − θ̇ψ̇

´
− sinψ

³
θ̈ + ϕ̇ψ̇ sin θ

´
ϕ̈ cos θ − ψ̈ − θ̇ϕ̇ sin θ

⎤⎥⎥⎦ .
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FIGURE 5.18. A rigid body with coordinate frame B (oxyz) moving freely in a
fixed global coordinate frame G(OXY Z).

5.11 Rigid Body Acceleration

Consider a rigid body with an attached local coordinate frame B (oxyz)
moving freely in a fixed global coordinate frame G(OXY Z). The rigid
body can rotate in the global frame, while the origin of the body frame B
can translate relative to the origin of G. The coordinates of a body point
P in local and global frames, as shown in Figure 5.18, are related by the
equation

GrP =
GRB

BrP +
GdB (5.391)

where GdB indicates the position of the moving origin o relative to the
fixed origin O.
The acceleration of point P in G is

GaP = Gv̇P =
Gr̈P

= GαB ×
¡
GrP − GdB

¢
+GωB ×

¡
GωB ×

¡
GrP − GdB

¢¢
+ Gd̈B . (5.392)

Proof. The acceleration of point P is a consequence of differentiating the
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velocity equation (5.326) or (5.327).

GaP =
Gd

dt
GvP

= GαB × G
BrP + GωB × G

B ṙP +
Gd̈B

= GαB × G
BrP + GωB ×

¡
GωB × G

BrP
¢
+ Gd̈B

= GαB ×
¡
GrP − GdB

¢
+GωB ×

¡
GωB ×

¡
GrP − GdB

¢¢
+ Gd̈B. (5.393)

The term GωB ×
¡
GωB × G

BrP
¢
is called centripetal acceleration and is

independent of the angular acceleration. The term GαB × G
BrP is called

tangential acceleration and is perpendicular to G
BrP .

Example 199 Acceleration of joint 2 of a 2R planar manipulator.
A 2R planar manipulator is illustrated in Figure 5.19. The elbow joint

has a circular motion about the base joint. Knowing that

0ω1 = θ̇1
0k̂0 (5.394)

we can write

0α1 = 0ω̇1 = θ̈1
0k̂0 (5.395)

0ω̇1 × 0r1 = θ̈1
0k̂0 × 0r1

= θ̈1RZ,θ+90
0r1 (5.396)

0ω1 ×
¡
0ω1 × 0r1

¢
= −θ̇21 0r1 (5.397)

and calculate the acceleration of the elbow joint

0r̈1 = θ̈1RZ,θ+90
0r1 − θ̇

2

1
0r1. (5.398)

Example 200 Acceleration of a moving point in a moving body frame.
Assume the point P in Figure 5.18 is indicated by a time varying local

position vector BrP (t). Then, the velocity and acceleration of P can be
found by applying the derivative transformation formula (5.287).

GvP = GḋB +
B ṙP +

B
GωB × BrP

= GḋB +
BvP +

B
GωB × BrP (5.399)

GaP = Gd̈B +
B r̈P +

B
GωB × B ṙP +

B
Gω̇B × BrP

+B
GωB ×

¡
B ṙP +

B
GωB × BrP

¢
= Gd̈B +

BaP + 2
B
GωB × BvP +

B
Gω̇B × BrP

+B
GωB ×

¡
B
GωB × BrP

¢
. (5.400)
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FIGURE 5.19. A 2R planar manipulator.

It is also possible to take the derivative from Equation (5.323) with the
assumption B ṙP 6= 0 and find the acceleration of P .

GrP =
GRB

BrP +
GdB (5.401)

GṙP = GṘB
BrP +

GRB
B ṙP + GḋB

= GωB × GRB
BrP +

GRB
B ṙP +

GḋB (5.402)

Gr̈P = Gω̇B × GRB
BrP + GωB × GṘB

BrP + GωB × GRB
B ṙP

+GṘB
B ṙP + GRB

B r̈P +
Gd̈B

= Gω̇B × G
BrP + GωB ×

¡
GωB × GrP

¢
+ 2GωB × G

B ṙP

+G
B r̈P +

Gd̈B (5.403)

The third term on the right-hand side is called the Coriolis acceleration.
The Coriolis acceleration is perpendicular to both GωB and B ṙP .

Example 201 F Acceleration of a body point.
Consider a rigid body is moving and rotating in a global frame. The

acceleration of a body point can be found by taking twice the time derivative
of its position vector

GrP =
GRB

BrP +
GdB (5.404)

GṙP =
GṘB

BrP +
GḋB (5.405)
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Gr̈P = GR̈B
BrP +

Gd̈B

= GR̈B
GRT

B

¡
GrP − GdB

¢
+ Gd̈B. (5.406)

Differentiating the angular velocity matrix

Gω̃B =
GṘB

GRT
B (5.407)

shows that

·
Gω̃B =

Gd

dt
Gω̃B =

GR̈B
GRT

B +
GṘB

GṘT
B

= GR̈B
GRT

B + Gω̃B Gω̃
T
B (5.408)

and therefore,
GR̈B

GRT
B =

·
Gω̃B − Gω̃B Gω̃

T
B. (5.409)

Hence, the acceleration vector of the body point becomes

Gr̈P =

µ
·

Gω̃B − Gω̃B Gω̃
T
B

¶¡
GrP − GdB

¢
+ Gd̈B (5.410)

where
·

Gω̃B = Gα̃B =

⎡⎣ 0 −ω̇3 ω̇2
ω̇3 0 −ω̇1
−ω̇2 ω̇1 0

⎤⎦ (5.411)

and

Gω̃B Gω̃
T
B =

⎡⎣ ω22 + ω23 −ω1ω2 −ω1ω3
−ω1ω2 ω21 + ω23 −ω2ω3
−ω1ω3 −ω2ω3 ω21 + ω22

⎤⎦ . (5.412)

5.12 F Axis-angle Rotation

When the rotation is about an arbitrary axis going through the origin, two
parameters are necessary to define the direction of the line through O and
one is necessary to define the amount of rotation of the rigid body about
this line. Let the body frame B(Oxyz) rotate φ about a line indicated by
a unit vector û with direction cosines u1, u2, u3,

û = u1Î + u2Ĵ + u3K̂ (5.413)q
u21 + u22 + u23 = 1. (5.414)

This is called axis-angle representation of a rotation.
A transformation matrix GRB that maps the coordinates in the lo-

cal frame B(Oxyz) to the corresponding coordinates in the global frame
G(OXY Z),

Gr = GRB
Br (5.415)
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FIGURE 5.20. Axis of rotation û when it is coincident with the local z-axis.

is
GRB = Rû,φ = I cosφ+ ûûT versφ+ ũ sinφ (5.416)

GRB =

⎡⎣ u21 versφ+ cφ u1u2 versφ− u3sφ u1u3 versφ+ u2sφ
u1u2 versφ+ u3sφ u22 versφ+ cφ u2u3 versφ− u1sφ
u1u3 versφ− u2sφ u2u3 versφ+ u1sφ u23 versφ+ cφ

⎤⎦
(5.417)

where

versφ = versine φ

= 1− cosφ (5.418)

= 2 sin2
φ

2

and ũ is the skew-symmetric matrix corresponding to the vector û

ũ =

⎡⎣ 0 −u3 u2
u3 0 −u1
−u2 u1 0

⎤⎦ . (5.419)

A matrix ũ is skew-symmetric if

ũT = −ũ. (5.420)

The transformation matrix (5.417) is the most general rotation matrix for
a local frame rotating with respect to a global frame. If the axis of rotation
(5.413) coincides with a global coordinate axis, then the Equations (5.20),
(5.21), or (5.22) will be reproduced.

Proof. Interestingly, the effect of rotation φ about an axis û is equivalent
to a sequence of rotations about the axes of a local frame in which the
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local frame is first rotated to bring one of its axes, say the z-axis, into
coincidence with the rotation axis û, followed by a rotation φ about that
local axis, then the reverse of the first sequence of rotations.
Figure 5.20 illustrates an axis of rotation û = u1Î+u2Ĵ+u3K̂ , the global

frame G (OXY Z), and the rotated local frame B (Oxyz) when the local
z-axis is coincident with û. Based on Figure 5.20, the local frame B (Oxyz)
undergoes a sequence of rotations ϕ about the z-axis and θ about the y-
axis to bring the local z-axis into coincidence with the rotation axis û,
followed by rotation φ about û, and then perform the sequence backward.
Therefore, the rotation matrix GRB to map coordinates in local frame to
their coordinates in global frame after rotation φ about û is

GRB = BR−1G = BRT
G = Rû,φ

= [Rz,−ϕRy,−θ Rz,φRy,θ Rz,ϕ]
T

= RT
z,ϕR

T
y,θ R

T
z,φR

T
y,−θ R

T
z,−ϕ (5.421)

but

sinϕ =
u2p

u21 + u22
(5.422)

cosϕ =
u1p

u21 + u22
(5.423)

sin θ =
q
u21 + u22 (5.424)

cos θ = u3 (5.425)

sin θ sinϕ = u2 (5.426)

sin θ cosϕ = u1 (5.427)

and hence,
GRB = Rû,φ (5.428)

=

⎡⎣ u21 versφ+ cφ u1u2 versφ− u3sφ u1u3 versφ+ u2sφ
u1u2 versφ+ u3sφ u22 versφ+ cφ u2u3 versφ− u1sφ
u1u3 versφ− u2sφ u2u3 versφ+ u1sφ u23 versφ+ cφ

⎤⎦ .
The matrix (5.428) can be decomposed to

Rû,φ = cosφ

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦
+(1− cosφ)

⎡⎣ u1
u2
u3

⎤⎦ £ u1 u2 u3
¤

+sinφ

⎡⎣ 0 −u3 u2
u3 0 −u1
−u2 u1 0

⎤⎦ (5.429)
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to be equal to

GRB = Rû,φ = I cosφ+ ûûT versφ+ ũ sinφ. (5.430)

Equation (5.416) is called the Rodriguez rotation formula (or the Euler-
Lexell-Rodriguez formula). It is sometimes reported in literature as the
following equivalent forms:

Rû,φ = I+ (sinφ) ũ+ (versφ) ũ2 (5.431)

Rû,φ =
£
I−ûûT

¤
cosφ+ ũ sinφ+ ûûT (5.432)

Rû,φ = −ũ2 cosφ+ ũ sinφ+ ũ2 + I (5.433)

The inverse of an angle-axis rotation is

BRG = GRT
B = Rû,−φ

= I cosφ+ ûûT versφ− ũ sinφ. (5.434)

It means orientation of B in G, when B is rotated φ about û, is the same
as the orientation of G in B, when B is rotated −φ about û. We can verify
that

ũû = 0 (5.435)

I−ûûT = ũ2 (5.436)

rT ũr = 0 (5.437)

û× r = ũr = −r̃û = −r× û. (5.438)

Example 202 F Axis-angle rotation when û = K̂.
If the local frame B (Oxyz) rotates about the Z-axis, then

û = K̂ (5.439)

and the transformation matrix (5.417) reduces to

GRB =

⎡⎣ 0 versφ+ cosφ 0 versφ− 1 sinφ 0 versφ+ 0 sinφ
0 versφ+ 1 sinφ 0 versφ+ cosφ 0 versφ− 0 sinφ
0 versφ− 0 sinφ 0 versφ+ 0 sinφ 1 versφ+ cosφ

⎤⎦
=

⎡⎣ cosφ − sinφ 0
sinφ cosφ 0
0 0 1

⎤⎦ (5.440)

which is equivalent to the rotation matrix about the Z-axis of global frame
in (5.20).
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Example 203 F Rotation about a rotated local axis.
If the body coordinate frame Oxyz rotates ϕdeg about the global Z-axis,

then the x-axis would be along

ûx = GRZ,ϕ ı̂ =

⎡⎣ cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

⎤⎦⎡⎣ 1
0
0

⎤⎦
=

⎡⎣ cosϕ
sinϕ
0

⎤⎦ . (5.441)

Rotation θ about ûx = (cosϕ) Î + (sinϕ) Ĵ is defined by Rodriguez’s
formula (5.417)

GRûx,θ =

⎡⎣ cos2 ϕ vers θ + cos θ cosϕ sinϕ vers θ sinϕ sin θ
cosϕ sinϕ vers θ sin2 ϕ vers θ + cos θ − cosϕ sin θ
− sinϕ sin θ cosϕ sin θ cos θ

⎤⎦ .
Now, rotation ϕ about the global Z-axis followed by rotation θ about the
local x-axis is transformed by

GRB = GRûx,θ
GRZ,ϕ

=

⎡⎣ cosϕ − cos θ sinϕ sin θ sinϕ
sinϕ cos θ cosϕ − cosϕ sin θ
0 sin θ cos θ

⎤⎦ (5.442)

that must be equal to [Rx,θ Rz,ϕ]
−1 = RT

z,ϕR
T
x,θ.

Example 204 F Axis and angle of rotation.
Given a transformation matrix GRB we may obtain the axis û and angle

φ of the rotation by considering that

ũ =
1

2 sinφ

¡
GRB − GRT

B

¢
(5.443)

cosφ =
1

2

¡
tr
¡
GRB

¢
− 1
¢

(5.444)

because

GRB − GRT
B =

⎡⎣ 0 −2 (sinφ)u3 2 (sinφ)u2
2 (sinφ)u3 0 −2 (sinφ)u1
−2 (sinφ)u2 2 (sinφ)u1 0

⎤⎦
= 2 sinφ

⎡⎣ 0 −u3 u2
u3 0 −u1
−u2 u1 0

⎤⎦
= 2ũ sinφ (5.445)
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and

tr
¡
GRB

¢
= r11 + r22 + r33

= 3cosφ+ u21 (1− cosφ) + u22 (1− cosφ) + u23 (1− cosφ)
= 3 cosφ+ u21 + u22 + u23 −

¡
u21 + u22 + u23

¢
cosφ

= 2cosφ+ 1. (5.446)

Example 205 F Axis and angle of a rotation matrix.
A body coordinate frame, B, undergoes three Euler rotations (ϕ, θ, ψ) =

(30, 45, 60) deg with respect to a global frame G. The rotation matrix to
transform coordinates of B to G is

GRB = BRT
G = [Rz,ψRx,θRz,ϕ]

T

= RT
z,ϕR

T
x,θR

T
z,ψ

=

⎡⎣ 0.126 83 −0.926 78 0.353 55
0.780 33 −0.126 83 −0.612 37
0.612 37 0.353 55 0.707 11

⎤⎦ . (5.447)

The unique angle-axis of rotation for this rotation matrix can then be found
by Equations (5.443) and (5.444).

φ = cos−1
µ
1

2

¡
tr
¡
GRB

¢
− 1
¢¶

= cos−1 (−0.146 45) = 98 deg (5.448)

ũ =
1

2 sinφ

¡
GRB − GRT

B

¢
=

⎡⎣ 0.0 −0.862 85 −0.130 82
0.862 85 0.0 −0.488 22
0.130 82 0.488 22 0.0

⎤⎦ (5.449)

û =

⎡⎣ 0.488 22
−0.130 82
0.862 85

⎤⎦ (5.450)

As a double check, we may verify the angle-axis rotation formula and derive
the same rotation matrix.

GRB = Rû,φ = I cosφ+ ûûT versφ+ ũ sinφ

=

⎡⎣ 0.126 82 −0.926 77 0.353 54
0.780 32 −0.126 83 −0.612 37
0.612 36 0.353 55 0.707 09

⎤⎦ (5.451)
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u

P

FIGURE 5.21. A screw motion is translation along a line combined with a rotation
about the line.

5.13 F Screw Motion

Any rigid body motion can be produced by a single translation along an
axis combined with a unique rotation about that axis. This is called Chasles
theorem. Such a motion is called screw. Consider the screw motion illus-
trated in Figure 5.21. Point P rotates about the screw axis indicated by û
and simultaneously translates along the same axis. Hence, any point on the
screw axis moves along the axis, while any point off the axis moves along
a helix.
The angular rotation of the rigid body about the screw is called twist.

Pitch of a screw, p, is the ratio of translation, h, to rotation, φ.

p =
h

φ
(5.452)

So, pitch is the rectilinear distance through which the rigid body translates
parallel to the axis of screw for a unit rotation. If p > 0, then the screw is
right-handed, and if p < 0, it is left-handed.
A screw is shown by š(h, φ, û, s) and is indicated by a unit vector û, a

location vector s, a twist angle φ, and a translation h (or pitch p). The
location vector s indicates the global position of a point on the screw axis.
The twist angle φ, the twist axis û, and the pitch p (or translation h) are
called screw parameters.
The screw is another transformation method to describe the motion of a

rigid body. A linear displacement along an axis combined with an angular
displacement about the same axis arises in steering kinematics of vehicles.
If BrP indicates the position vector of a body point, its position vector in
the global frame after a screw motion is

GrP = š(h, φ, û, s)BrP (5.453)
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that is equivalent to a translation GdB along with a rotation GRB.

GrP =
GRB

BrP +
GdB (5.454)

We may introduce a 4×4matrix [T ], that is called the homogeneous matrix,

GTB =

∙
GRB

Gd
0 1

¸
(5.455)

and combine the translation and rotation to express the motion with only
a matrix multiplication

GrP =
GTB

BrP (5.456)

where, GrP and BrP are expanded with an extra zero element to be con-
sistent with the 4× 4 matrix [T ].

GrP =

⎡⎢⎢⎣
X
Y
Z
0

⎤⎥⎥⎦ (5.457)

BrP =

⎡⎢⎢⎣
x
y
z
0

⎤⎥⎥⎦ . (5.458)

Homogeneous matrix representation can be used for screw transformations
to combine the screw rotation and screw translation about the screw axis.
If û passes through the origin of the coordinate frame, then s = 0 and

the screw motion is called central screw š(h, φ, û). For a central screw we
have

GšB(h, φ, û) = Dû,h Rû,φ (5.459)

where,

Dû,h =

⎡⎢⎢⎣
1 0 0 hu1
0 1 0 hu2
0 0 1 hu3
0 0 0 1

⎤⎥⎥⎦ (5.460)

Rû,φ =⎡⎢⎢⎣
u21 versφ+ cφ u1u2 versφ− u3sφ u1u3 versφ+ u2sφ 0

u1u2 versφ+ u3sφ u22 versφ+ cφ u2u3 versφ− u1sφ 0
u1u3 versφ− u2sφ u2u3 versφ+ u1sφ u23 versφ+ cφ 0

0 0 0 1

⎤⎥⎥⎦
(5.461)
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and hence,

GšB(h, φ, û) =

∙
GRB

Gd
0 1

¸
=⎡⎢⎢⎣

u21 versφ+ cφ u1u2 versφ− u3sφ u1u3 versφ+ u2sφ hu1
u1u2 versφ+ u3sφ u22 versφ+ cφ u2u3 versφ− u1sφ hu2
u1u3 versφ− u2sφ u2u3 versφ+ u1sφ u23 versφ+ cφ hu3

0 0 0 1

⎤⎥⎥⎦ .
(5.462)

As a result, a central screw transformation matrix includes the pure
or fundamental translations and rotations as special cases because a pure
translation corresponds to φ = 0, and a pure rotation corresponds to h = 0
(or p =∞).
When the screw is not central and û is not passing through the origin, a

screw motion to move p to p00 is denoted by

p00 = (p− s) cosφ+ (1− cosφ) (û · (p− s)) û
+(û× (p− s)) sinφ+ s+ hû (5.463)

or

p00 = GRB (p− s) + s+ hû

= GRB p+ s− GRB s+ hû (5.464)

and therefore,
p00 = š(h, φ, û, s)p = [T ]p (5.465)

where

[T ] =

∙
GRB

Gs− GRB
Gs+ hû

0 1

¸
=

∙
GRB

Gd
0 1

¸
. (5.466)

The vector Gs, called location vector, is the global position of the body
frame before screw motion. The vectors p00 and p are global positions of a
point P after and before screw, as shown in Figure 5.22.
The screw axis is indicated by the unit vector û. Now a body point P

moves from its first position to its second position P 0 by a rotation about
û. Then it moves to P 00 by a translation h parallel to û. The initial position
of P is pointed by p and its final position is pointed by p00.
A screw motion is a four variable function š(h, φ, û, s). A screw has a line

of action û at Gs, a twist φ, and a translation h.
The instantaneous screw axis was first used by Mozzi (1730 − 1813) in

1763 although Chasles (1793− 1880) is credited with this discovery.
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FIGURE 5.22. Screw motion of a rigid body.

Proof. The angle-axis rotation formula (5.416) relates r0 and r, which are
position vectors of P after and before rotation φ about û when s = 0,
h = 0.

r0 = r cosφ+ (1− cosφ) (û · r) û+ (û× r) sinφ (5.467)

However, when the screw axis does not pass through the origin ofG(OXY Z),
then r0 and r must accordingly be substituted with the following equations:

r = p− s (5.468)

r0 = p00 − s− hû (5.469)

where r0 is a vector after rotation and hence in G coordinate frame, and r
is a vector before rotation and hence in B coordinate frame.
Therefore, the relationship between the new and old positions of the

body point P after a screw motion is

p00 = (p− s) cosφ+ (1− cosφ) (û · (p− s)) û
+(û× (p− s)) sinφ+ (s+ hû). (5.470)

Equation (5.470) is the Rodriguez formula for the most general rigid body
motion. Defining new notations Gp = p00 and Bp = p and also noting that
s indicates a point on the rotation axis and therefore rotation does not
affect s, we may factor out Bp and write the Rodriguez formula in the
following form

Gp =
¡
I cosφ+ ûûT (1− cosφ) + ũ sinφ

¢
Bp

−
¡
I cosφ+ ûûT (1− cosφ) + ũ sinφ

¢
Gs+ Gs+ hû (5.471)
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which can be rearranged to show that a screw can be represented by a
homogeneous transformation

Gp = GRB
Bp+G s− GRB

Gs+ hû (5.472)

= GRB
Bp+ Gd

= GTB
Bp

GTB = GšB(h, φ, û, s) (5.473)

=

∙
GRB

Gs− GRB
Gs+ hû

0 1

¸
=

∙
GRB

Gd
0 1

¸
where,

GRB = I cosφ+ ûûT (1− cosφ) + ũ sinφ (5.474)
Gd =

¡¡
I− ûûT

¢
(1− cosφ)− ũ sinφ

¢
Gs+ hû. (5.475)

Direct substitution shows that:

GRB =

⎡⎣ u21 versφ+ cφ u1u2 versφ− u3sφ u1u3 versφ+ u2sφ
u1u2 versφ+ u3sφ u22 versφ+ cφ u2u3 versφ− u1sφ
u1u3 versφ− u2sφ u2u3 versφ+ u1sφ u23 versφ+ cφ

⎤⎦
(5.476)

Gd =

⎡⎣ hu1 + (s1 − u1 (s3u3 + s2u2 + s1u1)) versφ+ (s2u3 − s3u2) sφ
hu2 + (s2 − u2 (s3u3 + s2u2 + s1u1)) versφ+ (s3u1 − s1u3) sφ
hu3 + (s3 − u3 (s3u3 + s2u2 + s1u1)) versφ+ (s1u2 − s2u1) sφ

⎤⎦
(5.477)

This representation of a rigid motion requires six independent parame-
ters, namely one for rotation angle φ, one for translation h, two for screw
axis û, and two for location vector Gs. It is because three components of û
are related to each other according to

ûT û = 1 (5.478)

and the location vector Gs can locate any arbitrary point on the screw axis.
It is convenient to choose the point where it has the minimum distance from
O to make Gs perpendicular to û. Let us indicate the shortest location vector
by Gs0, then there is a constraint among the components of the location
vector

GsT0 û = 0. (5.479)

If s = 0 then the screw axis passes through the origin of G and (5.473)
reduces to (5.462).
The screw parameters φ and h, together with the screw axis û and loca-

tion vector Gs, completely define a rigid motion of B(oxyz) in G(OXY Z).
Having the screw parameters and screw axis, we can find the elements of
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the transformation matrix by Equations (5.476) and (5.477). So, given the
transformation matrix GTB, we can find the screw angle and axis by

cosφ =
1

2

¡
tr
¡
GRB

¢
− 1
¢

=
1

2

¡
tr
¡
GTB

¢
− 2
¢

=
1

2
(r11 + r22 + r33 − 1) (5.480)

ũ =
1

2 sinφ

¡
GRB − GRT

B

¢
(5.481)

hence,

û =
1

2 sinφ

⎡⎣ r32 − r23
r13 − r31
r21 − r12

⎤⎦ . (5.482)

To find all the required screw parameters, we must also find h and co-
ordinates of one point on the screw axis. Because the points on the screw
axis are invariant under the rotation, we must have⎡⎢⎢⎣

r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

X
Y
Z
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 0 hu1
0 1 0 hu2
0 0 1 hu3
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

X
Y
Z
1

⎤⎥⎥⎦ (5.483)

where (X,Y,Z) are coordinates of points on the screw axis.
As a sample point, we may find the intersection point of the screw line

with Y Z-plane, by setting Xs = 0 and searching for s =
£
0 Ys Zs

¤T
.

Therefore,⎡⎢⎢⎣
r11 − 1 r12 r13 r14 − hu1
r21 r22 − 1 r23 r24 − hu2
r31 r32 r33 − 1 r34 − hu3
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
0
Ys
Zs
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ (5.484)

which generates three equations to be solved for Ys, Zs, and h.⎡⎣ h
Ys
Zs

⎤⎦ =
⎡⎣ u1 −r12 −r13

u2 1− r22 −r23
u3 −r32 1− r33

⎤⎦−1 ⎡⎣ r14
r24
r34

⎤⎦ (5.485)

Now we can find the shortest location vector Gs0 by

Gs0 = s− (s · û)û. (5.486)



294 5. Applied Kinematics

Example 206 F Central screw transformation of a base unit vector.
Consider two initially coincident frames G(OXY Z) and B(oxyz). The

body performs a screw motion along the Y -axis for h = 2 and φ = 90deg.
The position of a body point at

£
1 0 0 1

¤T
can be found by applying

the central screw transformation.

š(h, φ, û) = š(2,
π

2
, Ĵ) (5.487)

= D(2Ĵ)R(Ĵ ,
π

2
)

=

⎡⎢⎢⎣
1 0 0 0
0 1 0 2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
0 0 1 0
0 1 0 2
−1 0 0 0
0 0 0 1

⎤⎥⎥⎦
Therefore,

Gı̂ = š(2,
π

2
, Ĵ)B ı̂ (5.488)

=

⎡⎢⎢⎣
0 0 1 0
0 1 0 2
−1 0 0 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1
0
0
1

⎤⎥⎥⎦
=

£
0 2 −1 1

¤T
.

The pitch of this screw is

p =
h

φ
=
2
π
2

=
4

π
= 1.2732 unit/rad. (5.489)

Example 207 F Screw transformation of a point.
Consider two initially parallel frames G(OXY Z) and B(oxyz). The body

performs a screw motion along X = 2 and parallel to the Y -axis for h = 2
and φ = 90deg. Therefore, the body coordinate frame is at location s =£
2 0 0

¤T
. The position of a body point at Br =

£
3 0 0 1

¤T
can

be found by applying the screw transformation, which is

GTB =

∙
GRB s− GRB s+ hû
0 1

¸
(5.490)

=

⎡⎢⎢⎣
0 0 1 2
0 1 0 2
−1 0 0 2
0 0 0 1

⎤⎥⎥⎦
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because,

GRB =

⎡⎣ 0 0 1
0 1 0
−1 0 0

⎤⎦ (5.491)

s =

⎡⎣ 2
0
0

⎤⎦ (5.492)

û =

⎡⎣ 0
1
0

⎤⎦ . (5.493)

Therefore, the position vector of Gr would then be

Gr = GTB
Br

=

⎡⎢⎢⎣
0 0 1 2
0 1 0 2
−1 0 0 2
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
3
0
0
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

2
2
−1
1

⎤⎥⎥⎦ . (5.494)

Example 208 F Rotation of a vector.
Transformation equation Gr = GRB

Br and Rodriguez rotation formula
(5.416) describe the rotation of any vector fixed in a rigid body. However,
the vector can conveniently be described in terms of two points fixed in the
body to derive the screw equation.
A reference point P1 with position vector r1 at the tail, and a point P2

with position vector r2 at the head, define a vector in the rigid body. Then
the transformation equation between body and global frames can be written
as

G (r2 − r1) = GRB
B (r2 − r1) . (5.495)

Assume the original and final positions of the reference point P1 are along
the rotation axis. Equation (5.495) can then be rearranged in a form suitable
for calculating coordinates of the new position of point P2 in a transforma-
tion matrix form

Gr2 = GRB
B (r2 − r1) + Gr1 (5.496)

= GRB
Br2 +

Gr1 − GRB
Br1

= GTB
Br2

where
GTB =

∙
GRB

Gr1 − GRB
Br1

0 1

¸
. (5.497)

It is compatible with screw motion (5.473) for h = 0.
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FIGURE 5.23. Motion in a plane.

Example 209 F Special cases for screw determination.
There are two special cases for screws. The first one occurs when r11 =

r22 = r33 = 1, then, φ = 0 and the motion is a pure translation h parallel
to û, where,

û =
r14 − s1

h
Î +

r24 − s2
h

Ĵ +
r34 − s3

h
K̂. (5.498)

Since there is no unique screw axis in this case, we cannot locate any specific
point on the screw axis.
The second special case occurs when φ = 180 deg. In this case

û =

⎡⎢⎢⎢⎣
q

1
2 (r11 + 1)q
1
2 (r22 + 1)q
1
2 (r33 + 1)

⎤⎥⎥⎥⎦ (5.499)

however, h and (X,Y,Z) can again be calculated from (5.485).

Example 210 F Rotation and translation in a plane.
Assume a plane is displaced from position 1 to position 2 according to

Figure 5.23. New coordinates of Q2 are

rQ2 = 2R1 (rQ1 − rP1) + rP2 (5.500)

=

⎡⎣ cos 58 − sin 58 0
sin 58 cos 58 0
0 0 1

⎤⎦⎛⎝⎡⎣ 3
1
0

⎤⎦−
⎡⎣ 1
1
0

⎤⎦⎞⎠+
⎡⎣ 4
1.5
0

⎤⎦
=

⎡⎣ 1.06
1.696
0

⎤⎦+
⎡⎣ 4
1.5
0

⎤⎦ =
⎡⎣ 5.06
3.196
0.0

⎤⎦
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or equivalently

rQ2 = 2T1 rQ1 (5.501)

=

∙
2R1 rP2 − 2R1 rP1
0 1

¸
rQ1

=

⎡⎢⎢⎣
cos 58 − sin 58 0 4.318
sin 58 cos 58 0 0.122
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
3
1
0
1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
5.06
3.196
0
1

⎤⎥⎥⎦ .
Example 211 F Pole of planar motion.
In the planar motion of a rigid body, going from position 1 to position

2, there is always one point in the plane of motion that does not change
its position. Hence, the body can be considered as having rotated about this
point, which is known as the finite rotation pole. The transformation matrix
can be used to locate the pole. Figure 5.23 depicts a planar motion of a
triangle. To locate the pole of motion P0(X0, Y0) we need the transformation
of the motion. Using the data given in Figure 5.23 we have

2T1 =

∙
2R1 rP2 − 2R1 rP1
0 1

¸
(5.502)

=

⎡⎢⎢⎣
cα −sα 0 −cα+ sα+ 4
sα cα 0 −cα− sα+ 3.5
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .
The pole would be conserved under the transformation. Therefore,

rP0 = 2T1 rP0 (5.503)⎡⎢⎢⎣
X0

Y0
0
1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
cosα − sinα 0 − cosα+ sinα+ 4
sinα cosα 0 − cosα− sinα+ 1.5
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

X0

Y0
0
1

⎤⎥⎥⎦
which for α = 58deg provides

X0 = −1.5 sinα+ 1− 4 cosα = 2.049
Y0 = 4 sinα+ 1− 1.5 cosα = 3.956.

Example 212 F Determination of screw parameters.
We are able to determine screw parameters when we have the original

and final position of three non-colinear points of a rigid body. Assume p0,
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q0, and r0 denote the position of points P , Q, and R before the screw
motion, and p1, q1, and r1 denote their positions after the screw motion.
To determine screw parameters, φ, û, h, and s, we should solve the fol-

lowing three simultaneous Rodriguez equations:

p1 − p0 = tan
φ

2
û× (p1 + p0 − 2s) + hû (5.504)

q1 − q0 = tan
φ

2
û× (q1 + q0 − 2s) + hû (5.505)

r1 − r0 = tan
φ

2
û× (r1 + r0 − 2s) + hû (5.506)

We start with subtracting Equation (5.506) from (5.504) and (5.505).

(p1 − p0)− (r1 − r0) = tan
φ

2
û× [(p1 + p0)− (r1 − r0)] (5.507)

(q1 − q0)− (r1 − r0) = tan
φ

2
û× [(q1 + q0)− (r1 − r0)] (5.508)

Now multiplying both sides of (5.507) by [(q1 − q0)− (r1 − r0)] which is
perpendicular to û

[(q1 − q0)− (r1 − r0)]× [(p1 − p0)− (r1 − r0)]
= tan φ

2 [(q1 − q0)− (r1 − r0)]× {û× [(p1 + p0)− (r1 − r0)]}
(5.509)

gives us

[(q1 − q0)− (r1 − r0)]× [(p1 + p0)− (r1 − r0)]
= tan φ

2 [(q1 − q0)− (r1 − r0)] · [(p1 + p0)− (r1 − r0)] û
(5.510)

and therefore, the rotation angle can be found by equating tan φ
2 and the

norm of the right-hand side of the following equation:

tan
φ

2
û =

[(q1 − q0)− (r1 − r0)]× (p1 + p0)− (r1 − r0)
[(q1 − q0)− (r1 − r0)] · (p1 + p0)− (r1 − r0)

(5.511)

To find s, we may start with the cross product of û with Equation (5.504).

û× (p1 − p0) = û×
∙
tan

φ

2
û× (p1 + p0 − 2s) + hû

¸
(5.512)

= tan
φ

2
{[û · (p1 + p0)] û− (p1 + p0) + 2 [s− (û · s) û]}

Note that s − (û · s) û is the component of s perpendicular to û, where s
is a vector from the origin of the global frame G(OXY Z) to an arbitrary
point on the screw axis. This perpendicular component indicates a vector
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with the shortest distance between O and û. Let’s assume s0 is the name of
the shortest s. Therefore,

s0 = s− (û · s) û

=
1

2

"
û× p1 − p0
tan φ

2

− [û · (p1 + p0)] û+ p1 + p0

#
. (5.513)

The last parameter of the screw is the pitch h, which can be found from any
one of the Equations (5.504), (5.505), or (5.506).

h = û · (p1 − p0)
= û · (q1 − q0)
= û · (r1 − r0) (5.514)

Example 213 F Alternative derivation of screw transformation.
Assume the screw axis does not pass through the origin of G. If Gs is the

position vector of some point on the axis û, then we can derive the matrix
representation of screw š(h, φ, û, s) by translating the screw axis back to the
origin, performing the central screw motion, and translating the line back
to its original position.

š(h, φ, û, s) = D(Gs) š(h, φ, û)D(−Gs)

= D(Gs)D(hû)R(û, φ)D(−Gs)

=

∙
I Gs
0 1

¸ ∙
GRB hû
0 1

¸ ∙
I −Gs
0 1

¸
=

∙
GRB

Gs− GRB
Gs+ hû

0 1

¸
(5.515)

Example 214 F Rotation about an off-center axis.
Rotation of a rigid body about an axis indicated by û and passing through

a point at Gs, where Gs×û 6= 0 is a rotation about an off-center axis. The
transformation matrix associated with an off-center rotation can be obtained
from the screw transformation by setting h = 0. Therefore, an off-center
rotation transformation is

GTB =

∙
GRB

Gs− GRB
Gs

0 1

¸
. (5.516)

Example 215 F Principal central screw.
There are three principal central screws, namely the x-screw, y-screw,

and z-screw, which are

š(hZ , α, K̂) =

⎡⎢⎢⎣
cosα − sinα 0 0
sinα cosα 0 0
0 0 1 pZ α
0 0 0 1

⎤⎥⎥⎦ (5.517)
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š(hY , β, Ĵ) =

⎡⎢⎢⎣
cosβ 0 sinβ 0
0 1 0 pY β

− sinβ 0 cosβ 0
0 0 0 1

⎤⎥⎥⎦ (5.518)

š(hX , γ, Î) =

⎡⎢⎢⎣
1 0 0 pX γ
0 cos γ − sin γ 0
0 sin γ cos γ 0
0 0 0 1

⎤⎥⎥⎦ . (5.519)

Example 216 F Proof of Chasles theorem.
Let [T ] be an arbitrary spatial displacement, and decompose it into a

rotation R about û and a translation D.

[T ] = [D][R] (5.520)

We may also decompose the translation [D] into two components [Dk] and
[D⊥], parallel and perpendicular to û, respectively.

[T ] = [Dk][D⊥][R] (5.521)

Now [D⊥][R] is a planar motion, and is therefore equivalent to some rota-
tion [R0] = [D⊥][R] about an axis parallel to the rotation axis û. This yields
the decomposition [T ] = [Dk][R

0]. This decomposition completes the proof,
since the axis of [Dk] can be taken equal to û.

Example 217 F Every rigid motion is a screw.
To show that any proper rigid motion can be considered as a screw mo-

tion, we must show that a homogeneous transformation matrix

GTB =

∙
GRB

Gd
0 1

¸
(5.522)

can be written in the form

GTB =

∙
GRB (I− GRB) s+ hû
0 1

¸
. (5.523)

This problem is then equivalent to the following equation to find h and û.

Gd = (I− GRB) s+ hû (5.524)

The matrix [I− GRB] is singular because GRB always has 1 as an eigen-
value. This eigenvalue corresponds to û as eigenvector. Therefore,

[I− GRB]û = [I− GRT
B]û = 0 (5.525)

and an inner product shows that

û · Gd = û ·
£
I− GRB

¤
s+ û · hû

=
£
I− GRB

¤
û · s+ û · hû
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which leads to

h = û · Gd. (5.526)

Now we may use h to find s

s =
£
I− GRB

¤−1
(Gd− hû). (5.527)

5.14 Summary

To analyze the relative motion of rigid bodies, we instal a body coordinate
frame at the mass center of each body. The relative motion of the bodies
can be expressed by the relative motion of the frames.
Coordinates of a point in two Cartesian coordinate frames with a com-

mon origin are convertible based on nine directional cosines of the three
axes of a frame in the other. The conversion of coordinates in the two
frames can be cast in matrix transformation

Gr = GRB
Br (5.528)⎡⎣ X2

Y2
Z2

⎤⎦ =

⎡⎣ Î · ı̂ Î · ĵ Î · k̂
Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦⎡⎣ x2
y2
z2

⎤⎦ (5.529)

where,

GRB =

⎡⎣ cos(Î , ı̂) cos(Î , ĵ) cos(Î , k̂)

cos(Ĵ , ı̂) cos(Ĵ , ĵ) cos(Ĵ , k̂)

cos(K̂, ı̂) cos(K̂, ĵ) cos(K̂, k̂)

⎤⎦ . (5.530)

The transformation matrix GRB is orthogonal and therefore its inverse is
equal to its transpose.

GR−1B = GRT
B (5.531)

When a body coordinate frame B and a global frame G have a com-
mon origin and frame B rotates continuously with respect to frame G, the
rotation matrix GRB is time dependent.

Gr(t) = GRB(t)
Br (5.532)

Then, the global velocity of a point in B is

Gṙ(t) = Gv(t)

= GṘB(t)
Br

= Gω̃B
Gr(t) (5.533)
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where Gω̃B is the skew symmetric angular velocity matrix

Gω̃B = GṘB
GRT

B (5.534)

Gω̃B =

⎡⎣ 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

⎤⎦ . (5.535)

The matrix Gω̃B is associated with the angular velocity vector GωB = φ̇ û,
which is equal to an angular rate φ̇ about the instantaneous axis of rotation
û.
Angular velocities of connected rigid bodies may be added relatively to

find the angular velocity of the nth body in the base coordinate frame

0ωn = 0ω1 +
0
1ω2 +

0
2ω3 + · · ·+ 0

n−1ωn =
nX
i=1

0
i−1ωi. (5.536)

Relative time derivatives between the global and a coordinate frames
attached to a moving rigid body must be taken according to the following
rules.

Bd

dt
BrP = B ṙP =

BvP = ẋ ı̂+ ẏ ĵ+ ż k̂ (5.537)

Gd

dt
GrP = GṙP =

GvP = Ẋ Î + Ẏ Ĵ + Ż K̂ (5.538)

Gd

dt
BrP (t) = B ṙP +

B
GωB × BrP =

B
GṙP (5.539)

Bd

dt
GrP (t) = GṙP − GωB × GrP =

G
B ṙP . (5.540)

The global velocity of a point P in a moving frame B at

GrP =
GRB

BrP +
GdB

is

GvP = GṙP

= Gω̃B
¡
GrP − GdB

¢
+ GḋB

= GωB ×
¡
GrP − GdB

¢
+ GḋB . (5.541)

When a body coordinate frame B and a global frame G have a common
origin, the global acceleration of a point P in frame B is

Gr̈ =
Gd

dt
GvP

= GαB × Gr+ GωB ×
¡
GωB × Gr

¢
(5.542)
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where, GαB is the angular acceleration of B with respect to G

GαB =
Gd

dt
GωB . (5.543)

However, when the body coordinate frame B has a rigid motion with re-
spect to G, then

GaP =
Gd

dt
GvP

= GαB ×
¡
GrP − GdB

¢
+GωB ×

¡
GωB ×

¡
GrP − GdB

¢¢
+ Gd̈B (5.544)

where GdB indicates the position of the origin of B with respect to the
origin of G.
Angular accelerations of two connected rigid bodies are related according

to
0α2 = 0α1 +

0
1α2 + 0ω1 × 0

1ω2. (5.545)
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5.15 Key Symbols

B, Oxyz body Cartesian coordinate frame
GdB position vector of body coordinate frame B in G
0
1d2 position of frame B2 respect to B1 expressed in B0
êϕ, êθ, êψ Euler angle coordinate frame unit vectors
G, OXY Z global Cartesian coordinate frame
ı̂, ĵ, k̂ body coordinate frame unit vectors
ı̃, j̃, k̃ skew symmetric matrix associated to ı̂, ĵ, k̂
Î, Ĵ , K̂ global coordinate frame unit vectors
p = h/φ pitch of screw
P point
Gr position vector in global coordinate frame
Br position vector in body coordinate frame
r̂H1 , r̂H2 , r̂H3 row vectors of a rotation matrix
RZ rotation matrix about the global Z-axis
RY rotation matrix about the global Y -axis
RX rotation matrix about the global X-axis
Ṙ time derivative of a rotation matrix R
GRB rotation matrix from local frame to global frame
RT transpose of a rotation matrix
R−1 inverse of a rotation matrix
RZ rotation matrix about the body z-axis
RY rotation matrix about the body y-axis
RX rotation matrix about the body x-axis
B1RB2 rotation matrix from coordinate frame B1 to B2
BRG rotation matrix from global to local coordinate frame
š(h, φ, û, s) screw motion
t time
û, φ axis and angle of rotation
ûα instant angular acceleration axis
ûω instant angular velocity axis
x, y, z body coordinates of a point
X,Y,Z body coordinates of a point
x, y, z, x displacement

GαB angular acceleration of body B expressed in G
δjk Kronecker’s delta
�ijk permutation symbol
ϕ̇, θ̇, ψ̇ Euler frequencies
GωB angular velocity of rigid body B expressed in G
ω̃ skew symmetric matrix associated to ω
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Exercises

1. Body point and global rotations.

The point P is at rP = (1, 2, 1) in a body coordinate B(Oxyz). Find
the final global position of P after a rotation of 30 deg about the
X-axis, followed by a 45 deg rotation about the Z-axis.

2. Body point after global rotation.

Find the position of a point P in the local coordinate, if it is moved
to GrP = [1, 3, 2]

T after a 60 deg rotation about the Z-axis.

3. Invariant of a vector.

A point was at BrP = [1, 2, z]T . After a rotation of 60 deg about the
X-axis, followed by a 30 deg rotation about the Z-axis, it is at

GrP =

⎡⎣ X
Y
2.933

⎤⎦ .
Find z, X, and Y .

4. F Constant length vector.

Show that the length of a vector will not change by rotation.¯̄
Gr
¯̄
=
¯̄
GRB

Br
¯̄

Show that the distance between two body points will not change by
rotation. ¯̄

Bp1 − Bp2
¯̄
=
¯̄
GRB

Bp1 − GRB
Bp2

¯̄
5. Global roll-pitch-yaw rotation angles.

Calculate the role, pitch, and yaw angles for the following rotation
matrix:

BRG =

⎡⎣ 0.53 −0.84 0.13
0.0 0.15 0.99
−0.85 −0.52 0.081

⎤⎦
6. Body point, local rotation.

What is the global coordinates of a body point at BrP = [2, 2, 3]T ,
after a rotation of 60 deg about the x-axis?

7. Two local rotations.

Find the global coordinates of a body point at BrP = [2, 2, 3]T after
a rotation of 60 deg about the x-axis followed by 60 deg about the
z-axis.
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8. Combination of local and global rotations.

Find the final global position of a body point at BrP = [10, 10,−10]T
after a rotation of 45 deg about the x-axis followed by 60 deg about
the Z-axis.

9. Combination of global and local rotations.

Find the final global position of a body point at BrP = [10, 10,−10]T
after a rotation of 45 deg about the X-axis followed by 60 deg about
the z-axis.

10. F Euler angles from rotation matrix.

Find the Euler angles for the following rotation matrix:

BRG =

⎡⎣ 0.53 −0.84 0.13
0.0 0.15 0.99
−0.85 −0.52 0.081

⎤⎦
11. F Equivalent Euler angles to two rotations.

Find the Euler angles corresponding to the rotation matrix BRG =
Ay,45Ax,30.

12. F Equivalent Euler angles to three rotations.

Find the Euler angles corresponding to the rotation matrix BRG =
Az,60Ay,45Ax,30.

13. F Local and global positions, Euler angles.

Find the conditions between the Euler angles to transform GrP =
[1, 1, 0]T to BrP = [0, 1, 1]

T .

14. Elements of rotation matrix.

The elements of rotation matrix GRB are

GRB =

⎡⎣ cos(Î , ı̂) cos(Î , ĵ) cos(Î , k̂)

cos(Ĵ , ı̂) cos(Ĵ , ĵ) cos(Ĵ , k̂)

cos(K̂, ı̂) cos(K̂, ĵ) cos(K̂, k̂)

⎤⎦ .
Find GRB if GrP1 = (0.7071,−1.2247, 1.4142) is a point on the x-axis,
and GrP2 = (2.7803, 0.38049,−1.0607) is a point on the y-axis.

15. Local position, global velocity.

A body is turning about the Z-axis at a constant angular rate α̇ =
2 rad/ sec. Find the global velocity of a point at

Br =

⎡⎣ 5
30
10

⎤⎦ .
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16. Global position, constant angular velocity.

A body is turning about the Z-axis at a constant angular rate α̇ =
2 rad/ s. Find the global position of a point at

Br =

⎡⎣ 5
30
10

⎤⎦
after t = 3 sec if the body and global coordinate frames were coinci-
dent at t = 0 sec.

17. Turning about x-axis.

Find the angular velocity matrix when the body coordinate frame is
turning 35 deg / sec at 45 deg about the x-axis.

18. Combined rotation and angular velocity.

Find the rotation matrix for a body frame after 30 deg rotation about
the Z-axis, followed by 30 deg about the X-axis, and then 90 deg
about the Y -axis. Then calculate the angular velocity of the body
if it is turning with α̇ = 20deg / sec, β̇ = −40 deg / sec, and γ̇ =
55deg / sec about the Z, Y , and X axes respectively.

19. Angular velocity, expressed in body frame.

The point P is at rP = (1, 2, 1) in a body coordinate B(Oxyz). Find
B
Gω̃B when the body frame is turned 30 deg about the X-axis at a
rate γ̇ = 75deg / sec, followed by 45 deg about the Z-axis at a rate
α̇ = 25deg / sec.

20. Global roll-pitch-yaw angular velocity.

Calculate the angular velocity for a global roll-pitch-yaw rotation
of α = 30deg, β = 30deg, and γ = 30deg with α̇ = 20deg / sec,
β̇ = −20 deg / sec, and γ̇ = 20deg / sec.

21. Roll-pitch-yaw angular velocity.

Find B
Gω̃B and Gω̃B for the role, pitch, and yaw rates equal to α̇ =

20deg / sec, β̇ = −20 deg / sec, and γ̇ = 20deg / sec respectively, and
having the following rotation matrix:

BRG =

⎡⎣ 0.53 −0.84 0.13
0.0 0.15 0.99
−0.85 −0.52 0.081

⎤⎦
22. F Differentiating in local and global frames.

Consider a local point at BrP = t̂ı+ ĵ. The local frame B is rotating
in G by α̇ about the Z-axis. Calculate

Bd
dt

BrP ,
Gd
dt

GrP ,
Bd
dt

GrP , and
Gd
dt

BrP .
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23. F Transformation of angular velocity exponents.

Show that
B
Gω̃

n
B =

GRT
B Gω̃

n
B
GRB .

24. Local position, global acceleration.

A body is turning about the Z-axis at a constant angular accel-
eration α̈ = 2 rad/ sec2. Find the global velocity of a point, when
α̇ = 2 rad/ sec, α = π/3 rad and

Br =

⎡⎣ 5
30
10

⎤⎦ .
25. Global position, constant angular acceleration.

A body is turning about the Z-axis at a constant angular acceleration
α̈ = 2 rad/ sec2. Find the global position of a point at

Br =

⎡⎣ 5
30
10

⎤⎦
after t = 3 sec if the body and global coordinate frames were coinci-
dent at t = 0 sec.

26. Turning about x-axis.

Find the angular acceleration matrix when the body coordinate frame
is turning −5 deg / sec2, 35 deg / sec at 45 deg about the x-axis.

27. Angular acceleration and Euler angles.

Calculate the angular velocity and acceleration vectors in body and
global coordinate frames if the Euler angles and their derivatives are:

ϕ = .25 rad ϕ̇ = 2.5 rad/ sec ϕ̈ = 25 rad/ sec2

θ = −.25 rad θ̇ = −4.5 rad/ sec θ̈ = 35 rad/ sec2

ψ = .5 rad ψ̇ = 3 rad/ sec ψ̈ = 25 rad/ sec2

28. Combined rotation and angular acceleration.

Find the rotation matrix for a body frame after 30 deg rotation about
the Z-axis, followed by 30 deg about the X-axis, and then 90 deg
about the Y -axis. Then calculate the angular velocity of the body
if it is turning with α̇ = 20deg / sec, β̇ = −40 deg / sec, and γ̇ =
55deg / sec about the Z, Y , and X axes respectively. Finally, cal-
culate the angular acceleration of the body if it is turning with
α̈ = 2deg / sec2, β̈ = 4deg / sec2, and γ̈ = −6 deg / sec2 about the
Z, Y , and X axes.
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Applied Mechanisms
Most of the mechanisms used in vehicle subsystems are made of four-bar
linkages. Double A-arm for independent suspension, and trapezoidal steer-
ing are two examples of mechanisms in vehicle subsystems. In this chapter,
we review the analysis and design methods for such mechanisms.

6.1 Four-Bar Linkage

An individual rigid member that can have relative motion with respect to
all other members is called a link. A link may also be called a bar, body,
arm, or a member. Any two or more links connected together, such that no
relative motion can occur among them, are considered a single link.

Revolute Prismatic

Axis of jointAxis of joint

FIGURE 6.1. A revolute and a prismatic joint.

Two links are connected by a joint where their relative motion can be
expressed by a single coordinate. Joints are typically revolute (rotary) or
prismatic (translatory). Figure 6.1 illustrates a geometric form for a revo-
lute and a prismatic joint. A revolute joint (R), is like a hinge that allows
relative rotation between the two connected links. A prismatic joint (P),
allows a relative translation between the two connected links.
Relative rotation or translation, between two connected links by a revo-

lute or prismatic joint, occurs about a line called axis of joint. The value
of the single variable describing the relative position of two connected links
at a joint is called the joint coordinate or joint variable. It is an angle for
a revolute joint, and a distance for a prismatic joint.
A set of connecting links to do a function is called amechanism. A linkage

is made by attaching, and fixing, one link of a mechanism to the ground.
The fixed link is called the ground link. There are two types of linkages,
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1
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2θ 4θ
1θ
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B
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2

3θ

FIGURE 6.2. A four-bar linkage.

closed loop or parallel, and open loop or serial. In vehicle subsystems we
usually use closed-loop linkages. Open-loop linkages are used in robotic
systems where an actuator controls the joint variable at each joint.
A four-bar linkage is shown in Figure 6.2. Link number 1 is the ground

link MN . The ground link is the base and used as a reference link. We
measure all the variables with respect to the ground link. Link number
2 ≡MA is usually the input link which is controlled by the input angle θ2.
Link number 4 ≡ NB is usually the output link with angular position θ4,
and link number 3 ≡ AB is the coupler link with angular position θ3 that
connects the input and output links together.
The angular position of the output and coupler links, θ4 and θ3, are

functions of the links’ length and the value of the input variable θ2. The
angles θ4 and θ3 can be calculated by the following functions

θ4 = 2 tan−1

Ã
−B ±

√
B2 − 4AC
2A

!
(6.1)

θ3 = 2 tan−1

Ã
−E ±

√
E2 − 4DF

2D

!
(6.2)

where,

A = J3 − J1 + (1− J2) cos θ2 (6.3)

B = −2 sin θ2 (6.4)

C = J1 + J3 − (1 + J2) cos θ2 (6.5)

D = J5 − J1 + (1 + J4) cos θ2 (6.6)

E = −2 sin θ2 (6.7)

F = J5 + J1 − (1− J4) cos θ2 (6.8)
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FIGURE 6.3. Expressing a four-bar linkage with a vector loop.

and

J1 =
d

a
(6.9)

J2 =
d

c
(6.10)

J3 =
a2 − b2 + c2 + d2

2ac
(6.11)

J4 =
d

b
(6.12)

J5 =
c2 − d2 − a2 − b2

2ab
. (6.13)

Proof. We may show a closed loop, four-bar linkage by a vector loop as
shown in Figure 6.3. The direction of each vector is arbitrary. However,
the angle of each vector should be measured with respect to the positive
direction of the x-axis. The vector expression of each link is shown in Table
6.1.

Table 6.1 - Vector representation of the four-bar linkage
shown in Figure 6.3.

Link Name Vector Length Angle Variable
1 Ground r1 d θ1 = 180deg −
2 Input r2 a θ2 θ2
3 Coupler r3 b θ3 θ3
4 Output r4 c θ4 θ4
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The vector loop in global coordinate frame G is
Gr4 +

Gr1 +
Gr2 − Gr3 = 0 (6.14)

where,
Gr1 = −d ı̂ (6.15)
Gr2 = a (cos θ2 ı̂+ sin θ2 ĵ) (6.16)
Gr3 = b (cos θ3 ı̂+ sin θ3 ĵ) (6.17)
Gr4 = c (cos θ4 ı̂+ sin θ4 ĵ) (6.18)

and the left superscript G reminds that the vectors are expressed in the
global coordinate frame attached to the ground link. Substituting the Carte-
sian expressions for the planar vectors in Equation (6.14) results in

−d ı̂+ a (cos θ2 ı̂+ sin θ2 ĵ) + b (cos θ3 ı̂+ sin θ3 ĵ)

−c (cos θ4 ı̂+ sin θ4 ĵ) = 0. (6.19)

We may decompose Equation (6.19) into sin and cos components.

a sin θ2 + b sin θ3 − c sin θ4 = 0 (6.20)

−d+ a cos θ2 + b cos θ3 − c cos θ4 = 0 (6.21)

To derive the relationship between the input angle θ2 and the output
angle θ4, the coupler angle θ3 must be eliminated between Equations (6.20)
and (6.21). Transferring the terms not containing θ3 to the other side of
the equations, and squaring both sides, provides the following equations:

(b sin θ3)
2
= (−a sin θ2 + c sin θ4)

2 (6.22)

(b cos θ3)
2
= (−a cos θ2 + c cos θ4 + d)

2 (6.23)

By adding Equations (6.22) and (6.23), and simplifying, we derive the fol-
lowing equation:

J1 cos θ4 − J2 cos θ2 + J3 = cos (θ4 − θ2) (6.24)

where

J1 =
d

a
(6.25)

J2 =
d

c
(6.26)

J3 =
a2 − b2 + c2 + d2

2ac
. (6.27)

Equation (6.24) is called Freudenstein’s equation. The Freudenstein’s equa-
tion may be expanded by using trigonometry

sin θ4 =
2 tan

θ4
2

1 + tan2
θ4
2

(6.28)
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cos θ4 =
1− tan2 θ4

2

1 + tan2
θ4
2

(6.29)

to provide a more practical equation

A tan2
θ4
2
+B tan

θ4
2
+ C = 0 (6.30)

where A, B, and C are functions of the input variable.

A = J3 − J1 + (1− J2) cos θ2 (6.31)

B = −2 sin θ2 (6.32)

C = J1 + J3 − (1 + J2) cos θ2 (6.33)

Equation (6.30) is a quadratic in tan (θ4/2) and can be used to find the
output angle θ4.

θ4 = 2 tan
−1

Ã
−B ±

√
B2 − 4AC
2A

!
(6.34)

To find the relationship between the input angle θ2 and the coupler angle
θ3, the output angle θ4 must be eliminated between Equations (6.20) and
(6.21). Transferring the terms not containing θ4 to the right-hand side of
the equations, and squaring both sides, provides

(c sin θ4)
2
= (a sin θ2 + b sin θ3)

2 (6.35)

(c cos θ4)
2 = (a cos θ2 + b cos θ3 − d)2 . (6.36)

By adding Equations (6.35) and (6.36), and simplifying, we derive the equa-
tion:

J1 cos θ3 + J4 cos θ2 + J5 = cos (θ3 − θ2) (6.37)

where

J4 =
d

b
(6.38)

J5 =
c2 − d2 − a2 − b2

2ab
. (6.39)

Equation (6.37) may be expanded and transformed to

D tan2
θ3
2
+E tan

θ3
2
+ F = 0 (6.40)

where D, E, and F are functions of the input variable.

D = J5 − J1 + (1 + J4) cos θ2 (6.41)

E = −2 sin θ2 (6.42)

F = J5 + J1 − (1− J4) cos θ2 (6.43)
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Equation (6.40) is a quadratic in tan (θ3/2) and can be used to find the
coupler angle θ3.

θ3 = 2 tan
−1

Ã
−E ±

√
E2 − 4DF

2D

!
(6.44)

Equations (6.34) and (6.44) can be used to calculate the output and
coupler angles θ4 and θ3 as two functions of the input angle θ2, provided
the lengths a, b, c, and d are given.

Example 218 Two possible configurations for a four-bar linkage.
At any angle θ2, and for suitable values of a, b, c, and d, Equations (6.1)

and (6.2) provide two values for the output and coupler angles, θ4 and θ3.
Both solutions are possible and provide two different configurations for each
input angle θ2.
A suitable set of (a, b, c, d) is the numbers that make the radicals in

Equations (6.1) and (6.2) real.
As an example, consider a linkage with the following lengths:

a = 1

b = 2

c = 2.5

d = 3. (6.45)

The Ji, i = 1, 2, 3, 4, 5 are functions of the links’ length and are equal to

J1 =
d

a
= 3

J2 =
d

c
=

3

2.5
= 1.2

J3 =
a2 − b2 + c2 + d2

2ac
= 2.45

J4 =
d

b
= 1.5

J5 =
c2 − d2 − a2 − b2

2ab
= −1.9375. (6.46)

The coefficients of the quadratic equations are then calculated.

A = −0.6914213562
B = −1.414213562
C = 3.894365082

D = −3.169733048
E = −1.414213562
F = 1.416053390 (6.47)
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FIGURE 6.4. Two possible configuration of a four-bar linkage having the same
input angle θ2.

Using the minus sign, the output and coupler angles at θ2 = π/4 rad =
45 deg are

θ4 ≈ 2 rad ≈ 114.73 deg
θ3 ≈ 0.897 rad ≈ 51.42 deg (6.48)

and using the plus sign, they are

θ4 ≈ −2.6 rad ≈ −149 deg
θ3 ≈ −1.495 rad ≈ −85.7 deg . (6.49)

Figure 6.4 depicts the two possible configurations of the linkage for θ2 =
45deg. The configuration in Figure 6.4(a) is called convex, non-crossed,
or elbow-up, and the configuration in Figure 6.4(b) is called concave,
crossed, or elbow-down.

Example 219 Velocity analysis of a four-bar linkage.
The velocity analysis of a four-bar linkage is possible by taking a time

derivative of Equations (6.20) and (6.21),

d

dt
(a sin θ2 + b sin θ3 − c sin θ4)

= aω2 cos θ2 + b ω3 cos θ3 − c ω4 cos θ4 = 0 (6.50)

d

dt
(−d+ a cos θ2 + b cos θ3 − c cos θ4)

= −aω2 sin θ2 − b ω3 sin θ3 + c ω4 sin θ4 = 0 (6.51)

where

ω2 = θ̇2

ω3 = θ̇3

ω4 = θ̇4. (6.52)
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Assuming θ2 and ω2 are given values, and θ3, θ4 are known from Equa-
tions (6.1) and (6.2), we may solve Equations (6.50) and (6.51), for ω3
and ω4.

ω4 =
a sin (θ2 − θ3)

c sin (θ4 − θ3)
ω2 (6.53)

ω3 =
a sin (θ2 − θ4)

b sin (θ4 − θ3)
ω2 (6.54)

Example 220 Velocity of moving joints for a four-bar linkage.
Having the coordinates θ2, θ3, θ4 and velocities ω2, ω3, ω4 enables us to

calculate the absolute and relative velocities of points A and B shown in
Figure 6.3. The absolute velocity is referred to the ground link, and relative
velocity refers to a moving point.
The absolute velocity of points A and B are

GvA = Gω2 × Gr2

=

⎡⎣ 0
0
ω2

⎤⎦×
⎡⎣ a cos θ2

a sin θ2
0

⎤⎦ =
⎡⎣ −aω2 sin θ2aω2 cos θ2

0

⎤⎦ (6.55)

GvB = Gω4 × Gr4

=

⎡⎣ 0
0
ω4

⎤⎦×
⎡⎣ c cos θ4

c sin θ4
0

⎤⎦ =
⎡⎣ −cω4 sin θ4cω4 cos θ4

0

⎤⎦ (6.56)

and the velocity of point B with respect to point A is

GvB/A = GvB − GvA

=

⎡⎣ −cω4 sin θ4cω4 cos θ4
0

⎤⎦−
⎡⎣ −aω2 sin θ2aω2 cos θ2

0

⎤⎦
=

⎡⎣ aω2 sin θ2 − cω4 sin θ4
cω4 cos θ4 − aω2 cos θ2

0

⎤⎦ . (6.57)

The velocity of point B with respect to A can also be found as

GvB/A = GR2
2vB

= GR2
2vB

= GR2
¡
2ω3 × 2r3

¢
= Gω3 × Gr3

=

⎡⎣ 0
0
ω3

⎤⎦×
⎡⎣ b cos θ3

b sin θ3
0

⎤⎦ =
⎡⎣ −bω3 sin θ3bω3 cos θ3

0

⎤⎦ . (6.58)
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Equations (6.57) and (6.58) are both correct and convertible to each other.

Example 221 Acceleration analysis of a four-bar linkage.
The acceleration analysis of a four-bar linkage is possible by taking a time

derivative from Equations (6.50) and (6.51),

d

dt
(aω2 cos θ2 + b ω3 cos θ3 − c ω4 cos θ4)

= aα2 cos θ2 + bα3 cos θ3 − cα4 cos θ4

−aω22 sin θ2 − bω23 sin θ3 + cω24 sin θ4

= 0 (6.59)

d

dt
(−aω2 sin θ2 − b ω3 sin θ3 + c ω4 sin θ4)

= −aα2 sin θ2 − bα3 sin θ3 + cα4 sin θ4

−aω22 cos θ2 − bω23 cos θ3 + cω24 cos θ4

= 0 (6.60)

where

α2 = ω̇2

α3 = ω̇3

α4 = ω̇4. (6.61)

Assuming θ2, ω2, and α2 are given values as the kinematics of the input
link, θ3, θ4 are known from Equations (6.1) and (6.2), and ω3, ω4 are
known from Equations (6.53) and (6.54), we may solve Equations (6.59)
and (6.60), for α3 and α4.

α4 =
C3C4 − C1C6
C1C5 − C2C4

(6.62)

α3 =
C3C5 − C2C6
C1C5 − C2C4

(6.63)

where

C1 = c sin θ4

C2 = b sin θ3

C3 = aα2 sin θ2 + aω22 cos θ2 + bω23 cos θ3 − cω24 cos θ4

C4 = c cos θ4

C5 = b cos θ3

C6 = aα2 cos θ2 − aω22 sin θ2 − bω23 sin θ3 + cω24 sin θ4. (6.64)
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Example 222 Acceleration of moving joints for a four-bar linkage.
Having the angular kinematics of a four-bar linkage θ2, θ3, θ4, ω2, ω3,

ω4, α2, α3, and α4 is necessary and enough to calculate the absolute and
relative accelerations of points A and B shown in Figure 6.3. The absolute
acceleration is referred to as the ground link, and the relative acceleration
refers to a moving point.
The absolute acceleration of points A and B are

GaA = Gα2 × Gr2 + Gω2 ×
¡
Gω2 × Gr2

¢
=

⎡⎣ −aα2 sin θ2 − aω22 cos θ2
aα2 cos θ2 − aω22 sin θ2

0

⎤⎦ (6.65)

GaB = Gα4 × Gr4 + Gω4 ×
¡
Gω4 × Gr4

¢
=

⎡⎣ −cα4 sin θ4 − cω24 cos θ4
cα4 cos θ4 − cω24 sin θ4

0

⎤⎦ (6.66)

where

Gr2 =

⎡⎣ a cos θ2
a sin θ2
0

⎤⎦ (6.67)

Gr4 =

⎡⎣ c cos θ4
c sin θ4
0

⎤⎦ (6.68)

Gω2 =

⎡⎣ 0
0
ω2

⎤⎦ (6.69)

Gω4 =

⎡⎣ 0
0
ω4

⎤⎦ (6.70)

Gα2 =

⎡⎣ 0
0
α2

⎤⎦ (6.71)

Gα4 =

⎡⎣ 0
0
α4

⎤⎦ . (6.72)
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The acceleration of point B with respect to point A is

GaB/A = Gα3 × Gr3 + Gω3 ×
¡
Gω3 × Gr3

¢
=

⎡⎣ −bα3 sin θ3 − bω23 cos θ3
bα3 cos θ3 − bω23 sin θ3

0

⎤⎦ (6.73)

where

Gr3 =

⎡⎣ b cos θ3
b sin θ3
0

⎤⎦ (6.74)

Gω3 =

⎡⎣ 0
0
ω3

⎤⎦ (6.75)

Gα3 =

⎡⎣ 0
0
α3

⎤⎦ . (6.76)

Example 223 Grashoff criterion.
The ability of a four-bar linkage to have a rotary link is determined by

Grashoff criterion. Assume the four links have the lengths s, l, p, and q,
where

l = longest link

s = shortest link

p, q = the other two links

then, the Grashoff criterion states that the linkage can have a rotary link
if

l + s < p+ q. (6.77)

Different types of a Grashoff mechanism are:

1− Shortest link is the input link, then the mechanism is a crank-rocker.
2− Shortest link is the ground link, and the mechanism is a crank-crank.
3− At all other conditions, the mechanism is a rocker-rocker.

A crank-crank mechanism is also called a drag-link.

Example 224 Limit positions for a four-bar linkage.
When the output link of a four-bar linkage stops while the input link

can turn, we say the linkage is at a limit position. It happens when the
angle between the input and coupler links is either 180 deg or 360 deg. Limit
positions of a four-bar linkage, if there are any, must be determined by the
designer to make sure the linkage is designed properly. A limit position for
a four-bar linkage is shown in Figure 6.5.
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FIGURE 6.5. Limit position for a four-bar linkage.

We show the limit angle of the output link by θ4L1 , θ4L2 , and the corre-
sponding input angles by θ2L1 , θ2L2 . They can be calculated by the following
equations:

θ2L1 = cos−1

"
(a+ b)

2
+ d2 − c2

2d (a+ b)

#
(6.78)

θ4L1 = cos−1

"
(a+ b)2 − d2 − c2

2cd

#
(6.79)

θ2L2 = cos−1

"
(b− a)2 + d2 − c2

2d (b− a)

#
(6.80)

θ4L2 = cos−1

"
(b− a)

2 − d2 − c2

2cd

#
(6.81)

The sweep angle of the output link would be

φ = θ4L2 − θ4L1 . (6.82)

Example 225 Dead positions for a four-bar linkage.
When the input link of a four-bar linkage locks, we say the linkage is at a

dead position. It happens when the angle between the output and coupler
links is either 180 deg or 360 deg. Limit positions of a four-bar linkage, if
there are any, must be determined by the designer to make sure the linkage
is never stuck in a dead position. A dead position for a four-bar linkage is
shown in Figure 6.6.
We show the dead angle of the output link by θ4D1 , θ4D2 , and the corre-

sponding input angles by θ2D1 , θ2D2 . They can be calculated by the following
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FIGURE 6.6. Dead position for a four-bar linkage.

equations:

θ2D1 = cos−1

"
a2 + d2 − (b+ c)

2

2ad

#
(6.83)

θ4D1 = cos−1

"
a2 − d2 − (b+ c)2

2 (b+ c) d

#
(6.84)

θ2D2 = cos−1

"
a2 + d2 − (b− c)

2

2ad

#
(6.85)

θ4D2 = cos−1

"
a2 − d2 − (b− c)2

2ad

#
(6.86)

Example 226 F Designing a four-bar linkage using Freudenstein’s equa-
tion.
Designing a mechanism can be thought of as determining the required

lengths of the links to accomplish a specific task.
Freudenstein’s equation (6.24)

J1 cos θ4 − J2 cos θ2 + J3 = cos (θ4 − θ2) (6.87)

J1 =
d

a
(6.88)

J2 =
d

c
(6.89)

J3 =
a2 − b2 + c2 + d2

2ac
(6.90)

determines the input-output relationship of a four-bar linkage. This equa-
tion can be utilized to design a four-bar linkage for three associated input-
output angles.
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FIGURE 6.7. Four popular windshield wiper systems.

Figure 6.7 illustrates the four popular windshield wiper systems. Double-
arm parallel method is the most popular wiping system that serves more
than 90% of passenger cars. The double-arm opposing method has been
used been using since last century, however, it was never very popular. The
single-arm simple method is not very efficient, so the controlled single-arm
is designed to maximize the wiped area.
Wipers are used on windshields, and headlights. Figure 6.8 illustrates

a sample of double-arm parallel windshield wiper mechanism. A four-bar
linkage makes the main mechanism match the angular positions of the left
and right wipers. A dyad or a two-link connects the driving motor to the
main four-bar linkage and converts the rotational output of the motor into
the back-and-forth motion of the wipers.
The input and output links of the main four-bar linkage at three different

positions are shown in Figure 6.9. We show the beginning and the end angles
for the input link by θ21 and θ23, and for the output link by θ41 and θ43
respectively. To design the mechanism we must match the angular positions
of the left and right blades at the beginning and at the end positions. Let’s
add another match point approximately in the middle of the total sweep
angles and design a four-bar linkage to match the angles indicated in Table
6.2.

Table 6.2 - Matching angles for a four-bar linkage of the double-arm
parallel mechanism shown in Figure 6.9.

Matching Input angle Output angle
1 θ21 = 157.6 deg ≈ 2.75 rad θ41 = 157.2 deg ≈ 2.74 rad
2 θ22 = 113.1 deg ≈ 1.97 rad θ42 = 97.5 deg ≈ 1.7 rad
3 θ23 = 69.5 deg ≈ 1.213 rad θ43 = 26.8 deg ≈ 0.468 rad
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FIGURE 6.8. A sample of double-arm parallel windshield wiper mechanism.
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FIGURE 6.9. The input and output links of the main four-bar linkage of a wind-
shield wiper at three different positions.
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Substituting the input and output angles in Freudenstein’s equation (6.24)

J1 cos θ41 − J2 cos θ21 + J3 = cos (θ41 − θ21)

J1 cos θ42 − J2 cos θ22 + J3 = cos (θ42 − θ22) (6.91)

J1 cos θ43 − J2 cos θ23 + J3 = cos (θ43 − θ23)

provides the following set of three equations:

J1 cos 2.74− J2 cos 2.75 + J3 = cos (2.74− 2.75)
J1 cos 1.7− J2 cos 1.97 + J3 = cos (1.7− 1.97) (6.92)

J1 cos 0.468− J2 cos 1.213 + J3 = cos (0.468− 1.213)

The set of equations (6.92) is linear for the unknowns J1, J2, and J3⎡⎣ −0.92044 0.9243 1
−0.12884 0.38868 1
0.89247 −0.35021 1

⎤⎦⎡⎣ J1
J2
J3

⎤⎦ =
⎡⎣ 0.99995
0.96377
0.73509

⎤⎦ (6.93)

with the following solution:⎡⎣ J1
J2
J3

⎤⎦ =
⎡⎣ 2.5284

3.8043
−0.18911

⎤⎦ (6.94)

The three factors J1, J2, J3 should be used to find four numbers for the
links’ length.

J1 =
d

a
(6.95)

J2 =
d

c
(6.96)

J3 =
a2 − b2 + c2 + d2

2ac
(6.97)

So, we may preset the length of one of the links, based on the physical situa-
tion. Traditionally, we use a = 1 and find the remaining lengths. Then, the
designed mechanism can be magnified or shrunk to fit the required geometry.
In this example, we find

a = 1

b = 2.8436

c = 0.66462

d = 2.5284. (6.98)

Assuming a distance d = 75 cm ≈ 29.5 in for a real passenger car, between



6. Applied Mechanisms 325

75.00

29.60

84.28

19.70

FIGURE 6.10. The main four-bar linkage of the windshield wiper at the initial
position measured in [ cm].

the left and right fixed joints M and N , we find the following dimensions:

a = 296mm

b = 843mm

c = 197mm

d = 750mm (6.99)

Such a mechanism is shown in Figure 6.10 at the initial position.

Example 227 F Equal sweep angles for input and output links.
Let’s place the second matching point of the windshield wiper mechanism

in Example 226 exactly in the middle of the total sweep angles

θ22 =
157.6 + 69.5

2
= 113.55 deg ≈ 1.982 rad

θ42 =
157.2 + 26.8

2
= 92deg ≈ 1.605 rad. (6.100)

The first and second sweep angles for such matching points would be equal.
Having equal sweep angles makes the motion of the wipers more uniform,
although it cannot guarantee that the angular speed ratio of the left and
right blades remains constant.
The matching points for the main four-bar linkage of the windshield wiper

with equal sweep angles are indicated in Table 6.3.

Table 6.3 - Equal sweep angle matching points for the four-bar linkage of
the double-arm parallel mechanism shown in Figure 6.9.

Matching Input angle Output angle
1 θ21 = 157.6 deg ≈ 2.75 rad θ41 = 157.2 deg ≈ 2.74 rad
2 θ22 = 113.55 deg ≈ 1.982 rad θ42 = 92deg ≈ 1.605 rad
3 θ23 = 69.5 deg ≈ 1.213 rad θ43 = 26.8 deg ≈ 0.468 rad
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Substituting the angles in Freudenstein’s equation (6.24) provides the fol-
lowing set of three equations:

J1 cos 2.74− J2 cos 2.75 + J3 = cos (2.74− 2.75)
J1 cos 1.605− J2 cos 1.982 + J3 = cos (1.605− 1.982)
J1 cos 0.468− J2 cos 1.213 + J3 = cos (0.468− 1.213) (6.101)

The set of equations can be written in a matrix form for the three unknowns
J1, J2, and J3⎡⎣ −0.920 44 0.924 3 1

−.0332 .3993 1
0.892 47 −0.350 21 1

⎤⎦⎡⎣ J1
J2
J3

⎤⎦ =
⎡⎣ 0.999 95

.929589
0.735 09

⎤⎦ (6.102)

with the solution. ⎡⎣ J1
J2
J3

⎤⎦ =
⎡⎣ 0.276

0.6
0.699

⎤⎦ (6.103)

Using a = 1 and the three factors J1, J2, and J3

J1 =
d

a
(6.104)

J2 =
d

c
(6.105)

J3 =
a2 − b2 + c2 + d2

2ac
, (6.106)

we can find the links’ length.

a = 1

b = 0.803

c = 0.46

d = 0.276. (6.107)

Assuming a distance d = 75 cm ≈ 29.5 in between the left and right fixed
joint M and N , we find the following dimensions for a real passenger car:

a = 2717mm

b = 2182mm

c = 1250mm

d = 750mm (6.108)

These dimensions do not show a practical design because the links’ length
may be longer than the width of the vehicle. It shows that the designed
mechanism is highly dependent on the second match point. So, it might
be possible to design a desirable mechanism by choosing a suitable second
match point.
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Example 228 F Second match point and link’s length.
To see how the design of the windshield wiper mechanism in Example

226 is dependent on the second match point, let’s set

θ22 =
157.6 + 69.5

2
= 113.55 deg ≈ 1.982 rad (6.109)

and make θ42 a variable. The three matching points for the main four-bar
linkage of the windshield wiper are indicated in Table 6.4.

Table 6.4 - Variable second match point for the four-bar linkage of
the double-arm parallel mechanism shown in Figure 6.9.

Matching Input angle Output angle
1 θ21 = 157.6 deg ≈ 2.75 rad θ41 = 157.2 deg ≈ 2.74 rad
2 θ22 = 113.55 deg ≈ 1.982 rad θ42
3 θ23 = 69.5 deg ≈ 1.213 rad θ43 = 26.8 deg ≈ 0.468 rad

The Freudenstein’s equation (6.24) provides the following set of equa-
tions:

J1 cos 2.74− J2 cos 2.75 + J3 = cos (2.74− 2.75)
J1 cos θ42 − J2 cos 1.982 + J3 = cos (θ42 − 1.982)

J1 cos 0.468− J2 cos 1.213 + J3 = cos (0.468− 1.213) (6.110)

The set of equations gives the following solutions:

J1 =
79.657 cos(θ42 − 1.9815)− 70.96

79.657 cos θ42 + 13.828

J2 =
93.642 cos(θ42 − 1.981) + 13.681 cos θ42 − 81.045

65.832 cos θ42 + 11.428

J3 =
32.357− 25.959 cos(θ42 − 1.981) + 53.184 cos(θ42)

11.428 + 65.83 cos(θ42)
(6.111)

Having d = 75 cm ≈ 29.5 in between the left and right fixed joint M and N
as a ground link, and using the factors J1, J2, and J3

J1 =
d

a
(6.112)

J2 =
d

c
(6.113)

J3 =
a2 − b2 + c2 + d2

2ac
, (6.114)

we can find the length of the other links a, b, and c as functions of θ42.
Figure 6.11 illustrates how the angle θ42 affects the lengths of the links.
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FIGURE 6.11. The length of links a, b, and c as functions of θ42.
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FIGURE 6.12. Maginification of the plot for the length of links a, b, and c as
functions of θ42, around the optimal design.
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FIGURE 6.13. The finalized main four-bar linkage of the windshield wiper at the
initial position measured in [ cm].

To hide the mechanism under the hood in a small space, we need to have
the lengths a and c much shorter than the ground d. Based on Figure 6.11,
a possible solution would be around θ42 = 100 deg. Figure 6.12 illustrates a
magnified view around θ42 = 100 deg.
To have the length of a and c less than 100mm ≈ 3.94 in we pick θ43 =

99.52 deg ≈ 1.737 rad. Then the factors J1, J2, and J3 are⎡⎣ J1
J2
J3

⎤⎦ =
⎡⎣ 9.740208376

14.06262379
−3.032892944

⎤⎦ (6.115)

and the links’ length for d = 75 cm ≈ 29.5 in are equal to

a = 77mm

b = 772mm

c = 53.3mm

d = 750mm. (6.116)

These numbers show a compact and reasonable mechanism. Figure 6.13
illustrates the finalized four-bar linkage of the windshield wiper at the initial
position.

Example 229 F Designing a dyad to attach a motor.
The main four-bar linkage of a windshield wiper is a rocker-rocker mech-

anism because both the input and the output links must oscillate between
two specific limits. To run the wipers and lock them at the limits, a two-link
dyad can be designed. First we set the point of installing a rotary motor
according to the physical conditions. Let point P , as shown in Figure 6.14,
be the point at which we install the electric motor to run the mechanism.
The next step would be to select a point on the input link to attach the sec-
ond link of the dyad. Although joint B is usually the best choice, we select
a point on the extension of the input link, indicated by D. There must be a
dyad between joints D and P with lengths p and q. When the mechanism
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is at the initial position, joint D is at the longest distance form the motor
P , and when it is at the final position, joint D is at the shortest distance
form the motor P . Let’s show the longest distance between P and D by l
and the shortest distance by s.

l = longest distance between P and D

s = shortest distance between P and D

p, q = dyad lengths between P and D

When P and D are at the maximum distance, the two-link dyad must
be along each other, and when P and D are at the minimum distance, the
two-link dyad must be on top of each other. Therefore,

l = q + p (6.117)

s = q − p (6.118)

where p is the shortest link, and q is the longest link of the dyad. Solving
Equations (6.117) and (6.118) for p and q provides

p =
l − s

2
(6.119)

q =
l + s

2
. (6.120)

In this example we measure

l = 453.8mm

s = 312.1mm (6.121)

and calculate for p and q

p = 70.8mm

q = 382.9mm. (6.122)

The final design of the windshield mechanism and the running motor is
shown in Figure 6.14 at the initial and final positions. The shorter link of
the running dyad, p, must be attached to the motor at P , and the larger
link, q, connects joint D to the shorter link at C. The motor will turn the
shorter link, PC continuously at an angular speed ω, while the longer link,
CD, will run the mechanism and protect the wiper links to go beyond the
initial and final angles.

Example 230 Application of four-bar linkage in a vehicle.
The double A arm suspension is a very popular mechanism for inde-

pendent suspension of street cars. Figure 6.15 illustrates a double A arm
suspension and its equivalent kinematic model. We attach the wheel to a
coupler point at C. The double A arm is also called double wishbone
suspension.
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FIGURE 6.14. The final design of the windshield mechanism at the initial and
final positions.
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FIGURE 6.15. Double A arm suspension in a four-bar linkage mechanism.
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FIGURE 6.16. A slider-crank mechanism.

6.2 Slider-Crank Mechanism

A slider-crank mechanism is shown in Figure 6.16. A slider-crank mecha-
nism is a four-bar linkage. Link number 1 is the ground, which is the base
and reference link. Link number 2 ≡ MA is usually the input link, which
is controlled by the input angle θ2. Link number 4 is the slider link that is
usually considered as the output link. The output variable is the horizontal
distance s between the slider and a fixed point on the ground, which is
usually the revolute joint at M . If the slider slides on a flat surface, we
define the horizon by a straight line parallel to the flat surface and passing
throughM . The link number 3 ≡ AB is the coupler link with angular posi-
tion θ3, which connects the input link to the output slider. This mechanism
is called the slider-crank because in most applications, the input link is a
crank link that rotates 360 deg, and the output is a slider.
The position of the output slider, s, and the angular position of the

coupler link, θ3, are functions of the link’s length and the value of the
input variable θ2. The functions are

s =
−G±

√
G2 − 4H
2

(6.123)

θ3 = sin−1
µ
e− a sin θ2
−b

¶
(6.124)

where

G = −2a cos θ2 (6.125)

H = a2 + e2 − b2 − 2ae sin θ2. (6.126)

Proof.We show the slider-crank mechanism by a vector loop, as shown in
Figure 6.17. The direction of each vector is arbitrary, however the angles
should be associated to the vector’s direction and be measured with the
positive direction of the x-axis. The links and their expression vectors are
shown in Table 6.5.
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FIGURE 6.17. Expressing a slider-crank mechanism by a vector loop.

Table 6.5 - Vector representation of the slider-crank mechanism
shown in Figure 6.17.

Link Vector Length Angle Variable
1 Gr1 s θ1 = 180 deg s
2 Gr2 a θ2 θ2
3 Gr3 b θ3 θ3
4 Gr4 e θ4 = 90deg −

The vector loop is

Gr1 +
Gr2 − Gr3 − Gr4 = 0 (6.127)

and we may decompose the vector equation (6.127) into sin and cos com-
ponents.

a sin θ2 − b sin θ3 − e = 0 (6.128)

a cos θ2 − b cos θ3 − s = 0 (6.129)

To derive the relationship between the input angle θ2 and the output
position s, the coupler angle θ3 must be eliminated between Equations
(6.128) and (6.129). Transferring the terms containing θ3 to the other side
of the equations, and squaring both sides, we get

(b sin θ3)
2
= (a sin θ2 − e)

2 (6.130)

(b cos θ3)
2 = (a cos θ2 − s)2 . (6.131)

By adding Equations (6.130) and (6.131), we derive the following equation:

s2 − 2as cos θ2 + a2 + e2 − b2 − 2ae sin θ2 = 0 (6.132)
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or
s2 +Gs+H = 0 (6.133)

where

G = −2a cos θ2 (6.134)

H = a2 + e2 − b2 − 2ae sin θ2. (6.135)

Equation (6.133) is a quadratic in s and provides the following solution:

s =
−G±

√
G2 − 4H
2

(6.136)

To find the relationship between the input angle θ2 and the coupler angle
θ3, we can use Equations (6.128) or (6.129) to solve for θ3.

θ3 = sin−1
µ
e− a sin θ2
−b

¶
(6.137)

θ3 = cos−1
µ
s− a cos θ2
−b

¶
(6.138)

Equations (6.34) and (6.44) can be used to calculate the output and
coupler variables s and θ3 as functions of the input angle θ2, provided the
lengths a, b, and e are given.

Example 231 Two possible configurations for a slider-crank mechanism.
At any angle θ2, and for suitable values of a, b, and e, Equation (6.136)

provides two values for the output variable s. Both solutions are possible
and provide two different configurations for the mechanism. A suitable set
of (a, b, e) is the numbers that make the radical in Equations (6.136) real.
As an example, consider a slider-crank mechanism at θ2 = π/4 rad =

45 deg with the lengths

a = 1

b = 2

e = 0.5. (6.139)

To solve the possible configurations, we start by calculating the coefficients
of the quadratic equation (6.133)

G = −2a cos θ2
= −1.4142 (6.140)

H = a2 + e2 − b2 − 2ae sin θ2
= −3.4571. (6.141)

Employing Equation (6.136) provides

s =
−G±

√
G2 − 4H
2

=

½
2.696
−1.282 . (6.142)
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FIGURE 6.18. Two possible configurations of a slider-crank mechanism having
the same input angle θ2.

The corresponding coupler angle θ3 can be calculated form either Equation
(6.137) or (6.138).

θ3 = sin−1
µ
e− a sin θ2
−b

¶
= cos−1

µ
s− a cos θ2
−b

¶
≈

½
3.037 rad ≈ 174 deg
0.103 rad ≈ 5.9 deg (6.143)

Figure 6.18 depicts the two possible configurations of the mechanism for
θ2 = 45deg.

Example 232 Velocity analysis of a slider-crank mechanism.
The velocity analysis of a slider-crank mechanism is possible by taking a

time derivative of Equations (6.128) and (6.129),

d

dt
(a sin θ2 − b sin θ3 − e)

= aω2 cos θ2 − bω3 cos θ3 = 0 (6.144)

d

dt
(a cos θ2 − b cos θ3 − s)

= −aω2 sin θ2 + b ω3 sin θ3 − ṡ = 0 (6.145)

where

ω2 = θ̇2

ω3 = θ̇3. (6.146)

Assuming θ2 and ω2 are given values, and s, θ3 are known from Equa-
tions (6.123) and (6.124), we may solve Equations (6.144) and (6.145) for
ṡ and ω3.

ṡ =
sin (θ3 − θ2)

cos θ3
aω2 (6.147)

ω3 =
cos θ2
cos θ3

a

b
ω2 (6.148)
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Example 233 Velocity of moving joints for a slider-crank mechanism.
Having the coordinates θ2, θ3, s and velocities ω2, ω3, ṡ enables us to

calculate the absolute and relative velocities of points A and B shown in
Figure 6.17. The absolute velocities of points A and B are

GvA = Gω2 × Gr2

=

⎡⎣ 0
0
ω2

⎤⎦×
⎡⎣ a cos θ2

a sin θ2
0

⎤⎦ =
⎡⎣ −aω2 sin θ2aω2 cos θ2

0

⎤⎦ (6.149)

GvB = ṡ ı̂

=

⎡⎢⎢⎣
sin (θ3 − θ2)

cos θ3
aω2

0
0

⎤⎥⎥⎦ (6.150)

and the velocity of point B with respect to point A is

GvB/A = GvB − GvA

=

⎡⎢⎢⎣
sin (θ3 − θ2)

cos θ3
aω2

0
0

⎤⎥⎥⎦−
⎡⎣ −aω2 sin θ2aω2 cos θ2

0

⎤⎦

=

⎡⎣ aω2 sin θ2 + a ω2
cos θ3

sin (θ3 − θ2)

−aω2 cos θ2
0

⎤⎦ . (6.151)

The velocity of point B with respect to A can also be found as

GvB/A = GR2
2vB

= GR2
2vB

= GR2
¡
2ω3 × 2r3

¢
= Gω3 × Gr3

=

⎡⎣ 0
0
ω3

⎤⎦×
⎡⎣ b cos θ3

b sin θ3
0

⎤⎦ =
⎡⎣ −bω3 sin θ3bω3 cos θ3

0

⎤⎦ . (6.152)

Equations (6.151) and (6.152) are both correct and convertible to each
other.



6. Applied Mechanisms 337

Example 234 Acceleration analysis of a slider-crank mechanism.
The acceleration analysis of a slider-crank mechanism is possible by tak-

ing another time derivative from Equations (6.144) and (6.145),

d

dt
(aω2 cos θ2 − b ω3 cos θ3)

= aα2 cos θ2 − bα3 cos θ3 − aω22 sin θ2 + bω23 sin θ3

= 0 (6.153)

d

dt
(−aω2 sin θ2 + b ω3 sin θ3 − ṡ)

= −aα2 sin θ2 − bα3 sin θ3 + aω22 cos θ2 + bω23 cos θ3 − s̈

= 0 (6.154)

where,

α2 = ω̇2

α3 = ω̇3. (6.155)

Assuming θ2, ω2, and α2 are given values as the kinematics of the input
link, s, θ3, are known from Equations (6.123) and (6.124), and ṡ, ω3 are
known from Equations (6.147) and (6.148), we may solve Equations (6.153)
and (6.154) for s̈ and α3.

s̈ =
−aα2 sin (θ2 + θ3) + bω23 cos 2θ3 + aω22 cos (θ2 − θ3)

cos θ3
(6.156)

α3 =
aα2 cos θ2 − aω22 sin θ2 + bω23 sin θ3

b cos θ3
(6.157)

Example 235 Acceleration of moving joints of a slider-crank mechanism.
Having the angular kinematics of a slider-crank mechanism θ2, θ3, s, ω2,

ω3, ṡ, α2, α3, and s̈ are necessary and enough to calculate the absolute and
relative accelerations of points A and B, shown in Figure 6.17.
The absolute acceleration of points A and B are

GaA = Gα2 × Gr2 + Gω2 ×
¡
Gω2 × Gr2

¢
=

⎡⎣ −aα2 sin θ2 − aω22 cos θ2
aα2 cos θ2 − aω22 sin θ2

0

⎤⎦ (6.158)

GaB = s̈ ı̂

=

⎡⎢⎢⎣
−aα2 sin (θ2 + θ3) + bω23 cos 2θ3 + aω22 cos (θ2 − θ3)

cos θ3
0
0

⎤⎥⎥⎦ . (6.159)
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FIGURE 6.19. Limit position for a slider-crank mechanism.

The acceleration of point B with respect to point A is

GaB/A = Gα3 × Gr3 + Gω3 ×
¡
Gω3 × Gr3

¢
=

⎡⎣ −bα3 sin θ3 − bω23 cos θ3
bα3 cos θ3 − bω23 sin θ3

0

⎤⎦ . (6.160)

Example 236 Limit positions for a slider-crank mechanism.
When the output slider of a slider-crank mechanism stops while the input

link can turn, we say the slider is at a limit position. It happens when the
angle between the input and coupler links is either 180 deg or 360 deg. Limit
positions of a slider-crank mechanism are usually dictated by the design
requirements. A limit position for a slider-crank mechanism is shown in
Figure 6.19.
We show the limit angle of the input link by θ2L1 , θ2L2 , and the cor-

responding horizontal distance of the slider by sMax, smin. They can be
calculated by the following equations:

θ2L1 = sin−1
∙

e

b+ a

¸
(6.161)

sMax =

q
(b+ a)

2 − e2 (6.162)

θ2L2 = sin−1
∙

e

b− a

¸
(6.163)

smin =

q
(b− a)

2 − e2 (6.164)

The length of stroke that the slider travels repeatedly would be

s = sMax − smin

=

q
(b+ a)

2 − e2 −
q
(b− a)

2 − e2. (6.165)
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Example 237 F Quick return slider-crank mechanism.
Consider a slider-crank with a rotating input link at a constant angular

velocity ω2. The required time for the slider to move from smin to sMax is

t1 =
θ2L2 − θ2L1

ω2

=
1

ω2

µ
sin−1

∙
e

b− a

¸
− sin−1

∙
e

b+ a

¸¶
(6.166)

and the required time for returning from sMax to smin is

t2 =
θ2L1 − θ2L2

ω2

=
1

ω2

µ
sin−1

∙
e

b+ a

¸
− sin−1

∙
e

b− a

¸¶
. (6.167)

If e = 0, then

θ2L1 = 0 (6.168)

θ2L2 = 180deg (6.169)

and therefore,
t1 = t2 =

π

ω2
. (6.170)

However, when e < 0 then,
t2 < t1 (6.171)

and the slider returns to smin faster. Such a mechanism is called quick
return.

6.3 Inverted Slider-Crank Mechanism

An inverted slider-crank mechanism is shown in Figure 6.20. It is a four-
link mechanism. Link number 1 is the ground link, which is the base and
reference link. Link number 2 ≡ MA is usually the input link, which is
controlled by the input angle θ2. Link number 4 is the slider link and is
usually considered as the output link. The slider link has a revolute joint
with the ground and a prismatic joint with the coupler link 3 ≡ AB. The
output variable can be the angle of the slider with the horizon, or the length
AB. The link number 3 ≡ AB is the coupler link with angular position θ3.

If we attach the coupler link of a slider-crank mechanism to the ground,
an inverted slider-crank mechanism is made. Changing the grounded link
produces a new mechanism that is called an inversion of the previous mech-
anism. Hence, the inverted slider-crank is an inversion of a slider-crank
mechanism.
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FIGURE 6.20. An inverted slider-crank mechanism.

The angular position of the output slider θ4 and the length of the coupler
link b are functions of the lengths of the links and the value of the input
variable θ2. These variables are:

b = ±
p
a2 + d2 − e2 − 2ad cos θ2 (6.172)

θ4 = θ3 +
π

2

= 2 tan−1

Ã
−H ±

√
H2 − 4GI
2G

!
(6.173)

where

G = d− e− a cos θ2 (6.174)

H = 2a sin θ2 (6.175)

I = a cos θ2 − d− e. (6.176)

Proof. We show the inverted slider-crank mechanism by a vector loop as
shown in Figure 6.21. The direction of each vector is arbitrary, however,
the angles should be associated to the vector’s direction and be measured
with positive direction of the x-axis. The links and their expression vectors
are shown in Table 6.6.

Table 6.6 - Vector representation of the inverted slider-crank
mechanism shown in Figure 6.21.

Link Vector Length Angle Variable
1 Gr1 d θ1 = 180 deg d
2 Gr2 a θ2 θ2
3 Gr3 b θ3 θ3 or θ4
4 Gr4 e θ4 = θ3 + 90deg −

The vector loop is
Gr1 +

Gr2 − Gr3 − Gr4 = 0 (6.177)
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FIGURE 6.21. Kinematic model of an inverted slider-crank mechanism.

which can be decomposed into sin and cos components.

a sin θ2 − b sin
³
θ4 −

π

2

´
− e sin θ4 = 0 (6.178)

−d+ a cos θ2 − b sin
³
θ4 −

π

2

´
− e cos θ4 = 0 (6.179)

To derive the relationship between the input angle θ2 and the output θ4,
we eliminate b between Equations (6.178) and (6.179) and find

(a cos θ2 − d) cos θ4 + a sin θ2 sin θ4 − e = 0. (6.180)

The have a better expression suitable for computer programming, we
may use trigonometric equations

sin θ4 = 2
2 tan

θ4
2

1 + tan2
θ4
2

(6.181)

cos θ4 =
1 + tan2

θ4
2

1 + tan2
θ4
2

(6.182)

to transform Equation (6.180) to a more useful equation

G tan2
θ4
2
+H tan

θ4
2
+ I = 0 (6.183)

where, I, J , and K are functions of the input variable.

G = d− e− a cos θ2 (6.184)

H = 2a sin θ2 (6.185)

I = a cos θ2 − d− e (6.186)
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Equation (6.183) is a quadratic in tan (θ4/2) and can be used to find the
output angle θ4.

θ4 = 2 tan
−1

Ã
−H ±

√
H2 − 4GI
2G

!
(6.187)

To find the relationship between the input angle θ2 and the coupler length
b, we may solve Equations (6.178) and (6.179) for sin θ4 and cos θ4

sin θ4 =
ab cos θ2 − ae sin θ2 + bd

b2 + e2
(6.188)

cos θ4 = −ab sin θ2 − ae cos θ2 + ed

b2 + e2
(6.189)

or substitute (6.187) in (6.180) and solve for b. By squaring and adding
Equations (6.188) and (6.189), we find the following equation:

a2 − b2 + d2 − e2 − 2ad cos θ2 = 0 (6.190)

which must be solved for b.

b = ±
p
a2 + d2 − e2 − 2ad cos θ2 (6.191)

Example 238 Two possible configurations for an inverted slider-crank mech-
anism.
At any angle θ2, and for suitable values of a, d, and e, Equations (6.172)

and (6.173) provide two values for the output b and coupler angles θ4. Both
solutions are possible and provide two different configurations for the mech-
anism. A suitable set of (a, d, e) are the numbers that make the radicals in
Equations (6.172) and (6.173) real.
For example, consider an inverted slider-crank mechanism at θ2 = π/4 rad =

45 deg with the lengths

a = 1

e = 0.5

d = 3. (6.192)

The parameters of Equation (6.172) are equal to

G = d− e− a cos θ2 = 1.792 9

H = 2a sin θ2 = 1.414 2

I = a cos θ2 − d− e = −2.792 9 (6.193)

Now, Equation (6.183) gives two real values for θ4

θ4 ≈
½
1.48 rad ≈ 84.8 deg
−2.08 rad ≈ −120 deg . (6.194)
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FIGURE 6.22. Two configurations of an inverted slider crank mechanism for
θ2 = 45deg.

Using the known values and for θ4 = 1.48 rad, Equations (6.188) will
provide

b ≈ 2.33. (6.195)

When θ4 = −1.732 rad we get
b = −2.28. (6.196)

Figure 6.22 depicts the two configurations of the mechanism for θ2 =
45deg.

Example 239 Velocity analysis of an inverted slider-crank mechanism.
The velocity analysis of a slider-crank mechanism can be found by taking

a time derivative of Equations (6.178) and (6.179),

d

dt
(a sin θ2 + b cos θ4 − e sin θ4)

= aω2 cos θ2 − b ω4 sin θ4 + ḃ cos θ4 − eω4 cos θ4 = 0 (6.197)

d

dt
(a cos θ2 + b cos θ4 − e cos θ4 − d)

= −aω2 sin θ2 − b ω4 sin θ4 + ḃ cos θ4 + eω4 sin θ4 = 0 (6.198)

where

ω2 = θ̇2

ω4 = ω3 = θ̇4. (6.199)

Assuming θ2 and ω2 are given values, and b, θ4 are known from Equa-
tions (6.172) and (6.173), we may solve Equations (6.197) and (6.198) for
ḃ and ω4.

ḃ =
a

b
ω2 [b cos (θ4 − θ2)− e sin (θ4 − θ2)] (6.200)

ω4 = ω3 =
a

b
ω2 sin (θ2 − θ4) (6.201)
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Example 240 Velocity of moving joints for an inverted slider-crank mech-
anism.
Having the coordinates θ2, θ4, b and velocities ω2, ω4, ḃ enables us to

calculate the absolute and relative velocities of points A and B shown in
Figure 6.21. The absolute and relative velocities of points A and B are

GvA = Gω2 × Gr2

=

⎡⎣ 0
0
ω2

⎤⎦×
⎡⎣ a cos θ2

a sin θ2
0

⎤⎦ =
⎡⎣ −aω2 sin θ2aω2 cos θ2

0

⎤⎦ (6.202)

GvB4
= Gω4 × Gr4

=

⎡⎣ 0
0
ω4

⎤⎦×
⎡⎣ e cos θ4

e sin θ4
0

⎤⎦ =
⎡⎣ −eω4 sin θ4eω4 cos θ4

0

⎤⎦ (6.203)

GvB3/A = Gω3 ×
¡
−Gr3

¢
=

⎡⎣ 0
0
ω4

⎤⎦×
⎡⎣ −b cos θ4−b sin θ4

0

⎤⎦ =
⎡⎣ bω4 sin θ4
−bω4 cos θ4

0

⎤⎦ (6.204)

GvB3 = GvB3/A +
GvA

=

⎡⎣ bω4 sin θ4
−bω4 cos θ4

0

⎤⎦+
⎡⎣ −aω2 sin θ2aω2 cos θ2

0

⎤⎦
=

⎡⎣ bω4 sin θ4 − aω2 sin θ2
aω2 cos θ2 − bω4 cos θ4

0

⎤⎦ (6.205)

GvB3/B4
= GvB3 − GvB4

=

⎡⎣ bω4 sin θ4 − aω2 sin θ2
aω2 cos θ2 − bω4 cos θ4

0

⎤⎦−
⎡⎣ −eω4 sin θ4eω4 cos θ4

0

⎤⎦
=

⎡⎣ ω4e sin θ4 − aω2 sin θ2 + bω4 sin θ4
aω2 cos θ2 − ω4e cos θ4 − bω4 cos θ4

0

⎤⎦ . (6.206)
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Example 241 Acceleration analysis of an inverted slider-crank mecha-
nism.
The acceleration analysis of an inverted slider-crank mechanism can be

found by taking another time derivative from Equations (6.197) and (6.198),

d

dt

³
aω2 cos θ2 − b ω4 sin θ4 + ḃ cos θ4 − eω4 cos θ4

´
= aα2 cos θ2 − aω22 sin θ2 − bα4 sin θ4 + bω24 cos θ4

+b̈ cos θ4 − ḃω4 sin θ4 − eα4 cos θ4 + eω24 sin θ4

= 0 (6.207)

d

dt

³
−aω2 sin θ2 − b ω4 sin θ4 + ḃ cos θ4 + eω4 sin θ4

´
= −aα2 sin θ2 + aω22 cos θ2 − bα4 sin θ4 − bω24 cos θ4

+b̈ cos θ4 − ḃω4 sin θ4 + eα4 sin θ4 + eω24 cos θ4

= 0 (6.208)

where

α2 = ω̇2

α4 = α3 = ω̇4 = ω̇3. (6.209)

Assuming θ2, ω2, and α4 are given values as the kinematics of the input
link, b, θ4, are known from Equations (6.172) and (6.173), and ḃ, ω4 are
known from Equations (6.200) and (6.201), we may solve Equations (6.207)
and (6.208), for b̈ and α4

b̈ =
C7C12 − C9C10
C7C11 − C8C10

(6.210)

α4 =
C9C11 − C8C12
C7C11 − C8C10

(6.211)

where,

C7 = sin θ4

C8 = b cos θ4 + e sin θ4

C9 = aα2 sin θ2 + aω22 cos θ2 − 2ḃω4 cos θ4
+bω24 sin θ4 − eω24 cos θ4

C10 = cos θ4

C11 = −b sin θ4 + e cos θ4

C12 = aα2 cos θ2 − aω22 sin θ2 + 2ḃω4 sin θ4

+bω24 cos θ4 + eω24 sin θ4. (6.212)
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FIGURE 6.23. The McPherson strut suspension is an inverted slider mechanism.

Example 242 Application of inverted slider mechanism in vehicles.
The McPherson strut suspension is a very popular mechanism for inde-

pendent front suspension of street cars. Figure 6.23 illustrates a McPherson
strut suspension and its equivalent kinematic model. We attach the wheel
to a coupler point at C.
The piston rod of the shock absorber serves as a kingpin axis at the top

of the strut. At the bottom, the shock absorber pivots on a ball joint on
a single lower arm. The McPherson strut, also called the Chapman strut,
was invented by Earl McPherson in the 1940s. It was first introduced on
the 1949 Ford Vedette, and also adopted in the 1951 Ford Consul, and then
become one of the dominating suspension systems because it’s compactness
and has a low cost.

6.4 Instant Center of Rotation

In a general plane motion of a rigid body, at a given instant, the velocities
of various points of the body can be expressed as the result of a rotation
about an axis perpendicular to the plane. This axis intersects the plane at
a point called the instantaneous center of rotation of the body with respect
to the ground. The instantaneous center of rotation is also called instant
center, centro, and pole.
If the directions of the velocities of two different body points A and B

are known, the instant center of rotation I is at the intersection of the lines
perpendicular to the velocity vectors vA and vB. Such a situation is shown
in Figure 6.24(a).
If the velocity vectors vA and vB are perpendicular to the line AB and
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FIGURE 6.24. Determination of the instantaneous center of rotation I for a
moving rigid body.

if their magnitudes are known, the instantaneous center of rotation I is at
the intersection of AB with the line joining the extremities of the velocity
vectors. Such a situation is shown in Figure 6.24(b).
There is an instant center of rotation between every two links moving

with respect to each other. The instant center is a point common to both
bodies that has the same velocity in each body coordinate frame.
The three instant centers , I12, I23, and I13 between three links numbered

1, 2, and 3 lie on a straight line. This statement is called the Kennedy
theorem for three instant centers.

Proof. Consider the two bodies shown in Figure 6.25. The ground is link
number 1, links number 2 and 3 are pivoted to the ground at points M
and N , and are rotating with angular velocities ω2 and ω3. The two links
are contacted at point C. The revolute joint at M is the instant center I12
and the revolute joint at N is the instant center I13.
The velocity of point C as a point of link 2 is vC2 , perpendicular to the

radius MC. Similarly, the velocity of point C as a point of link 3 is vC2 ,
perpendicular to the radius NC. The instant center of rotation I13 must
be a common point with the same velocity in both bodies. Let’s draw the
normal line n− n, and tangential line t− t to the curves of links 2 and 3,
at the contact point C.
Point C is a common point between the two bodies. The normal compo-

nents of vC2 and vC3 must be equal to keep contact, so the only difference
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FIGURE 6.25. A 3-link mechanism with the ground as link number 1, and two
moving links, numbers 2 and 3.

between the velocity of the common point can be in the tangent compo-
nents. So, the instant center of rotation I13 must be at a position where
the relative velocity of points C2 and C3 with respect to I13 are equal and
are on the line t− t. Hence, it must be on the normal line n− n, and the
intersection of the normal line n − n with the center line MN is the only
possible point for the instant center of rotation I13.
Let’s define

I12I23 = l2 (6.213)

I13I23 = l3 (6.214)

then, because the velocities of the two bodies must be equal at the common
instant center of rotation, we have

l2ω2 = l3ω3 (6.215)

or

ω2
ω3

=
l3
l2

=
1

1 +
d

l2

(6.216)

where, d is the length of the ground link MN .



6. Applied Mechanisms 349

I23

I13

I34

I14I24 I12

I13

I14

I24

I23

I34

I23

I13

I34

I24I12

4

3

2

1

4
3

2

1
I12

I14

4
32

1

(a) (b)

(c)

FIGURE 6.26. The instant centers of rotation for a four-bar linkage, a slid-
er-crank, and an inverted slider-crank mechanism.

Example 243 Number of instant centers.
There is one instant center between every two relatively moving bodies.

So, there are three instant centers between three bodies. The number N of
instant centers between n relatively moving bodies is

N =
n (n− 1)

2
. (6.217)

Thus, a four-bar linkage has six instant centers, I12, I13, I14, I23, I24, I34.
The symbol Iij indicates the instant center of rotation between kinks i and
j. Because two links have only one instant center, we have

Iij = Iji. (6.218)

The four instant centers of rotation for a four-bar linkage, a slider-crank,
and an inverted slider-crank mechanisms are shown in Figure 6.26. The in-
stant center of rotation for two links that slide on each other is at infinity,
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FIGURE 6.27. Fifteen instant center of rotations for a 6-link mechanism.

on a line normal to the common tangent. So, I14 in Figure 6.26(b) is on
a line perpendicular to the ground, and I34 in Figure 6.26(c) is on perpen-
dicular to the link 3.
Figure 6.27 depicts the 15 instant centers for a six-link mechanism.

Example 244 Application of instant center of rotation in vehicles.
Figure 6.28 illustrates a double A-arm suspension and its equivalent kine-

matic model. The wheel will be fastened to the coupler link AB, witch con-
nects the upper A-arm BN to the lower A-arm AN . The A-arms are con-
nected to the body with two revolute joints at N and M . The body of the
vehicle acts as the ground link for the suspension mechanism, which is a
four-bar linkage.
Points N and M are, respectively, the instant centers of rotation for the

upper and lower arms with respect to the body. The intersection point of the
extension line for the upper and lower A-arms indicates the instant center
of rotation for the coupler with respect to the body. When the suspension
moves, the wheel will rotate about point I with respect to the body. Point I
is called the roll center of the wheel and body.
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FIGURE 6.28. The roll center of a double A-arm suspension and its equivalent
kinematic model.

Example 245 The instant centers of rotation may not be stationary.
When a mechanism moves, the instant centers of rotation may move,

if they are not at a fixed joint with the ground. Figure 6.29 illustrates a
four-bar linkage at a few different positions and shows the instant centers
of rotation for the coupler with respect to the ground I13. Point I13 will
move when the linkage moves, and traces a path shown in the figure.

Example 246 Sliding a slender on the wall.
Figure 6.30 illustrates a slender bar AB sliding at points A and C. We

have the velocity axis of two points A and C, and therefore, we can find the
instant center of rotation I.
The coordinates of point I are a function of the parameter θ as follows:

xI = h cot θ (6.219)

yI = h+ xI cot θ

= h
¡
1 + cot2 θ

¢
. (6.220)

Eliminating θ between x and y, generates the path of motion for I.

yI = h

µ
1 +

x2I
h2

¶
(6.221)

Example 247 F Plane motion of a rigid body.
The plane motion of a rigid body is such that all points of the body move

only in parallel planes. So, to study the motion of the body, it is enough to
examine the motion of points in just one plane.
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FIGURE 6.29. Path of motion for the instant center of rotation I13.
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FIGURE 6.30. A slender bar AB sliding at points A and C.



6. Applied Mechanisms 353

X

Y

x

y

GdB

G
B

O

P

GrP BrP

o

FIGURE 6.31. A rigid body in a planar motion.

Figure 6.31 illustrates a rigid body in a planar motion and the correspond-
ing coordinate frames. The position, velocity, and acceleration of body point
P are:

GrP = GdB +
GRB

BrP

= GdB +
G
BrP (6.222)

GvP = GḋB + GωB ×
¡
GrP − GdB

¢
= GḋB + GωB × G

BrP (6.223)

where, GdB indicates the position of the moving origin o relative to the
fixed origin O. The termGḋB is the velocity of point o and, GωB × G

BrP
is the velocity of point P relative to o.

GvP/o = GωB × G
BrP (6.224)

Although it is not a correct view, it might sometimes help if we interpret
GḋB as the translational velocity and GωB× G

BrP as the rotational velocity
components of GvP . Then, the velocity of any point P of a rigid body is
a superposition of the velocity GḋB of another arbitrary point o and the
angular velocity GωB × G

BrP of the points P around o.
The relative velocity vector GvP/o is perpendicular to the relative position

vector G
BrP . Employing the same concept we can say that the velocity of

points P and o with respect to another point Q are perpendicular to G
BrP/Q

and G
Bro/Q respectively. We may search for a point Q, as the instantaneous

center of rotation, at which the velocity is zero. Points o, P , and Q are
shown in Figure 6.32.
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FIGURE 6.32. Instant center of rotation Q, for planar motion of a rigid body.

Assuming a position vector Gro/Q for the instant center point Q, let’s
define

Gro/Q = aQ
GḋB + bQ GωB × GḋB (6.225)

then, following (6.223), the velocity of point Q can be expressed by

GvQ = GḋB + GωB × GrQ/o

= GḋB − GωB × Gro/Q (6.226)

= GḋB − GωB ×
³
aQ

GḋB + bQ GωB × GḋB

´
= GḋB − aQ GωB × GḋB − bQ GωB ×

³
GωB × GḋB

´
= 0. (6.227)

Now, using the following equations

GωB = ωK̂ (6.228)

GωB ×
³
GωB × GḋB

´
=

³
GωB · GḋB

´
GωB − ω2 GḋB (6.229)

GωB · GḋB = 0 (6.230)

we find ¡
1 + bQ ω2

¢
GḋB − aQ GωB × GḋB = 0. (6.231)

Because GḋB and GωB × GḋB must be perpendicular, Equation (6.231)
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provides

1 + bQ ω2 = 0 (6.232)

aQ = 0 (6.233)

and therefore,
GrQ/o =

1

ω2

³
GωB × GḋB

´
. (6.234)

Example 248 F Instantaneous center of acceleration.
For planar motions of rigid bodies, it is possible to find a body point with

zero acceleration. Such a point may be called the instantaneous center of
acceleration. When a rigid body is in a planar motion, we can be express
the acceleration of a body point P , such as shown in Figure 6.32, as

GaP = Gd̈B + GαB ×
¡
GrP − GdB

¢
+GωB ×

¡
GωB ×

¡
GrP − GdB

¢¢
= Gd̈B + GαB × G

BrP + GωB ×
¡
GωB × G

BrP
¢
. (6.235)

The term GωB ×
¡
GωB × G

BrP
¢
is the centripetal acceleration, and the

term GαB × G
BrP is the tangential acceleration and is perpendicular to

G
BrP . Because the motion is planar, the angular velocity vector is always in
parallel to k̂ and K̂ unit vectors.

GωB = ωK̂ (6.236)

GαB = αK̂ (6.237)

Therefore, the velocity GvP and acceleration GaP can be simplified to

GaP =
Gd̈B + GαB × G

BrP − ω2 GBrP . (6.238)

We now look for a zero acceleration point S and express its position vector
by

GrS/o = aS
Gd̈B + bS GαB × Gd̈B (6.239)

and based on (6.238) we have,

GaS = Gd̈B + GαB × G
BrS − ω2 GBrS

= Gd̈B + GαB × GrS/o − ω2 GrS/o

= Gd̈B + GαB ×
³
aS

Gd̈B + bS GαB × Gd̈B

´
−ω2

³
aS

Gd̈B + bS GαB × Gd̈B

´
= Gd̈B + aS GαB × Gd̈B + bS GαB ×

³
GαB × Gd̈B

´
−aS ω2 Gd̈B − bS ω

2
GαB × Gd̈B

= 0. (6.240)
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Simplifying results in¡
1− aS ω

2 − bS α
2
¢
Gd̈B +

¡
aS − bS ω

2
¢
GαB × Gd̈B = 0 (6.241)

and because Gd̈B and GαB × Gd̈B are perpendicular, we must have

1− aS ω
2 − bS α

2 = 0 (6.242)

aS − bS ω
2 = 0 (6.243)

and hence,

aS =
ω2

ω2 + α2
(6.244)

bS =
1

ω2 + α2
. (6.245)

The position vector of the instant center of acceleration is then equal to

GrS/o =
1

ω2 + α2

³
ω2 Gd̈B + GαB × Gd̈B

´
(6.246)

6.5 Coupler Point Curve

The most common independent suspension systems are double A-arm and
inverted slider-crank mechanisms. The wheel of the vehicle will be attached
to a point of the coupler link of the mechanism, which is attached to the
body of the vehicle.

6.5.1 Coupler Point Curve for Four-Bar Linkages

Figure 6.33 illustrates a four-bar linkageMNAB and a coupler point at C.
When the mechanism moves, the coupler point C will move on a path.
The path of the coupler point is called the coupler point curve. Consid-

ering θ2 as the input of the mechanism, the parametric coordinates of the
coupler point curve (xC , yC) are

xC = a cos θ2 + e cos (β − γ + α) (6.247)

yC = a sin θ2 + e sin (β − γ + α) (6.248)

where,

γ = tan−1
a sin θ2

d− a cos θ2
(6.249)

β = tan−1

q
4b2f2 − (b2 + f2 − c2)

2

b2 + f2 − c2
(6.250)

f =
p
a2 + d2 − 2ad cos θ2. (6.251)
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FIGURE 6.33. A four-bar linkage MNAB and a coupler point at C.

Proof. The position of the coupler point C in Figure 6.33 is defined by
the polar coordinates length e and angle α in a coordinate frame attached
to the coupler link, and by (xC , yC) in the Cartesian coordinate frame
attached to the ground. The length of the links are indicated by MA = a,
AB = b, NB = c, and MN = d. We show the angle ∠ANM by γ and
∠BAN by β. Let’s draw a line l through A and parallel to the ground link
MN , then,

∠NAl = ∠ANM = γ (6.252)

∠CAl = ψ (6.253)

ψ = β − γ + α. (6.254)

The global coordinates of point C are

xC = a cos θ2 + e cosψ (6.255)

yC = a sin θ2 + e sinψ (6.256)

where, ψ comes from Equation (6.254). The angle β can be calculated from
the cosine law in 4BAN ,

cosβ =
b2 + f2 − c2

2bf
(6.257)

where, f = AN . Applying the cosine law in 4AMN shows that f is equal
to

f =
p
a2 + d2 − 2ad cos θ2 (6.258)

given by Equation (6.251).
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FIGURE 6.34. A double A arm suspension mechanism and its equivalent four-bar
linkage kinematic model.

For computer calculation ease, it is better to find β from the trigonomet-
ric equation

tan2 β = sec2 β − 1 (6.259)

after we substitute secβ from Equation (6.257).

β = tan−1

q
4b2f2 − (b2 + f2 − c2)2

b2 + f2 − c2
(6.260)

The angle γ can be found from a tan equation based on the vertical
distance of point A from the ground link MN .

γ = tan−1
a sin θ2

d− a cos θ2
(6.261)

Therefore, the coordinates xC and yC can be calculated as two parametric
functions of θ2 for a given set of a, b, c, d, e, and α.

Example 249 A poorely designed double A arm suspension mechanism.
Figure 6.34 illustrates a double A arm suspension mechanism and its

equivalent four-bar linkage kinematic model. Points M and N are fixed
joints on the body, and points A and B are moving joints attached to the
wheel supporting coupler link. Point C is on the spindle and supposed to
be the wheel center. When the wheel moves up and down, the wheel center
moves on a the couple point curve shown in the figure. The wheel’s center
of proper suspension mechanism is supposed to move vertically, however,
the wheel center of the suspension moves on a high curvature path and
generates an undesired camber.
A small motion of the kinematic model of suspension is shown in Fig-

ure 6.35, and the actual suspension and wheel configurations are shown in
Figure 6.36.
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FIGURE 6.36. A small motion of the actual suspension and wheel configurations.
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FIGURE 6.37. A slider-crank mechanism and a coupler point at C.

6.5.2 Coupler Point Curve for a Slider-Crank Mechanism

Figure 6.37 illustrates a slider-crank mechanism and a coupler point at C.
When the mechanism moves, coupler point C will move on a coupler point
curve with the following parametric equation:

xC = a cos θ2 + c cos (α− γ) (6.262)

yC = a sin θ2 + c sin (α− γ) (6.263)

The angle θ2 is the input angle and acts as a parameter, and angle γ can
be calculated from the following equation.

γ = sin−1
a sin θ2 − e

b
(6.264)

Proof. We attach a planar Cartesian coordinate frame to the ground link
at M . The x-axis is parallel to the ground indicated by the sliding surface,
as shown in Figure 6.37. Drawing a line l through A and parallel to the
ground shows that

β = α− γ (6.265)

where γ is the angle between the coupler link and the ground.
The coordinates (xC , yC) for point C are

xC = a cos θ2 + c cosβ (6.266)

yC = a sin θ2 + c sinβ. (6.267)
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FIGURE 6.38. A centric and symmetric slider-crank mechanism.

To calculate the angle γ, we examine 4AEB and find

sin γ =
AE

AB

=
a sin θ2 − e

b
(6.268)

that finishes Equation (6.264).
Therefore, the coordinates xC and yC can be calculated as two parametric

functions of θ2 for a given set of a, b, c, e, and α.

Example 250 A centric and symmetric slider-crank mechanism.
Point C (xC , yC) is the coupler point of a centric and symmetric slider-

crank mechanism shown in Figure 6.38. It is centric because e = 0, and is
symmetric because a = b, and therefore, θ2 = θ4. Point C is on the coupler
link AB and is at a distance kb from A, where 0 < k < 1.
The coordinates of point C are

xC = a cos θ2 + ka cos θ2

= a (1 + k) cos θ2 (6.269)

yC = a sin θ2 − ka sin θ2

= a (1− k) sin θ2 (6.270)

and therefore,

cos θ2 =
xC

a (1 + k)
(6.271)

sin θ2 =
yC

a (1− k)
. (6.272)

Using cos2 θ2 + sin2 θ2 = 1, we can show that the coupler point C will
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FIGURE 6.39. An inverted slider-crank mechanism and a coupler point at C.

move on an ellipse.

x2C
a2 (1 + k)

2 +
y2C

a2 (1− k)
2 = 1 (6.273)

6.5.3 Coupler Point Curve for Inverted Slider-Crank
Mechanism

Figure 6.39 illustrates an inverted slider-crank mechanism and a coupler
point at C. When the mechanism moves, the coupler point C will move on
a coupler point curve with the following parametric equation:

xC = a cos θ2 + c cos (π − α− θ4) (6.274)

yC = a sin θ2 + c sin (π − α− θ4) (6.275)

The angle θ2 is the input angle and acts as a parameter, and θ4 is the angle
of the output link, given by Equation (6.173).

θ4 = 2 tan−1

Ã
−H ±

√
H2 − 4GI
2G

!
(6.276)

G = d− e− a cos θ2 (6.277)

H = 2a sin θ2 (6.278)

I = a cos θ2 − d− e. (6.279)

Proof. We attach a planar Cartesian coordinate frame to the ground link
at MN . Drawing a vertical line through C defines the variable angle γ =
∠ACF as shown in Figure 6.39. We also define three angles β1 = ∠ANM ,
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β2 = ∠ANB, and β3 = ∠BEF , to simplify the calculations. From 4ACE,
we find

γ = π − β3 − α (6.280)

and from quadrilateral ¤EFNB, we find

β3 +∠EFN + β2 + β1 +∠EBN = 2π. (6.281)

However,

∠EBN =
π

2
(6.282)

∠EFN =
π

2
(6.283)

and therefore,
β3 + β2 + β1 = π. (6.284)

The output angle θ4 is equal to

θ4 = π − (β2 + β1) , (6.285)

and thus,
θ4 = β3. (6.286)

Now the angle γ may be written as

γ = π − θ4 − α (6.287)

where θ4 is the output angle, found in Equation (6.173).
Therefore, the coordinates xC and yC can be calculated as two parametric

functions of θ2 for a given set of a, d, c, e, and α.

6.6 F Universal Joint Dynamics

The universal joint shown in Figure 6.40 is a mechanism used to connect
rotating shafts that intersect in an angle ϕ. The universal joint is also
known as Hook’s coupling, Hook joint, Cardan joint, or yoke joint.
Figure 6.41 illustrates a universal joint. There are four links in a universal

joint: link number 1 is the ground, which has a revolute joint with the
input link 2 and the output link 4. The input and the output links are
connected with a cross-link 3. The universal joint is a three-dimensional
four-bar linkage for which the cross-link acts as a coupler link.
The driver and driven shafts make a complete revolution at the same

time, but the velocity ratio is not constant throughout the revolution. The
angular velocity of the output shaft 4 relative to the input shaft 2 is called
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FIGURE 6.40. A universal joint.
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4ωϕ
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C

D

Driver

Driven

Cross-link

FIGURE 6.41. A universal joint with four links: link 1 is the ground, link 2 is the
input, link 4 is the output, and the cross-link 3 is a coupler link.
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FIGURE 6.42. A separate illustration of the input, output, and the cross links
for a universal joint.

speed ratio Ω and is a function of the angular position of the input shaft θ,
and the angle between the shafts ϕ.

Ω =
ω4
ω2
=

cosϕ

1− sin2 ϕ cos2 θ
(6.288)

Proof. A universal joint may appear in many shapes, however, regardless
of how it is constructed, it has essentially the form shown in Figure 6.41.
Each connecting shaft ends in a U -shaped yoke. The yokes are connected
by a rigid cross-link. The ends of the cross-link are set in bearings in the
yokes. When the driver yoke turns, the cross-link rotates relative to the
yoke about its axis AB. Similarly, the cross-link rotates about the axis CD
and relative to the driven yoke.
Although the driver and driven shafts make a complete revolution at the

same time, the velocity ratio is not constant throughout the revolution. A
separate illustration of the input, output, and the cross links are shown in
Figure 6.42.
The angular velocity of the cross-link may be shown by

1ω3 = 1ω2 +
1
2ω3

= 1ω4 +
1
4ω3 (6.289)
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FIGURE 6.43. A kinematic model for a universal joint.

where, 1ω2 is the angular velocity of the driver yoke about the x2-axis
and 12ω3 is the angular velocity of the cross-link about the axis AB relative
to the drive yoke expressed in the ground coordinate frame.
Figure 6.43 shows that the unit vectors ĵ2 and ĵ3 are along the arms of

the cross link, and the unit vectors ı̂2 and ı̂4 are along the shafts. Having
the angular velocity vectors,

1ω2 =

⎡⎣ ω21 ı̂1
ĵ1
k̂1

⎤⎦ =
⎡⎣ ω21

0
0

⎤⎦ (6.290)

1ω4 =

⎡⎣ ω41 ı̂4
ĵ4
k̂4

⎤⎦ =
⎡⎣ ω41

0
0

⎤⎦ (6.291)

2ω3 =

⎡⎣ ı̂2
ω32 ĵ2

k̂2

⎤⎦ (6.292)

3
2ω3 =

⎡⎣ ω32 ı̂3
ĵ3
k̂3

⎤⎦ (6.293)

4ω3 =

⎡⎣ ı̂4
ω34 ĵ4

k̂4

⎤⎦ (6.294)

3
4ω3 =

⎡⎣ ı̂3
ω34 ĵ3

k̂3

⎤⎦ (6.295)



6. Applied Mechanisms 367

we can simplify Equation (6.289) to

ω32 ı̂3 + ω21 ı̂2 = ω41 ı̂4 + ω34 ĵ3. (6.296)

However, because the cross-link coordinate frame is right-handed, we have

ı̂3 × ĵ3 = k̂3 (6.297)

and therefore,

(ω32 ı̂3 + ω21 ı̂2) · k̂3 = (ω41 ı̂4 + ω34 ĵ3) · k̂3 (6.298)

that results in the following equation:

ω21 ı̂2 · k̂3 = ω41 ı̂4 · k̂3 (6.299)

Now the required equation for the speed ratio Ω = ω41/ω21 is

Ω =
ω41
ω21

=
ı̂3 × ĵ3 · ı̂2
ı̂3 × ĵ3 · ı̂4

. (6.300)

The unit vector ĵ3 is perpendicular to ı̂3 and ı̂4, we may write

ĵ3 = aı̂4 × ı̂3 (6.301)

where a is a coefficient. Now

ı̂3 × ĵ3 = ı̂3 × (aı̂4 × ı̂3)

= a [̂ı4 − (̂ı3 · ı̂4) ı̂3] (6.302)

and because
ı̂3 · ı̂2 = 0 (6.303)

we find

Ω =
ω41
ω21

=
ı̂2 · a [̂ı4 − (̂ı3 · ı̂4) ı̂3]
ı̂3 · a [̂ı4 − (̂ı3 · ı̂4) ı̂3]

=
ı̂2 · ı̂4

1− (̂ı3 · ı̂4)2

=
cosϕ

1− (̂ı3 · ı̂4)2
. (6.304)

If we show the angular position of the input yoke by θ, then

ı̂3 = cos θ ĵ1 + sin θ k̂1 (6.305)

ı̂4 = cosϕ ı̂1 − sinϕ ĵ1 (6.306)
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ϕ

θ

Ω

FIGURE 6.44. A three-dimensional plot for the speed ratio of a universal joint,
Ω as a function of the input angle θ and the angle between input and output
shafts ϕ.

and the final equation for the speed ratio is found as

Ω =
ω41
ω21

=
cosϕ

1− sin2 ϕ cos2 θ
. (6.307)

This formula shows that although both shafts complete one revolution
at the same time, the ratio of their angular speed varies with the angle of
rotation θ(t) of the driver and is a function also of the shaft angle ϕ. Thus,
even if the angular speed ω21 of the drive shaft is constant, the angular
speed ω41 of a driven shaft will not be uniform.

Example 251 F Graphical illustration of the universal joint speed ratio
Ω.
Figure 6.44 depicts a three-dimensional plot for Ω. The Ω-surface is plot-

ted for one revolution of the drive shaft and every possible angle between
the two shafts.

−π < θ < π

−π < ϕ < π

A two-dimensional view for Ω is depicted in Figure 6.45. When ϕ /
10 deg there is not much fluctuation in speed ratio, however, when the angle
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FIGURE 6.45. A two-dimensional view of Ω as a function of the input angle θ
and the angle between input and output shafts ϕ.

between the two shafts is more than 10 deg then the speed ratio Ω cannot
be assumed constant. The universal joint stuck when ϕ = 90deg, because
theoretically

lim
ϕ→90

Ω = indefinite. (6.308)

The behavior of Ω as a function of θ and ϕ can be better viewed in a
polar coordinate, as shown in Figure 6.46.

Example 252 F Maximum and minimum of ω41 in one revolution.
The maximum value of Ω is

ΩM =
1

cosϕ
(6.309)

at
θ = 0, π (6.310)

and the minimum value of Ω is

Ωm = cosϕ (6.311)

at

θ =
π

2
,
3π

2
. (6.312)

Example 253 F History of the universal joint.
The need to transmit a rotary motion from one shaft to another, which

are intersecting at an angle, was a problem for installing clocktowers in
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FIGURE 6.46. The behavior of speed ratio Ω as a function of θ and ϕ in a polar
coordinate.

the 1300s. The transmission of the rotation to the hands should be dis-
placed because of tower construction. Cardano (1501−1576) in 1550, Hook
(1635 − 1703) in 1663, and Schott (1608 − 1666) in 1664 used the joint
for transferring rotary motion. Hook was the first man who said that the
rotary motion between the input and output shafts is not uniform. How-
ever, Monge (1746 − 1818) is the first person to publish the mathematical
principles of the joint in 1794, and later by Poncelet (1788−1867) in 1822.

Example 254 F Double universal joint.
To eliminate the non-uniform speed ratio between the input and output

shafts, connected by a universal joint, we can connect a second joint to
make the intermediate shaft have a variable speed ratio with respect to both
the input and the output shafts in such a way that the overall speed ratio
between the input and output shafts remain equal to one.

Example 255 F Alternative proof for universal joint equation.
Consider a universal joint such as that shown in Figure 6.41. Looking

along the axis of the input shaft, we see points A and B moving in a circle
and points C and D moving in an ellipse as shown in Figure 6.47(a). This
is because A and B trace a circle in a normal plane, and C and D trace a
circle in a rotated plane by the angle ϕ. Assume the universal joint starts
rotating when the axis CD of the cross link is at the intersection of the
planes of motion CD and AB, as shown in Figure 6.47(a). If the axis AB
turns an angle θ, then the projection of the axis CD will turn the same
angle, as can be seen in Figure 6.47(b). However, the angle of rotation CD
is θ4 different than θ when we look at the axis CD along the output shaft.
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FIGURE 6.47. Rotation of the cross link from a viewpoint along the input shaft.

Looking along the input shaft, the axis AB starts from A1B1 and moves
to A2B2 after rotation ϕ. From the same viewpoint, the axis CD starts
from C1D1 and moves to C2D2, however, CD would be at C 02D

0
2, if it

were looking along the output shaft. The geometric relationship between the
angles are

C 02R

OR
= tan θ4 (6.313)

C2R

OR
= tan θ (6.314)

C2R

C 02R
= cosϕ. (6.315)

Therefore,

tan θ = tan θ4 cosϕ (6.316)

which after differentiation becomes

ω2
csc2 θ

=
ω4

csc2 θ4
cosϕ (6.317)

Eliminating θ4 between (6.316) and (6.317), we find the relationship be-
tween the input and output shafts’ angular velocities.

ω4 =
cosϕ

sin2 θ + cos2 θ cos2 ϕ
ω2 (6.318)
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The speed ratio would then be the same as (6.288).

Ω =
ω4
ω2
=

cosϕ

sin2 θ + cos2 θ cos2 ϕ
(6.319)

=
cosϕ

1− sin2 ϕ cos2 θ
(6.320)

Example 256 F Alternative proof for the universal joint speed ratio equa-
tion.
Poncelet (1788 − 1867) in 1824 used spherical trigonometry to find the

universal joint speed ratio equation.
The universal joint can be used to transfer torque at larger angles than

flexible couplings. One universal joint may be used to transmit power up to
a ϕ = 15deg depending on the application. Universal joints are available
in a wide variety of torque capacities.

6.7 Summary

Every movable component of a vehicle, such as the doors, hoods, wind-
shield wipers, axles, wheels, and suspensions, are connected to the vehicle
body using some mechanisms. The four-bar linkage and inverted slider-
crank mechanism are the two common mechanisms that we use to connect
wheels of independent suspensions to the vehicle’s body. There are ana-
lytic equations for determining position of the all links of a mechanism
with respect to one of the links that we call the input link.
The wheels are installed on a spindle, which is rigidly attached to the

coupler link of the mechanisms. The center of the wheel will move on a
coupler point curve, which depends on the links’ length.
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6.8 Key Symbols

a ≡ ẍ acceleration
a, b, c, · · · links’ length of a linkage
a acceleration vector
A,B, · · · coefficients of quadratic equations
b relative position of an inverted slider
ḃ relative speed of a slider
b̈ relative acceleration of a slider
C1, C2, · · · link acceleration parameters of linkages
d position vector of a moving frame
f = 1/T cyclic frequency [ Hz]
g gravitational acceleration
ı̂, ĵ, k̂ unit vectors of Cartesian coordinate frames
I instant center of rotation
J1, J2, · · · link position parameters of linkages
l length
l length of the longest link
n number of links
N number of instant center of rotations
p, q length of the middle links
r joint relative position vector
s displacement position of an slider
s length of the shortest link
ṡ speed of a slider
s̈ acceleration of a slider
t time
T period
x, y, z, x displacement
x, y, z Cartesian coordinates
xC , yC coupler point coordinates
v velocity vector

α angular acceleration vector
αi angular acceleration of link number i
θi angular position of link number i
θ angular position of input and output axles of a universal joint
ϕ angle between the input and output axles of a universal joint
ω angular velocity vector
ωi angular velocity of link number i
Ω angular velocity ratio
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Exercises

1. Two possible configurations for a four-bar linkage.

Consider a four-bar linkage with the following links.

a = 10 cm

b = 25 cm

c = 30 cm

d = 25 cm

If θ2 = 30deg what would be the angles θ3 and θ4 for a convex
configuration?

2. Angular velocity of a four-bar linkage output link.

Consider a four-bar linkage with the following links.

a = 10 cm

b = 25 cm

c = 30 cm

d = 25 cm

Determine the angular velocity of the output link ω4 at θ2 = 30deg
if ω2 = 2π rad/ s.

3. Angular acceleration of a four-bar linkage output link.

Consider a four-bar linkage with the following links.

a = 10 cm

b = 25 cm

c = 30 cm

d = 25 cm

Determine the angular acceleration of the output link α4 at θ2 =
30deg if α2 = 0.2π rad/ s2 and ω2 = 2π rad/ s.

4. Grashoff criterion.

Consider a four-bar linkage with the following links.

a = 10 cm

b = 25 cm

c = 30 cm

Determine the limit values of the length d to satisfy the Grashoff
criterion.



6. Applied Mechanisms 375

5. Limit and dead positions.

Consider a four-bar linkage with the following links.

a = 10 cm

b = 25 cm

c = 30 cm

d = 25 cm

Determine if there is any limit or dead positions for the linkage.

6. F Limit position determination.

Explain how we may be able to determine the limit positions of a
four-bar linkage by the following condition.

dθ

dt
= 0

7. Two possible configurations for a slider-crank mechanism.

Consider a slider-crank mechanism with the following links.

a = 10 cm

b = 45 cm

e = 0

If θ2 = 30deg what would be angle θ3 and position of the slides s for
a convex configuration?

8. Angular velocity and acceleration of the slider of a slider-crank mech-
anism.

Consider a slider-crank mechanism with the following links.

a = 10 cm

b = 45 cm

e = 0

Determine the angular velocity and acceleration of the slider at θ2 =
30deg if ω2 = 2π rad/ s and α2 = 0.2π rad/ s

2.

9. Quick return time.

Consider a slider-crank mechanism with the following links.

a = 10 cm

b = 45 cm

e = 3 cm

Determine the difference time between go and return half cycle of the
slider motion if ω2 = 2π rad/ s.
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10. Two possible configurations for an inverted slider-crank mechanism.

Consider an inverted slider-crank mechanism with the following links.

a = 10 cm

d = 45 cm

e = 5 cm

If θ2 = 30deg, what would be the angle θ3 and position of the slides
b?

11. Instant center of rotation.

Find the instant center of rotations for the 6-bar linkage shown in
Figure 6.48.

4

1

6

5

2

3

FIGURE 6.48. A 6-bar linkage.

12. A coupler point of a four-bar linkage.

Consider a four-bar linkage with the following links

a = 10 cm

b = 25 cm

c = 30 cm

d = 25 cm

and a coupler point with the following parameters.

e = 10 cm

α = 30deg

Determine the coordinates of the coupler point if θ2 = 30deg.

13. A coupler point of a slider-crank mechanism.
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Consider a slider-crank mechanism with the following parameters.

a = 10 cm

b = 45 cm

e = 3 cm

c = 10 cm

α = 30deg

Determine the coordinates of the coupler point.

14. A coupler point of an inverted slider-crank mechanism if θ2 = 30deg.

Consider an inverted slider-crank mechanism with the following pa-
rameters.

a = 10 cm

d = 45 cm

e = 5 cm

c = 10 cm

α = 30deg

Determine the coordinates of the coupler point if θ2 = 30deg.
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Steering Dynamics
To maneuver a vehicle we need a steering mechanism to turn wheels. Steer-
ing dynamics which we review in this chapter, introduces new requirements
and challenges.

7.1 Kinematic Steering

Consider a front-wheel-steering 4WS vehicle that is turning to the left, as
shown in Figure 7.1. When the vehicle is moving very slowly, there is a
kinematic condition between the inner and outer wheels that allows them
to turn slip-free. The condition is called the Ackerman condition and is
expressed by

cot δo − cot δi =
w

l
(7.1)

where, δi is the steer angle of the inner wheel, and δo is the steer angle
of the outer wheel. The inner and outer wheels are defined based on the
turning center O.

O

iδ oδ

l

R1

w

FIGURE 7.1. A front-wheel-steering vehicle and the Ackerman condition.

The distance between the steer axes of the steerable wheels is called the
track and is shown by w. The distance between the front and real axles
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FIGURE 7.2. A front-wheel-steering vehicle and steer angles of the inner and
outer wheels.

is called the wheelbase and is shown by l. Track w and wheelbase l are
considered as kinematic width and length of the vehicle.
The mass center of a steered vehicle will turn on a circle with radius R,

R =
q
a22 + l2 cot2 δ (7.2)

where δ is the cot-average of the inner and outer steer angles.

cot δ =
cot δo + cot δi

2
. (7.3)

The angle δ is the equivalent steer angle of a bicycle having the same
wheelbase l and radius of rotation R.

Proof. To have all wheels turning freely on a curved road, the normal line
to the center of each tire-plane must intersect at a common point. This is
the Ackerman condition.
Figure 7.2 illustrates a vehicle turning left. So, the turning center O is on

the left, and the inner wheels are the left wheels that are closer to the center
of rotation. The inner and outer steer angles δi and δo may be calculated
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from the triangles 4OAD and 4OBC as follows:

tan δi =
l

R1 −
w

2

(7.4)

tan δo =
l

R1 +
w

2

(7.5)

Eliminating R1

R1 =
1

2
w +

l

tan δi

= −1
2
w +

l

tan δo
(7.6)

provides the Ackerman condition (7.1), which is a direct relationship be-
tween δi and δo.

cot δo − cot δi =
w

l
(7.7)

To find the vehicle’s turning radius R, we define an equivalent bicycle
model, as shown in Figure 7.3. The radius of rotation R is perpendicular
to the vehicle’s velocity vector v at the mass center C. Using the geometry
shown in the bicycle model, we have

R2 = a22 +R21 (7.8)

cot δ =
R1
l

=
1

2
(cot δi + cot δo) (7.9)

and therefore,

R =
q
a22 + l2 cot2 δ. (7.10)

The Ackerman condition is needed when the speed of the vehicle is too
small, and slip angles are zero. There is no lateral force and no centrifugal
force to balance each other. The Ackerman steering condition is also called
the kinematic steering condition, because it is a static condition at zero
velocity.
A device that provides steering according to the Ackerman condition

(7.1) is calledAckerman steering,Ackerman mechanism, orAckerman geom-
etry. There is no four-bar linkage steering mechanism that can provide the
Ackerman condition perfectly. However, we may design a multi-bar linkages
to work close to the condition and be exact at a few angles.
Figure 7.4 illustrates the Ackerman condition for different values of w/l.

The inner and outer steer angles get closer to each other by decreasing w/l.
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FIGURE 7.3. Equivalent bicycle model for a front-wheel-steering vehicle.
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FIGURE 7.4. Effect of w/l on the Ackerman condition for front-wheel-steering
vehicles.
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Example 257 Turning radius, or radius of rotation.
Consider a vehicle with the following dimensions and steer angle:

l = 103.1 in ≈ 2.619m
w = 61.6 in ≈ 1.565m
a2 = 60 in ≈ 1.524m
δi = 12deg ≈ 0.209 rad (7.11)

The kinematic steering characteristics of the vehicle would be

δo = cot−1
³w
l
+ cot δi

´
= 0.186 rad ≈ 10.661 deg (7.12)

R1 = l cot δi +
1

2
w

= 516.9 in ≈ 13.129m (7.13)

δ = cot−1
µ
cot δo + cot δi

2

¶
= 0.19684 rad ≈ 11.278 deg (7.14)

R =
q
a22 + l2 cot2 δ

= 520.46 in ≈ 13.219m. (7.15)

Example 258 w is the front track.
Most cars have different tracks in front and rear. The track w in the

kinematic condition (7.1) refers to the front track wf . The rear track has
no effect on the kinematic condition of a front-wheel-steering vehicle. The
rear track wr of a FWS vehicle can be zero with the same kinematic steering
condition (7.1).

Example 259 Space requirement.
The kinematic steering condition can be used to calculate the space re-

quirement of a vehicle during a turn. Consider the front wheels of a two-axle
vehicle, steered according to the Ackerman geometry as shown in Figure 7.5.

The outer point of the front of the vehicle will run on the maximum radius
RMax, whereas a point on the inner side of the vehicle at the location of the
rear axle will run on the minimum radius Rmin. The front outer point has
an overhang distance g from the front axle. The maximum radius RMax is

RMax =

q
(Rmin + w)2 + (l + g)2. (7.16)
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FIGURE 7.5. The required space for a turning two-axle vehicle.

Therefore, the required space for turning is a ring with a width 4R, which
is a function of the vehicle’s geometry.

4R = RMax −Rmin

=

q
(Rmin + w)2 + (l + g)2 −Rmin (7.17)

The required space 4R can be calculated based on the steer angle by
substituting Rmin

Rmin = R1 −
1

2
w

=
l

tan δi
(7.18)

=
l

tan δo
− w (7.19)

and getting

4R =

sµ
l

tan δi
+ 2w

¶2
+ (l + g)2 − l

tan δi
(7.20)

=

sµ
l

tan δo
+ w

¶2
+ (l + g)2 − l

tan δo
+ w. (7.21)
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FIGURE 7.6. A trapezoidal steering mechanism.

In this example the width of the car wv and the track w are assumed to
be equal. The width of vehicles are always greater than their track.

wv > w (7.22)

Example 260 Trapezoidal steering mechanism.
Figure 7.6 illustrates a symmetric four-bar linkage, called a trapezoidal

steering mechanism, that has been used for more than 100 years. The
mechanism has two characteristic parameters: angle β and offset arm length
d. A steered position of the trapezoidal mechanism is shown in Figure 7.7
to illustrate the inner and outer steer angles δi and δo.
The relationship between the inner and outer steer angles of a trapezoidal

steering mechanism is

sin (β + δi) + sin (β − δo)

=
w

d
+

r³w
d
− 2 sinβ

´2
− (cos (β − δo)− cos (β + δi))

2. (7.23)

To prove this equation, we examine Figure 7.8. In the triangle 4ABC
we can write

(w − 2d sinβ)2 = (w − d sin (β + δi)− d sin (β − δo))
2

+(d cos (β − δo)− d cos (β + δi))
2 (7.24)

and derive Equation (7.23) with some manipulation.
The functionality of a trapezoidal steering mechanism, compared to the

associated Ackerman condition, is shown in Figure 7.9 for x = 2.4m ≈
7. 87 ft and d = 0.4m ≈ 1.3 ft. The horizontal axis shows the inner steer
angle and the vertical axis shows the outer steer angle. It depicts that for
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FIGURE 7.7. Steered configuration of a trapezoidal steering mechanism.
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FIGURE 7.8. Trapezoidal steering triangle ABC.
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FIGURE 7.9. Behavior of a trapezoidal steering mechanism, compared to the
associated Ackerman mechanism.

a given l and w, a mechanism with β ≈ 10 deg is the best simulator of an
Ackerman mechanism if δi < 50 deg.
To examine the trapezoidal steering mechanism and compare it with the

Ackerman condition, we define an error parameter e = δDo−δAo . The error
e is the difference between the outer steer angles calculated by the trapezoidal
mechanism and the Ackerman condition at the same inner steer angle δi.

e = ∆δo

= δDo
− δAo (7.25)

Figure 7.10 depicts the error e for a sample steering mechanism using the
angle β as a parameter.

Example 261 F Locked rear axle.
Sometimes in a simple design of vehicles, we eliminate the differential

and use a locked rear axle in which no relative rotation between the left and
right wheels is possible. Such a simple design is usually used in toy cars, or
small off-road vehicles such as a mini Baja.
Consider the vehicle shown in Figure 7.2. In a slow left turn, the speed

of the inner rear wheel should be

vri =
³
R1 −

w

2

´
r = Rwωri (7.26)

and the speed of the outer rear wheel should be

vro =
³
R1 +

w

2

´
r = Rwωro (7.27)

where, r is the yaw velocity of the vehicle, Rw is rear wheels radius, and
ωri, ωro should be the angular velocity of the rear inner and outer wheels
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FIGURE 7.10. The error parameter e = δDo − δAo for a sample trapezoidal
steering mechanism.

about their common axle. If the rear axle is locked, we have

ωri = ωro = ω (7.28)

however, ³
R1 −

w

2

´
6=
³
R1 +

w

2

´
(7.29)

which shows it is impossible to have a locked axle for a nonzero w.
Turning with a locked rear axle reduces the load on the inner wheels and

makes the rear inner wheel overcome the friction force and spin. Hence,
the traction of the inner wheel drops to the maximum friction force under
a reduced load. However, the load on the outer wheels increases and hence,
the friction limit of the outer wheel helps to have higher traction force on
the outer rear wheel.
Eliminating the differential and using a locked drive axle is an impractical

design for street cars. However, it can be an acceptable design for small
and light cars moving on dirt or slippery surfaces. It reduces the cost and
simplifies the design significantly.
In a conventional two-wheel-drive motor vehicle, the rear wheels are

driven using a differential, and the vehicle is steered by changing the di-
rection of the front wheels. With an ideal differential, equal torque is de-
livered to each drive wheel. The rotational speed of the drive wheels are
determined by the differential and the tire-road characteristics. However,
a vehicle using a differential has disadvantages when one wheel has lower
traction. Differences in traction characteristics of each of the drive wheels
may come from different tire-road characteristics or weight distribution.
Because a differential delivers equal torque, the wheel with greater tractive
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FIGURE 7.11. A rear-wheel-steering vehicle.

ability can deliver only the same amount of torque as the wheel with the
lower traction. The steering behavior of a vehicle with a differential is rela-
tively stable under changing tire-road conditions. However, the total thrust
may be reduced when the traction conditions are different for each drive
wheel.

Example 262 F Rear-wheel-steering.
Rear-wheel-steering is used where high maneuverability is a necessity on

a low-speed vehicle, such as forklifts. Rear-wheel-steering is not used on
street vehicles because it is unstable at high speeds. The center of rotation
for a rear-wheel-steeringe vehicle is always a point on the front axle.
Figure 7.11 illustrates a rear-wheel-steering vehicle. The kinematic steer-

ing condition (7.1) remains the same for a rear-wheel steering vehicle.

cot δo − cot δi =
w

l
(7.30)

Example 263 F Alternative kinematic steer angles equation.
Consider a rear-wheel-drive vehicle with front steerable wheels as shown

in Figure 7.12. Assume that the front and rear tracks of the vehicle are
equal and the drive wheels are turning without slip. If we show the angular
velocities of the inner and outer drive wheels by ωi and ωo, respectively,
the kinematical steer angles of the front wheels can be expressed by

δi = tan−1
µ
l

w

µ
ωo
ωi
− 1
¶¶

(7.31)

δo = tan−1
µ
l

w

µ
1− ωi

ωo

¶¶
. (7.32)
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FIGURE 7.12. Kinematic condition of a FWS vehicle using the angular velocity
of the inner and outer wheels.

To prove these equations, we may start from the following equation, which
is the non-slipping condition for the drive wheels:

Rw ωo

R1 +
w

2

=
Rw ωi

R1 −
w

2

. (7.33)

Equation (7.33) can be rearranged to

ωo
ωi
=

R1 +
w

2

R1 −
w

2

(7.34)

and substituted in Equations (7.31) and (7.32) to reduce them to Equations
(7.4) and (7.5).
The equality (7.33) is the yaw rate of the vehicle, which is the vehicle’s

angular velocity about the center of rotation.

r =
Rw ωo

R1 +
w

2

=
Rw ωi

R1 −
w

2

(7.35)
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FIGURE 7.13. Kinematic steering condition for a vehicle with different tracks in
the front and in the back.

Example 264 F Unequal front and rear tracks.
It is possible to design a vehicle with different tracks in the front and

rear. It is a common design for race cars, which are usually equipped with
wider and larger rear tires to increase traction and stability. For street cars
we use the same tires in the front and rear, however, it is common to have
a few centimeters of larger track in the back. Such a vehicle is illustrated
in Figure 7.13.
The angular velocity of the vehicle is

r =
Rw ωo

R1 +
wr

2

=
Rw ωi

R1 −
wr

2

(7.36)

and the kinematic steer angles of the front wheels are

δi = tan−1
2l (ωo + ωi)

wf (ωo − ωi) + wr (ωo + ωi)
(7.37)

δo = tan−1
2l (ωo − ωi)

wf (ωo − ωi) + wr (ωo + ωi)
. (7.38)

To show these equations, we should find R1 from Equation (7.36)

R1 =
wr

2

ωo + ωi
ωo − ωi

(7.39)



392 7. Steering Dynamics

and substitute it in the following equations.

tan δi =
l

R1 −
wf

2

(7.40)

tan δo =
l

R1 +
wf

2

(7.41)

In the above equations, wf is the front track, wr is the rear track, and Rw

is the wheel radius.

Example 265 F Independent rear-wheel-drive.
For some special-purpose vehicles, such as moon rovers and autonomous

mobile robots, we may attach each drive wheel to an independently con-
trolled motor to apply any desired angular velocity. Furthermore, the steer-
able wheels of such vehicles are able to turn more than 90 deg to the left
and right. Such a vehicle is highly maneuverable at a low speed.
Figure 7.14 illustrates the advantages of such a steerable vehicle and its

possible turnings. Figures 7.14 (a)-(c) illustrate forward maneuvering. The
arrows by the rear wheels, illustrate the magnitude of the angular velocity
of the wheel, and the arrows on the front wheels illustrate the direction of
their motion. The maneuvering in backward motion is illustrated in Figures
7.14(d)-(f). Having such a vehicle allows us to turn the vehicle about any
point on the rear axle including the inner points. In Figure 7.14(g) the
vehicle is turning about the center of the rear right wheel, and in Figure
7.14(h) about the center of the rear left wheel. Figure 7.14(i) illustrates a
rotation about the center point of the rear axle.
In any of the above scenarios, the steer angle of the front wheels should

be determined using a proper equation, such as (7.40) and (7.41). The ratio
of the outer to inner angular velocities of the drive wheels ωo/ωi may be
determined using either the outer or inner steer angles.

ωo
ωi

=
δo (wf − wr)− 2l
δo (wf + wr)− 2l

(7.42)

ωo
ωi

=
δi (wf + wr) + 2l

δi (wf − wr) + 2l
(7.43)

Example 266 F Race car steering.
The Ackerman or kinematic steering is a correct condition when the turn-

ing speed of the vehicle is slow. When the vehicle turns fast, significant
lateral acceleration is needed, and therefore, the wheels operate at high slip
angles. Furthermore, the loads on the inner wheels will be much lower than
the outer wheels. Tire performance curves show that by increasing the wheel
load, less slip angle is required to reach the peak of the lateral force. Un-
der these conditions the inner front wheel of a kinematic steering vehicle
would be at a higher slip angle than required for maximum lateral force.
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FIGURE 7.14. A highly steerable vehicle.
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Ackerman Parallel Reverse

FIGURE 7.15. By increasing the speed at a turn, parallel or reverse steering is
needed instead of Ackerman steering.

Therefore, the inner wheel of a vehicle in a high speed turn must operate
at a lower steer angle than kinematic steering. Reducing the steer angle of
the inner wheel reduces the difference between steer angles of the inner and
outer wheels.
For race cars, it is common to use parallel or reverse steering. Ackerman,

parallel, and reverse Ackerman steering are illustrated in Figure 7.15.
The correct steer angle is a function of the instant wheel load, road condi-

tion, speed, and tire characteristics. Furthermore, the vehicle must also be
able to turn at a low speed under an Ackerman steering condition. Hence,
there is no ideal steering mechanism unless we control the steer angle of
each steerable wheel independently using a smart system.

Example 267 F Speed dependent steering system.
There is a speed adjustment idea that says it is better to have a harder

steering system at high speeds. This idea can be applied in power steering
systems to make them speed dependent, such that the steering be heavily
assisted at low speeds and lightly assisted at high speeds. The idea is sup-
ported by this fact that the drivers might need large steering for parking,
and small steering when traveling at high speeds.

Example 268 F Ackerman condition history.
Correct steering geometry was a major problem in the early days of car-

riages, horse-drawn vehicles, and cars. Four- or six-wheel cars and car-
riages always left rubber marks behind. This is why there were so many
three-wheeled cars and carriages in the past. The problem was making a
mechanism to give the inner wheel a smaller turning radius than the out-
side wheel when the vehicle was driven in a circle.
The required geometric condition for a front-wheel-steering four-wheel-

carriage was introduced in 1816 by George Langensperger in Munich, Ger-
many. Langensperger’s mechanism is illustrated in Figure 7.16.
Rudolf Ackerman met Langensperger and saw his invention. Ackerman
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FIGURE 7.16. Langensperger invention for the steering geometry condition.

acted as Langensperger’s patent agent in London and introduced the in-
vention to British carriage builders. Car manufacturers have been adopting
and improving the Ackerman geometry for their steering mechanisms since
1881.
The basic design of vehicle steering systems has changed little since the

invention of the steering mechanism. The driver’s steering input is trans-
mitted by a shaft through some type of gear reduction mechanism to generate
steering motion at the front wheels.

7.2 Vehicles with More Than Two Axles

If a vehicle has more than two axles, all the axles, except one, must be
steerable to provide slip-free turning at zero velocity. When an n-axle ve-
hicle has only one non-steerable axle, there are n − 1 geometric steering
conditions. A three-axle vehicle with two steerable axles is shown in Figure
7.17.
To indicate the geometry of a multi-axle vehicle, we start from the front

axle and measure the longitudinal distance ai between axle i and the mass
center C. Hence, a1 is the distance between the front axle and C, and a2 is
the distance between the second axle and C. Furthermore, we number the
wheels in a clockwise rotation starting from the driver’s wheel as number
1.
For the three-axle vehicle shown in Figure 7.17, there are two indepen-
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FIGURE 7.17. Steering of a three-axle vehicle.

dent Ackerman conditions:

cot δ2 − cot δ1 =
w

a1 + a3
(7.44)

cot δ3 − cot δ6 =
w

a2 + a3
. (7.45)

Example 269 A six-wheel vehicle with one steerable axle.
When a multi-axle vehicle has only one steerable axle, slip-free rotation is

impossible for the non-steering wheels. The kinematic length or wheelbase
of the vehicle is not clear, and it is not possible to define an Ackerman
condition. Strong wear occurs for the tires, especially at low speeds and large
steer angles. Hence, such a combination is not recommended. However, in
case of a long three-axle vehicle with two nonsteerable axles close to each
other, an approximated analysis is possible for low-speed steering.
Figure 7.18 illustrates a six-wheel vehicle with only one steerable axle in

front. We design the steering mechanism such that the center of rotation O
is on a lateral line, called the midline, between the couple rear axles. The
kinematic length of the vehicle, l, is the distance between the front axle and
the midline. For this design we have

cot δo − cot δi =
w

l
(7.46)
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FIGURE 7.18. A six-wheel vehicle with one steerable axle in front.

and

R1 = l cot δo −
w

2

= l cot δi +
w

2
. (7.47)

The center of the front axle and the mass center of the vehicle are turning
about O by radii Rf and R.

Rf =
R1

cos

µ
tan−1

l

R1

¶ (7.48)

R =
R1

cos

µ
tan−1

a3 − a2
2R1

¶ (7.49)

If the radius of rotation is large compared to the wheelbase, we may approx-
imate Equations (7.48) and (7.49).

Rf ≈
R1

cos

µ
l

R1

¶ (7.50)
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FIGURE 7.19. A self-steering axle mechanism for locomotive wagons.

R ≈ R1

cos

µ
a3 − a2
2R1

¶ (7.51)

R1 =
l

2
(cot δo + cot δi) (7.52)

To avoid strong wear, it is possible to lift an axle when the vehicle is
not carrying heavy loads. For such a vehicle, we may design the steering
mechanism to follow an Ackerman condition based on a wheelbase for the
non-lifted axle. However, when this vehicle is carrying a heavy load and
using all the axles, the liftable axle encounters huge wear in large steer
angles.
Another option for multi-axle vehicles is to use self-steering wheels

that can adjust themselves to minimize sideslip. Such wheels cannot provide
lateral force, and hence, cannot help in maneuvers very much. Self-steering
wheels may be installed on buggies and trailers. Such a self-steering axle
mechanism for locomotive wagons is shown in Figure 7.19.

7.3 F Vehicle with Trailer

If a four-wheel vehicle has a trailer with one axle, it is possible to derive a
kinematic condition for slip-free steering. Figure 7.20 illustrates a vehicle
with a one-axle trailer. The mass center of the vehicle is turning on a circle
with radius R, while the trailer is turning on a circle with radius Rt.

Rt =

sµ
l cot δi +

1

2
w

¶2
+ b21 − b22 (7.53)

Rt =

sµ
l cot δo −

1

2
w

¶2
+ b21 − b22 (7.54)

At a steady-state condition, the angle between the trailer and the vehicle
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FIGURE 7.20. A vehicle with a one-axle trailer.

is

θ =

⎧⎪⎪⎨⎪⎪⎩
2 tan−1

∙
1

b1 − b2

³
Rt −

p
R2t − b21 + b22

´¸
b1 − b2 6= 0

2 tan−1
1

2Rt
(b1 + b2) b1 − b2 = 0

(7.55)

Proof. Using the right triangle 4OAB in Figure 7.20, we may write the
trailer’s radius of rotation as

Rt =
q
R21 + b21 − b22 (7.56)

because the length OB is

OB
2
= R2t + b22
= R21 + b21. (7.57)

Substituting R1 from Equation (7.6) shows that the trailer’s radius of ro-



400 7. Steering Dynamics

1θ

iδ oδ
w

b1

b2

O
1θ

2θ

2θ

FIGURE 7.21. Two possible angle θ for a set of (Rt, b1, b2).

tation is related to the vehicle’s geometry by

Rt =

sµ
l cot δi +

1

2
w

¶2
+ b21 − b22 (7.58)

Rt =

sµ
l cot δo −

1

2
w

¶2
+ b21 − b22 (7.59)

Rt =
q
R2 − a22 + b21 − b22. (7.60)

Using the equation
Rt sin θ = b1 + b2 cos θ (7.61)

and employing trigonometry, we may calculate the angle θ between the
trailer and the vehicle as (7.55).
The minus sign, in case b1 − b2 6= 0, is the usual case in forward motion,

and the plus sign is a solution associated with a backward motion. Both
possible configuration θ for a set of (Rt, b1, b2) are shown in Figure 7.21.
The θ2 is called a jackknifing configuration.
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Example 270 F Two possible trailer-vehicle angles.
Consider a four-wheel vehicle that is pulling a one-axle trailer with the

following dimensions:

l = 103.1 in ≈ 2.619m
w = 61.6 in ≈ 1.565m
b1 = 24 in ≈ 0.61m
b2 = 90 in ≈ 2.286m
δi = 12deg ≈ 0.209 rad (7.62)

The kinematic steering characteristics of the vehicle would be

δo = cot−1
³w
l
+ cot δi

´
= 0.186 rad ≈ 10.661 deg (7.63)

Rt =

sµ
l cot δi +

1

2
w

¶2
+ b21 − b22

= 509.57 in ≈ 12.943m (7.64)

R1 = l cot δi +
1

2
w

= 516.9 in ≈ 13.129m (7.65)

δ = cot−1
µ
cot δo + cot δi

2

¶
= 0.19684 rad ≈ 11.278 deg (7.66)

R =
q
a22 + l2 cot2 δ

= 520.46 in ≈ 13.219m (7.67)

θ = 2 tan−1
∙

1

b1 − b2

µ
Rt ±

q
R2t − b21 + b22

¶¸
=

½
−3.0132 rad ≈ −172.64 deg
0.22121 rad ≈ 12.674 deg (7.68)

Example 271 F Space requirement.
The kinematic steering condition can be used to calculate the space re-

quirement of a vehicle with a trailer during a turn. Consider that the front
wheels of a two-axle vehicle with a trailer are steered according to the Ack-
erman geometry, as shown in Figure 7.22.
The outer point of the front of the vehicle will run on the maximum radius

RMax, whereas a point on the inner side of the wheel at the trailer’s rear
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FIGURE 7.22. A two-axle vehicle with a trailer is steered according to the Ack-
erman condition.

axle will run on the minimum radius Rmin. The maximum radius RMax is

RMax =

r³
R1 +

wv

2

´2
+ (l + g)2 (7.69)

where

R1 =

q
(Rmin + wt)

2
+ b22 − b21. (7.70)

and the width of the vehicle is shown by wv.
The required space for turning the vehicle and trailer is a ring with a

width 4R, which is a function of the vehicle and trailer geometry.

4R = RMax −Rmin (7.71)

The required space 4R can be calculated based on the steer angle by
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substituting Rmin

Rmin = Rt −
1

2
wt

=

sµ
l cot δi +

1

2
w

¶2
+ b21 − b22 −

1

2
wt

=

sµ
l cot δo −

1

2
w

¶2
+ b21 − b22 −

1

2
wt

=
q
R2 − a22 + b21 − b22 −

1

2
wt. (7.72)

7.4 Steering Mechanisms

A steering system begins with the steering wheel or steering handle. The
driver’s steering input is transmitted by a shaft through a gear reduction
system, usually rack-and-pinion or recirculating ball bearings. The steering
gear output goes to steerable wheels to generate motion through a steering
mechanism. The lever, which transmits the steering force from the steering
gear to the steering linkage, is called Pitman arm.
The direction of each wheel is controlled by one steering arm. The steer-

ing arm is attached to the steerable wheel hub by a keyway, locking taper,
and a hub. In some vehicles, it is an integral part of a one-piece hub and
steering knuckle.
To achieve good maneuverability, a minimum steering angle of approxi-

mately 35 deg must be provided at the front wheels of passenger cars.
A sample parallelogram steering mechanism and its components are

shown in Figure 7.23. The parallelogram steering linkage is common on in-
dependent front-wheel vehicles. There are many varieties of steering mech-
anisms each with some advantages and disadvantages.

Example 272 Steering ratio.
The Steering ratio is the rotation angle of a steering wheel divided by

the steer angle of the front wheels. The steering ratio of street cars is around
10 : 1 steering ratio of race cars varies between 5 : 1 to 20 : 1.
The steering ratio of Ackerman steering is different for inner and outer

wheels. Furthermore, it has a nonlinear behavior and is a function of the
wheel angle.

Example 273 Rack-and-pinion steering.
Rack-and-pinion is the most common steering system of passenger cars.

Figure 7.24 illustrates a sample rack-and-pinion steering system. The rack
is either in front or behind the steering axle. The driver’s rotary steering
command δS is transformed by a steering box to translation uR = uR (δS)
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FIGURE 7.24. A rack-and-pinion steering system.

of the racks, and then by the drag links to the wheel steering δi = δi (uR),
δo = δo (uR). The drag link is also called the tie rod.
The overall steering ratio depends on the ratio of the steering box and on

the kinematics of the steering linkage.

Example 274 Lever arm steering system.
Figure 7.25 illustrates a steering linkage that sometimes is called a lever

arm steering system. Using a lever arm steering system, large steering an-
gles at the wheels are possible. This steering system is used on trucks with
large wheel bases and independent wheel suspension at the front axle. The
steering box and triangle can also be placed outside of the axle’s center.

Example 275 Drag link steering system.
It is sometimes better to send the steering command to only one wheel

and connect the other one to the first wheel by a drag link, as shown in
Figure 7.26. Such steering linkages are usually used for trucks and busses
with a front solid axle. The rotations of the steering wheel are transformed
by a steering box to the rotation of the steering arm and then to the rotation
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FIGURE 7.25. A lever arm steering system.
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FIGURE 7.26. A drag link steering system.

of the left wheel. A drag link transmits the rotation of the left wheel to the
right wheel.
Figure 7.27 shows a sample for connecting a steering mechanism to the

Pitman arm of the left wheel and using a trapezoidal linkage to connect the
right wheel to the left wheel.

Example 276 Multi-link steering mechanism.
In busses and big trucks, the driver may sit more than 2m ≈ 7 ft in front

of the front axle. These vehicles need large steering angles at the front wheels
to achieve good maneuverability. So a more sophisticated multi-link steering
mechanism needed. A sample multi-link steering mechanism is shown in
Figure 7.28.
The rotations of the steering wheel are transformed by the steering box to

a steering lever arm. The lever arm is connected to a distributing linkage,
which turns the left and right wheels by a long tire rod.

Example 277 F Reverse efficiency.
The ability of the steering mechanism to feedback the road inputs to the

driver is called reverse efficiency. Feeling the applied steering torque or
aligning moment helps the driver to make smoother turn.
Rack-and-pinion and recirculating ball steering gears have a feedback of
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FIGURE 7.27. Connection of the Pitman arm to a trapezoidal steering mecha-
nism.

Sδ

FIGURE 7.28. A multi-link steering mechanism.
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the wheels steering torque to the driver. However, worm and sector steering
gears have very weak feedback. Low feedback may be desirable for off-road
vehicles, to reduce the driver’s fatigue.
Because of safety, the steering torque feedback should be proportional to

the speed of the vehicle. In this way, the required torque to steer the vehicle
is higher at higher speeds. Such steering prevents a sharp and high steer
angle. A steering damper with a damping coefficient increasing with speed
is the mechanism that provides such behavior. A steering damper can also
reduce shimmy vibrations.

Example 278 F Power steering.
Power steering has been developed in the 1950s when a hydraulic power

steering assist was first introduced. Since then, power assist has become a
standard component in automotive steering systems. Using hydraulic pres-
sure, supplied by an engine-driven pump, amplifies the driver-applied torque
at the steering wheel. As a result, the steering effort is reduced.
In recent years, electric torque amplifiers were introduced in automotive

steering systems as a substitute for hydraulic amplifiers. Electrical steer-
ing eliminates the need for the hydraulic pump. Electric power steering is
more efficient than conventional power steering, because the electric power
steering motor needs to provide assistance when only the steering wheel is
turned, whereas the hydraulic pump runs constantly. The assist level is also
tunable by vehicle type, road speed, and driver preference.

Example 279 Bump steering.
The steer angle generated by the vertical motion of the wheel with re-

spect to the body is called bump steering. Bump steering is usually an
undesirable phenomenon and is a function of the suspension and steering
mechanisms. If the vehicle has a bump steering character, then the wheel
steers when it runs over a bump or when the vehicle rolls in a turn. As a
result, the vehicle will travel in a path not selected by the driver.
Bump steering occurs when the end of the tie rod is not at the instant

center of the suspension mechanism. Hence, in a suspension deflection, the
suspension and steering mechanisms will rotate about different centers.

Example 280 F Offset steering axis.
Theoretically, the steering axis of each steerable wheel must vertically go

through the center of the wheel at the tire-plane to minimize the required
steering torque. Figure 7.27 is an example of matching the center of a wheel
with the steering axis. However, it is possible to attach the wheels to the
steering mechanism, using an offset design, as shown in Figure 7.29.
Figure 7.30 depicts a steered trapezoidal mechanism with an offset wheel

attachment. The path of motion for the center of the tireprint for an offset
design is a circle with radius e equal to the value of the offset arm. Such
a design is not recommended for street vehicles, especially because of the
huge steering torque in stationary vehicle. However, the steering torque
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FIGURE 7.29. An offset design for wheel attachment to an steering mechanism.
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Path of motion for the center 
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FIGURE 7.30. Offset attachment of steerable wheels to a trapezoidal steering
mechanism.
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FIGURE 7.31. A positive four-wheel steering vehicle.

reduces dramatically to an acceptable value when the vehicle is moving.
Furthermore, an offset design sometimes makes more room to attach the
other devices, and simplifies manufacturing. So, it may be used for small
off-road vehicles, such as a mini Baja, and toy vehicles.

7.5 F Four wheel steering.

At very low speeds, the kinematic steering condition that the perpendicular
lines to each tire meet at one point, must be applied. The intersection point
is the turning center of the vehicle.
Figure 7.31 illustrates a positive four-wheel steering vehicle, and Fig-

ure 7.32 illustrates a negative 4WS vehicle. In a positive 4WS situation
the front and rear wheels steer in the same direction, and in a negative
4WS situation the front and rear wheels steer opposite to each other. The
kinematic condition between the steer angles of a 4WS vehicle is

cot δof − cot δif =
wf

l
− wr

l

cot δof − cot δif
cot δor − cot δir

(7.73)

where, wf and wr are the front and rear tracks, δif and δof are the steer
angles of the front inner and outer wheels, δir and δor are the steer angles
of the rear inner and outer wheels, and l is the wheelbase of the vehicle.
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FIGURE 7.32. A negative four-wheel steering vehicle.

We may also use the following more general equation for the kinematic
condition between the steer angles of a 4WS vehicle

cot δfr − cot δfl =
wf

l
− wr

l

cot δfr − cot δfl
cot δrr − cot δrl

(7.74)

where, δfl and δfr are the steer angles of the front left and front right
wheels, and δrl and δrr are the steer angles of the rear left and rear right
wheels.
If we define the steer angles according to the sign convention shown in

Figure 7.33 then, Equation (7.73) expresses the kinematic condition for
both, positive and negative 4WS systems. Employing the wheel coordinate
frame (xw, yw, zw), we define the steer angle as the angle between the vehicle
x-axis and the wheel xw-axis, measured about the z-axis. Therefore, a steer
angle is positive when the wheel is turned to the left, and it is negative when
the wheel is turned to the right.

Proof. The slip-free condition for wheels of a 4WS in a turn requires that
the normal lines to the center of each tire-plane intersect at a common
point. This is the kinematic steering condition.
Figure 7.34 illustrates a positive 4WS vehicle in a left turn. The turning

center O is on the left, and the inner wheels are the left wheels that are
closer to the turning center. The longitudinal distance between point O
and the axles of the car are indicated by c1, and c2 measured in the body
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FIGURE 7.33. Sign convention for steer angles.

coordinate frame.
The front inner and outer steer angles δif , δof may be calculated from

the triangles 4OAE and 4OBF , while the rear inner and outer steer
angles δir, δor may be calculated from the triangles 4ODG and 4OCH
as follows.

tan δif =
c1

R1 −
wf

2

(7.75)

tan δof =
c1

R1 +
wf

2

(7.76)

tan δir =
c2

R1 −
wr

2

(7.77)

tan δor =
c2

R1 +
wr

2

(7.78)

Eliminating R1

R1 =
1

2
wf +

c1
tan δif

(7.79)

= −1
2
wf +

c1
tan δof

(7.80)
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FIGURE 7.34. Illustration of a negative four-wheel steering vehicle in a left turn.

between (7.75) and (7.76) provides the kinematic condition between the
front steering angles δif and δof .

cot δof − cot δif =
wf

c1
(7.81)

Similarly, we may eliminate R1

R1 =
1

2
wr +

c2
tan δir

(7.82)

= −1
2
wr +

c2
tan δor

(7.83)

between (7.77) and (7.78) to provide the kinematic condition between the
rear steering angles δir and δor.

cot δor − cot δir =
wr

c2
(7.84)

Using the following constraint

c1 − c2 = l (7.85)
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FIGURE 7.35. Illustration of a positive four-wheel steering vehicle in a left turn.

we may combine Equations (7.81) and (7.84)

wf

cot δof − cot δif
− wr

cot δor − cot δir
= l (7.86)

to find the kinematic condition (7.73) between the steer angles of the front
and rear wheels for a positive 4WS vehicle.
Figure 7.35 illustrates a negative 4WS vehicle in a left turn. The turning

center O is on the left, and the inner wheels are the left wheels that are
closer to the turning center. The front inner and outer steer angles δif , δof
may be calculated from the triangles 4OAE and 4OBF , while the rear
inner and outer steer angles δir, δor may be calculated from the triangles
4ODG and 4OCH as follows.

tan δif =
c1

R1 −
wf

2

(7.87)

tan δof =
c1

R1 +
wf

2

(7.88)
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− tan δir =
−c2

R1 −
wr

2

(7.89)

− tan δor =
−c2

R1 +
wr

2

(7.90)

Eliminating R1

R1 =
1

2
wf +

c1
tan δif

(7.91)

= −1
2
wf +

c1
tan δof

(7.92)

between (7.87) and (7.88) provides the kinematic condition between the
front steering angles δif and δof .

cot δof − cot δif =
wf

c1
(7.93)

Similarly, we may eliminate R1

R1 =
1

2
wr +

c2
tan δir

(7.94)

= −1
2
wr +

c2
tan δor

(7.95)

between (7.89) and (7.90) to provide the kinematic condition between the
rear steering angles δir and δor.

cot δor − cot δir =
wr

c2
(7.96)

Using the following constraint

c1 − c2 = l (7.97)

we may combine Equations (7.93) and (7.96)

wf

cot δof − cot δif
− wr

cot δor − cot δir
= l (7.98)

to find the kinematic condition (7.73) between the steer angles of the front
and rear wheels for a negative 4WS vehicle.
Using the sign convention shown in Figure 7.33, we may re-examine Fig-

ures 7.35 and 7.34. When the steer angle of the front wheels are positive
then, the steer angle of the rear wheels are negative in a negative 4WS
system, and are positive in a positive 4WS system. Therefore, Equation
(7.74)

cot δfr − cot δfl =
wf

l
− wr

l

cot δfr − cot δfl
cot δrr − cot δrl

(7.99)
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can express the kinematic condition for both, positive and negative 4WS
systems. Similarly, the following equations can uniquely determine c1 and
c2 regardless of the positive or negative 4WS system.

c1 =
wf

cot δfr − cot δfl
(7.100)

c2 =
wr

cot δrr − cot δrl
(7.101)

Four-wheel steering or all wheel steering AWS may be applied on ve-
hicles to improve steering response, increase the stability at high speeds
maneuvering, or decrease turning radius at low speeds. A negative 4WS
has shorter turning radius R than a front-wheel steering FWS vehicle.
For a FWS vehicle, the perpendicular to the front wheels meet at a

point on the extension of the rear axle. However, for a 4WS vehicle, the
intersection point can be any point in the xy plane. The point is the turning
center of the car and its position depends on the steer angles of the wheels.
Positive steering is also called same steer, and a negative steering is also
called counter steer.

Example 281 F Steering angles relationship.
Consider a car with the following dimensions.

l = 2.8m

wf = 1.35m

wr = 1.4m (7.102)

The set of equations (7.75)-(7.78) which are the same as (7.87)-(7.90) must
be used to find the kinematic steer angles of the tires. Assume one of the
angles, such as

δif = 15deg (7.103)

is a known input steer angle. To find the other steer angles, we need to know
the position of the turning center O. The position of the turning center can
be determined if we have one of the three parameters c1, c2, R1. To clarify
this fact, let’s assume that the car is turning left and we know the value
of δif . Therefore, the perpendicular line to the front left wheel is known.
The turning center can be any point on this line. When we pick a point,
the other wheels can be adjusted accordingly.
The steer angles for a 4WS system is a set of four equations, each with

two variables.

δif = δif (c1, R1) (7.104)

δof = δof (c1, R1) (7.105)

δir = δir (c2, R1) (7.106)

δor = δor (c2, R1) (7.107)
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If c1 and R1 are known, we will be able to determine the steer angles δif ,
δof , δir, and δor uniquely. However, a practical situation is when we have
one of the steer angles, such as δif , and we need to determine the required
steer angle of the other wheels, δof , δir, δor. It can be done if we know c1
or R1.
The turning center is the curvature center of the path of motion. If the

path of motion is known, then at any point of the road, the turning center
can be found in the vehicle coordinate frame.
In this example, let’s assume

R1 = 50m (7.108)

therefore, from Equation (7.75), we have

c1 =
³
R1 −

wf

2

´
tan δif

=

µ
50− 1.35

2

¶
tan

π

12
= 13.217m (7.109)

Because c1 > l and δif > 0 the vehicle is in a positive 4WS configuration
and the turning center is behind the car.

c2 = c1 − l

= 13.217− 2.8 = 10.417m. (7.110)

Now, employing Equations (7.76)-(7.78) provides the other steer angles.

δof = tan−1
c1

R1 +
wf

2

= tan−1
13.217

50 +
1.35

2
= 0.25513 rad ≈ 14.618 deg (7.111)

δir = tan−1
c2

R1 −
wr

2

= tan−1
10.417

50− 1.4
2

= 0.20824 rad ≈ 11.931 deg (7.112)

δor = tan−1
c2

R1 +
wr

2

= tan−1
10.417

50 +
1.4

2
= 0.202 64 rad ≈ 11.61 deg (7.113)

Example 282 F Position of the turning center.
The turning center of a vehicle, in the vehicle body coordinate frame, is

at a point with coordinates (xO, yO). The coordinates of the turning center
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are

xO = −a2 − c2

= −a2 −
wr

cot δor − cot δir
(7.114)

yO = R1

=
l +

1

2
(wf tan δif − wr tan δir)

tan δif − tan δir
. (7.115)

Equation (7.115) is found by substituting c1 and c2 from (7.91) and (7.94)
in (7.97), and define yO in terms of δif and δir. It is also possible to define
yO in terms of δof and δor.
Equations (7.114) and (7.115) can be used to define the coordinates of

the turning center for both positive and negative 4WS systems.
As an example, let’s examine a car with the following data.

l = 2.8m

wf = 1.35m

wr = 1.4m

a1 = a2 (7.116)

δif = 0.26180 rad ≈ 15 deg
δof = 0.25513 rad ≈ 14.618 deg
δir = 0.20824 rad ≈ 11.931 deg
δor = 0.20264 rad ≈ 11.61 deg (7.117)

and find the position of the turning center.

xO = −a2 −
wr

cot δor − cot δir
= −2.8

2
− 1.4

cot 0.20264− cot 0.20824 = −11.802m (7.118)

yO =
l +

1

2
(wf tan δif − wr tan δir)

tan δif − tan δir

=
2.8 +

1

2
(1.35 tan 0.26180− 1.4 tan 0.20824)
tan 0.26180− tan 0.20824 = 50.011m (7.119)

The position of turning center for a FWS vehicle is at

xO = −a2
yO =

1

2
wf +

l

tan δif
(7.120)
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FIGURE 7.36. A symmetric four-wheel steering vehicle.

and for a RWS vehicle is at

xO = a1

yO =
1

2
wr +

l

tan δir
. (7.121)

Example 283 F Curvature.
Consider a road as a path of motion that is expressed mathematically by

a function Y = f(X), in a global coordinate frame. The radius of curvature
Rκ of such a road at point X is

Rκ =

¡
1 + Y 02¢3/2

Y 00 (7.122)

where

Y 0 =
dY

dX
(7.123)

Y 00 =
d2Y

dX2
. (7.124)

Example 284 F Symmetric four-wheel steering system.
Figure 7.36 illustrates a symmetric 4WS vehicle that the front and rear

wheels steer opposite to each other equally. The kinematic steering condition
for a symmetric steering is simplified to

cot δo − cot δi =
wf

l
+

wr

l
(7.125)



7. Steering Dynamics 419

and c1 and c2 are reduced to

c1 =
1

2
l (7.126)

c2 = −1
2
l. (7.127)

Example 285 F c2/c1 ratio.
Longitudinal distance of the turning center of a vehicle from the front

axle is c1 and from the rear axle is c2. We show the ratio of these distances
by cs and call it the 4WS factor.

cs =
c2
c1

=
wr

wf

cot δfr − cot δfl
cot δrr − cot δrl

(7.128)

cs is negative for a negative 4WS vehicle and is positive for a positive
4WS vehicle. When cs = 0, the car is FWS, and when cs = −∞, the car
is RWS. A symmetric 4WS system has cs = −12 .

Example 286 F Steering length ls.
For a 4WS vehicle, we may define a steering length ls as

ls =
c1 + c2

l
=

l

c1
+ 2cs

=
1

l

µ
wf

cot δfr − cot δfl
+

wr

cot δrr − cot δrl

¶
(7.129)

Steering length ls is 1 for a FWS car, zero for a symmetric car, and −1
for a RWS car. When a car has a negative 4WS system then, −1 < ls < 1,
and when the car has a positive 4WS system then, 1 < ls or ls < −1. The
case 1 < ls happens when the turning center is behind the car, and the case
ls < −1 happens when the turning center is ahead of the car.

Example 287 F FWS and Ackerman condition.
When a car is FWS vehicle, then the Ackerman condition (7.1) can be

written as the following equation.

cot δfr − cot δfl =
w

l
(7.130)

Writing the Ackerman condition as this equation frees us from checking the
inner and outer wheels.

Example 288 F Turning radius.
To find the vehicle’s turning radius R, we may define equivalent bicycle

models as shown in Figure 7.37 and 7.38 for positive and negative 4WS
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FIGURE 7.37. Bicycle model for a positive 4WS vehicle.

vehicles. The radius of rotation R is perpendicular to the vehicle’s velocity
vector v at the mass center C.
Let’s examine the positive 4WS situation in Figure 7.37. Using the geom-

etry shown in the bicycle model, we have

R2 = (a2 + c2)
2
+R21 (7.131)

cot δf =
R1
c1

=
1

2
(cot δif + cot δof ) (7.132)

and therefore,

R =

q
(a2 + c2)

2
+ c21 cot

2 δf . (7.133)

Examining Figure 7.38 shows that the turning radius of a negative 4WS
vehicle can be determined from the same equation (7.133).

Example 289 F FWS and 4WS comparison.
The turning center of a FWS car is always on the extension of the rear

axel, and its steering length ls is always equal to 1. However, the turning
center of a 4WS car can be:



7. Steering Dynamics 421

O

fδ

l
R

R1

a2

a1

C

rδ

rδ
c2

c1

fδ

FIGURE 7.38. Bicycle model for a negative 4WS vehicle.

1− ahead of the front axle, if ls < −1
2− for a FWS car, if −1 < ls < 1 or
3− behind the rear axle, if 1 < ls

A comparison among the different steering lengths is illustrated in Figure
7.39. A FWS car is shown in Figure 7.39(a), while the 4WS systems with
ls < −1, −1 < ls < 1, and 1 < ls are shown in Figures 7.39(b)-(d)
respectively.

Example 290 F Passive and active four-wheel steering.
The negative 4WS is not recommended at high speeds because of high yaw

rates, and the positive steering is not recommended at low speeds because
of increasing radius of turning. Therefore, to maximize the advantages of
a 4WS system, we need a smart system to allow the wheels to change
the mode of steering depending on the speed of the vehicle and adjust the
steer angles for different purposes. A smart steering is also called active
steering system.
An active system may provide a negative steering at low speeds and a

positive steering at high speeds. In a negative steering, the rear wheels are
steered in the opposite direction as the front wheels to turn in a significantly
smaller radius, while in positive steering, the rear wheels are steered in the
same direction as the front wheels to increase the lateral force.
When the 4WS system is passive, there is a constant proportional ratio
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FIGURE 7.39. A comparison among the different steering lengths.

between the front and rear steer angles which is equivalent to have a constant
cs.
A passive steering may be applied in vehicles to compensate some vehicle

tendencies. As an example, in a FWS system, the rear wheels tend to steer
slightly to the outside of a turn. Such tendency can reduce stability.

Example 291 F Autodriver.
Consider a car that is moving on a road, as shown in Figure 7.40. Point

O indicates the center of curvature of the road at the car’s position. Center
of curvature of the road is supposed to be the turning center of the car at
the instant of consideration.
There is a global coordinate frame G attached to the ground, and a vehicle

coordinate frame B attached to the car at its mass center C. The z and Z
axes are parallel and the angle ψ indicates the angle between X and x axes.
If (XO, YO) are the coordinates of O in the global coordinate frame G then,
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FIGURE 7.40. Illustration of a car that is moving on a road at the point that O
is the center of curvature.

the coordinates of O in B would be

BrO = Rz,ψ
GrO⎡⎣ x

y
0

⎤⎦ =

⎡⎣ cosψ sinψ 0
− sinψ cosψ 0
0 0 1

⎤⎦⎡⎣ X
Y
0

⎤⎦
=

⎡⎣ X cosψ + Y sinψ
Y cosψ −X sinψ

0

⎤⎦ . (7.134)

Having coordinates of O in the vehicle coordinate frame is enough to de-
termine R1, c1, and c2.

R1 = yO

= Y cosψ −X sinψ (7.135)

c2 = −a2 − xO

= X cosψ + Y sinψ − a2 (7.136)

c1 = c2 + l

= X cosψ + Y sinψ + a1 (7.137)

Then, the required steer angles of the wheels can be uniquely determined by
Equations (7.75)-(7.78).
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It is possible to define a road by a mathematical function Y = f(X)
in a global coordinate frame. At any point X of the road, the position of
the vehicle and the position of the turning center in the vehicle coordinate
frame can be determined. The required steer angles can accordingly be set
to keep the vehicle on the road and run the vehicle in the correct direction.
This principle may be used to design an autodriver.

Example 292 F Curvature equation.
Consider a vehicle that is moving on a path Y = f(X) with velocity v

and acceleration a. The curvature κ = 1/R of the path that the vehicle is
moving on is

κ =
1

R
=

an
v2

(7.138)

where, an is the normal component of the acceleration a. The normal com-
ponent an is toward the rotation center and is equal to

an =
¯̄̄v
v
× a

¯̄̄
=
1

v
|v × a|

=
1

v
(aY vX − aXvY ) =

Ÿ Ẋ − ẌẎp
Ẋ2 + Ẏ 2

(7.139)

and therefore,

κ =
Ÿ Ẋ − ẌẎ³
Ẋ2 + Ẏ 2

´3/2 = Ÿ Ẋ − ẌẎ

Ẋ3

1Ã
1 +

Ẏ 2

Ẏ 2

!3/2 . (7.140)

However,

Y 0 =
dY

dX
=

Ẏ

Ẋ
(7.141)

Y 00 =
d2Y

dX2
=

d

dx

Ã
Ẏ

Ẋ

!
=

d

dt

Ã
Ẏ

Ẋ

!
1

Ẋ
=

Ÿ Ẋ − ẌẎ

Ẋ3
(7.142)

and we find the following equation for the curvature of the path based on
the equation of the path.

κ =
Y 00

(1 + Y 02)3/2
(7.143)

7.6 F Steering Mechanism Optimization

Optimization means steering mechanism is the design of a system that
works as closely as possible to a desired function. Assume the Ackerman
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kinematic condition is the desired function for a steering system. Com-
paring the function of the designed steering mechanism to the Ackerman
condition, we may define an error function e to compare the two functions.
An example for the e function can be the difference between the outer steer
angles of the designed mechanism δDo

and the Ackerman δAo for the same
inner angle δi.
The error function may be the absolute value of the maximum difference,

e = max |δDo − δAo | (7.144)

or the root mean square (RMS) of the difference between the two functions

e =

sZ
(δDo − δAo)

2
dδi (7.145)

in a specific range of the inner steer angle δi.
The error e, would be a function of a set of parameters. Minimization

of the error function for a parameter, over the working range of the steer
angle δi, generates the optimized value of the parameter.
The RMS function (7.145) is defined for continuous variables δDo

and
δAo . However, depending on the designed mechanism, it is not always pos-
sible to find a closed-form equation for e. In this case, the error function
cannot be defined explicitly, and hence, the error function should be evalu-
ated for n different values of the inner steer angle δi numerically. The error
function for a set of discrete values of e is define by

e =

vuut 1

n

nX
i=1

(δDo
− δAo)

2. (7.146)

The error function (7.145) or (7.146) must be evaluated for different values
of a parameter. Then a plot for e = e(parameter) can show the trend of
variation of e as a function of the parameter. If there is a minimum for
e, then the optimal value for the parameter can be found. Otherwise, the
trend of the e function can show the direction for minimum searching.

Example 293 F Optimized trapezoidal steering mechanism.
The inner-outer angles relationship for a trapezoidal steering mechanism,

shown in Figure 7.6, is

sin (β + δi) + sin (β − δo)

=
w

d
+

r³w
d
− 2 sinβ

´2
− (cos (β − δo)− cos (β + δi))

2. (7.147)

Comparing Equation (7.147) with the Ackerman condition,

cot δo − cot δi =
w

l
(7.148)
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we may define an error function

e =

vuut 1

n

nX
i=1

(δDo
− δAo)

2 (7.149)

and search for its minimum to optimize the trapezoidal steering mechanism.

Consider a vehicle with the dimensions

w = 2.4m

l = 4.8m. (7.150)

Let’s optimize a trapezoidal steering mechanism for

d = 0.4m (7.151)

and use β as a parameter.
A plot of comparison between such a mechanism and the Ackerman con-

dition, for a set of different β, is shown in Figure 7.9, and their difference
∆δo = δDo − δAo is shown in Figure 7.10.
We may set a value for β, say β = 6deg, and evaluate δDo and δAo at

n = 100 different values of δi for a working range such as −40 deg ≤ δi ≤
40 deg. Then, we calculate the associated error function e

e =

vuut 1

100

100X
i=1

(δDo − δAo)
2 (7.152)

for the specific β. Now we conduct our calculation again for new values of
β, such as β = 8deg, 9 deg, · · · . Figure 7.41 depicts the function e = e(β)
with a minimum at β ≈ 12 deg.
The geometry of the optimal trapezoidal steering mechanism is shown

in Figure 7.42(a). The two side arms intersect at point G on their exten-
sions. For an optimal mechanism, the intersection of point G is at the outer
side of the rear axle. However, it is recommended to put the intersection
point at the center of the rear axle and design a near optimal trapezoidal
steering mechanism. Using the recommendation, it is possible to eliminate
the optimization process and get a good enough design. Such an estimated
design is shown in Figure 7.42(b). The angle β for the optimal design is
β = 12.6 deg, and for the estimated design is β = 13.9 deg.

Example 294 F There is no exact Ackerman mechanism.
It is not possible to make a simple steering linkage to work exactly based

on the Ackerman steering condition. However, it is possible to optimize var-
ious steering linkages for a working range, to work closely to the Ackerman
condition, and be exact at a few points. An isosceles trapezoidal linkage is
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[deg]β
0      2.1    4.2     6.4    8.5   10.6   12.8   14.9   17     19.1   21.3

[rad]β

e w/l=0.5 
w=2.4 m
d=0.4 m

FIGURE 7.41. Error function e = e(β) for a specific trapezoidal steering mecha-
nism, with a minimum at β ≈ 12deg.

not as exact as the Ackerman steering at every arbitrary turning radius,
however, it is simple enough to be mass produced, and exact enough work
in street cars.

Example 295 F Optimization of a multi-link steering mechanism.
Assume that we want to design a multi-link steering mechanism for a

vehicle with the following dimensions.

w = 2.4m

l = 4.8m (7.153)

a2 = 0.45l

Due to space constraints, the position of some joints of the mechanism are
determined as shown in Figure 7.43. However, we may vary the length x
to design the best mechanism according to the Ackerman condition.

cot δ2 − cot δ1 =
w

l
=
1

2
(7.154)

The steering wheel input δs turns the triangle PBC which turns both the
left and the right wheels.
The vehicle must be able to turn in a circle with radius Rm.

Rm = 10m (7.155)
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FIGURE 7.42. The geometry of the optimal trapezoidal steering mechanism and
the estimated design.

The minimum turning radius determines the maximum steer angle δ

Rm =
q
a22 + l2 cot2 δM

10 =

q
(0.45× 4.8)2 + 4.82 cot2 δM

δM = 0.23713 rad ≈ 13.587 deg (7.156)

where δ is the cot-average of the inner and outer steer angles. Having R
and δ is enough to determine δo and δi.

R1 = l cot δM

= 4.8 cot 0.23713 = 19.861m (7.157)

δi = tan−1
l

R1 −
w

2

= 0.25176 rad ≈ 14.425 deg (7.158)

δo = tan−1
l

R1 +
w

2

= 0.22408 rad ≈ 12.839 deg (7.159)

Because the mechanism is symmetric, each wheel of the steering mechanism



7. Steering Dynamics 429

Sδ

54.6°

x

CA D

NM P

d=1.2 m

B

a

b

c

0.22 m

b

FIGURE 7.43. A multi-link steering mechanism that must be optimized by vary-
ing x.
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FIGURE 7.44. The multi-link steering is a 6-link mechanism that may be treeted
as two combined 4-bar linkages.

in Figure 7.43 must be able to turn at least 14.425 deg. To be safe, we try
to optimize the mechanism for δ = ±15 deg.
The multi-link steering mechanism is a six-link Watt linkage. Let us di-

vide the mechanism into two four-bar linkages. The linkage 1 is on the left
and the linkage 2 is on the right, as shown in Figure 7.44. We may assume
that MA is the input link of the left linkage and PB is its output link.
Link PB is rigidly attached to PC, which is the input of the right linkage.
The output of the right linkage is ND. To find the inner-outer steer angles
relationship, we need to find the angle of ND as a function of the angle
of MA. The steer angles can be calculated based on the angle of these two
links.

δ1 = θ2 − (90− 54.6) deg (7.160)

δ2 = ϕ4 − (90 + 54.6) deg (7.161)

Figure 7.44 illustrates the link numbers, and the input-output angles of
the four-bar linkages. The length of the links for the mechanisms are col-
lected in Table 7.1.
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FIGURE 7.45. The input and output angles of the two 4-bar linkages.

Table 7.1 - Link numbers, and the input-output angles
for the multi-link steering mechanism

Left linkage
Link Length angle
1 d1 = 1.2 180
2 a1 = 0.22/ cos 54.6 = 0.37978 θ2
3 b1 = 1.2− 0.22 tan 54.6− x

2 θ3
= 0.89043− x

2

4 c1 =
p
0.222 + x2/4 θ4

Right linkage
Link Length angle
1 d1 = 1.2 180

4 a1 =
p
0.222 + x2/4 ϕ2 = θ4 − 2 tan−1 x

0.44

5 b1 = 0.89043− x
2 ϕ3

6 c1 = 0.22/ cos 54.6 = 0.37978 ϕ4

Equation (6.1) that is repeated below, provides the angle θ4 as a function
of θ2.

θ4 = 2 tan
−1

Ã
−B ±

√
B2 − 4AC
2A

!
(7.162)

A = J3 − J1 + (1− J2) cos θ2 (7.163)

B = −2 sin θ2 (7.164)

C = J1 + J3 − (1 + J2) cos θ2 (7.165)
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J1 =
d1
a1

(7.166)

J2 =
d1
c1

(7.167)

J3 =
a21 − b21 + c21 + d21

2a1c1
(7.168)

J4 =
d1
b1

(7.169)

J5 =
c21 − d21 − a21 − b21

2a1b1
(7.170)

The same equation (7.162) can be used to connect the input-output angles
of the right four-bar linkage.

ϕ4 = 2 tan
−1

Ã
−B ±

√
B2 − 4AC
2A

!
(7.171)

A = J3 − J1 + (1− J2) cosϕ2 (7.172)

B = −2 sinϕ2 (7.173)

C = J1 + J3 − (1 + J2) cosϕ2 (7.174)

J1 =
d2
a2

(7.175)

J2 =
d2
c2

(7.176)

J3 =
a22 − b22 + c22 + d22

2a2c2
(7.177)

J4 =
d2
b2

(7.178)

J5 =
c22 − d22 − a22 − b22

2a2b2
(7.179)

Starting with a guess value for x, we are able to calculate the length of the
links. Using Equations (7.162) and (7.171), along with (7.160) and (7.161),
we calculate δ2 for a given value of δ1.
Let’s start with x = 0, then

a1 = 0.37978m

b1 = 0.89043m (7.180)

c1 = 0.22m

a2 = 0.22m

b2 = 0.89043m (7.181)

c2 = 0.37978m.
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[deg]1 flδ = δ
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[deg]Acδ Ackerman

Muti-link

[deg]2δ

FIGURE 7.46. Steer angles δ2 and δAc versus δ1.

Using Equations (7.160) and (7.162), we may calculate the output of the
first four-bar linkage, θ4, for a range of the left steer angle −15 deg < δ1 <
15 deg. The following constraint, provides the numerical values for ϕ2 to be
used as the input of the right four-bar linkage.

ϕ2 = θ4 − 2 tan−1
x

0.44
(7.182)

Then, using Equations (7.171) and (7.162), we can calculate the steer angle
δ2 for the right wheel.
Figure 7.46 depicts the numerical values of the steer angles δ2 and δAc

versus δ1. The angle δAc is the steer angle of the right wheel based on the
Ackerman equation (7.154).
Having δ2 and δAc, we calculate the difference ∆

∆ = δ2 − δAc (7.183)

for n different values of δ1 in the working range angle −15 deg < δ1 <
15 deg. Based on the n numbers for ∆, we may find the error e.

e =

r
∆2

n
(7.184)

Changing the value of x and recalculating e, results an error function e =
e(x).
Figure 7.47 illustrates the result of the calculation. It shows that the error

is minimum for x = −0.824m, which is the best length for the base of the
triangle PBC.
The behavior of the multi-link steering mechanism for different values

of x, is shown in Figure 7.48. The Ackerman condition is also plotted to
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w/l=0.5 

[deg]e

FIGURE 7.47. Illustration of the error function e = e(x).

[deg]1 flδ = δ

w/l=0.5 
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muti-link

x=-0.824 
Ackerman

x=-0.5 
x=-0.2 

x=-1.1 
x=-1.4 

deg]2δ

FIGURE 7.48. The behavior of the multi-link steering mechanism for different
values of x.
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x=-0.2 
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x=-1.4 
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FIGURE 7.49. Illustration of the difference ∆ = δ2 − δAc for different values of
x.

54.6°
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1.3021.302

FIGURE 7.50. The optimal multi-link steering mechanism along with the length
of its links.

compare with the optimal multi-link mechanism. The optimality of x =
−0.824m may be more clear in Figure 7.49 that shows the difference ∆ =
δ2 − δAc for different values of x.
The optimal multi-link steering mechanism along with the length of its

links is shown in Figure 7.50. The mechanism and the meaning of negative
value for x are shown in Figure 7.51 where the mechanism is in a positive
turning position.

7.7 F Trailer-Truck Kinematics

Consider a car pulling a one-axle trailer, as shown in Figure 7.52. We
may normalize the dimensions such that the length of the trailer is 1. The



7. Steering Dynamics 435

FIGURE 7.51. The optimal multi-link steering mechanism in a positive turning
position.
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FIGURE 7.52. A car pulling a one-axle trailer.

positions of the car at the hinge point and the trailer at the center of its
axle are shown by vectors r and s.
Assuming r is a given differentiable function of time t, we would like to

examine the behavior of the trailer by calculating s, and predict jackknifing.
When the car is moving forward, we say the car and trailer are jackknifed
if

ṙ · z < 0 (7.185)

where
z = r− s. (7.186)

A jackknifed configuration is shown in Figure 7.53, while Figure 7.52 is
showing an unjackknifed configuration.
Mathematically, we want to know if the truck-trailer will jackknife for a
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FIGURE 7.53. A jackknifed configuration of a car pulling a one-axle trailer.

given path of motion r = r(t) and what conditions we must impose on r(t)
to prevent jackknifing.
The velocity of the trailer can be expressed by

ṡ = c (r− s) (7.187)

where
c = ṙ · z (7.188)

and the unjackknifing condition is

c > 0. (7.189)

Assume the twice continuously differentiable function r is the path of car
motion. If |z| = 1, and r has a radius of curvature R(t) > 1, and

ṙ(0) · z(0) > 0 (7.190)

then
ṙ(t) · z(t) > 0 (7.191)

for all t > 0.
Therefore, if the car is moving forward and the car-trailer combination

is not originally jackknifed, then it will remain unjackknifed.

Proof. The normalized trailer length is 1 and is constant, therefore, z is a
unit vector

|z| = |r− s|
= 1 (7.192)
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and
(r− s) · (r− s) = 1. (7.193)

The nonslip wheels of the trailer constrain the vector s such that its velocity
vector ṡ must be directed along the trailer axis indicated by z.

ṡ = c (r− s)
= cz (7.194)

Differentiating (7.193) yields

2 (ṙ− ṡ) · (r− s) = 0 (7.195)

ṙ · (r− s) = ṡ · (r− s) (7.196)

and therefore,
ṙ · (r− s) = c (r− s) · (r− s) (7.197)

c = ṙ · (r− s)
= ṙ · z. (7.198)

Having c enables us to write Equation (7.194) as

ṡ = [ṙ · (r− s)] (r− s)
= (ṙ · z) z. (7.199)

There are three situations

1. When c > 0, the velocity vector of the trailer ṡ is along the trailer
axis z. The trailer follows the car and the system is stable.

2. When c = 0, the velocity vector of the trailer ṡ is zero. In this case,
the trailer spins about the center of its axle and the system is neutral-
stable.

3. When c < 0, the velocity vector of the trailer ṡ is along the trailer axis
−z. The trailer does not follow the car and the system is unstable.

Using a Cartesian coordinate expression, we may show the car and trailer
position vectors by

r =

∙
xc
yc

¸
(7.200)

s =

∙
xt
yt

¸
(7.201)
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and therefore,

ṡ =

∙
ẋt
ẏt

¸
= [ṙ · (r− s)] (r− s)

=

∙
ẋc (xc − xt)

2 + (xc − xt) (yc − yt) ẏc
ẋc (xc − xt) (yc − yt) + (yc − yt)

2
ẏc

¸
(7.202)

c = (xc − xt) ẋc + (yc − yt) ẏc

= ẋcxc + ẏcyc − (ẋcxt + ẏcyt) . (7.203)

Let’s define a function f(t) = ṙ · z and assume that conclusion (7.191)
is wrong while assumption (7.190) is correct. Then there exists a time
t1 > 0 such that f(t1) = 0 and f 0(t1) ≤ 0. Using |z| = 1 and ṙ 6= 0, we
have ṙ(t1) · z(t1) = 0 and therefore, ṙ(t1) is perpendicular to z(t1). The
derivative f 0(t) would be

f 0(t) = r̈ · z+ ṙ · ż
= r̈ · z+ ṙ · (ṙ− ṡ)
= r̈ · z+ |ṙ|2 − ṙ · ṡ
= r̈ · z+ |ṙ|2 − ṙ · ((ṙ · z) z)
= r̈ · z+ |ṙ|2 − (ṙ · z)2

= r̈ · z+ |ṙ|2 − f2(t) (7.204)

and therefore,
f 0(t1) = r̈ · z+ |ṙ|2 . (7.205)

The acceleration r̈ in a normal-tangential coordinate frame (ên, êt) is

r̈ =
d |ṙ|
dt

êt + κ |ṙ|2 ên (7.206)

κ =
1

R
(7.207)

where ên and êt are the unit normal and tangential vectors. êt is parallel
to ṙ(t1), and ên is parallel to z(t1). Hence,

r̈ · z = ±κ(t1) |ṙ(t1)|2 (7.208)

and

f 0(t1) = |ṙ(t1)|2 ± κ(t1) |ṙ(t1)|2

= [1± κ(t1)] |ṙ(t1)|2 . (7.209)

Because κ(t1) = 1/R(t) > 0, we conclude that f 0(t1) > 0, and it is not
possible to have f 0(t1) ≤ 0.
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FIGURE 7.54. The initial position of a one-axle trailer pulled by a car moving
forward in a straight line with a constant velocity is a circle about the hinge
point.

Example 296 F Straight motion of the car with constant velocity.
Consider a car moving forward in a straight line with a constant velocity.

We may use a normalization and set the speed of the car as 1 moving in
positive x direction starting from x = 0. Using a two-dimensional vector
expression we have

r =

∙
xc
yc

¸
=

∙
t
0

¸
. (7.210)

Because of (7.192), we get

z(0) = r(0)− s(0)
= −s(0) (7.211)

and therefore, the initial position of the trailer must lie on a unit circle as
shown in Figure 7.54.
Using two dimensional vectors, we may express z(0) as a function of θ

z(0) = −s(0)

=

∙
xt(0)
yt(0)

¸
=

∙
cos θ
sin θ

¸
(7.212)

and simplify Equation (7.202) as

ṡ =

∙
ẋt
ẏt

¸
=

∙
(t− xt)

2

−yt (t− xt)

¸
. (7.213)



440 7. Steering Dynamics

Equation (7.213) is a set of two coupled first-order ordinary differential
equations with the solution

s =

∙
xt
yt

¸
=

⎡⎢⎢⎣ t+
e−2t − C1
e−2t + C1

C2e
−t

e−2t + C1

⎤⎥⎥⎦ . (7.214)

Applying the initial conditions (7.212) we find

C1 =
cos θ − 1
cos θ + 1

(7.215)

C2 =
2 sin θ

cos θ + 1
. (7.216)

If θ 6= kπ, then the solution depends on time, and when time goes to
infinity, the solution leads to the following limits asymptotically:

lim
t→∞

xt = t− 1

lim
t→∞

yt = 0 (7.217)

When the car is moving with a constant velocity, this solution shows that
the trailer will approach the position of straight forward moving, following
the car.
We may also consider that the car is backing up. In this situation, the

solution shows that, except for the unstable initial condition θ = π, all
solutions ultimately approach the jackknifed position.
If θ = 0, then

C1 = 0

C2 = 0

xt = t+ 1

yt = 0 (7.218)

and the trailer moves in an unstable configuration. Any deviation from
θ = 0 ends up to change the situation and leads to the stable limiting
solution (7.217).
If θ = π, then

C1 = ∞
C2 = ∞
xt = t− 1
yt = 0 (7.219)

and the trailer follows the car in an stable configuration. Any deviation
from θ = 0 will disappear after a while.
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Example 297 F Straight car motion with different initial θ.
Consider a car moving on an x-axis with constant speed. The car is

pulling a trailer, which is initially at θ such as shown in Figure 7.52. Using
a normalized length, we assume the distance between the center of the trailer
axle and the hinge is the length of trailer, and is equal to 1.
If we show the absolute position of the car at hinge by r =

£
xc yc

¤T
and the absolute position of the trailer by s =

£
xt yt

¤T
then the position

of the trailer is a function of the car’s motion. When the position of the
car is given by a time-dependent vector function

r =

∙
xc(t)
yc(t)

¸
(7.220)

the trailer position can be found by solving two coupled differential equation.

ẋt = (xc − xt)
2 ẋc + (xc − xt) (yc − yt) ẏc (7.221)

ẏt = (xc − xt) (yc − yt) ẋc + (yc − yt)
2
ẏc (7.222)

For a constantly uniform car motion r =
£
t 0

¤T
, Equations (7.221) and

(7.222) reduce to

ẋt = (t− xt)
2 (7.223)

ẏt = −yt (t− xt) (7.224)

The first equation (7.223) is independent of the second equation (7.224)
and can be solved independently.

xt =
C1 e

2t (t− 1)− t− 1
C1 e2t − 1

= t+
e−2t − C1
e−2t + C1

(7.225)

Substituting Equation (7.225) in (7.224) generates the following differential
equation:

ẏt =
e−2t − C1
e−2t + C1

yt (7.226)

with the solution

yt =
C2e

−t

e−2t + C1
. (7.227)

When the trailer starts from s =
£
cos θ sin θ

¤T
, the constants of integral

would be equal to Equations (7.215) and (7.216) and therefore,

xt = t+
e−2t (cos θ + 1)− cos θ + 1
e−2t (cos θ + 1) + cos θ − 1 (7.228)

yt =
2e−t sin θ

e−2t (cos θ + 1) + cos θ − 1 . (7.229)
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FIGURE 7.55. Trailer kinematics for a θ = 45deg starting position.

Figures 7.55, 7.56, and 7.57 illustrate the behavior of the trailer starting
from θ = 45deg, θ = 90deg, θ = 135deg.

Example 298 F Circular motion of the car with constant velocity.
Consider a car pulling a trailer such as Figure 7.52 shows. The car is

traveling along a circle of radius R > 1, based on a normalized length in
which the length of the trailer is 1. In a circular motion with a normalized
angular velocity ω = 1 and period T = 2π, the position of the car is given
by the following time-dependent vector function:

r =

∙
xc(t)
yc(t)

¸
=

∙
R cos(t)
R sin(t)

¸
. (7.230)

The initial position of the trailer must lie on a unit circle with a center at
r(0) =

£
xc(0) yc(0)

¤T
.

s(0) =

∙
xt(0)
yt(0)

¸
=

∙
xc(0)
yc(0)

¸
+

∙
cos θ
sin θ

¸
(7.231)

The car-trailer combination approaches a steady-state configuration as shown
in Figure 7.58.
Substituting

ṙ =

∙
−R sin(t)
R cos(t)

¸
. (7.232)
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FIGURE 7.56. Trailer kinematics for a θ = 90deg starting position.
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FIGURE 7.57. Trailer kinematics for a θ = 135deg starting position.
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FIGURE 7.58. Steady state configuration of a car-trailer combination.

and the initial conditions (7.231) in (7.202) will generate two differential
equations for trailer position.

ẋt = R (R cos t− xt) (xt sin t− yt cos t) (7.233)

ẏt = R (R sin t− yt) (xt sin t− yt cos t) (7.234)

Assuming r(0) =
£
0 0

¤T
the steady-state solutions of these equations

are

xt = c cos(t− α) (7.235)

yt = c sin(t− α) (7.236)

where c is the trailer’s radius of rotation, and α is the angular position of
the trailer behind the car.

c =
p
R2 − 1 (7.237)

sinα =
1

R
(7.238)

cosα =
c

R
(7.239)
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We may check the solution by employing two new variables, u and v,
such that

u = xt sin t− yt cos t (7.240)

v = xt cos t+ yt sin t (7.241)

and
u̇ = v. (7.242)

Using the new variables we find

xt = u sin t+ v cos t (7.243)

yt = −u cos t+ v sin t (7.244)

ẋt = Ru(R cos t− u sin t− v cos t) (7.245)

ẏt = Ru(R sin t+ u cos(t)− v sin t). (7.246)

Direct differentiating from (7.240), (7.241), (7.243), and (7.244) shows
that

u̇ = xt cos t+ yt sin t+ ẋt (sin t)− ẏt (cos t) (7.247)

v̇ = −xt sin t+ yt cos t+ ẋt cos t+ ẏt sin t (7.248)

ẋt = u̇ sin t+ v̇ cos t+ u cos t− v sin t (7.249)

ẏt = u̇ cos t− v̇ sin t− u sin t− v cos t (7.250)

and therefore, the problem can be expressed in a new set of equations.

u̇ = v −Ru2 (7.251)

v̇ = u
¡
R2 −Rv − 1

¢
(7.252)

At the steady-state condition the time differentials must be zero, and
therefore, the steady-state solutions would be the answers to the following
algebraic equations:

v −Ru2 = 0 (7.253)

u
¡
R2 −Rv − 1

¢
= 0 (7.254)

There are three sets of solutions.

{u = 0, v = 0} (7.255)

{u =
c

R
, v =

c2

R
} (7.256)

{u = − c

R
, v =

c2

R
} (7.257)
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The first solution is associated with s = 0,

xt = 0 (7.258)

yt = 0 (7.259)

which shows that the center of the trailer’s axle remains at the origin and
the car is turning on a circle R = 1. This is a stable motion.
The second solution is associated with

xt =
c

R
sin t+

c2

R
cos t (7.260)

yt = − c

R
cos t+

c2

R
sin t (7.261)

which are equivalent to (7.235) and (7.236).
To examine the stability of the second solution, we may substitute a per-

turbed solution

u =
c

R
+ p (7.262)

v =
c2

R
+ q (7.263)

in the linearized equations of motion (7.251) and (7.252) at the second set
of solutions

u̇ = v − 2cu (7.264)

v̇ = −cv (7.265)

to get two equations for the perturbed functions p and q.

ṗ = q − 2cp (7.266)

q̇ = cq (7.267)

The set of linear perturbed equations can be set in a matrix form∙
ṗ
q̇

¸
=

∙
−2c 1
0 −c

¸ ∙
p
q

¸
. (7.268)

The stability of Equation (7.268) is determined by the eigenvalues λi of the
coefficient matrix, which are

λ1 = −c
λ2 = −2c.

Because both eigenvalues λ1 and λ2 are negative, the solution of the per-
turbed equations symptomatically goes to zero. Therefore, the second set of
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solutions (7.256) is stable and it absorbs any near path that starts close to
it.
The third solution is associated with

xt = − c

R
sin t+

c2

R
cos t (7.269)

yt =
c

R
cos t+

c2

R
sin t. (7.270)

The linearized equations of motion at the third set of solutions (7.257) are

u̇ = v + 2cu (7.271)

v̇ = cv. (7.272)

The perturbed equations would then be∙
ṗ
q̇

¸
=

∙
2c 1
0 c

¸ ∙
p
q

¸
(7.273)

with two positive eigenvalues

λ1 = c

λ2 = 2c

Positive eigenvalues show that the solution of the perturbed equations di-
verges and goes to infinity. Therefore, the third set of solutions (7.257) is
unstable and repels any near path that starts close to it.

7.8 Summary

Steering is required to guide a vehicle in a desired direction. When a ve-
hicle turns, the wheels closer to the center of rotation are called the inner
wheels, and the wheels further from the center of rotation are called the
outer wheels. If the speed of a vehicle is very slow, there is a kinematic con-
dition between the inner and outer steerable wheels, called the Ackerman
condition.
Street cars are four-wheel vehicles and usually have front-wheel-steering.

The kinematic condition between the inner and outer steered wheels is

cot δo − cot δi =
w

l
(7.274)

where δi is the steer angle of the inner wheel, δo is the steer angle of the
outer wheel, w is the track, and l is the wheelbase of the vehicle. Track
w and wheel base l are considered the kinematic width and length of the
vehicle.
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The mass center of a steered vehicle will turn on a circle with radius R,

R =
q
a22 + l2 cot2 δ (7.275)

where δ is the cot-average of the inner and outer steer angles.

cot δ =
cot δo + cot δi

2
. (7.276)

The angle δ is the equivalent steer angle of a bicycle having the same
wheelbase l and radius of rotation R.
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7.9 Key Symbols

4WS four-wheel-steering
a, b, c, d lengths of the links of a four-bar linkage
ai distance of the axle number i from the mass center
A,B,C input angle parameters of a four-bar linkage
AWS all-wheel-steering
b1 distance of the hinge point from rear axle
b2 distance of trailer axle from the hinge point
c stability index of a trailer motion
c trailer’s radius of rotation
c1 longitudinal distance of turn center and front axle of a 4WS car
c2 longitudinal distance of turn center and rear axle of a 4WS car
C mass center
C1, C2, · · · constants of integration
d arm length in trapezoidal steering mechanism
e error
e length of the offset arm
FWS front-wheel-steering
g overhang distance
J link parameters of a four-bar linkage
l wheelbase
n number of increments
O center of rotation in a turn
r yaw velocity of a turning vehicle
r position vector of a car at the hinge
R radius of rotation at mass center
R1 radius of rotation at the center of the rear axle for FWS
R1 horizontal distance of O and the center of axles
Rt radius of rotation at the center of the trailer axle
Rw radius of the rear wheel
RWS rear wheel steering
s position vector of a trailer at the axle center
t time
uR steering rack translation
v ≡ ẋ, v vehicle velocity
vri speed of the inner rear wheel
vro speed of the outer rear wheel
w track
wf front track
wr rear track
x, y, z, x displacement
z = r− s position vector of a trailer relative to the car
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β arm angle in trapezoidal steering mechanism
δ cot-average of the inner and outer steer angles
δ1 = δfl front left wheel steer angle
δ2 = δfr front right wheel steer angle
δAc steer angle based on Ackerman condition
δfl front left wheel steer angle
δfr front right wheel steer angle
δi inner wheel
δrl rear left wheel steer angle
δrr rear right wheel steer angle
δo outer wheel
δS steer command
∆ = δ2 − δAc steer angle difference
θ angle between trailer and vehicle longitudinal axes
ω angular velocity
ωi = ωri angular velocity of the rear inner wheel
ωo = ωro angular velocity of the rear outer wheel
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Exercises

1. Bicycle model and radius of rotation.

Mercedes-Benz GL450TM has the following dimensions.

l = 121.1 in

wf = 65.0 in

wr = 65.1 in

R = 39.7 ft

Assume a1 = a2 and use an average track to determine the maximum
steer angle δ for a bicycle model of the car.

2. Radius of rotation.

Consider a two-axle truck that is offered in different wheelbases.

l = 109 in

l = 132.5 in

l = 150.0 in

l = 176.0 in

If the front track of the vehicles is

w = 70 in

and a1 = a2, calculate the radius of rotations if δ = 30deg.

3. Required space.

Consider a two-axle vehicle with the following dimensions.

l = 4m

w = 1.3m

g = 1.2m

Determine Rmin, RMax, and ∆R for δ = 30deg.

4. Rear wheel steering lift truck.

A battery powered lift truck has the following dimensions.

l = 55 in

w = 30 in

Calculate the radius of rotations if δ = 55deg for a1 = a2.
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5. Wheel angular velocity.

Consider a two-axle vehicle with the following dimensions.

l = 2.7m

w = 1.36m

What is the angular velocity ratio of ωo/ωi?

6. A three-axle vehicle.

A three-axle vehicle is shown in Figure 7.17. Find the relationship
between δ2 and δ3, and also between δ1 and δ6.

7. A three-axle truck.

Consider a three-axle truck that has only one steerable axle in front.
The dimensions of the truck are

a1 = 5300mm

a2 = 300mm

a3 = 1500mm

w = 1800mm.

Determine maximum steer angles of the front wheels if the truck is
supposed to be able to turn with R = 11m.

8. A vehicle with a one-axle trailer.

Determine the angle between the trailer and vehicle with the following
dimensions.

a1 = 1000mm

a2 = 1300mm

wv = 1500mm

b1 = 1200mm

b2 = 1800mm

wt = 1100mm

g = 800mm

δi = 12deg .

What is the rotation radius of the trailer Rt, and the vehicle R?
Determine minimum radius Rmin, maximum RMax, and difference
radius ∆R?
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9. F Turning radius of a 4WS vehicle.

Consider a FWS vehicle with the following dimensions.

l = 2300mm

wf = 1457mm

wr = 1607mm
a1
a2

=
38

62

Determine the turning radius of the vehicle for δfl = 5deg.

What should be the steer angles of the front and rear wheels to de-
crease 10% of the turning radius, if we make the vehicle 4WS?

10. F Coordinates of the turning center.

Determine the coordinates of the turning center for the vehicle in
Exercise 9 if δfl = 5deg and c1 = 1300mm.

11. F Different front and rear tracks.

Lotus 2-ElevenTM is a RWD sportscar with the following specifica-
tions.

l = 2300mm

wf = 1457mm

wr = 1607mm

Front tire = 195/50R16

Rear tire = 225/45R17

Fz1
Fz2

=
38

62

Determine the angular velocity ratio of ωo/ωi, R, δi, and δo for δ =
5deg.

12. F Coordinates of turning center.

Determine the coordinates of turning center of a 4WS vehicle in terms
of outer steer angles δof and δor.

13. F Turning radius.

Determine the turning radius of a 4WS vehicle in terms of δr.

cot δr =
1

2
(cot δir + cot δor)

14. F A three-axle car.
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Consider a three-axle off-road pick-up car. Assume

a1 = 1100mm

a2 = 1240mm

a3 = 1500mm

w = 1457mm

and determine δo, R1, Rf , and R if δi = 10deg.

15. F Steering mechanism optimization.

Find the optimum length x for the multi-link steering mechanism
shown in Figure 7.59 to operate as close as possible to the kinematic
steering condition. The vehicle has a track w = 2.64m and a wheel-
base l = 3.84m, and must be able to turn the front wheels within a
working range equal to −22 deg ≤ δ ≤ 22 deg.

54.6°

x
A

D

NM

P

d=1.32 m

B
a

b
c

0.24 m

b

c

C

FIGURE 7.59. A multi-link steering mechanism tha must be optimized by varying
x.
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Suspension Mechanisms
The suspension is what links the wheels to the vehicle body and allows rela-
tive motion. This chapter covers the suspension mechanisms, and discusses
the possible relative motions between the wheel and the vehicle body. The
wheels, through the suspension linkage, must propel, steer, and stop the
vehicle, and support the associated forces.

8.1 Solid Axle Suspension

The simplest way to attach a pair of wheels to a vehicle is to mount them
at opposite ends of a solid axle, such as the one that is shown in Figure
8.1.

FIGURE 8.1. A solid axle with leaf spring suspension.

The solid axle must be attached to the body such that an up and down
motion in the z-direction, as well as a roll rotation about the x-axis, is
possible. So, no forward and lateral translation, and also no rotation about
the axle and the z-axis, is allowed. There are many combinations of links
and springs that can provide the kinematic and dynamic requirements. The
simplest design is to clamp the axle to the middle of two leaf springs with
their ends tied or shackled to the vehicle frame as shown schematically in
Figure 8.1. A side view of a multi-leaf spring and solid axle is shown in
Figure 8.2. A suspension with a solid connection between the left and right
wheels is called dependent suspension.
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FIGURE 8.2. A side view of a multi-leaf spring and solid axle suspension.

The performance of a solid axle with leaf springs suspension can be
improved by adding a linkage to guide the axle kinematically and provide
dynamic support to carry the non z-direction forces.
The solid axle with leaf spring combination came to vehicle industry from

horse-drawn vehicles.

Example 299 Hotchkiss drive.
When a live solid axle is connected to the body with nothing but two leaf

springs, it is called the Hotchkiss drive, which is the name of the car that
used it first. The main problems of a Hotchkiss drive, which is shown in
Figure 8.2, are locating the axle under lateral and longitudinal forces, and
having a low mass ratio ε = ms/mu, where ms is the sprung mass and mu

is the unsprung mass.
Sprung mass refers to all masses that are supported by the spring, such

as vehicle body. Unsprung mass refers to all masses that are attached to
and not supported by the spring, such as wheel, axle, or brakes.

Example 300 Leaf spring suspension and flexibility problem.
The solid axle suspension systems with longitudinal leaf springs have

many drawbacks. The main problem lies in the fact that springs themselves
act as locating members. Springs are supposed to flex under load, but their
flexibility is needed in only one direction. However, it is the nature of leaf
springs to twist and bend laterally and hence, flex also in planes other than
the tireplane. Leaf springs are not suited for taking up the driving and brak-
ing traction forces. These forces tend to push the springs into an S-shaped
profile, as shown in Figure 8.3. The driving and braking flexibility of leaf
springs, generates a negative caster and increases instability.
Long springs provide better ride. However, long sprigs exaggerate their

bending and twisting under different load conditions.

Example 301 Leaf spring suspension and flexibility solution.
To reduce the effect of a horizontal force and S-shaped profile appearance

in a solid axle with leaf springs, the axle may be attached to the chassis by a
longitudinal bar as Figure 8.4(a) shows. Such a bar is called an anti-tramp
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(a) Acceleration

(b) Braking

FIGURE 8.3. A driving and braking trust, force leaf springs into an S shaped
profile.

bar, and the suspension is the simplest cure for longitudinal problems of a
Hotchkiss drive.
A solid axle with an anti-tramp bar may be kinematically approximated

by a four-bar linkage, as shown in Figure 8.4(b). Although an anti-tramp
bar may control the shape of the leaf spring, it introduces a twisting angle
problem when the axle is moving up and down, as shown in Figure 8.5.
Twisting the axle and the wheel about the axle is called caster.
The solid axle is frequently used to help keeping the wheels perpendicular

to the road.

Example 302 Leaf spring location problem.
The front wheels need room to steer left and right. Therefore, leaf springs

cannot be attached close to the wheel hubs, and must be placed closer to
the middle of the axle. That gives a narrow spring-base, which means that
a small side force can sway or tilt the body relative to the axle through a
considerable roll angle due to weight transfer. This is uncomfortable for the
vehicle passengers, and may also produce unwanted steering.
The solid axle positively prevents the camber change by body roll. The

wheels remain upright and hence, do not roll on a side. However, a solid
axle shifts laterally from its static plane and its center does not remain on
the vehicle’s longitudinal axis under a lateral force.
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A

B

M

N

(a)

(b)

FIGURE 8.4. (a) Adding an anti-tramp bar to guide a solid axle. (b) Equivalent
kinematic model.

A

B
M

N

(a) (b)

A

B

M

N

FIGURE 8.5. An anti-tramp bar introduces a twistng angle problem. (a) The
wheel moves up and (b) The wheel moves down.
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FIGURE 8.6. A solid axle suspension with a triangulated linkage.

A solid axle produces bump-camber when single-wheel bump occurs. If
the right wheel goes over a bump, the axle is raised at its right end, and
that tilts the left wheel hub, putting the left wheel at a camber angle for the
duration of deflection.

Example 303 Triangular linkage.
A triangulated linkage, as shown in Figure 8.6, may be attached to a solid

axle to provide lateral and twist resistance during acceleration and braking.

Example 304 Panhard arm.
High spring rate is a problem of leaf springs. Reducing their stiffness

by narrowing them and using fewer leaves, reduces the lateral stiffness and
increases the directional stability of the suspension significantly. A Panhard
arm is a bar that attaches a solid axle suspension to the chassis laterally.
Figure 8.7 illustrates a solid axle and a Panhard arm to guide the axle.
Figure 8.8 shows a triangular linkage and a Panhard arm combination for
guiding a solid axle.
A double triangle mechanism, as shown in Figure 8.9, is an alternative

design to guide the axle and support it laterally.

Example 305 Straight line linkages.
There are many mechanisms that can provide a straight line motion.

The simplest mechanisms are four-bar linkages with a coupler point moving
straight. Some of the most applied and famous linkages are shown in Figure
8.10. By having proper lengths, the Watt, Robert, Chebyshev, and Evance
linkages can make the coupler point C move on a straight line vertically.
Such a mechanism and straight motion may be used to guide a solid axle.
Two Watt suspension mechanisms with a Panhard arm are shown in

Figures 8.11 and 8.12.
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FIGURE 8.7. A solid axle and a Panhard arm to guide the axle.

FIGURE 8.8. A triangle mechanism and a Panhard arm to guide a solid axle.

FIGURE 8.9. Double triangle suspension mechanism.
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(a) – Watt linkage

C
C

(b) – Robert linkage

C

(b) – Chebyshev linkage (d) – Evans linkage

C

FIGURE 8.10. Some linkages with straight line motion.

FIGURE 8.11. A Watt suspension mechanisms with a Panhard arm.
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FIGURE 8.12. A Watt suspension mechanisms with a Panhard arm.

FIGURE 8.13. A Robert suspension mechanism with a Panhard arm.

Figures 8.13, 8.14, and 8.15 illustrate three combinations of Robert sus-
pension linkages equipped with a Panhard arm.

Example 306 Solid axle suspension and unsprung mass problem.
A solid axle is counted as an unsprung member, and hence, the unsprung

mass is increased where using solid axle suspension. A heavy unsprung mass
ruins both, the ride and handling of a vehicle. Lightening the solid axle
makes it weaker and increases the most dangerous problem in vehicles: axle
breakage. The solid axle must be strong enough to make sure it will not
break under any loading conditions at any age. As a rough estimate, 90%
of the leaf spring mass may also be counted as unsprung mass, which makes
the problem worse.
The unsprung mass problem is worse in front, and it is the main reason

that they are no longer used in street cars. However, front solid axles are
still common on trucks and buses. These are heavy vehicles and solid axle



8. Suspension Mechanisms 463

FIGURE 8.14. A Robert suspension mechanism with a Panhard arm.

FIGURE 8.15. A Robert suspension mechanism with a Panhard arm.
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FIGURE 8.16. A solid axle suspension with coil springs.

suspension does not reduce the mass ratio ε = ms/mu very much.
When a vehicle is rear-wheel-drive and a solid axle suspension is used

in the back, the suspension is called live axle. A live axle is a casing that
contains a differential, and two drive shafts. The drive shafts are connected
to the wheel hubs. A live axle can be three to four times heavier than a
dead I-beam axle. It is called live axle because of rotating gears and shafts
inside the axle.

Example 307 Solid axle and coil spring.
To decrease the unsprung mass and increase vertical flexibility of solid

axle suspensions, it is possible to equip them with coil springs. A sample
of a solid axle suspension with coil spring is shown in Figure 8.16. The
suspension mechanism is made of four longitudinal bars between the axle
and chassis. The springs may have some lateral or longitudinal angle to
introduce some lateral or longitudinal compliance.

Example 308 De Dion axle.
When a solid axle is a dead axle with no driving wheels, the connecting

beam between the left and right wheels may have different shapes to do
different jobs, usually to give the wheels independent flexibility. We may
also modify the shape of a live axle to attach the differential to the chassis
and reduce the unsprung mass.
De Dion design is a modification of a beam axle that may be used as

a dead axle or to attach the differential to the chassis and transfer the
driving power to the drive wheels by employing universal joints and split
shafts. Figure 8.17 illustrates a De Dion suspension.
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FIGURE 8.17. Illustration of a De Dion suspension.

8.2 Independent Suspension

Independent suspensions is introduced to let a wheel to move up and down
without affecting the opposite wheel. There are many forms and designs
of independent suspensions. However, double A-arm and McPherson strut
suspensions are the simplest and the most common designs. Figure 8.18
illustrates a sample of a double A-arm and Figure 8.19 shows a McPherson
suspension.
Kinematically, a double A-arm suspension mechanism is a four-bar link-

age with the chassis as the ground link, and coupler as the wheel carrying
link. A McPherson suspension is an inverted slider mechanism that has
the chassis as the ground link and the coupler as the wheel carrying link.
A double A-arm and a McPherson suspension mechanism on the left and
right wheels are schematically shown in Figures 8.20 and 8.21 respectively.
Double A-arm, is also called double wishbone, or short/long arm suspen-

sion. McPherson also may be written as MacPherson.

Example 309 Double A-arm suspension and spring position.
Consider a double A-arm suspension mechanism. The coil spring may

be between the lower arm and the chassis, as shown in Figure 8.18. It is
also possible to install the spring between the upper arm and the chassis, or
between the upper and lower arms. In either case, the lower or the upper
arm, which supports the spring, is made stronger and the other arm acts
as a connecting arm.

Example 310 Multi-link suspension mechanism.
When the two side bars of an A-arm are attached to each other with a

joint, as shown in Figure 8.22, then the double A-arm is called a multi-link
mechanism. A multi-link mechanism is a six-bar mechanism that may have
a better coupler motion than a double A-arm mechanism. However, multi-
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Upper A-arm

Lower A-arm
Kingpin

Steer arm

FIGURE 8.18. A double A-arm suspension.

Strut

Lower A-arm
Kingpin

Steer arm

Coil spring

Shock absorber

FIGURE 8.19. A McPherson suspension.
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FIGURE 8.20. A double A-arm suspension mechanism on the left and right wheels

FIGURE 8.21. A McPherson suspension mechanism on the left and right wheels.
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FIGURE 8.22. A multi-link suspension mechanism.

FIGURE 8.23. A swing arm suspension.

link suspensions are more expensive, less reliable, and more complicated
compare to a double A-arm four-bar linkage. There are vehicles with more
than six-link suspension with possibly better kinematic performance.

Example 311 Swing arm suspension.
An independent suspension may be as simple as a triangle shown in Fig-

ure 8.23. The base of the triangle is jointed to the chassis and the wheel
to the tip point. The base of the triangle is aligned with the longitudinal
axis of the vehicle. Such a suspension mechanism is called a swing axle
or swing arm.
The variation in camber angle for a swing arm suspension is maximum,

compared to the other suspension mechanisms.

Example 312 Trailing arm suspension.
Figure 8.24 illustrates a trailing arm suspension that is a longitudinal
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FIGURE 8.24. A trailing arm suspension.

FIGURE 8.25. A semi-trailing arm suspension.

arm with a lateral axis of rotation. The camber angle of the wheel, supported
by a trailing arm, will not change during the up and down motion.
Trailing arm suspension has been successfully using in a variety of front-

wheel-drive vehicles, to suspend their rear wheels.

Example 313 Semi-trailing arm
Semi-trailing arm suspension, as shown in Figure 8.25, is a compro-

mise between the swing arm and trailing arm suspensions. The joint axis
may have any angle, however an angle not too far from 45 deg is more
applied. Such suspensions have acceptable camber angle change, while they
can handle both, the lateral and longitudinal forces. Semi-trailing design has
successfully applied to a series of rear-wheel-drive cars for several decades.

Example 314 Antiroll bar and roll stiffness.
Coil springs are used in vehicles because they are less stiff with better
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FIGURE 8.26. An anti-roll bar attached to a solid axle with coil springs.

ride comfort compared to leaf springs. Therefore, the roll stiffness of the
vehicle with coil springs is usually less than in vehicles with leaf springs.
To increase the roll stiffness of such suspensions, an antiroll bar must be
used. Leaf springs with reduced layers, uni-leaf, trapezoidal, or nonuniform
thickness may also need an antiroll bar to compensate for their reduced roll
stiffness. The antiroll bar is also called a stabilizer. Figure 8.26 illustrates
an anti-roll bare attached to a solid axle with coil springs.

Example 315 Need for longitudinal compliance.
A bump is an obstacle on the road that opposes the forward motion of

a wheel. When a vehicle goes over a bump, the first action is a force that
tends to push the wheel backward relative to the rest of the vehicle. So,
the lifting force has a longitudinal component, which will be felt inside the
vehicle unless the suspension system has horizontal compliance.
There are situations in which the horizontal component of the force is

even higher than the vertical component. Leaf springs can somewhat absorb
this horizontal force by flattening out and stretching the distance from the
forward spring anchor and the axle. Such a stretch is usually less than
1/2 in ≈ 1 cm.

8.3 Roll Center and Roll Axis

The roll axis is the instantaneous line about which the body of a vehicle
rolls. Roll axis is found by connecting the roll center of the front and rear
suspensions of the vehicle. Assume we cut a vehicle laterally to disconnect
the front and rear half of the vehicle. Then, the roll center of the front or
rear suspension is the instantaneous center of rotation of the body with
respect to the ground.
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FIGURE 8.27. An example of a double A-arm front suspensions.
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FIGURE 8.28. Kinematically equivalent mechanism for the front half of the dou-
ble A-arm suspension shown in Figure 8.27.
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FIGURE 8.29. The roll center I18 is at the intersection of lines I12I28 and I13I38.

Figure 8.27 illustrates a sample of the front suspensions of a car with a
double A-arm mechanism. To find the roll center of the body with respect
to the ground, we analyze the two-dimensional kinematically equivalent
mechanism shown in Figure 8.28. The center of tireprint is the instant
center of rotation of the wheel with respect to the ground, so the wheels
are jointed links to the ground at their center of tireprints.
The instant center I18 is the roll center of the body with respect to the

ground. To find I18, we apply the Kennedy theorem and find the intersec-
tion of the line I12I28 and I13I38 as shown in Figure 8.29.
The point I28 and I38 are the instant center of rotation for the wheels

with respect to the body. The instant center of rotation of a wheel with
respect to the body is called suspension roll center. So, to find the roll
center of the front or rear half of a car, we should determine the suspension
roll centers, and find the intersection of the lines connecting the suspension
roll centers to the center of their associated tireprints.
The Kennedy theorem states that the instant center of every three rela-

tively moving objects are colinear.

Example 316 McPherson suspension roll center.
A McPherson suspension is an inverted slider crank mechanism. The

instant centers of an example of inverted slider crank mechanism are shown
in Figure 8.30. In this figure, the point I12 is the suspension roll center,
which is the instant center of rotation for the wheel link number 2 with
respect to the chassis link number 1.
A car with a McPherson suspension system is shown in Figure 8.31.

The kinematic equivalent mechanism is depicted in Figure 8.32. Suspension
roll centers along with the body roll center are shown in Figure 8.33. To
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FIGURE 8.30. Instant center or rotation for an example of inverted slider crank
mechanism.

FIGURE 8.31. A car with a McPherson suspension system.

find the roll center of the front or rear half of a car, we determine each
suspension roll center and then find the intersection of the lines connecting
the suspension roll centers to the center of the associated tireprint.

Example 317 Roll center of double A-arm suspension.
The roll center of an independent suspension such as a double A-arm

can be internal or external. The kinematic model of a double A-arm sus-
pension for the front left wheel of a car is illustrated in Figure 8.34. The
suspension roll center in Figure 8.34(a) is internal, and in Figure 8.34(b)
is external. An internal suspension roll center is toward the vehicle body,
while an external suspension roll center goes away from the vehicle body.
A suspension roll center may be on, above, or below the road surface, as

shown in Figure 8.35(a)-(c) for an external suspension roll center. When
the suspension roll center is on the ground, above the ground, or below the
ground, the vehicle roll center would be on the ground, below the ground,
and above the ground, respectively.

Example 318 F Camber variation of double A-arm suspension.
When a wheel moves up and down with respect to the vehicle body, de-



474 8. Suspension Mechanisms

1

Body
Wheel

4

6

5

8

7

2 3

Wheel

FIGURE 8.32. Kinematics model of a car with a McPherson suspension system.
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FIGURE 8.33. Roll center of a car with a McPherson suspension system.

(a) (b)

FIGURE 8.34. The kinematic model of the suspension of a front left wheel: (a)
an internal roll center, and (b) an external roll center.
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(a)

(b)

(c)

FIGURE 8.35. A suspension roll center at (a) on, (b) above, and (c) below the
road surface.

pending on the suspension mechanism, the wheel may camber. Figure 8.36
illustrates the kinematic model for a double A-arm suspension mechanism.

The mechanism is equivalent to a four-bar linkage with the ground link
as the vehicle chasis. The wheel is always attached to a coupler point C of
the mechanism. We set a local suspension coordinate frame (x, y) with the
x-axis indicating the ground link MN . The x-axis makes a constant angle
θ0 with the vertical direction. The suspension machanism has a length a for
the upper A-arm, b for the coupler link, c for the lower A-arm, and d for
the ground link. The configuration of the suspension is determined by the
angles θ2, θ3, and θ4, all measured from the positive direction of the x-axis.
When the suspension is at its equilibrium position, the links of the double
A-arm suspension make initial angles θ20 θ30, and θ40 with the x-axis.
The equilibrium position of a suspension is called the rest position.
To determine the camber angle during the fluctuation of the wheel, we

should determine the variation of the coupler angle θ3, as a function of
vertical motion z of the coupler point C.
Using θ2 as a parameter, we can find the coordinates (xC , yC) of the
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FIGURE 8.36. The kinematic model for a double A-arm suspension mechanism.

coupler point C in the suspension coordinate frame (x, y) as

xC = a cos θ2 + e cos (p− q + α) (8.1)

yC = a sin θ2 + e sin (p− q + α) (8.2)

where,

q = tan−1
a sin θ2

d− a cos θ2
(8.3)

p = tan−1

q
4b2f2 − (b2 + f2 − c2)

2

b2 + f2 − c2
(8.4)

f =
p
a2 + d2 − 2ad cos θ2. (8.5)

The position vector of the coupler point is uC

uC = xC ı̂+ yC ĵ (8.6)

and the unit vector in the z-direction is

ûz = − cos θ0ı̂− sin θ0ĵ. (8.7)

Therefore, the displacement z in terms of xC and yC is:

z = uC · ûz
= −xC cos θ0 − yC sin θ0 (8.8)
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The initial coordinates of the coupler point C and the initial value of z
are:

xC0 = a cos θ20 + e cos (p0 − q0 + α) (8.9)

yC0 = a sin θ20 + e sin (p0 − q0 + α) (8.10)

z0 = −xC0 cos θ0 − yC0 sin θ0 (8.11)

and hence, the vertical displacement of the wheel center can be calculated
by

h = z − z0 (8.12)

The initial angle of the coupler link with the vertical direction is θ0 − θ30.
Therefore, the camber angle of the wheel would be

γ = (θ0 − θ3)− (θ0 − θ30)

= θ30 − θ3 (8.13)

The angle of the coupler link with the x-direction is equal to

θ3 = 2 tan
−1

Ã
−E ±

√
E2 − 4DF

2D

!
(8.14)

where,

D = J5 − J1 + (1 + J4) cos θ2 (8.15)

E = −2 sin θ2 (8.16)

F = J5 + J1 − (1− J4) cos θ2 (8.17)

and

J1 =
d

a
(8.18)

J2 =
d

c
(8.19)

J3 =
a2 − b2 + c2 + d2

2ac
(8.20)

J4 =
d

b
(8.21)

J5 =
c2 − d2 − a2 − b2

2ab
. (8.22)

Substituting (8.14) and (8.13), and then, eliminating θ2 between (8.13) and
(8.8) provides the relationship between the vertical motion of the wheel, z,
and the camber angle γ.
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Example 319 F Camber angle and wheel fluctuations.
Consider the double A-arm suspension that is shown in Figure 8.36. The

dimensions of the equivalent kinematic model are:

a = 22.4 cm

b = 22.1 cm

c = 27.3 cm

d = 17.4 cm

θ0 = 24.3 deg (8.23)

The coupler point C is at:

e = 14.8 cm

α = 54.8 deg (8.24)

If the angle θ2 at the rest position is at

θ20 = 121.5 deg (8.25)

then the initial angle of the other links are:

θ30 = 18.36 deg

θ40 = 107.32 deg (8.26)

At the rest position, the coupler point is at:

xC0 = −22.73 cm
yC0 = 9.23 cm

z0 = 16.92 cm (8.27)

We may calculate h and γ by varying the parameter θ2. Figure 8.37
illustrates h as a function of the camber angle γ. For this suspension mech-
anism, the wheel gains a positive camber when the wheel moves up, and
gains a negative camber when the it moves down. The mechanism is shown
in Figure 8.38, when the wheel is at the rest position and has a positive or
a negative displacement.

8.4 F Car Tire Relative Angles

There are four major wheel alignment parameters that affect vehicle dy-
namics: toe, camber, caster, and trust angle.
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FIGURE 8.37. h as a function of the camber angle γ.

8.4.1 F Toe

When a pair of wheels is set so that their leading edges are pointed toward
each other, the wheel pair is said to have toe-in. If the leading edges point
away from each other, the pair is said to have toe-out. Toe-in and toe-out
front wheel configurations of a car are illustrated in Figure 8.39.
The amount of toe can be expressed in degrees of the angle to which the

wheels are not parallel. However, it is more common to express the toe-
in and toe-out as the difference between the track widths as measured at
the leading and trailing edges of the tires. Toe settings affect three major
performances: tire wear, straight-line stability, and corner entry handling.
For minimum tire wear and power loss, the wheels on a given axle of a

car should point directly ahead when the car is running in a straight line.
Excessive toe-in causes accelerated wear at the outboard edges of the tires,
while too much toe-out causes wear at the inboard edges.
Toe-in increases the directional stability of the vehicle, and toe-out in-

creases the steering response. Hence, a toe-in setting makes the steering
function lazy, while a toe-out makes the vehicle unstable.
With four wheel independent suspensions, the toe may also be set at the

rear of the car. Toe settings at the rear have the same effect on wear, direc-
tional stability, and turn-in as they do on the front. However, we usually
do not set up a rear-drive race car toed out in the rear, because of excessive
instability.
When driving torque is applied to the wheels, they pull themselves for-

ward and try to create toe-in. Furthermore, when pushed down the road,
a non-driven wheel or a braking wheel will tend to toe-out.

Example 320 Toe-in and directional stability.
Toe settings have an impact on directional stability. When the steering
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FIGURE 8.38. A double A-arm suspension mechanism when the wheel is at: (a)
a positive displacement, (b) rest position, and (c) a negative displacement.
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Toe-outToe-in

FIGURE 8.39. Toe-in and toe-out configuration on the front wheels of a car.

wheel is centered, toe-in causes the wheels to tent to move along paths that
intersect each other in front of the vehicle. However, the wheels are in
balance and no turn results. Toe-in setup can increase the directional sta-
bility caused by little steering fluctuations and keep the car moving straight.
Steering fluctuations may be a result of road disturbances.
If a car is set up with toe-out, the front wheels are aligned so that slight

disturbances cause the wheel pair to assume rolling directions that approach
a turn. Therefore, toe-out encourages the initiation of a turn, while toe-in
discourages it. Toe-out makes the steering quicker. So, it may be used in
vehicles for a faster response. The toe setting on a particular car becomes a
trade-off between the straight-line stability afforded by toe-in and the quick
steering response by toe-out. Toe-out is not desirable for street cars, how-
ever, race car drivers are willing to drive a car with a little directional
instability, for sharper turn-in to the corners. So street cars are generally
set up with toe-in, while race cars are often set up with toe-out.

Example 321 Toe-in and toe-out in the front and rear axles.
Front toe-in: slower steering response, more straight-line stability, greater

wear at the outboard edges of the tires.
Front toe-zero: medium steering response, minimum power loss, mini-

mum tire wear.
Front toe-out: quicker steering response, less straight-line stability, greater

wear at the inboard edges of the tires.
Rear toe-in: straight-line stability, traction out of the corner, more steer-

ability, higher top speed.
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FIGURE 8.40. A positive and negative caster configuration on front wheel of a
car.

8.4.2 F Caster Angle

Caster is the angle to which the steering pivot axis is tilted forward or rear-
ward from vertical, as viewed from the side. Assume the wheel is straight
to have the body frame and the wheel frame coincident. If the steering axis
is turned about the wheel yw-axis then the wheel has positive caster. If the
steering axis is turned about the wheel −yw-axis, then the wheel has neg-
ative caster. Positive and negative caster configurations on the front wheel
of a car are shown in Figure 8.40.
Negative caster aids in centering the steering wheel after a turn and

makes the front tires straighten quicker. Most street cars are made with
4−6 deg negative caster. Negative caster tends to straighten the wheel when
the vehicle is traveling forward, and thus is used to enhance straight-line
stability.

Example 322 Negative caster of shopping carts.
The steering axis of a shopping cart wheel is set forward of where the

wheel contacts the ground. As the cart is pushed forward, the steering axis
pulls the wheel along, and because the wheel drags along the ground, it falls
directly in line behind the steering axis. The force that causes the wheel to
follow the steering axis is proportional to the distance between the steering
axis and the wheel-to-ground contact point, if the caster is small. This dis-
tance is referred to as trail. The cars’ steering axis intersects the ground
at a point in front of the tireprint, and thus the same effect as seen in the
shopping cart casters is achieved.
While greater caster angles improves straight-line stability, they also cause

an increase in steering effort.

Example 323 Characteristics of caster in front axle.
Zero castor provides: easy steering into the corner, low steering out of

the corner, low straight-line stability.
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Negative caster provides: low steering into the corner, easy steering out
of the corner, more straight-line stability, high tireprint area during turn,
good turn-in response, good directional stability, good steering feel.
When a castered wheel rotates about the steering axis, the wheel gains

camber. This camber is generally favorable for cornering.

8.4.3 F Camber

Camber is the angle of the wheel relative to vertical line to the road, as
viewed from the front or the rear of the car. Figure 8.41 illustrates the
wheel number 1 of a vehicle. If the wheel leans in toward the chassis, it is
called negative camber and if it leans away from the car, it is called positive
camber.
The cornering force that a tire can develop is highly dependent on its

angle relative to the road surface, and so wheel camber has a major effect
on the road holding of a car. A tire develops its maximum lateral force at a
small camber angle. This fact is due to the contribution of camber thrust,
which is an additional lateral force generated by elastic deformation as the
tread rubber pulls through the tire/road interface.
To optimize a tire’s performance in a turn, the suspension should provide

a slight camber angle in the direction of rotation. As the body rolls in
a turn, the suspension deflects vertically. The wheel is connected to the
chassis by suspension mechanism, which must rotate to allow for the wheel
deflection. Therefore, the wheel can be subject to large camber changes as
the suspension moves up and down. So, the more the wheel must deflect
from its static position, the more difficult it is to maintain an ideal camber
angle. Thus, the relatively large wheel travel and soft roll stiffness needed to
provide a smooth ride in passenger cars presents a difficult design challenge,
while the small wheel travel and high roll stiffness inherent in racing cars
reduces the problem.

Example 324 Castor versus camber.
Camber doesn’t improve turn-in as the positive caster does. Camber is

not generally good for tire wear. Camber in one wheel does not improve
directional stability. Camber adversely affects braking and acceleration ef-
forts.

8.4.4 F Trust Angle

The trust angle υ is the angle between vehicle’s centerline and perpendic-
ular to the rear axle. It compares the direction that the rear axle is aimed
with the centerline of the vehicle. A nonzero angle configuration is shown
in Figure 8.42.
Zero angle confirms that the rear axle is parallel to the front axle, and the

wheelbase on both sides of the vehicle are the same. A reason for nonzero
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FIGURE 8.43. Six degrees of freedom of a wheel with respect to a vehicle body.

trust angle would have unequal toe-in or toe-out on both sides of the axle.

Example 325 Torque reaction.
There are two kinds of torque reactions in rear-whel-drive: 1− the re-

action of the axle housing to rotate in the opposite direction of the crown
wheel rotation, and 2− the reaction of axle housing to spin about its own
center, opposite to the direction of pinion’s rotation.
The first reaction leads to a lifting force in the differential causing a

wind-up in springs. The second reaction leads to a lifting force on the right
wheels.

8.5 Suspension Requirements and Coordinate
Frames

The suspension mechanism should allow a relative motion between the
wheel and the vehicle body. The relative motions are needed to pass the
road irregularities and steering. To function properly, a suspension mecha-
nism should have some kinematic and dynamics requirements.

8.5.1 Kinematic Requirements

To express the motions of a wheel, we attach a wheel coordinate system
W (oxwywzw) to the center of the wheel. A wheel, as a rigid body, has six
degrees-of-freedom with respect to the vehicle body: three translations and
three rotations, as shown in Figure 8.43.
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FIGURE 8.44. A non-steerable wheel must have two DOF.

The axes xw, yw, and zw indicate the direction of forward, lateral, and
vertical translations and rotations. In the position shown in the figure, the
rotation about the xw-axis is the camber angle, about the yw-axis is the
spin, and about the zw-axis is the steer angle.
Consider a non-steerable wheel. Translation in zw-direction and spin

about the yw-axis are the only two DOF allowed for such a wheel. So,
we need to take four DOF. If the wheel is steerable, then translation in the
zw-direction, spin about the yw-axis, and steer rotation about the zw-axis
are the three DOF allowed. So, we must take three DOF of a steerable
wheel.
Kinematically, non-steerable and steerable wheels should be supported

as shown in Figures 8.44 and 8.45 respectively. Providing the required free-
dom, as well as eliminating the taken DOF, are the kinematic requirements
of a suspension mechanism.

8.5.2 Dynamic Requirements

Wheels should be able to propel, steer, and stop the vehicle. So, the sus-
pension system must transmit the driving traction and deceleration braking
forces between the vehicle body and the ground. The suspension members
must also resist lateral forces acting on the vehicle. Hence, the wheel sus-
pension system must make the wheel rigid for the taken DOF. However,
there must also be some compliance members to limit the untaken DOF.
The most important compliant members are spring and dampers to provide
returning and resistance forces in the z-direction.
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FIGURE 8.45. A steerable wheel must have three DOF.

8.5.3 Wheel, wheel-body, and tire Coordinate Frames

Three coordinate frames are employed to express the orientation of a tire
and wheel with respect to the vehicle: the wheel frame W , wheel-body
frame C, and tire frame T . A wheel coordinate frame W (xw, yw, zw) is
attached to the center of a wheel. It follows every translation and rotation
of the wheel except the spin. Hence, the xw and zw axes are always in
the tire-plane, while the yw-axis is always along the spin axis. A wheel
coordinate frame is shown in Figure 8.43.
When the wheel is straight and the W frame is parallel to the vehicle

coordinate frame, we attach a wheel-body coordinate frame C (xc, yc, zc) at
the center of the wheel parallel to the vehicle coordinate axes. The wheel-
body frame C is motionless with respect to the vehicle coordinate and does
not follow any motion of the wheel.
The tire coordinate frame T (xt, yt, zt) is set at the center of the tireprint.

The zt-axis is always perpendicular to the ground. The xt-axis is along the
intersection line of the tire-plane and the ground. The tire frame does not
follows the spin and camber rotations of the tire however, it follows the
steer angle rotation about the zc-axis.
Figure 8.46 illustrates a tire and a wheel coordinate frames.

Example 326 Visualization of the wheel, tire, and wheel-body frames.
Figure 8.47 illustrates the relative configuration of a wheel-body frame

C, a tire frame T , and a wheel frame W . If the steering axis is along the
zc-axis then, the rotation of the wheel about the zc-axis is the steer angle δ.
Rotation about the xt-axis is the camber angle γ.
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FIGURE 8.46. Illustration of tire and wheel coordinate frames.

Generally speaking, the steering axis may have any angle and may go
through any point of the ground plane.

Example 327 Wheel to tire coordinate frame transformation.
If TdW indicates the T -expression of the position vector of the wheel

frame origin relative to the tire frame origin, then having the coordinates
of a point P in the wheel frame, we can find its coordinates in the tire frame
using the following equation.

T rP =
TRW

W rP +
TdW (8.28)

If W rP indicates the position vector of a point P in the wheel frame,

W rP =

⎡⎣ xP
yP
zP

⎤⎦ (8.29)

then the coordinates of the point P in the tire frame T rP are

T rP = TRW
W rP +

Td

= TRW
W rP +

TRW
W
T dW

=

⎡⎣ xP
yP cos γ −Rw sin γ − zP sin γ
Rw cos γ + zP cos γ + yP sin γ

⎤⎦ (8.30)
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FIGURE 8.47. Illustration of tire, wheel, and body coordinate frames.

where, WT dW is the W -expression of the position vector of the wheel frame
in the tire frame, Rw is the radius of the tire, and TRW is the rotation
matrix to go from the wheel frame W to the tire frame T .

TRW =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦ (8.31)

W
T dW =

⎡⎣ 0
0
Rw

⎤⎦ . (8.32)

As an example, the center of the wheel W rP = W ro = 0 is the origin of
the wheel frame W , that is at

T ro = TdW = TRW
W
T dW

=

⎡⎣ 0
−Rw sin γ
Rw cos γ

⎤⎦ (8.33)

in the tire coordinate frame T .
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Example 328 F Tire to wheel coordinate frame transformation.
If rP indicates the position vector of a point P in the tire coordinate

frame,

T rP =

⎡⎣ xP
yP
zP

⎤⎦ (8.34)

then the position vector W rP of the point P in the wheel coordinate frame
is

W rP = WRT
T rP − W

T dW (8.35)

=

⎡⎣ xP
yP cos γ + zP sin γ

zP cos γ −Rw − yP sin γ

⎤⎦
because

WRT =

⎡⎣ 1 0 0
0 cos γ sin γ
0 − sin γ cos γ

⎤⎦ (8.36)

WdT =

⎡⎣ 0
0
Rw

⎤⎦ (8.37)

and we may multiply both sides of Equation (8.28) by TRT
W to get

TRT
W

T rP = W rP +
TRT

W
TdW (8.38)

= W rP +
W
T dW

W rP = WRT
T rP − W

T dW . (8.39)

As an example, the center of tireprint in the wheel frame is at

W rP =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦T ⎡⎣ 0
0
0

⎤⎦−
⎡⎣ 0

0
Rw

⎤⎦ =
⎡⎣ 0

0
−Rw

⎤⎦ .
(8.40)

Example 329 F Wheel to tire homogeneous transformation matrices.
The transformation from the wheel to tire coordinate frame may also be

expressed by a 4× 4 homogeneous transformation matrix TTW ,
T rP = TTW

W rP

=

∙
TRW

TdW
0 1

¸
W rP (8.41)

where

TTW =

⎡⎢⎢⎣
1 0 0 0
0 cos γ − sin γ −Rw sin γ
0 sin γ cos γ Rw cos γ
0 0 0 1

⎤⎥⎥⎦ . (8.42)
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The corresponding homogeneous transformation matrix WTT from the tire
to wheel frame would be

WTT =

∙
WRT

WdT
0 1

¸

=

⎡⎢⎢⎣
1 0 0 0
0 cos γ − sin γ 0
0 sin γ cos γ −Rw

0 0 0 1

⎤⎥⎥⎦ . (8.43)

It can be checked that WTT =
TT−1W , using the inverse of a homogeneous

transformation matrix rule.

TT−1W =

∙
TRW

TdW
0 1

¸−1
=

∙
TRT

W − TRT
W

TdW
0 1

¸
=

∙
WRT −WRT

TdW
0 1

¸
(8.44)

Example 330 F Tire to wheel-body frame transformation.
The origin of the tire frame is at CdT in the wheel-body frame.

CdT =

⎡⎣ 0
0
−Rw

⎤⎦ (8.45)

The tire frame can steer about the zc-axis with respect to the wheel-body
frame. The associated rotation matrix is

CRT =

⎡⎣ cos δ − sin δ 0
sin δ cos δ 0
0 0 1

⎤⎦ (8.46)

Therefore, the transformation between the tire and wheel-body frames can
be expressed by

Cr = CRT
T r+ CdT (8.47)

or equivalently, by a homogeneous transformation matrix CTT .

CTT =

∙
CRT

CdT
0 1

¸

=

⎡⎢⎢⎣
cos δ − sin δ 0 0
sin δ cos δ 0 0
0 0 1 −Rw

0 0 0 1

⎤⎥⎥⎦ (8.48)

As an example, the wheel-body coordinates of the point P on the tread of a
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FIGURE 8.48. The tire, wheel, and wheel body frames of a steered wheel.

negatively steered tire at the position shown in Figure 8.48, are:

Cr = CTT
T rP

=

⎡⎢⎢⎣
cos−δ − sin−δ 0 0
sin−δ cos−δ 0 0
0 0 1 −Rw

0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

Rw

0
Rw

1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
Rw cos δ
−Rw sin δ

0
1

⎤⎥⎥⎦ (8.49)

The homogeneous transformation matrix for tire to wheel-body frame TTC
is:

TTC = CT−1T =

∙
CRT

CdT
0 1

¸−1
=

∙
CRT

T −CRT
T
CdT

0 1

¸

=

∙
CRT

T − T
CdT

0 1

¸
=

⎡⎢⎢⎣
cos δ sin δ 0 0
− sin δ cos δ 0 0
0 0 1 Rw

0 0 0 1

⎤⎥⎥⎦ (8.50)

Example 331 F Cycloid.
Assume that the wheel in Figure 8.48 is turning with angular velocity ω

and has no slip on the ground. If the point P is at the center of the tireprint
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when t = 0,

MrP =

⎡⎣ 0
0
−Rw

⎤⎦ (8.51)

then we can find its position in the wheel frame at a time t by employing
another coordinate frame M . The frame M is called the rim frame and is
stuck to the wheel at its center. Because of spin, the M frame turns about
the yw-axis, and therefore, the rotation matrix to go from the rim frame to
the wheel frame is:

WRM =

⎡⎣ cosωt 0 sinωt
0 1 0

− sinωt 0 cosωt

⎤⎦ (8.52)

So the coordinates of P in the wheel frame are:

W rP = WRM
MrP

=

⎡⎣ −Rw sin tω
0

−Rw cos tω

⎤⎦ (8.53)

The center of the wheel is moving with speed vx = Rwω and it is at Gr =£
vxt 0 Rw

¤
in the global coordinate frame G on the ground. Hence,

the coordinates of point P in the global frame G, would be

GrP =
W rP +

⎡⎣ vxt
0
Rw

⎤⎦ =
⎡⎣ Rw (ωt− sin tω)

0
Rw (1− cos tω)

⎤⎦ . (8.54)

The path of motion of point P in the (X,Z)-plane can be found by elim-
inating t between X and Z coordinates. However, it is easier to expressed
the path by using ωt as a parameter. Such a path is called cycloid.
In general case, point P can be at any distance from the center of the rim

frame. If the point is at a distance d 6= Rw, then its path of motion is called
the trochoid. A trochoid is called a curtate cycloid when d < Rw and
a prolate cycloid when d > Rw. Figure 8.49(a)-(c) illustrate a cycloid,
curtate cycloid, and prolate cycloid respectively.

Example 332 F Wheel to wheel-body frame transformation.
The homogeneous transformation matrix CTW to go from the wheel frame
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FIGURE 8.49. A cycloid (a), curtate cycloid (b), and prolate cycloid (c).

to the wheel-body frame can be found by combined transformation.

CTW = CTT
TTW (8.55)

=

⎡⎢⎢⎣
cδ −sδ 0 0
sδ cδ 0 0
0 0 1 −Rw

0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 0
0 cγ −sγ −Rw sin γ
0 sγ cγ Rw cos γ
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
cos δ − cos γ sin δ sin γ sin δ Rw sin γ sin δ
sin δ cos γ cos δ − cos δ sin γ −Rw cos δ sin γ
0 sin γ cos γ Rw cos γ −Rw

0 0 0 1

⎤⎥⎥⎦
If rP indicates the position vector of a point P in the wheel coordinate

frame,

W rP =

⎡⎣ xP
yP
zP

⎤⎦ (8.56)

then the homogeneous position vector CrP of the point P in the wheel-body
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coordinate frame is:

CrP = CTW
W rP

=

⎡⎢⎢⎣
xP cos δ − yP cos γ sin δ + (Rw + zP ) sin γ sin δ
xP sin δ + yP cos γ cos δ − (Rw + zP ) cos δ sin γ

−Rw + (Rw + zP ) cos γ + yP sin γ
1

⎤⎥⎥⎦ (8.57)

The position of the wheel center W r = 0, for a cambered and steered
wheel is at

Cr = CTW
W r

=

⎡⎢⎢⎣
Rw sin γ sin δ
−Rw cos δ sin γ
−Rw(1− cos γ)

1

⎤⎥⎥⎦ (8.58)

The zc = Rw (cos γ − 1) indicates how much the center of the wheel comes
down when the wheel cambers.
If the wheel is not steerable, then δ = 0 and the transformation matrix

CTW reduces to

CTW =

⎡⎢⎢⎣
1 0 0 0
0 cos γ − sin γ −Rw sin γ
0 sin γ cos γ Rw (cos γ − 1)
0 0 0 1

⎤⎥⎥⎦ (8.59)

that shows

CrP = CTW
W rP

=

⎡⎢⎢⎣
xP

yP cos γ −Rw sin γ − zP sin γ
zP cos γ + yP sin γ +Rw (cos γ − 1)

1

⎤⎥⎥⎦ (8.60)

Example 333 F Tire to vehicle coordinate frame transformation.
Figure 8.50 illustrates the first and fourth tires of a 4-wheel vehicle. There

is a body coordinate frame B (x, y, z) attached to the mass center C of
the vehicle. There are also two tire coordinate frames T1 (xt1 , yt1 , zt1) and
T4 (xt4 , yt4 , zt4) attached to the tires 1 and 4 at the center of their tireprints.

The origin of the tire coordinate frame T1 is at Bd1

BdT1 =

⎡⎣ a1
−b1
−h

⎤⎦ (8.61)
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FIGURE 8.50. The coordinate frames of the first and fourth tires of a 4-wheel
vehicle with respect to the body frame.

where, a1 is the longitudinal distance between C and the front axle, b1 is
the lateral distance between C and the tireprint of the tire 1, and h is the
height of C from the ground level. If P is a point in the tire frame at T1rP

T1rP =

⎡⎣ xP
yP
zP

⎤⎦ . (8.62)

then its coordinates in the body frame are

BrP = BRT1
T1rP +

BdT1

=

⎡⎣ a1 + xP cos δ1 − yP sin δ1
yP cos δ1 − b1 + xP sin δ1

zP − h

⎤⎦ . (8.63)

The rotation matrix BRT1 is a result of steering about the z-axis.

BRT1 =

⎡⎣ cos δ1 − sin δ1 0
sin δ1 cos δ1 0
0 0 1

⎤⎦ (8.64)

Employing Equation (8.28), we may examine a wheel point P at W rP

W rP =

⎡⎣ xP
yP
zP

⎤⎦ (8.65)



8. Suspension Mechanisms 497

and find the body coordinates of the point

BrP = BRT1
T1rP +

BdT1
= BRT1

¡
T1RW

W rP +
T1dW

¢
+ BdT1

= BRT1
T1RW

W rP +
BRT1

T1dW + BdT1
= BRW

W rP +
BRT1

T1dW + BdT1 (8.66)

BrP =

⎡⎣ a1 + xP cos δ1 − yP cos γ sin δ1 + (Rw + zP ) sin γ sin δ1
xP sin δ1 − b1 + yP cos γ cos δ1 − (Rw + zP ) cos δ1 sin γ

(Rw + zP ) cos γ + yP sin γ − h

⎤⎦
(8.67)

where,

BRW = BRT1
T1RW

=

⎡⎣ cos δ1 − cos γ sin δ1 sin γ sin δ1
sin δ1 cos γ cos δ1 − cos δ1 sin γ
0 sin γ cos γ

⎤⎦ (8.68)

T1dW =

⎡⎣ 0
−Rw sin γ
Rw cos γ

⎤⎦ . (8.69)

Example 334 F Wheel-body to vehicle transformation.
The wheel-body coordinate frames are always parallel to the vehicle frame.

The origin of the wheel-body coordinate frame of the wheel number 1 is at

BdW1 =

⎡⎣ a1
−b1

−h+Rw

⎤⎦ . (8.70)

Hence the transformation between the two frames is only a displacement.

Br = BIW1

W1r+ BdW1
(8.71)

8.6 F Caster Theory

The steer axis may have any angle and any location with respect to the
wheel-body coordinate frame. The wheel-body frame C (xc, yc, zc) is a frame
at the center of the wheel at its rest position, parallel to the vehicle coor-
dinate frame. The frame C does not follow any motion of the wheel. The
steer axis is the kingpin axis of rotation.
Figure 8.51 illustrates the front and side views of a wheel and its steering

axis. The steering axis has angle ϕ with (yc, zc) plane, and angle θ with
(xc, zc) plane. The angles ϕ and θ are measured about the yc and xc axes,
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FIGURE 8.51. The front and side views of a wheel and its steering axis.

respectively. The angle ϕ is the caster angle of the wheel, while the angle
θ is the lean angle. The steering axis of the wheel, as shown in Figure
8.51, is at a positive caster and lean angles. The steering axis intersect the
ground plane at a point that has coordinates (sa, sb,−Rw) in the wheel-
body coordinate frame.
If we indicate the steering axis by the unit vector û, then the components

of û are functions of the caster and lean angles.

C û =

⎡⎣ u1
u2
u3

⎤⎦ = 1p
cos2 ϕ+ cos2 θ sin2 ϕ

⎡⎣ cos θ sinϕ
− cosϕ sin θ
cos θ cosϕ

⎤⎦ (8.72)

The position vector of the point that û intersects the ground plane, is
called the location vector s that in the wheel-body frame has the following
coordinates:

Cs =

⎡⎣ sa
sb
−Rw

⎤⎦ (8.73)

We express the rotation of the wheel about the steering axis û by a zero
pitch screw motion š.

CTW = C šW (0, δ, û, s)

=

∙
CRW

Cs− CRW
Cs

0 1

¸
=

∙
CRW

CdW
0 1

¸
(8.74)

Proof. The steering axis is at the intersection of the caster plane πC and
the lean plane πL, both expressed in the wheel-body coordinate frame. The
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two planes can be indicated by their normal unit vectors n̂1 and n̂2.

C n̂1 =

⎡⎣ 0
cos θ
sin θ

⎤⎦ (8.75)

C n̂2 =

⎡⎣ − cosϕ0
sinϕ

⎤⎦ (8.76)

The unit vector û on the intersection of the caster and lean planes can be
found by

û =
n̂1 × n̂2
|n̂1 × n̂2|

(8.77)

where,

n̂1 × n̂2 =

⎡⎣ cos θ sinϕ
− cosϕ sin θ
cos θ cosϕ

⎤⎦ (8.78)

|n̂1 × n̂2| =

q
cos2 ϕ+ cos2 θ sin2 ϕ (8.79)

and therefore,

C û =

⎡⎣ u1
u2
u3

⎤⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

cos θ sinϕp
cos2 ϕ+ cos2 θ sin2 ϕ
− cosϕ sin θp

cos2 ϕ+ cos2 θ sin2 ϕ
cos θ cosϕp

cos2 ϕ+ cos2 θ sin2 ϕ

⎤⎥⎥⎥⎥⎥⎥⎦ . (8.80)

Steering axis does not follow any motion of the wheel except the wheel
hop in the z-direction. We assume that the steering axis is a fixed line with
respect to the vehicle, and the steer angle δ is the rotation angle about û.
The intersection point of the steering axis and the ground plane defines

the location vector s.

Cs =

⎡⎣ sa
sb
−Rw

⎤⎦ (8.81)

The components sa and sb are called the forward and lateral locations
respectively.
Using the axis-angle rotation (û, δ), and the location vector s, we can

define the steering process as a screw motion š with zero pitch. Employing
Equations (5.473)-(5.477), we find the transformation screw for wheel frame
W to wheel-body frame C.

CTW = C šW (0, δ, û, s) (8.82)

=

∙
CRW

Cs− CRW
Cs

0 1

¸
=

∙
CRW

Cd
0 1

¸
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CRW = I cos δ + ûûT vers δ + ũ sin δ (8.83)
CdW =

¡¡
I− ûûT

¢
vers δ − ũ sin δ

¢
Cs. (8.84)

ũ =

⎡⎣ 0 −u3 u2
u3 0 −u1
−u2 u1 0

⎤⎦ (8.85)

vers δ = 1− cos δ (8.86)

Direct substitution shows that CRW and CdW are:

CRW =

⎡⎣ u21 vers δ + cδ u1u2 vers δ − u3sδ u1u3 vers δ + u2sδ
u1u2 vers δ + u3sδ u22 vers δ + cδ u2u3 vers δ − u1sδ
u1u3 vers δ − u2sδ u2u3 vers δ + u1sδ u23 vers δ + cδ

⎤⎦
(8.87)

CdW =

⎡⎣ (s1 − u1 (s3u3 + s2u2 + s1u1)) vers δ + (s2u3 − s3u2) sin δ
(s2 − u2 (s3u3 + s2u2 + s1u1)) vers δ + (s3u1 − s1u3) sin δ
(s3 − u3 (s3u3 + s2u2 + s1u1)) vers δ + (s1u2 − s2u1) sin δ

⎤⎦
(8.88)

The vector CdW indicates the position of the wheel center with respect to
the wheel-body frame.
The matrix CTW is the homogeneous transformation from wheel frame

W to wheel-body frame C, when the wheel is steered by the angle δ about
the steering axis û.

Example 335 F Zero steer angle.
To examine the screw transformation, we check the zero steering. Sub-

stituting δ = 0 simplifies the rotation matrix CRW and the position vector
CdW to I and 0

CRW =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ (8.89)

CdW=

⎡⎣ 0
0
0

⎤⎦ (8.90)

indicating that at zero steering, the wheel frameW and wheel-body frame C
are coincident.

Example 336 F Steer angle transformation for zero lean and caster.
Consider a wheel with a steer axis coincident with zw. Such a wheel has

no lean or caster angle. When the wheel is steered by the angle δ, we can
find the coordinates of a wheel point P in the wheel-body coordinate frame
using transformation method. Figure 8.52 illustrates a 3D view, and Figure
8.53 a top view of such a wheel.
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FIGURE 8.53. Top view of a steered wheel with a steer axis coincident with zw.
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Assume W rP = [xw, yw, zw]
T is the position vector of a wheel point, then

its position vector in the wheel-body coordinate frame C is

CrP = CRW
W rP = Rz,δ

W rP

=

⎡⎣ cos δ − sin δ 0
sin δ cos δ 0
0 0 1

⎤⎦⎡⎣ xw
yw
zw

⎤⎦
=

⎡⎣ xw cos δ − yw sin δ
yw cos δ + xw sin δ

zw

⎤⎦ . (8.91)

We assumed that the wheel-body coordinate is installed at the center of
the wheel and is parallel to the vehicle coordinate frame. Therefore, the
transformation from the frame W to the frame C is a rotation δ about the
wheel-body z-axis. There would be no camber angle when the lean and caster
angles are zero and steer axis is on the zw-axis.

Example 337 F Zero lean, zero lateral location.
The case of zero lean, θ = 0, and zero lateral location, sb = 0, is impor-

tant in caster dynamics of bicycle model. The screw transformation for this
case will be simplified to

C û =

⎡⎣ u1
u2
u3

⎤⎦ =
⎡⎣ sinϕ

0
cosϕ

⎤⎦ (8.92)

Cs =

⎡⎣ sa
0
−Rw

⎤⎦ (8.93)

CRW =

⎡⎣ sin2 ϕ vers δ + cos δ − cosϕ sin δ sinϕ cosϕ vers δ
cosϕ sin δ cos δ − sinϕ sin δ

sinϕ cosϕ vers δ sinϕ sin δ cos2 ϕ vers δ + cos δ

⎤⎦
(8.94)

Cd =

⎡⎢⎣ cosϕ (sa cosϕ+Rw sinϕ) vers δ
− (sa cosϕ+Rw sinϕ) sin δ

−1
2
(Rw −Rw cos 2ϕ+ sa sin 2ϕ) vers δ

⎤⎥⎦ . (8.95)

Example 338 F Position of the tireprint.
The center of tireprint in the wheel coordinate frame is at rT

W rT =

⎡⎣ 0
0
−Rw

⎤⎦ . (8.96)
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If we assume the width of the tire is zero and the wheel is steered, the center
of tireprint would be at

CrT =
CTW

W rT =

⎡⎣ xT
yT
zT

⎤⎦ (8.97)

where

xT =
¡
1− u21

¢
(1− cos δ) sa + (u3 sin δ − u1u2 (1− cos δ)) sb (8.98)

yT = − (u3 sin δ + u1u2 (1− cos δ)) sa +
¡
1− u22

¢
(1− cos δ) sb (8.99)

zT = (u2 sin δ − u1u3 (1− cos δ)) sa
− (u1 sin δ + u2u3 (1− cos δ)) sb −Rw (8.100)

or

xT = sb

Ã
cos θ cosϕ sin δp

cos2 θ sin2 ϕ+ cos2 ϕ
+
1

4

sin 2θ sin 2ϕ (1− cos δ)
cos2 θ sin2 ϕ+ cos2 ϕ

!

+sa

µ
1− cos2 θ sin2 ϕ

cos2 θ sin2 ϕ+ cos2 ϕ

¶
(1− cos δ) (8.101)

yT = −sa

Ã
cos θ cosϕ sin δp

cos2 θ sin2 ϕ+ cos2 ϕ
− 1
4

sin 2θ sin 2ϕ (1− cos δ)
cos2 θ sin2 ϕ+ cos2 ϕ

!

+sb

µ
1− cos2 ϕ sin2 θ

cos2 θ sin2 ϕ+ cos2 ϕ

¶
(1− cos δ) (8.102)

zT = −Rw −
sb cos θ sinϕ+ sa cosϕ sin θp

cos2 θ sin2 ϕ+ cos2 ϕ
sin δ

+
1

2

sb cos
2 ϕ sin 2θ − sa cos

2 θ sin 2ϕ

cos2 θ sin2 ϕ+ cos2 ϕ
(1− cos δ) (8.103)

Example 339 F Wheel center drop.
The zT coordinate in (8.100) or (8.103) indicates the amount that the

center of the tireprint will move in the vertical direction with respect to
the wheel-body frame when the wheel is steering. If the steer angle is zero,
δ = 0, then zT is at

zT = −Rw. (8.104)

Because the center of tireprint must be on the ground, H = −Rw − zT
indicated the height that the center of the wheel will drop during steering.

H = −Rw − zT (8.105)

=
sb cos θ sinϕ+ sa cosϕ sin θp

cos2 θ sin2 ϕ+ cos2 ϕ
sin δ

−1
2

sb cos
2 ϕ sin 2θ − sa cos

2 θ sin 2ϕ

cos2 θ sin2 ϕ+ cos2 ϕ
(1− cos δ)
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FIGURE 8.54. H/sa for the caster angle ϕ = 5deg 0, −5deg, −10 deg, −15deg,
−20deg and the steer angle in the range −10 deg < δ < 10deg.

The zT coordinate of the tireprint may be simplifie for different designs:
1− If the lean angle is zero, θ = 0, then zT is at

zT = −Rw −
1

2
sa sin 2ϕ (1− cos δ)− sb sinϕ sin δ. (8.106)

2− If the lean angle and lateral location are zero, θ = 0, sb = 0, then zT
is at

zT = −Rw −
1

2
sa sin 2ϕ (1− cos δ) . (8.107)

In this case, the wheel center drop may be expressed by a dimensionless
equation.

H

sa
=
1

2
sin 2ϕ (1− cos δ) (8.108)

Figure 8.54 illustrates H/sa for the caster angle ϕ = 5deg, 0 deg, −5 deg,
−10 deg, −15 deg, −20 deg, and the steer angle δ in the range −10 deg <
δ < 10 deg. In street cars, we set the steering axis with a positive longitudi-
nal location sa > 0, and a few degrees negative caster angle ϕ < 0. In this
case the wheel center drops as is shown in the figure.
3− If the caster angle is zero, ϕ = 0, then zT is at

zT = −Rw +
1

2
sb sin 2θ (1− cos δ)− sa sin θ sin δ. (8.109)

4− If the caster angle and lateral location are zero, ϕ = 0, sb = 0, then
zT is at

zT = −Rw − sa sin θ sin δ. (8.110)
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FIGURE 8.55. H/sa for the lean angle θ = 5deg 0, −5 deg, −10deg, −15deg,
−20deg and the steer angle in the range −10 deg < δ < 10deg.

In this case, the wheel center drop may be expressed by a dimensionless
equation.

H

sa
= − sin θ sin δ (8.111)

Figure 8.55 illustrates H/sa for the lean angle θ = 5deg, 0, −5 deg, −10 deg,
−15 deg, −20 deg and the steer angle δ in the range −10 deg < δ < 10 deg.
The steering axis of street cars is usually set with a positive longitudinal
location sa > 0, and a few degrees positive lean angle θ > 0. In this case
the wheel center lowers when the wheel number 1 turns to the right, and
elevates when the wheel turns to the left.
Comparison of Figures 8.54 and 8.55 shows that the lean angle has much

more affect on the wheel center drop than the caster angle.
5− If the lateral location is zero, sb = 0, then zT is at

zT = −Rw − sa
cosϕ sin θp

cos2 θ sin2 ϕ+ cos2 ϕ
sin δ

−1
2
sa

cos2 θ sin 2ϕ

cos2 θ sin2 ϕ+ cos2 ϕ
(1− cos δ) (8.112)

and the wheel center drop,H, may be expressed by a dimensionless equation.

H

sa
= −1

2

cos2 θ sin2 ϕ (1− cos δ)
cos2 θ sin2 ϕ+ cos2 ϕ

− cosϕ sin θ sin δp
cos2 θ sin2 ϕ+ cos2 ϕ

(8.113)

Example 340 F Position of the wheel center.
As given in Equation (8.88), the wheel center is at CdW with respect to
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the wheel-body frame.

CdW =

⎡⎣ xW
yW
zW

⎤⎦ (8.114)

Substituting for û and s from (8.72) and (8.73) in (8.88) provides the co-
ordinates of the wheel center in the wheel-body frame as

xW = (sa − u1 (−Rwu3 + sbu2 + sau1)) (1− cos δ)
+ (sbu3 +Rwu2) sin δ (8.115)

yW = (sb − u2 (−Rwu3 + sbu2 + sau1)) (1− cos δ)
− (Rwu1 + sau3) sin δ (8.116)

zW = (−Rw − u3 (−Rwu3 + sbu2 + sau1)) (1− cos δ)
+ (sau2 − sbu1) sin δ (8.117)

or

xW = sa (1− cos δ)

+

µ
1

2
Rw sin 2ϕ− sa sin

2 ϕ

¶
cos2 θ +

1

4
sb sin 2θ sin 2ϕ

cos2 ϕ+ cos2 θ sin2 ϕ
(1− cos δ)

+
(sb cos θ −Rw sin θ)p
cos2 ϕ+ cos2 θ sin2 ϕ

cosϕ sin δ (8.118)

yW = sb (1− cos δ)

−
1

2

¡
Rw sin 2θ + sb sin

2 θ
¢
cos2 ϕ− 1

4
sa sin 2θ sin 2ϕ

cos2 ϕ+ cos2 θ sin2 ϕ
(1− cos δ)

− Rw sinϕ+ sa cosϕp
cos2 ϕ+ cos2 θ sin2 ϕ

cos θ sin δ (8.119)

zW = −Rw (1− cos δ)

+

µ
Rw cos

2 θ +
1

2
sb sin 2θ

¶
cos2 ϕ− 1

2
sa cos

2 θ sin 2ϕ

cos2 ϕ+ cos2 θ sin2 ϕ
(1− cos δ)

−sa cosϕ sin θ + sb cos θ sinϕp
cos2 ϕ+ cos2 θ sin2 ϕ

sin δ (8.120)

The zW coordinate indicates how the center of the wheel will move in the
vertical direction with respect to the wheel-body frame, when the wheel is
steering. It shows that zW = 0, as long as δ = 0.
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The zW coordinate of the wheel center may be simplified for different
designs:
1− If the lean angle is zero, θ = 0, then zW is at

zW = −Rw

¡
1− cos2 ϕ

¢
(1− cos δ)− sb sinϕ sin δ

−1
2
sa sin 2ϕ (1− cos δ) . (8.121)

2− If the lean angle and lateral location are zero, θ = 0, sb = 0, then zW
is at

zW = −Rw

¡
1− cos2 ϕ

¢
(1− cos δ)− 1

2
sa sin 2ϕ (1− cos δ) . (8.122)

3− If the caster angle is zero, ϕ = 0, then zW is at

zW = −Rw

¡
1− cos2 θ

¢
(1− cos δ)− sa sin θ sin δ

+
1

2
sb sin 2θ (1− cos δ) . (8.123)

4− If the caster angle and lateral location are zero, ϕ = 0, sb = 0, then
zW is at

zW = −Rw

¡
1− cos2 θ

¢
(1− cos δ)− sa sin θ sin δ. (8.124)

5− If the lateral location is zero, sb = 0, then zT is at

zW = −Rw (1− cos δ)−
sa cosϕ sin θp

cos2 ϕ+ cos2 θ sin2 ϕ
sin δ

+
Rw cos

2 θ cos2 ϕ− 1
2
sa cos

2 θ sin 2ϕ

cos2 ϕ+ cos2 θ sin2 ϕ
(1− cos δ) (8.125)

In each case of the above designs, the height of the wheel center with
respect to the ground level can be found by adding H to zW . The equations
for calculating H are found in Example 340.

Example 341 F Camber theory.
Having a non-zero lean and caster angles causes a camber angle γ for

a steered wheel. To find the camber angle of an steered wheel, we may de-
termine the angle between the camber line and the vertical direction zc.
The camber line is the line connecting the wheel center and the center of
tireprint.
The coordinates of the center of tireprint (xT , yT , zT ) are given in Equa-

tions (8.101)-(8.103), and the coordinates of the wheel center (xW , yW , zW )
are given in Equations (8.118)-(8.120). The line connecting (xT , yT , zT ) to
(xW , yW , zW ) may be indicated by the unit vector l̂c

l̂c =
(xW − xT ) Î + (yW − yT ) Ĵ + (zW − zT ) K̂q
(xW − xT )

2
+ (yW − yT )

2
+ (zW − zT )

2
(8.126)
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in which Î , Ĵ , K̂, are the unit vectors of the wheel-body coordinate frame C.
The camber angle is the angle between l̂c and K̂, which can be found by

the inner vector product.

γ = cos−1
³
l̂c · K̂

´
= cos−1

(zW − zT )q
(xW − xT )

2 + (yW − yT )
2 + (zW − zT )

2
(8.127)

As an special case, let us determine the camber angle when the lean angle
and lateral location are zero, θ = 0, sb = 0. In this case, we have

xT = sa
¡
1− sin2 ϕ

¢
(cos δ − 1) (8.128)

yT = −sa cosϕ sin δ (8.129)

zT = zT = −Rw −
1

2
sa sin 2ϕ (1− cos δ) (8.130)

xW =

µ
sa +

1

2
Rw sin 2ϕ− sa sin

2 ϕ

¶
(1− cos δ) (8.131)

yW = sb (1− cos δ)−Rw sinϕ+ sa cosϕ sin δ (8.132)

zW =

µ
Rw

¡
cos2 ϕ− 1

¢
− 1
2
sa sin 2ϕ

¶
(1− cos δ) . (8.133)

8.7 Summary

There are two general types of suspensions: dependent, in which the left and
right wheels on an axle are rigidly connected, and independent, in which
the left and right wheels are disconnected. Solid axle is the most common
dependent suspension, while McPherson and double A-arm are the most
common independent suspensions.
The roll axis is the instantaneous line about which the body of a vehicle

rolls. Roll axis is found by connecting the roll center of the front and rear
suspensions of the vehicle. The instant center of rotation of a wheel with
respect to the body is called suspension roll center. So, to find the roll
center of the front or rear half of a car, we should determine the suspension
roll centers, and find the intersection of the lines connecting the suspension
roll centers to the center of their associated tireprints.
Three coordinate frames are employed to express the orientation of a

tire and wheel with respect to the vehicle: the wheel frame W , wheel-body
frame C, and tire frame T . A wheel coordinate frame W (xw, yw, zw) is
attached to the center of a wheel. It follows every translation and rotation
of the wheel except the spin. Hence, the xw and zw axes are always in the
tire-plane, while the yw-axis is always along the spin axis. When the wheel
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is straight and the W frame is parallel to the vehicle coordinate frame,
we attach a wheel-body coordinate frame C (xc, yc, zc) at the center of the
wheel parallel to the vehicle coordinate axes. The wheel-body frame C is
motionless with respect to the vehicle coordinate and does not follow any
motion of the wheel. The tire coordinate frame T (xt, yt, zt) is set at the
center of the tireprint. The zt-axis is always perpendicular to the ground.
The xt-axis is along the intersection line of the tire-plane and the ground.
The tire frame does not follows the spin and camber rotations of the tire
however, it follows the steer angle rotation about the zc-axis.
We define the orientation and position of a steering axis by the caster

angle ϕ, lean angle θ, and the intersection point of the axis with the ground
surface at (sa, sb) with respect to the center of tireprint. Because of these
parameters, a steered wheel will camber and generates a lateral force. This
is called the caster theory. The camber angle γ of a steered wheel for θ = 0,
and sb = 0 is:

γ = cos−1
³
l̂c · K̂

´
= cos−1

(zW − zT )q
(xW − xT )

2 + (yW − yT )
2 + (zW − zT )

2
(8.134)

where

xT = sa
¡
1− sin2 ϕ

¢
(cos δ − 1) (8.135)

yT = −sa cosϕ sin δ (8.136)

zT = zT = −Rw −
1

2
sa sin 2ϕ (1− cos δ) (8.137)

xW =

µ
sa +

1

2
Rw sin 2ϕ− sa sin

2 ϕ

¶
(1− cos δ) (8.138)

yW = sb (1− cos δ)−Rw sinϕ+ sa cosϕ sin δ (8.139)

zW =

µ
Rw

¡
cos2 ϕ− 1

¢
− 1
2
sa sin 2ϕ

¶
(1− cos δ) . (8.140)
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8.8 Key Symbols

a, b, c, d lengths of the links of a four-bar linkage
ai distance of the axle number i from the mass center
A,B, · · · coefficients in equation for calculating θ3
b1 distance of left wheels from mass center
B (x, y, z) vehicle coordinate frame
C mass center
C coupler point
C (xc, yc, zc) wheel-body coordinate frame
C
T dW C expression of the position of W with respect to T
e, α polar coordinates of a coupler point
g overhang
h = z − z0 vertical displacement of the wheel center
H wheel center drop
Iij instant center of rotation between link i and link j
IijImn a line connecting Iij and Imn

Î , Ĵ , K̂ unit vectors of the wheel-body frame C
I identity matrix
J1, J2, · · · length function for calculating θ3
l̂c unit vector on the line (xT , yT , zT ) to (xW , yW , zW )
ms sprung mass
mu unsprung mass
n̂1 normal unit vectors to πL

n̂2 normal unit vectors to πC

P point
q, p, f parameters for calculating couple point coordinate
r position vector
Rw tire radius
TRW rotation matrix to go from W frame to T frame
s position vector of the steer axis
sa forward location of the steer axis
sb lateral location of the steer axis
šW (0, δ, û, s) zero pitch screw about the steer axis
T (xt, yt, zt) tire coordinate system
TTW homogeneous transformation to go from W to T
û steer axis unit vector
ũ skew symmetrix matrix associated to û
uC position vector of the coupler point
ûz unit vector in the z-direction
vx forward speed
x, y suspension coordinate frame
xC , yC coordinate of a couple point
(xT , yT , zT ) wheel-body coordinates of the origin of T frame
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(xW , yW , zW ) wheel-body coordinates of the origin of W frame
vers δ 1− cos δ
W (xwywzw) wheel coordinate system
z vertical position of the wheel center
z0 initial vertical position of the wheel center

α angle of a coupler point with upper A-arm
γ camber angle
δ steer angle
ε = ms/mu sprung to unsprung mass ratio
θ lean angle
θ0 angle between the ground link and the z-direction
θi angular position of link number i
θ2 angular position of the upper A-arm
θ3 angular position of the coupler link
θ4 angular position of link lower A-arm
θi0 initial angular position of θi
πC caster plane
πL lean plane
υ trust angle
ϕ caster angle
ω angular velocity



512 8. Suspension Mechanisms

Exercises

1. Roll center.

Determine the roll ceneter of the kinematic models of vehicles shown
in Figures 8.56 to 8.59.

2

1

Body

4

6

3

5

8

7

FIGURE 8.56.

2

1

Body
4

6

3

5

8

7

FIGURE 8.57.

2. Upper A-arm and roll center.

Design the upper A-arm for the suspensions that are shown in Figures
8.60 to 8.62, such that the roll center of the vehicle is at point P .

3. Lower arm and roll center.

Design the lower arm for the McPherson suspensions that are shown
in Figures 8.63 to 8.65, such that the roll center of the vehicle is at
point P .
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1

Body
4

6

5

8

7

2 3

FIGURE 8.58.

1

Body4

6

5

8

7

2 3

FIGURE 8.59.

P

FIGURE 8.60.

P

FIGURE 8.61.
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P

FIGURE 8.62.

P

FIGURE 8.63.

P

FIGURE 8.64.

P

FIGURE 8.65.
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4. F Position of the roll center and mass ceneter.

Figure 8.66 illustrates the wheels and mass center C of a vehicle.
Design a double A-arm suspension such that the roll center of the

C

FIGURE 8.66.

vehicle is

(a) above C.

(b) on C.

(c) below C.

(d) Is it possible to make street cars with a roll center on or above
C?

(e) What would be the advantages or disadvantages of a roll center
on or above C.

5. F Asymmetric position of the roll center.

Design a double A-arm suspension for the vehicle shown in 8.67, such
that the roll center of the vehicle is at point P . What would be the
advantages or disadvantages of an asymmetric roll center?

P

FIGURE 8.67.

6. F Camber angle variation.

Consider a double A-arm suspension such that is shown in Figure
8.68. Assume that the dimensions of the equivalent kinematic model
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c

d
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2θ

3θ

4θ

A

B

M

N

x

y

0θ

α
e

z
Cb

FIGURE 8.68.

are:

a = 22.57 cm

b = 18.88 cm

c = 29.8 cm

d = 24.8 cm

θ0 = 23.5 deg

and the coupler point C is at:

e = 14.8 cm

α = 56.2 deg

Draw a graph to show the variation of the camber angle, when the
wheel is moving up and down.

7. F Steer axis unit vector.

Determine the C expression of the unit vector û on the steer axis, for
a caster angle ϕ = 15deg, and a lean angle θ = 8deg.

8. F Location vector and steer axis.

Determine the location vector s, if the steer axis is going through
the wheel center. The caster and lean angles are ϕ = 10deg and
θ = 0deg.

9. F Homogeneous transformation matrix CTW .
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Determine CTW for ϕ = 8deg, θ = 12deg, and the location vector
Cs

Cs =

⎡⎣ 3.8 cm
1.8 cm
−Rw

⎤⎦ .
(a) The vehicle uses a tire 235/35ZR19.

(b) The vehicle uses a tire P215/65R15 96H.

10. F Wheel drop.

Find the coordinates of the tireprint for

ϕ = 10deg

θ = 10deg

Cs =

⎡⎣ 3.8 cm
1.8 cm
38 cm

⎤⎦
if δ = 18deg. How much is the wheel drop H.

11. F Wheel drop and steer angle.

Draw a plot to show the wheel drop H at different steer angle δ for
the given data in Exercise 10.

12. F Camber and steering.

Draw a plot to show the camber angle γ at different steer angle δ for
the following characteristics:

ϕ = 10deg

θ = 0deg

Cs =

⎡⎣ 3.8 cm
0 cm
38 cm

⎤⎦
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Vehicle Dynamics
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Applied Dynamics
Dynamics of a rigid vehicle may be considered as the motion of a rigid
body with respect to a fixed global coordinate frame. The principles of
Newton and Euler equations of motion that describe the translational and
rotational motion of the rigid body are reviewed in this chapter.

9.1 Force and Moment

In Newtonian dynamics, the forces acting on a system of connected rigid
bodied can be divided into internal and external forces. Internal forces
are acting between connected bodies, and external forces are acting from
outside of the system. An external force can be a contact force, such as the
traction force at the tireprint of a driving wheel, or a body force, such as
the gravitational force on the vehicle’s body.

xz

y

Fy2Mz2

My2

Mx2

C

Fz2

Fx2

Fy3

Fz3

Fx3

My3

Mz3Mx3

FIGURE 9.1. The force system of a vehicle is the applied forces and moments at
the tireprints.

External forces and moments are called load, and a set of forces and
moments acting on a rigid body, such as forces and moments on the vehicle
shown in Figure 9.1, is called a force system. The resultant or total force F
is the sum of all the external forces acting on a body, and the resultant or
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total moment M is the sum of all the moments of the external forces.

F =
X
i

Fi (9.1)

M =
X
i

Mi (9.2)

Consider a force F acting on a point P at rP . The moment of the force
about a directional line l passing through the origin is

Ml = lû · (rP ×F) (9.3)

where û is a unit vector on l. The moment of the force F, about a point Q
at rQ is

MQ = (rP − rQ)×F (9.4)

so, the moment of F about the origin is

M = rP ×F. (9.5)

The moment of a force may also be called torque or moment.
The effect of a force system is equivalent to the effect of the resultant

force and resultant moment of the force system. Any two force systems
are equivalent if their resultant forces and resultant moments are equal. If
the resultant force of a force system is zero, the resultant moment of the
force system is independent of the origin of the coordinate frame. Such a
resultant moment is called couple.
When a force system is reduced to a resultant FP andMP with respect

to a reference point P , we may change the reference point to another point
Q and find the new resultants as

FQ = FP (9.6)

MQ = MP + (rP − rQ)×FP
= MP + QrP ×FP . (9.7)

The momentum of a moving rigid body is a vector quantity equal to the
total mass of the body times the translational velocity of the mass center
of the body.

p = mv (9.8)

The momentum p is also called translational momentum or linear momen-
tum.
Consider a rigid body with momentum p. The moment of momentum,

L, about a directional line l passing through the origin is

Ll = lû · (rC × p) (9.9)
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where û is a unit vector indicating the direction of the line, and rC is the
position vector of the mass center C. The moment of momentum about the
origin is

L = rC × p. (9.10)

The moment of momentum L is also called angular momentum.
A bounded vector is a vector fixed at a point in space. A sliding or line

vector is a vector free to slide on its line of action. A free vector is a vector
that may move to any point as long as it keeps its direction. Force is a
sliding vector and couple is a free vector. However, the moment of a force
is dependent on the distance between the origin of the coordinate frame
and the line of action.
The application of a force system is emphasized by Newton’s second and

third laws of motion. The second law of motion, also called the Newton’s
equation of motion, states that the global rate of change of linear momen-
tum is proportional to the global applied force.

GF =
Gd

dt
Gp =

Gd

dt

¡
mGv

¢
(9.11)

The third law of motion states that the action and reaction forces acting
between two bodies are equal and opposite.
The second law of motion can be expanded to include rotational motions.

Hence, the second law of motion also states that the global rate of change
of angular momentum is proportional to the global applied moment.

GM =
Gd

dt
GL (9.12)

Proof. Differentiating from angular momentum (9.10) shows that
Gd

dt
GL =

Gd

dt
(rC × p)

=

µ
GdrC
dt

× p+ rC ×
Gdp

dt

¶
= GrC ×

Gdp

dt

= GrC × GF

= GM. (9.13)

Kinetic energy K of a moving body point P with mass m at a position
GrP , and having a velocity GvP , is

K =
1

2
mGv2P

=
1

2
m
³
GḋB +

BvP +
B
GωB × BrP

´2
. (9.14)
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The work done by the applied force GF on m in moving from point 1 to
point 2 on a path, indicated by a vector Gr, is

1W2 =

Z 2

1

GF · dGr. (9.15)

However, Z 2

1

GF · dGr = m

Z 2

1

Gd

dt
Gv · Gvdt

=
1

2
m

Z 2

1

d

dt
v2dt

=
1

2
m
¡
v22 − v21

¢
= K2 −K1 (9.16)

that shows 1W2 is equal to the difference of the kinetic energy between
terminal and initial points.

1W2 = K2 −K1 (9.17)

Equation (9.17) is called principle of work and energy.

Example 342 Position of center of mass.
The position of the mass center of a rigid body in a coordinate frame is

indicated by BrC and is usually measured in the body coordinate frame.

BrC =
1

m

Z
B

Br dm (9.18)

⎡⎣ xC
yC
zC

⎤⎦ =

⎡⎢⎢⎣
1
m

R
B
x dm

1
m

R
B
y dm

1
m

R
B
z dm

⎤⎥⎥⎦ (9.19)

Applying the mass center integral on the symmetric and uniform L-section
rigid body with ρ = 1 shown in Figure 9.2 provides the position of mass
center C of the section. The x position of C is

xC =
1

m

Z
B

xdm

=
1

A

Z
B

x dA

= −b
2 + ab− a2

4ab+ 2a2
(9.20)

and because of symmetry, we have

yC = −xC =
b2 + ab− a2

4ab+ 2a2
. (9.21)
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y

x

C x1

y1

I min

Imax

45 deg

a

b

FIGURE 9.2. Principal coordinate frame for a symmetric L-section.

When a = b, the position of C reduces to

yC = −xC =
1

2
b. (9.22)

Example 343 F Every force system is equivalent to a wrench.
The Poinsot theorem states: Every force system is equivalent to a single

force, plus a moment parallel to the force. Let F andM be the resultant force
and moment of a force system. We decompose the moment into parallel and
perpendicular components,Mk andM⊥, to the force axis. The force F and
the perpendicular moment M⊥ can be replaced by a single force F0 parallel
to F. Therefore, the force system is reduced to a force F0 and a moment
Mk parallel to each other. A force and a moment about the force axis is
called a wrench.
The Poinsot theorem is similar to the Chasles theorem that states: Every

rigid body motion is equivalent to a screw, which is a translation plus a
rotation about the axis of translation.

Example 344 F Motion of a moving point in a moving body frame.
The velocity and acceleration of a moving point P as shown in Figure

5.12 are found in Example 200.
GvP =

GḋB +
GRB

¡
BvP +

B
GωB × BrP

¢
(9.23)

GaP = Gd̈B +
GRB

¡
BaP + 2

B
GωB × BvP +

B
Gω̇B × BrP

¢
+GRB

¡
B
GωB ×

¡
B
GωB × BrP

¢¢
(9.24)

Therefore, the equation of motion for the point mass P is
GF = mGaP

= m
³
Gd̈B +

GRB

¡
BaP + 2

B
GωB × BvP +

B
Gω̇B × BrP

¢´
+m GRB

¡
B
GωB ×

¡
B
GωB × BrP

¢¢
. (9.25)
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Example 345 Newton’s equation in a rotating frame.
Consider a spherical rigid body, such as Earth, with a fixed point that

is rotating with a constant angular velocity. The equation of motion for a
moving point vehicle P on the rigid body is found by setting Gd̈B =

B
Gω̇B =

0 in the equation of motion of a moving point in a moving body frame (9.25)

BF = mBaP +mB
GωB ×

¡
B
GωB × BrP

¢
+ 2mB

GωB × B ṙP (9.26)

6= mBaP

which shows that the Newton’s equation of motion F = ma must be modified
for rotating frames.

Example 346 Coriolis force.
The equation of motion of a moving vehicle point on the surface of the

Earth is

BF = mBaP +mB
GωB ×

¡
B
GωB × BrP

¢
+ 2mB

GωB × BvP (9.27)

which can be rearranged to

BF−mB
GωB ×

¡
B
GωB × BrP

¢
− 2mB

GωB × BvP = mBaP . (9.28)

Equation (9.28) is the equation of motion for an observer in the rotating
frame, which in this case is an observer on the Earth. The left-hand side
of this equation is called the effective force Feff ,

Feff =
BF−mB

GωB ×
¡
B
GωB × BrP

¢
− 2mB

GωB × BvP (9.29)

because it seems that the particle is moving under the influence of this force.
The second term is negative of the centrifugal force and pointing outward.

The maximum value of this force on the Earth is on the equator

rω2 = 6378.388× 103 ×
µ

2π

24× 3600
366.25

365.25

¶2
= 3.3917× 10−2m/ s2 (9.30)

which is about 0.3% of the acceleration of gravity. If we add the varia-
tion of the gravitational acceleration because of a change of radius from
R = 6356912m at the pole to R = 6378388m on the equator, then the vari-
ation of the acceleration of gravity becomes 0.53%. So, generally speaking,
a sportsman such as a pole-vaulter who has practiced in the north pole can
show a better record in a competition held on the equator.
The third term is called the Coriolis force or Coriolis effect, FC,

which is perpendicular to both ω and BvP . For a mass m moving on the
north hemisphere at a latitude θ towards the equator, we should provide a
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lateral eastward force equal to the Coriolis effect to force the mass, keeping
its direction relative to the ground.

FC = 2mB
GωB × Bvm

= 1.4584× 10−4 Bpm cos θ kgm/ s2 (9.31)

The Coriolis effect is the reason why the west side of railways, roads, and
rivers wears. The lack of providing the Coriolis force is the reason for turn-
ing the direction of winds, projectiles, flood, and falling objects westward.

Example 347 Work, force, and kinetic energy in a unidirectional motion.

A vehicle with mass m = 1200 kg has an initial kinetic energy K =
6000 J. The mass is under a constant force F = F Î = 4000Î and moves
from X(0) = 0 to X(tf ) = 1000m at a terminal time tf . The work done
by the force during this motion is

W =

Z r(tf )

r(0)

F · dr

=

Z 1000

0

4000 dX

= 4× 106Nm
= 4MJ (9.32)

The kinetic energy at the terminal time is

K(tf ) =W +K(0) = 4006000 J (9.33)

which shows that the terminal speed of the mass is

v2 =

r
2K(tf )

m
≈ 81.7m/ s. (9.34)

Example 348 Direct dynamics.
When the applied force is time varying and is a known function, then,

F(t) = m r̈. (9.35)

The general solution for the equation of motion can be found by integration.

ṙ(t) = ṙ(t0) +
1

m

Z t

t0

F(t)dt (9.36)

r(t) = r(t0) + ṙ(t0)(t− t0) +
1

m

Z t

t0

Z t

t0

F(t)dt dt (9.37)

This kind of problem is called direct or forward dynamics.
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FIGURE 9.3. A body point mass moving with velocity GvP and acted on by
force df .

9.2 Rigid Body Translational Dynamics

Figure 9.3 depicts a moving body B in a global coordinate frame G. Assume
that the body frame is attached at the mass center of the body. Point P
indicates an infinitesimal sphere of the body, which has a very small mass
dm. The point mass dm is acted on by an infinitesimal force df and has a
global velocity GvP .
According to Newton’s law of motion we have

df = GaP dm. (9.38)

However, the equation of motion for the whole body in a global coordinate
frame is

GF = mGaB (9.39)

which can be expressed in the body coordinate frame as

BF = mB
GaB +m B

GωB × BvB (9.40)⎡⎣ Fx
Fy
Fz

⎤⎦ =

⎡⎣ max +m (ωyvz − ωzvy)
may −m (ωxvz − ωzvx)
maz +m (ωxvy − ωyvx)

⎤⎦ . (9.41)

In these equations, GaB is the acceleration vector of the body mass center
C in the global frame,m is the total mass of the body, and F is the resultant
of the external forces acted on the body at C.
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Proof. A body coordinate frame at the mass center is called a central
frame. If frame B is a central frame, then the center of mass, C, is defined
such that Z

B

Brdm dm = 0. (9.42)

The global position vector of dm is related to its local position vector by

Grdm =
GdB +

GRB
Brdm (9.43)

where GdB is the global position vector of the central body frame, and
therefore, Z

B

Grdm dm =

Z
B

GdB dm+ GRB

Z
m

Brdm dm

=

Z
B

GdB dm

= GdB

Z
B

dm

= mGdB. (9.44)

A time derivative of both sides shows that

mGḋB = mGvB =

Z
B

Gṙdm dm =

Z
B

Gvdm dm (9.45)

and another derivative is

mGv̇B = mGaB =

Z
B

Gv̇dm dm. (9.46)

However, we have df = Gv̇P dm and therefore,

mGaB =

Z
B

df . (9.47)

The integral on the right-hand side accounts for all the forces acting on the
body. The internal forces cancel one another out, so the net result is the
vector sum of all the externally applied forces, F, and therefore,

GF = m GaB = m Gv̇B . (9.48)

In the body coordinate frame we have

BF = BRG
GF

= m BRG
GaB

= m B
GaB

= m BaB +m B
GωB × BvB. (9.49)
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The expanded form of the Newton’s equation in the body coordinate
frame is then equal to

BF = m BaB +m B
GωB × BvB⎡⎣ Fx

Fy
Fz

⎤⎦ = m

⎡⎣ ax
ay
az

⎤⎦+m

⎡⎣ ωx
ωy
ωz

⎤⎦×
⎡⎣ vx

vy
vz

⎤⎦
=

⎡⎣ max +m (ωyvz − ωzvy)
may −m (ωxvz − ωzvx)
maz +m (ωxvy − ωyvx)

⎤⎦ . (9.50)

9.3 Rigid Body Rotational Dynamics

The rigid body rotational equation of motion is the Euler equation

BM =
Gd

dt
BL

= BL̇+B
GωB × BL

= BI B
Gω̇B +

B
GωB ×

¡
BI B

GωB

¢
(9.51)

where L is the angular momentum

BL = BI B
GωB (9.52)

and I is the moment of inertia of the rigid body.

I =

⎡⎣ Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎤⎦ (9.53)

The elements of I are functions of the mass distribution of the rigid body
and may be defined by

Iij =

Z
B

¡
r2i δmn − ximxjn

¢
dm , i, j = 1, 2, 3 (9.54)

where δij is Kronecker’s delta.

δmn =

½
1 if m = n
0 if m 6= n

(9.55)

The expanded form of the Euler equation (9.51) is

Mx = Ixxω̇x + Ixyω̇y + Ixzω̇z − (Iyy − Izz)ωyωz

−Iyz
¡
ω2z − ω2y

¢
− ωx (ωzIxy − ωyIxz) (9.56)
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My = Iyxω̇x + Iyyω̇y + Iyzω̇z − (Izz − Ixx)ωzωx

−Ixz
¡
ω2x − ω2z

¢
− ωy (ωxIyz − ωzIxy) (9.57)

Mz = Izxω̇x + Izyω̇y + Izzω̇z − (Ixx − Iyy)ωxωy

−Ixy
¡
ω2y − ω2x

¢
− ωz (ωyIxz − ωxIyz) . (9.58)

which can be reduced to

M1 = I1ω̇1 − (I2 − I2)ω2ω3

M2 = I2ω̇2 − (I3 − I1)ω3ω1 (9.59)

M3 = I3ω̇3 − (I1 − I2)ω1ω2

in a special Cartesian coordinate frame called the principal coordinate
frame. The principal coordinate frame is denoted by numbers 123 to in-
dicate the first, second, and third principal axes. The parameters Iij , i 6= j
are zero in the principal frame. The body and principal coordinate frame
sit at the mass center C.
Kinetic energy of a rotating rigid body is

K =
1

2

¡
Ixxω

2
x + Iyyω

2
y + Izzω

2
z

¢
−Ixyωxωy − Iyzωyωz − Izxωzωx (9.60)

=
1

2
ω · L (9.61)

=
1

2
ωT I ω (9.62)

that in the principal coordinate frame reduces to

K =
1

2

¡
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

¢
. (9.63)

Proof. Let mi be the mass of the ith particle of a rigid body B, which is
made of n particles and let

ri =
Bri =

£
xi yi zi

¤T
(9.64)

be the Cartesian position vector of mi in a central body fixed coordinate
frame Oxyz. Assume that

ω = B
GωB =

£
ωx ωy ωz

¤T
(9.65)

is the angular velocity of the rigid body with respect to the ground, ex-
pressed in the body coordinate frame.
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The angular momentum of mi is

Li = ri ×miṙi

= mi [ri × (ω × ri)]
= mi [(ri · ri)ω − (ri · ω) ri]
= mir

2
iω −mi (ri · ω) ri. (9.66)

Hence, the angular momentum of the rigid body would be

L = ω
nX
i=1

mir
2
i −

nX
i=1

mi (ri · ω) ri. (9.67)

Substitution for ri and ω gives us

L =
³
ωx ı̂+ ωy ĵ+ ωz k̂

´ nX
i=1

mi

¡
x2i + y2i + z2i

¢
−

nX
i=1

mi (xiωx + yiωy + ziωz) ·
³
xiı̂+ yiĵ+ zik̂

´
(9.68)

and therefore,

L =
nX
i=1

mi

¡
x2i + y2i + z2i

¢
ωx ı̂

+
nX
i=1

mi

¡
x2i + y2i + z2i

¢
ωy ĵ

+
nX
i=1

mi

¡
x2i + y2i + z2i

¢
ωz k̂

−
nX
i=1

mi (xiωx + yiωy + ziωz)xiı̂

−
nX
i=1

mi (xiωx + yiωy + ziωz) yiĵ

−
nX
i=1

mi (xiωx + yiωy + ziωz) zik̂ (9.69)

or

L =
nX
i=1

mi

£¡
x2i + y2i + z2i

¢
ωx − (xiωx + yiωy + ziωz)xi

¤
ı̂

+
nX
i=1

mi

£¡
x2i + y2i + z2i

¢
ωy − (xiωx + yiωy + ziωz) yi

¤
ĵ

+
nX
i=1

mi

£¡
x2i + y2i + z2i

¢
ωz − (xiωx + yiωy + ziωz) zi

¤
k̂ (9.70)
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which can be rearranged as

L =
nX
i=1

£
mi

¡
y2i + z2i

¢¤
ωxı̂

+
nX
i=1

£
mi

¡
z2i + x2i

¢¤
ωy ĵ

+
nX
i=1

£
mi

¡
x2i + y2i

¢¤
ωzk̂

−
Ã

nX
i=1

(mixiyi)ωy +
nX
i=1

(mixizi)ωz

!
ı̂

−
Ã

nX
i=1

(miyizi)ωz +
nX
i=1

(miyixi)ωx

!
ĵ

−
Ã

nX
i=1

(mizixi)ωx +
nX
i=1

(miziyi)ωy

!
k̂. (9.71)

By introducing the moment of inertia matrix I with the following ele-
ments,

Ixx =
nX
i=1

£
mi

¡
y2i + z2i

¢¤
(9.72)

Iyy =
nX
i=1

£
mi

¡
z2i + x2i

¢¤
(9.73)

Izz =
nX
i=1

£
mi

¡
x2i + y2i

¢¤
(9.74)

Ixy = Iyx = −
nX
i=1

(mixiyi) (9.75)

Iyz = Izy = −
nX
i=1

(miyizi) (9.76)

Izx = Ixz = −
nX
i=1

(mizixi) . (9.77)

we may write the angular momentum L in a concise form

Lx = Ixxωx + Ixyωy + Ixzωz (9.78)

Ly = Iyxωx + Iyyωy + Iyzωz (9.79)

Lz = Izxωx + Izyωy + Izzωz (9.80)
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or in a matrix form

L = I · ω (9.81)⎡⎣ Lx
Ly
Lz

⎤⎦ =

⎡⎣ Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎤⎦⎡⎣ ωx
ωy
ωz

⎤⎦ . (9.82)

For a rigid body that is a continuous solid, the summations must be re-
placed by integrations over the volume of the body as in Equation (9.54).
The Euler equation of motion for a rigid body is

BM =
Gd

dt
BL (9.83)

where BM is the resultant of the external moments applied on the rigid
body. The angular momentum BL is a vector defined in the body coordinate
frame. Hence, its time derivative in the global coordinate frame is

GdBL

dt
= BL̇+B

GωB × BL. (9.84)

Therefore,

BM =
dL

dt
= L̇+ ω × L

= Iω̇ + ω× (Iω) (9.85)

or in expanded form
BM = (Ixxω̇x + Ixyω̇y + Ixzω̇z) ı̂

+(Iyxω̇x + Iyyω̇y + Iyzω̇z) ĵ

+(Izxω̇x + Izyω̇y + Izzω̇z) k̂

+ωy (Ixzωx + Iyzωy + Izzωz) ı̂

−ωz (Ixyωx + Iyyωy + Iyzωz) ı̂

+ωz (Ixxωx + Ixyωy + Ixzωz) ĵ

−ωx (Ixzωx + Iyzωy + Izzωz) ĵ

+ωx (Ixyωx + Iyyωy + Iyzωz) k̂

−ωy (Ixxωx + Ixyωy + Ixzωz) k̂ (9.86)

and therefore, the most general form of the Euler equations of motion for
a rigid body in a body frame attached to C are

Mx = Ixxω̇x + Ixyω̇y + Ixzω̇z − (Iyy − Izz)ωyωz

−Iyz
¡
ω2z − ω2y

¢
− ωx (ωzIxy − ωyIxz) (9.87)

My = Iyxω̇x + Iyyω̇y + Iyzω̇z − (Izz − Ixx)ωzωx

−Ixz
¡
ω2x − ω2z

¢
− ωy (ωxIyz − ωzIxy) (9.88)

Mz = Izxω̇x + Izyω̇y + Izzω̇z − (Ixx − Iyy)ωxωy

−Ixy
¡
ω2y − ω2x

¢
− ωz (ωyIxz − ωxIyz) . (9.89)
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Assume that we are able to rotate the body frame about its origin to find
an orientation that makes Iij = 0, for i 6= j. In such a coordinate frame,
which is called a principal frame, the Euler equations reduce to

M1 = I1ω̇1 − (I2 − I2)ω2ω3 (9.90)

M2 = I2ω̇2 − (I3 − I1)ω3ω1 (9.91)

M3 = I3ω̇3 − (I1 − I2)ω1ω2. (9.92)

The kinetic energy of a rigid body may be found by the integral of the
kinetic energy of a mass element dm, over the whole body.

K =
1

2

Z
B

v̇2dm

=
1

2

Z
B

(ω × r) · (ω × r) dm

=
ω2x
2

Z
B

¡
y2 + z2

¢
dm+

ω2y
2

Z
B

¡
z2 + x2

¢
dm+

ω2z
2

Z
B

¡
x2 + y2

¢
dm

−ωxωy
Z
B

xy dm− ωyωz

Z
B

yz dm− ωzωx

Z
B

zx dm

=
1

2

¡
Ixxω

2
x + Iyyω

2
y + Izzω

2
z

¢
−Ixyωxωy − Iyzωyωz − Izxωzωx (9.93)

The kinetic energy can be rearranged to a matrix multiplication form

K =
1

2
ωT I ω (9.94)

=
1

2
ω · L. (9.95)

When the body frame is principal, the kinetic energy will simplify to

K =
1

2

¡
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

¢
. (9.96)

Example 349 A tilted disc on a massless shaft.
Figure 9.4 illustrates a disc with mass m and radius r, mounted on a

massless shaft. The shaft is turning with a constant angular speed ω. The
disc is attached to the shaft at an angle θ. Because of θ, the bearings at A
and B must support a rotating force.
We attach a principal body coordinate frame at the disc center as shown

in the figure. The angular velocity vector in the body frame is

B
GωB = ω cos θ ı̂+ ω sin θ ĵ (9.97)
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FIGURE 9.4. A disc with mass m and radius r, mounted on a massless turning
shaft.

and the mass moment of inertia matrix is

BI =

⎡⎢⎢⎢⎢⎢⎣
mr2

2
0 0

0
mr2

4
0

0 0
mr2

4

⎤⎥⎥⎥⎥⎥⎦ . (9.98)

Substituting (9.97) and (9.98) in (9.90)-(9.92), with 1 ≡ x, 2 ≡ y, 3 ≡ z,
provides that

Mx = 0 (9.99)

My = 0 (9.100)

Mz =
mr2

4
ω cos θ sin θ. (9.101)

Therefore, the bearing reaction forces FA and FB are

FA = −FB
= −Mz

l

= −mr2

4l
ω cos θ sin θ. (9.102)

Example 350 Steady rotation of a freely rotating rigid body.
The Newton-Euler equations of motion for a rigid body are

GF = mGv̇ (9.103)
BM = I B

Gω̇B +
B
GωB × BL. (9.104)
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Consider a situation in which the resultant applied force and moment on
the body are zero.

GF = BF = 0 (9.105)
GM = BM = 0 (9.106)

Based on the Newton’s equation, the velocity of the mass center will be
constant in the global coordinate frame. However, the Euler equation reduces
to

ω̇1 =
I2 − I3
I1

ω2ω3 (9.107)

ω̇2 =
I3 − I1
I22

ω3ω1 (9.108)

ω̇3 =
I1 − I2
I3

ω1ω2 (9.109)

that show the angular velocity can be constant if

I1 = I2 = I3 (9.110)

or if two principal moments of inertia, say I1 and I2, are zero and the third
angular velocity, in this case ω3, is initially zero, or if the angular velocity
vector is initially parallel to a principal axis.

Example 351 Angular momentum of a two-link manipulator.
A two-link manipulator is shown in Figure 9.5. Link A rotates with an-

gular velocity ϕ̇ about the z-axis of its local coordinate frame. Link B is
attached to link A and has angular velocity ψ̇ with respect to A about the
xA-axis. We assume that A and G were coincident at ϕ = 0, therefore, the
rotation matrix between A and G is

GRA =

⎡⎣ cosϕ(t) − sinϕ(t) 0
sinϕ(t) cosϕ(t) 0
0 0 1

⎤⎦ . (9.111)

Frame B is related to frame A by Euler angles ϕ = 90deg, θ = 90deg, and
ψ, hence,

ARB =

⎡⎣ cπcψ − cπsπsψ −cπsψ − cπcψsπ sπsπ
cψsπ + cπcπsψ −sπsψ + cπcπcψ −cπsπ

sπsψ sπcψ cπ

⎤⎦
⎡⎣ − cosψ sinψ 0

sinψ cosψ 0
0 0 −1

⎤⎦ (9.112)
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FIGURE 9.5. A two-link manipulator.

and therefore,

GRB = GRA
ARB (9.113)

=

⎡⎣ − cosϕ cosψ − sinϕ sinψ cosϕ sinψ − cosψ sinϕ 0
cosϕ sinψ − cosψ sinϕ cosϕ cosψ + sinϕ sinψ 0

0 0 −1

⎤⎦ .
The angular velocity of A in G, and B in A are

GωA = ϕ̇K̂ (9.114)

AωB = ψ̇ı̂A. (9.115)

Moment of inertia matrices for the arms A and B can be defined as

AIA =

⎡⎣ IA1 0 0
0 IA2 0
0 0 IA3

⎤⎦ (9.116)

BIB =

⎡⎣ IB1 0 0
0 IB2 0
0 0 IB3

⎤⎦ . (9.117)

These moments of inertia must be transformed to the global frame

GIA = GRB
AIA

GRT
A (9.118)

GIB = GRB
BIB

GRT
B . (9.119)
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The total angular momentum of the manipulator is

GL = GLA +
GLB (9.120)

where

GLA = GIA GωA (9.121)
GLB = GIB GωB

= GIB
¡
G
AωB + GωA

¢
. (9.122)

Example 352 Poinsot’s construction.
Consider a freely rotating rigid body with an attached principal coordinate

frame. HavingM = 0 provides a motion under constant angular momentum
and constant kinetic energy

L = I ω = cte (9.123)

K =
1

2
ωT I ω = cte. (9.124)

Because the length of the angular momentum L is constant, the equation

L2 = L · L
= L2x + L2y + L2z

= I21ω
2
1 + I22ω

2
2 + I23ω

2
3 (9.125)

introduces an ellipsoid in the (ω1, ω2, ω3) coordinate frame, called the mo-
mentum ellipsoid. The tip of all possible angular velocity vectors must lie
on the surface of the momentum ellipsoid. The kinetic energy also defines
an energy ellipsoid in the same coordinate frame so that the tip of the
angular velocity vectors must also lie on its surface.

K =
1

2

¡
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

¢
(9.126)

In other words, the dynamics of moment-free motion of a rigid body requires
that the corresponding angular velocity ω(t) satisfy both Equations (9.125)
and (9.126) and therefore lie on the intersection of the momentum and
energy ellipsoids.
For clarity, we may define the ellipsoids in the (Lx, Ly, Lz) coordinate

system as

L2x + L2y + L2z = L2 (9.127)

L2x
2I1K

+
L2y
2I2K

+
L2z
2I3K

= 1. (9.128)

Equation (9.127) is a sphere and Equation (9.128) defines an ellipsoid with√
2IiK as semi-axes. To have a meaningful motion, these two shapes must

intersect. The intersection may form a trajectory, as shown in Figure 9.6.
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FIGURE 9.6. Intersection of the momentum and energy ellipsoids.

It can be deduced that for a certain value of angular momentum there are
maximum and minimum limit values for acceptable kinetic energy. Assum-
ing

I1 > I3 > I3 (9.129)

the limits of possible kinetic energy are

Kmin =
L2

2I1
(9.130)

Kmax =
L2

2I3
(9.131)

and the corresponding motions are turning about the axes I1 and I3 respec-
tively.

Example 353 F Alternative derivation of Euler equations of motion.
Assume that the moment of the small force df is shown by dm and a

mass element is shown by dm, then,

dm = Grdm × df

= Grdm × Gv̇dm dm. (9.132)

The global angular momentum dl of dm is equal to

dl = Grdm × Gvdm dm (9.133)

and according to (9.12) we have

dm =
Gd

dt
dl (9.134)

Grdm × df =
Gd

dt

¡
Grdm × Gvdm dm

¢
. (9.135)
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Integrating over the body results inZ
B

Grdm × df =

Z
B

Gd

dt

¡
Grdm × Gvdm dm

¢
=

Gd

dt

Z
B

¡
Grdm × Gvdm dm

¢
. (9.136)

However, utilizing
Grdm =

GdB +
GRB

Brdm (9.137)

where GdB is the global position vector of the central body frame, can sim-
plify the left-hand side of the integral toZ

B

Grdm × df =

Z
B

¡
GdB +

GRB
Brdm

¢
× df

=

Z
B

GdB × df +

Z
B

G
Brdm × df

= GdB × GF+ GMC (9.138)

where MC is the resultant external moment about the body mass center C.
The right-hand side of Equation (9.136) is

Gd

dt

Z
B

¡
Grdm × Gvdm dm

¢
=

Gd

dt

Z
B

¡¡
GdB +

GRB
Brdm

¢
× Gvdm dm

¢
=

Gd

dt

Z
B

¡
GdB × Gvdm

¢
dm+

Gd

dt

Z
B

¡
G
Brdm × Gvdm

¢
dm

=
Gd

dt

µ
GdB ×

Z
B

Gvdmdm

¶
+

Gd

dt
LC

= GḋB ×
Z
B

Gvdmdm+ GdB ×
Z
B

Gv̇dmdm+
d

dt
LC . (9.139)

We use LC for angular momentum about the body mass center. Because
the body frame is at the mass center, we haveZ

B

Grdm dm = mGdB = mGrC (9.140)Z
B

Gvdmdm = mGḋB = mGvC (9.141)Z
B

Gv̇dmdm = mGd̈B = mGaC (9.142)

and therefore,

Gd

dt

Z
B

¡
Grdm × Gvdm dm

¢
= GdB × GF+

Gd

dt
GLC . (9.143)
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Substituting (9.138) and (9.143) in (9.136) provides the Euler equation of
motion in the global frame, indicating that the resultant of externally applied
moments about C is equal to the global derivative of angular momentum
about C.

GMC =
Gd

dt
GLC . (9.144)

The Euler equation in the body coordinate can be found by transforming
(9.144)

BMC = GRT
B
GMC

= GRT
B

Gd

dt
LC

=
Gd

dt
GRT

B LC

=
Gd

dt
BLC

= BL̇C +
B
GωB × BLC . (9.145)

9.4 Mass Moment of Inertia Matrix

In analyzing the motion of rigid bodies, two types of integrals arise that
belong to the geometry of the body. The first type defines the center of mass
and is important when the translation motion of the body is considered.
The second is the moment of inertia that appears when the rotational
motion of the body is considered. The moment of inertia is also called
centrifugal moments, or deviation moments. Every rigid body has a 3 × 3
moment of inertia matrix I, which is denoted by

I =

⎡⎣ Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎤⎦ . (9.146)

The diagonal elements Iij , i = j are called polar moments of inertia

Ixx = Ix =

Z
B

¡
y2 + z2

¢
dm (9.147)

Iyy = Iy =

Z
B

¡
z2 + x2

¢
dm (9.148)

Izz = Iz =

Z
B

¡
x2 + y2

¢
dm (9.149)

and the off-diagonal elements Iij , i 6= j are called products of inertia

Ixy = Iyx = −
Z
B

xy dm (9.150)
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Iyz = Izy = −
Z
B

yz dm (9.151)

Izx = Ixz = −
Z
B

zx dm. (9.152)

The elements of I for a rigid body, made of discrete point masses, are
defined in Equation (9.54).
The elements of I are calculated about a body coordinate frame attached

to the mass center C of the body. Therefore, I is a frame-dependent quan-
tity and must be written like BI to show the frame it is computed in.

BI =

Z
B

⎡⎣ y2 + z2 −xy −zx
−xy z2 + x2 −yz
−zx −yz x2 + y2

⎤⎦ dm (9.153)

=

Z
B

¡
r2I− r rT

¢
dm (9.154)

=

Z
B

−r̃ r̃ dm. (9.155)

Moments of inertia can be transformed from a coordinate frame B1 to
another coordinate frame B2, both installed at the mass center of the body,
according to the rule of the rotated-axes theorem

B2I = B2RB1

B1I B2RT
B1
. (9.156)

Transformation of the moment of inertia from a central frame B1 located
at B2rC to another frame B2, which is parallel to B1, is, according to the
rule of parallel-axes theorem,

B2I = B1I +mr̃C r̃TC . (9.157)

If the local coordinate frame Oxyz is located such that the products of
inertia vanish, the local coordinate frame is called the principal coordinate
frame and the associated moments of inertia are called principal moments
of inertia. Principal axes and principal moments of inertia can be found by
solving the following equation for I:¯̄̄̄

¯̄ Ixx − I Ixy Ixz
Iyx Iyy − I Iyz
Izx Izy Izz − I

¯̄̄̄
¯̄ = 0 (9.158)

det ([Iij ]− I [δij ]) = 0. (9.159)

Since Equation (9.159) is a cubic equation in I, we obtain three eigenvalues

I1 = Ix I2 = Iy I3 = Iz (9.160)
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FIGURE 9.7. Two coordinate frames with a common origin at the mass center
of a rigid body.

that are the principal moments of inertia.

Proof. Two coordinate frames with a common origin at the mass center
of a rigid body are shown in Figure 9.7. The angular velocity and angular
momentum of a rigid body transform from the frame B1 to the frame B2
by vector transformation rule

B2ω = B2RB1

B1ω (9.161)
B2L = B2RB1

B1L. (9.162)

However, L and ω are related according to Equation (9.52)

B1L = B1I B1ω (9.163)

and therefore,

B2L = B2RB1

B1I B2RT
B1

B2ω

= B2I B2ω (9.164)

which shows how to transfer the moment of inertia from the coordinate
frame B1 to a rotated frame B2

B2I = B2RB1

B1I B2RT
B1
. (9.165)

Now consider a central frame B1, shown in Figure 9.8, at B2rC , which
rotates about the origin of a fixed frame B2 such that their axes remain
parallel. The angular velocity and angular momentum of the rigid body
transform from frame B1 to frame B2 by

B2ω = B1ω (9.166)
B2L = B1L+ (rC ×mvC) . (9.167)
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y1
y2

B2

B1z2

z1

x2
x1

rC Co2

FIGURE 9.8. A central coordinate frame B1 and a translated frame B2.

Therefore,

B2L = B1L+mB2rC ×
¡
B2ω×B2rC

¢
= B1L+

¡
m B2 r̃C

B2 r̃TC
¢
B2ω

=
¡
B1I +m B2 r̃C

B2 r̃TC
¢
B2ω (9.168)

which shows how to transfer the moment of inertia from frame B1 to a
parallel frame B2

B2I = B1I +mr̃C r̃TC . (9.169)

The parallel-axes theorem is also called the Huygens-Steiner theorem.
Referring to Equation (9.165) for transformation of the moment of inertia

to a rotated frame, we can always find a frame in which B2I is diagonal. In
such a frame, we have

B2RB1

B1I = B2I B2RB1 (9.170)

or ⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦⎡⎣ Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎤⎦
=

⎡⎣ I1 0 0
0 I2 0
0 0 I3

⎤⎦⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦ (9.171)

which shows that I1, I2, and I3 are eigenvalues of B1I. These eigenvalues
can be found by solving the following equation for λ:¯̄̄̄

¯̄ Ixx − λ Ixy Ixz
Iyx Iyy − λ Iyz
Izx Izy Izz − λ

¯̄̄̄
¯̄ = 0. (9.172)
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The eigenvalues I1, I2, and I3 are principal moments of inertia, and their
associated eigenvectors are called principal directions. The coordinate frame
made by the eigenvectors is the principal body coordinate frame. In the
principal coordinate frame, the rigid body angular momentum is⎡⎣ L1

L2
L3

⎤⎦ =
⎡⎣ I1 0 0
0 I2 0
0 0 I3

⎤⎦⎡⎣ ω1
ω2
ω3

⎤⎦ . (9.173)

Example 354 Principal moments of inertia.
Consider the inertia matrix I

I =

⎡⎣ 20 −2 0
−2 30 0
0 0 40

⎤⎦ . (9.174)

We set up the determinant (9.159)¯̄̄̄
¯̄ 20− λ −2 0
−2 30− λ 0
0 0 40− λ

¯̄̄̄
¯̄ = 0 (9.175)

which leads to the following characteristic equation.

(20− λ) (30− λ) (40− λ)− 4 (40− λ) = 0 (9.176)

Three roots of Equation (9.176) are

I1 = 30.385, I2 = 19.615, I3 = 40 (9.177)

and therefore, the principal moment of inertia matrix is

I =

⎡⎣ 30.385 0 0
0 19.615 0
0 0 40

⎤⎦ . (9.178)

Example 355 Principal coordinate frame.
Consider the inertia matrix I

I =

⎡⎣ 20 −2 0
−2 30 0
0 0 40

⎤⎦ (9.179)

the direction of a principal axis xi is established by solving⎡⎣ Ixx − Ii Ixy Ixz
Iyx Iyy − Ii Iyz
Izx Izy Izz − Ii

⎤⎦⎡⎣ cosαi
cosβi
cos γi

⎤⎦ =
⎡⎣ 0
0
0

⎤⎦ (9.180)
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for direction cosines, which must also satisfy

cos2 αi + cos
2 βi + cos

2 γi = 1. (9.181)

For the first principal moment of inertia I1 = 30.385 we have⎡⎣ 20− 30.385 −2 0
−2 30− 30.385 0
0 0 40− 30.385

⎤⎦⎡⎣ cosα1
cosβ1
cos γ1

⎤⎦ =
⎡⎣ 0
0
0

⎤⎦
(9.182)

or

−10.385 cosα1 − 2 cosβ1 + 0 = 0 (9.183)

−2 cosα1 − 0.385 cosβ1 + 0 = 0 (9.184)

0 + 0 + 9.615 cos γ1 = 0 (9.185)

and we obtain

α1 = 79.1 deg (9.186)

β1 = 169.1 deg (9.187)

γ1 = 90.0 deg . (9.188)

Using I2 = 19.615 for the second principal axis⎡⎣ 20− 19.62 −2 0
−2 30− 19.62 0
0 0 40− 19.62

⎤⎦⎡⎣ cosα2
cosβ2
cos γ2

⎤⎦ =
⎡⎣ 0
0
0

⎤⎦ (9.189)

we obtain

α2 = 10.9 deg (9.190)

β2 = 79.1 deg (9.191)

γ2 = 90.0 deg . (9.192)

The third principal axis is for I3 = 40⎡⎣ 20− 40 −2 0
−2 30− 40 0
0 0 40− 40

⎤⎦⎡⎣ cosα3
cosβ3
cos γ3

⎤⎦ =
⎡⎣ 0
0
0

⎤⎦ (9.193)

which leads to

α3 = 90.0 deg (9.194)

β3 = 90.0 deg (9.195)

γ3 = 0.0 deg . (9.196)
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FIGURE 9.9. A homogeneous rectangular link.

Example 356 Moment of inertia of a rigid rectangular bar.
Consider a homogeneous rectangular link with mass m, length l, width

w, and height h, as shown in Figure 9.9.
The local central coordinate frame is attached to the link at its mass

center. The moments of inertia matrix of the link can be found by the
integral method. We begin with calculating Ixx

Ixx =

Z
B

¡
y2 + z2

¢
dm =

Z
v

¡
y2 + z2

¢
ρdv

=
m

lwh

Z
v

¡
y2 + z2

¢
dv

=
m

lwh

Z h/2

−h/2

Z w/2

−w/2

Z l/2

−l/2

¡
y2 + z2

¢
dx dy dz

=
m

12

¡
w2 + h2

¢
(9.197)

which shows Iyy and Izz can be calculated similarly

Iyy =
m

12

¡
h2 + l2

¢
(9.198)

Izz =
m

12

¡
l2 + w2

¢
. (9.199)

Since the coordinate frame is central, the products of inertia must be zero.
To show this, we examine Ixy.

Ixy = Iyx = −
Z
B

xy dm =

Z
v

xyρdv

=
m

lwh

Z h/2

−h/2

Z w/2

−w/2

Z l/2

−l/2
xy dxdy dz

= 0 (9.200)
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FIGURE 9.10. A rigid rectangular link in the principal and non principal frames.

Therefore, the moment of inertia matrix for the rigid rectangular bar in
its central frame is

I =

⎡⎣ m
12

¡
w2 + h2

¢
0 0

0 m
12

¡
h2 + l2

¢
0

0 0 m
12

¡
l2 + w2

¢
⎤⎦ . (9.201)

Example 357 Translation of the inertia matrix.
The moment of inertia matrix of the rigid body shown in Figure 9.10,

in the principal frame B(oxyz) is given in Equation (9.201). The moment
of inertia matrix in the non-principal frame B0(ox0y0z0) can be found by
applying the parallel-axes transformation formula (9.169).

B0
I = BI +m B0

r̃C
B0
r̃TC (9.202)

The mass center is at

B0
rC =

1

2

⎡⎣ l
w
h

⎤⎦ (9.203)

and therefore,

B0
r̃C =

1

2

⎡⎣ 0 −h w
h 0 −l
−w l 0

⎤⎦ (9.204)

that provides

B0
I =

⎡⎣ 1
3h

2m+ 1
3mw2 −14 lmw −14hlm

−14 lmw 1
3h

2m+ 1
3 l
2m −14hmw

−14hlm − 14hmw 1
3 l
2m+ 1

3mw2

⎤⎦ . (9.205)
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Example 358 Principal rotation matrix.
Consider a body inertia matrix as

I =

⎡⎣ 2/3 −1/2 −1/2
−1/2 5/3 −1/4
−1/2 −1/4 5/3

⎤⎦ . (9.206)

The eigenvalues and eigenvectors of I are

I1 = 0.2413 ,

⎡⎣ 2.351
1
1

⎤⎦ (9.207)

I2 = 1.8421 ,

⎡⎣ −0.8511
1

⎤⎦ (9.208)

I3 = 1.9167 ,

⎡⎣ 0
−1
1

⎤⎦ . (9.209)

The normalized eigenvector matrix W is equal to the transpose of the re-
quired transformation matrix to make the inertia matrix diagonal

W =

⎡⎣ | | |
w1 w

2
w

3

| | |

⎤⎦ = 2RT
1

=

⎡⎣ 0.856 9 −0.515 6 0.0
0.364 48 0.605 88 −0.707 11
0.364 48 0.605 88 0.707 11

⎤⎦ . (9.210)

We may verify that

2I ≈ 2R1
1I 2RT

1 =WT 1I W

=

⎡⎣ 0.2413 −1× 10−4 0.0
−1× 10−4 1.842 1 −1× 10−19

0.0 0.0 1.916 7

⎤⎦ . (9.211)

Example 359 F Relative diagonal moments of inertia.
Using the definitions for moments of inertia (9.147), (9.148), and (9.149)

it is seen that the inertia matrix is symmetric, andZ
B

¡
x2 + y2 + z2

¢
dm =

1

2
(Ixx + Iyy + Izz) (9.212)

and also

Ixx + Iyy ≥ Izz (9.213)

Iyy + Izz ≥ Ixx (9.214)

Izz + Ixx ≥ Iyy. (9.215)
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Noting that
(y − z)

2 ≥ 0

it is evident that ¡
y2 + z2

¢
≥ 2yz

and therefore
Ixx ≥ 2Iyz (9.216)

and similarly

Iyy ≥ 2Izx (9.217)

Izz ≥ 2Ixy. (9.218)

Example 360 F Coefficients of the characteristic equation.
The determinant (9.172)¯̄̄̄

¯̄ Ixx − λ Ixy Ixz
Iyx Iyy − λ Iyz
Izx Izy Izz − λ

¯̄̄̄
¯̄ = 0 (9.219)

for calculating the principal moments of inertia, leads to a third-degree
equation for λ, called the characteristic equation.

λ3 − a1λ
2 + a2λ− a3 = 0 (9.220)

The coefficients of the characteristic equation are called the principal in-
variants of [I]. The coefficients of the characteristic equation can directly
be found from the following equations:

a1 = Ixx + Iyy + Izz

= tr [I] (9.221)

a2 = IxxIyy + IyyIzz + IzzIxx − I2xy − I2yz − I2zx

=

¯̄̄̄
Ixx Ixy
Iyx Iyy

¯̄̄̄
+

¯̄̄̄
Iyy Iyz
Izy Izz

¯̄̄̄
+

¯̄̄̄
Ixx Ixz
Izx Izz

¯̄̄̄
=

1

2

¡
a21 − tr

£
I2
¤¢

(9.222)

a3 = IxxIyyIzz + IxyIyzIzx + IzyIyxIxz

− (IxxIyzIzy + IyyIzxIxz + IzzIxyIyx)

= IxxIyyIzz + 2IxyIyzIzx −
¡
IxxI

2
yz + IyyI

2
zx + IzzI

2
xy

¢
= det [I] (9.223)
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Example 361 F The principal moments of inertia are coordinate invari-
ants.
The roots of the inertia characteristic equation are the principal moments

of inertia. They are all real but not necessarily different. The principal
moments of inertia are extreme. That is, the principal moments of inertia
determine the smallest and the largest values of Iii. Since the smallest and
largest values of Iii do not depend on the choice of the body coordinate
frame, the solution of the characteristic equation is not dependent of the
coordinate frame.
In other words, if I1, I2, and I3 are the principal moments of inertia for

B1I, the principal moments of inertia for B2I are also I1, I2, and I3 when

B2I = B2RB1

B1I B2RT
B1
.

We conclude that I1, I2, and I3 are coordinate invariants of the matrix [I],
and therefore any quantity that depends on I1, I2, and I3 is also coordinate
invariant. The matrix [I] has only three independent invariants and every
other invariant can be expressed in terms of I1, I2, and I3.
Since I1, I2, and I3 are the solutions of the characteristic equation of [I]

given in (9.220), we may write the determinant (9.172) in the form

(λ− I1) (λ− I2) (λ− I3) = 0. (9.224)

The expanded form of this equation is

λ3 − (I1 + I2 + I3)λ
2 + (I1I2 + I2I3 + I3I1) a2λ− I1I2I3 = 0. (9.225)

By comparing (9.225) and (9.220) we conclude that

a1 = Ixx + Iyy + Izz = I1 + I2 + I3 (9.226)

a2 = IxxIyy + IyyIzz + IzzIxx − I2xy − I2yz − I2zx
= I1I2 + I2I3 + I3I1 (9.227)

a3 = IxxIyyIzz + 2IxyIyzIzx −
¡
IxxI

2
yz + IyyI

2
zx + IzzI

2
xy

¢
= I1I2I3. (9.228)

Being able to express the coefficients a1, a2, and a3 as functions of I1, I2,
and I3 determines that the coefficients of the characteristic equation are
coordinate-invariant.

Example 362 F Short notation for the elements of inertia matrix.
Taking advantage of the Kronecker’s delta (5.138) we may write the el-
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ements of the moment of inertia matrix Iij in short notation forms

Iij =

Z
B

¡¡
x21 + x22 + x23

¢
δij − xixj

¢
dm (9.229)

Iij =

Z
B

¡
r2δij − xixj

¢
dm (9.230)

Iij =

Z
B

Ã
3X

k=1

xkxkδij − xixj

!
dm (9.231)

where we utilized the following notations:

x1 = x x2 = y x3 = z. (9.232)

Example 363 F Moment of inertia with respect to a plane, a line, and a
point.
The moment of inertia of a system of particles may be defined with respect

to a plane, a line, or a point as the sum of the products of the mass of the
particles into the square of the perpendicular distance from the particle to
the plane, line, or point. For a continuous body, the sum would be definite
integral over the volume of the body.
The moments of inertia with respect to the xy, yz, and zx-plane are

Iz2 =

Z
B

z2dm (9.233)

Iy2 =

Z
B

y2dm (9.234)

Ix2 =

Z
B

x2dm. (9.235)

The moments of inertia with respect to the x, y, and z axes are

Ix =

Z
B

¡
y2 + z2

¢
dm (9.236)

Iy =

Z
B

¡
z2 + x2

¢
dm (9.237)

Iz =

Z
B

¡
x2 + y2

¢
dm (9.238)

and therefore,

Ix = Iy2 + Iz2 (9.239)

Iy = Iz2 + Ix2 (9.240)

Iz = Ix2 + Iy2 . (9.241)
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The moment of inertia with respect to the origin is

Io =

Z
B

¡
x2 + y2 + z2

¢
dm

= Ix2 + Iy2 + Iz2

=
1

2
(Ix + Iy + Iz) . (9.242)

Because the choice of the coordinate frame is arbitrary, we can say that
the moment of inertia with respect to a line is the sum of the moments of
inertia with respect to any two mutually orthogonal planes that pass through
the line. The moment of inertia with respect to a point has similar meaning
for three mutually orthogonal planes intersecting at the point.

9.5 Lagrange’s Form of Newton’s Equations of
Motion

Newton’s equation of motion can be transformed to

d

dt

µ
∂K

∂q̇r

¶
− ∂K

∂qr
= Fr r = 1, 2, · · ·n (9.243)

where

Fr =
nX
i=1

µ
Fix

∂fi
∂q1

+ Fiy
∂gi
∂q2

+ Fiz
∂hi
∂qn

¶
. (9.244)

Equation (9.243) is called the Lagrange equation of motion, where K is the
kinetic energy of the n degree-of-freedom (DOF ) system, qr, r = 1, 2, · · · , n
are the generalized coordinates of the system, F =

£
Fix Fiy Fiz

¤T
is

the external force acting on the ith particle of the system, and Fr is the
generalized force associated to qr.

Proof. Let mi be the mass of one of the particles of a system and let
(xi, yi, zi) be its Cartesian coordinates in a globally fixed coordinate frame.
Assume that the coordinates of every individual particle are functions of
another set of coordinates q1, q2, q3, · · · , qn, and possibly time t.

xi = fi(q1, q2, q3, · · · , qn, t) (9.245)

yi = gi(q1, q2, q3, · · · , qn, t) (9.246)

zi = hi(q1, q2, q3, · · · , qn, t) (9.247)

If Fxi, Fyi, Fzi are components of the total force acting on the particle
mi, then the Newton equations of motion for the particle would be

Fxi = miẍi (9.248)

Fyi = miÿi (9.249)

Fzi = miz̈i. (9.250)
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We multiply both sides of these equations by

∂fi
∂qr
∂gi
∂qr
∂hi
∂qr

respectively, and add them up for all the particles to have

nX
i=1

mi

µ
ẍi
∂fi
∂qr

+ ÿi
∂gi
∂qr

+ z̈i
∂hi
∂qr

¶
=

nX
i=1

µ
Fxi

∂fi
∂qr

+ Fyi
∂gi
∂qr

+ Fzi
∂hi
∂qr

¶
(9.251)

where n is the total number of particles.
Taking a time derivative of Equation (9.245),

ẋi =
∂fi
∂q1

q̇1 +
∂fi
∂q2

q̇2 +
∂fi
∂q3

q̇3 + · · ·+
∂fi
∂qn

q̇n +
∂fi
∂t

(9.252)

we find

∂ẋi
∂q̇r

=
∂

∂q̇r

µ
∂fi
∂q1

q̇1 +
∂fi
∂q2

q̇2 + · · ·+
∂fi
∂qn

q̇n +
∂fi
∂t

¶
=

∂fi
∂qr

. (9.253)

and therefore,

ẍi
∂fi
∂qr

= ẍi
∂ẋi
∂q̇r

=
d

dt

µ
ẋi
∂ẋi
∂q̇r

¶
− ẋi

d

dt

µ
∂ẋi
∂q̇r

¶
. (9.254)

However,

ẋi
d

dt

µ
∂ẋi
∂q̇r

¶
= ẋi

d

dt

µ
∂fi
∂qr

¶
= ẋi

µ
∂2fi

∂q1∂qr
q̇1 + · · ·+

∂2fi
∂qn∂qr

q̇n +
∂2fi
∂t∂qr

¶
= ẋi

∂

∂qr

µ
∂fi
∂q1

q̇1 +
∂fi
∂q2

q̇2 + · · ·+
∂fi
∂qn

q̇n +
∂fi
∂t

¶
= ẋi

∂ẋi
∂qr

(9.255)

and we have

ẍi
∂ẋi
∂q̇r

=
d

dt

µ
ẋi
∂ẋi
∂q̇r

¶
− ẋi

∂ẋi
∂qr

(9.256)



556 9. Applied Dynamics

which is equal to

ẍi
ẋi
q̇r
=

d

dt

∙
∂

∂q̇r

µ
1

2
ẋ2i

¶¸
− ∂

∂qr

µ
1

2
ẋ2i

¶
. (9.257)

Now substituting (9.254) and (9.257) in the left-hand side of (9.251) leads
to

nX
i=1

mi

µ
ẍi
∂fi
∂qr

+ ÿi
∂gi
∂qr

+ z̈i
∂hi
∂qr

¶

=
nX
i=1

mi
d

dt

∙
∂

∂q̇r

µ
1

2
ẋ2i +

1

2
ẏ2i +

1

2
ż2i

¶¸

−
nX
i=1

mi
∂

∂qr

µ
1

2
ẋ2i +

1

2
ẏ2i +

1

2
ż2i

¶

=
1

2

nX
i=1

mi
d

dt

∙
∂

∂q̇r

¡
ẋ2i + ẏ2i + ż2i

¢¸

−1
2

nX
i=1

mi
∂

∂qr

¡
ẋ2i + ẏ2i + ż2i

¢
. (9.258)

where
1

2

nX
i=1

mi

¡
ẋ2i + ẏ2i + ż2i

¢
= K (9.259)

is the kinetic energy of the system. Therefore, the Newton equations of
motion (9.248), (9.249), and (9.250) are converted to

d

dt

µ
∂K

∂q̇r

¶
− ∂K

∂qr
=

nX
i=1

µ
Fxi

∂fi
∂qr

+ Fyi
∂gi
∂qr

+ Fzi
∂hi
∂qr

¶
. (9.260)

Because of (9.245), (9.246), and (9.247), the kinetic energy is a function
of q1, q2, q3, · · · , qn and time t. The left-hand side of Equation (9.260) in-
cludes the kinetic energy of the whole system and the right-hand side is
a generalized force and shows the effect of changing coordinates from xi
to qj on the external forces. Let us assume that the coordinate qr alters
to qr+ δqr while the other coordinates q1, q2, q3, · · · , qr−1, qr+1, · · · , qn and
time t are unaltered. So, the coordinates of mi are changed to

xi +
∂fi
∂qr

δqr (9.261)

yi +
∂gi
∂qr

δqr (9.262)

zi +
∂hi
∂qr

δqr (9.263)
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Such a displacement is called virtual displacement. The work done in this
virtual displacement by all forces acting on the particles of the system is

δW =
nX
i=1

µ
Fxi

∂fi
∂qr

+ Fyi
∂gi
∂qr

+ Fzi
∂hi
∂qr

¶
δqr. (9.264)

Because the work done by internal forces appears in opposite pairs, only
the work done by external forces remains in Equation (9.264). Let’s denote
the virtual work by

δW = Fr (q1, q2, q3, · · · , qn, t) δqr. (9.265)

Then we have
d

dt

µ
∂K

∂q̇r

¶
− ∂K

∂qr
= Fr (9.266)

where

Fr =
nX
i=1

µ
Fxi

∂fi
∂qr

+ Fyi
∂gi
∂qr

+ Fzi
∂hi
∂qr

¶
. (9.267)

Equation (9.266) is the Lagrange form of equations of motion. This equation
is true for all values of r from 1 to n. We thus have n second-order ordinary
differential equations in which q1, q2, q3, · · · , qn are the dependent vari-
ables and t is the independent variable. The coordinates q1, q2, q3, · · · , qn
are called generalized coordinates and can be any measurable parameters
to provide the configuration of the system. The number of equations and
the number of dependent variables are equal, therefore, the equations are
theoretically sufficient to determine the motion of all mi.

Example 364 Equation of motion for a simple pendulum.
A pendulum is shown in Figure 9.11. Using x and y for the Cartesian

position of m, and using θ = q as the generalized coordinate, we have

x = f(θ) = l sin θ (9.268)

y = g(θ) = l cos θ (9.269)

K =
1

2
m
¡
ẋ2 + ẏ2

¢
=
1

2
ml2θ̇

2
(9.270)

and therefore,

d

dt

µ
∂K

∂θ̇

¶
− ∂K

∂θ
=

d

dt
(ml2θ̇) = ml2θ̈. (9.271)

The external force components, acting on m, are

Fx = 0 (9.272)

Fy = mg (9.273)
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FIGURE 9.11. A simple pendulum.

and therefore,

Fθ = Fx
∂f

∂θ
+ Fy

∂g

∂θ
= −mgl sin θ. (9.274)

Hence, the equation of motion for the pendulum is

ml2θ̈ = −mgl sin θ. (9.275)

Example 365 A pendulum attached to an oscillating mass.
Figure 9.12 illustrates a vibrating mass with a hanging pendulum. The

pendulum can act as a vibration absorber if designed properly.
Starting with coordinate relationships

xM = fM = x (9.276)

yM = gM = 0 (9.277)

xm = fm = x+ l sin θ (9.278)

ym = gm = l cos θ (9.279)

we may find the kinetic energy in terms of the generalized coordinates x
and θ.

K =
1

2
M
¡
ẋ2M + ẏ2M

¢
+
1

2
m
¡
ẋ2m + ẏ2m

¢
=

1

2
Mẋ2 +

1

2
m
³
ẋ2 + l2θ̇

2
+ 2lẋθ̇ cos θ

´
(9.280)

Then, the left-hand side of the Lagrange equations are

d

dt

µ
∂K

∂ẋ

¶
− ∂K

∂x
= (M +m)ẍ+mlθ̈ cos θ −mlθ̇

2
sin θ (9.281)

d

dt

µ
∂K

∂θ̇

¶
− ∂K

∂θ
= ml2θ̈ +mlẍ cos θ. (9.282)
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FIGURE 9.12. A vibrating mass with a hanging pendulum.

The external forces acting on M and m are

FxM = −kx (9.283)

FyM = 0 (9.284)

Fxm = 0 (9.285)

Fym = mg. (9.286)

Therefore, the generalized forces are

Fx = FxM
∂fM
∂x

+ FyM
∂gM
∂x

+ Fxm
∂fm
∂x

+ Fym
∂gm
∂x

= −kx (9.287)

Fθ = FxM
∂fM
∂θ

+ FyM
∂gM
∂θ

+ Fxm
∂fm
∂θ

+ Fym
∂gm
∂θ

= −mgl sin θ (9.288)

and finally the Lagrange equations of motion are

(M +m)ẍ+mlθ̈ cos θ −mlθ̇
2
sin θ = −kx (9.289)

ml2θ̈ +mlẍ cos θ = −mgl sin θ. (9.290)

Example 366 Kinetic energy of the Earth.
Earth is approximately a rotating rigid body about a fixed axis. The two

motions of the Earth are called revolution about the sun, and rotation
about an axis approximately fixed in the Earth. The kinetic energy of the
Earth due to its rotation is

K1 =
1

2
Iω21

=
1

2

2

5

¡
5.9742× 1024

¢µ6356912 + 6378388
2

¶2µ
2π

24× 3600
366.25

365.25

¶2
= 2.5762× 1029 J
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and the kinetic energy of the Earth due to its revolution is

K2 =
1

2
Mr2ω22

=
1

2

¡
5.9742× 1024

¢ ¡
1.49475× 1011

¢2µ 2π

24× 3600
1

365.25

¶2
= 2.6457× 1033 J

where r is the distance from the sun and ω2 is the angular speed about the
sun. The total kinetic energy of the Earth is K = K1 +K2. However, the
ratio of the revolutionary to rotational kinetic energies is

K2

K1
=
2.6457× 1033
2.5762× 1029 ≈ 10000.

Example 367 F Explicit form of Lagrange equations.
Assume the coordinates of every particle are functions of the coordinates

q1, q2, q3, · · · , qn but not the time t. The kinetic energy of the system made
of n massive particles can be written as

K =
1

2

nX
i=1

mi

¡
ẋ2i + ẏ2i + ż2i

¢
=

1

2

nX
j=1

nX
k=1

ajkq̇j q̇k (9.291)

where the coefficients ajk are functions of q1, q2, q3, · · · , qn and

ajk = akj . (9.292)

The Lagrange equations of motion

d

dt

µ
∂K

∂q̇r

¶
− ∂K

∂qr
= Fr r = 1, 2, · · ·n (9.293)

are then equal to

d

dt

nX
m=1

amrq̇m −
1

2

nX
j=1

nX
k=1

ajk
∂qr

q̇j q̇k = Fr (9.294)

or
nX

m=1

amrq̈m +
nX

k=1

nX
n=1

Γrk,nq̇kq̇n = Fr (9.295)

where Γij,k is called the Christoffel operator

Γij,k =
1

2

µ
∂aij
∂qk

+
∂aik
∂qj

− ∂akj
∂qi

¶
. (9.296)
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9.6 Lagrangian Mechanics

Assume for some forces F =
£
Fix Fiy Fiz

¤T
there is a function V ,

called potential energy, such that the force is derivable from V

F = −∇V. (9.297)

Such a force is called potential or conservative force. Then, the Lagrange
equation of motion can be written as

d

dt

µ
∂L
∂q̇r

¶
− ∂L

∂qr
= Qr r = 1, 2, · · ·n (9.298)

where
L = K − V (9.299)

is the Lagrangean of the system and Qr is the nonpotential generalized
force.

Proof. Assume the external forces F =
£
Fxi Fyi Fzi

¤T
acting on the

system are conservative.
F = −∇V (9.300)

The work done by these forces in an arbitrary virtual displacement δq1,
δq2, δq3, · · · , δqn is

∂W = −∂V

∂q1
δq1 −

∂V

∂q2
δq2 − · · ·

∂V

∂qn
δqn (9.301)

then the Lagrange equation becomes

d

dt

µ
∂K

∂q̇r

¶
− ∂K

∂qr
= − ∂V

∂q1
r = 1, 2, · · ·n. (9.302)

Introducing the Lagrangean function L = K − V converts the Lagrange
equation to

d

dt

µ
∂L
∂q̇r

¶
− ∂L

∂qr
= 0 r = 1, 2, · · ·n (9.303)

for a conservative system. The Lagrangean is also called kinetic potential.
If a force is not conservative, then the virtual work done by the force is

δW =
nX
i=1

µ
Fxi

∂fi
∂qr

+ Fyi
∂gi
∂qr

+ Fzi
∂hi
∂qr

¶
δqr

= Qr δqr (9.304)

and the equation of motion would be

d

dt

µ
∂L
∂q̇r

¶
− ∂L

∂qr
= Qr r = 1, 2, · · ·n (9.305)

where Qr is the nonpotential generalized force doing work in a virtual
displacement of the rth generalized coordinate qr.
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FIGURE 9.13. A spherical pendulum.

Example 368 Spherical pendulum.
A pendulum analogy is utilized in modeling of many dynamical problems.

Figure 9.13 illustrates a spherical pendulum with mass m and length l. The
angles ϕ and θ may be used as describing coordinates of the system.
The Cartesian coordinates of the mass as a function of the generalized

coordinates are ⎡⎣ X
Y
Z

⎤⎦ =
⎡⎣ r cosϕ sin θ

r sin θ sinϕ
−r cos θ

⎤⎦ (9.306)

and therefore, the kinetic and potential energies of the pendulum are

K =
1

2
m
³
l2θ̇

2
+ l2ϕ̇2 sin2 θ

´
(9.307)

V = −mgl cos θ. (9.308)

The kinetic potential function of this system is then equal to

L = 1

2
m
³
l2θ̇

2
+ l2ϕ̇2 sin2 θ

´
+mgl cos θ (9.309)

which leads to the following equations of motion:

θ̈ − ϕ̇2 sin θ cos θ +
g

l
sin θ = 0 (9.310)

ϕ̈ sin2 θ + 2ϕ̇θ̇ sin θ cos θ = 0. (9.311)

Example 369 Controlled compound pendulum.
A massive arm is attached to a ceiling at a pin joint O as illustrated

in Figure 9.14. Assume that there is viscous friction in the joint where an
ideal motor can apply a torque Q to move the arm. The rotor of an ideal
motor has no moment of inertia by assumption.
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FIGURE 9.14. A controlled compound pendulum.

The kinetic and potential energies of the manipulator are

K =
1

2
Iθ̇
2

=
1

2

¡
IC +ml2

¢
θ̇
2

(9.312)

V = −mg cos θ (9.313)

where m is the mass and I is the moment of inertia of the pendulum about
O. The Lagrangean of the manipulator is

L = K − V

=
1

2
Iθ̇
2
+mg cos θ (9.314)

and therefore, the equation of motion of the pendulum is

M =
d

dt

µ
∂L
∂θ̇

¶
− ∂L

∂θ

= I θ̈ +mgl sin θ. (9.315)

The generalized force M is the contribution of the motor torque Q and
the viscous friction torque −cθ̇. Hence, the equation of motion of the ma-
nipulator is

Q = I θ̈ + cθ̇ +mgl sin θ. (9.316)

Example 370 An ideal 2R planar manipulator dynamics.
An ideal model of a 2R planar manipulator is illustrated in Figure 9.15.

It is called ideal because we assume the links are massless and there is no
friction. The masses m1 and m2 are the mass of the second motor to run
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FIGURE 9.15. A model for a 2R planar manipulator.

the second link and the load at the endpoint. We take the absolute angle
θ1 and the relative angle θ2 as the generalized coordinates to express the
configuration of the manipulator.
The global positions of m1 and m2 are∙

X1

Y2

¸
=

∙
l1 cos θ1
l1 sin θ1

¸
(9.317)∙

X2

Y2

¸
=

∙
l1 cos θ1 + l2 cos (θ1 + θ2)
l1 sin θ1 + l2 sin (θ1 + θ2)

¸
(9.318)

and therefore, the global velocity of the masses are∙
Ẋ1

Ẏ1

¸
=

∙
−l1θ̇1 sin θ1
l1θ̇1 cos θ1

¸
(9.319)

∙
Ẋ2

Ẏ2

¸
=

⎡⎣ −l1θ̇1 sin θ1 − l2

³
θ̇1 + θ̇2

´
sin (θ1 + θ2)

l1θ̇1 cos θ1 + l2

³
θ̇1 + θ̇2

´
cos (θ1 + θ2)

⎤⎦ . (9.320)
The kinetic energy of this manipulator is made of kinetic energy of the

masses and is equal to

K = K1 +K2

=
1

2
m1

³
Ẋ2
1 + Ẏ 2

1

´
+
1

2
m2

³
Ẋ2
2 + Ẏ 2

2

´
=

1

2
m1l

2
1θ̇
2

1

+
1

2
m2

µ
l21θ̇

2

1 + l22

³
θ̇1 + θ̇2

´2
+ 2l1l2θ̇1

³
θ̇1 + θ̇2

´
cos θ2

¶
. (9.321)
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The potential energy of the manipulator is

V = V1 + V2

= m1gY1 +m2gY2

= m1gl1 sin θ1 +m2g (l1 sin θ1 + l2 sin (θ1 + θ2)) . (9.322)

The Lagrangean is then obtained from Equations (9.321) and (9.322)

L = K − V (9.323)

=
1

2
m1l

2
1θ̇
2

1

+
1

2
m2

µ
l21θ̇

2

1 + l22

³
θ̇1 + θ̇2

´2
+ 2l1l2θ̇1

³
θ̇1 + θ̇2

´
cos θ2

¶
− (m1gl1 sin θ1 +m2g (l1 sin θ1 + l2 sin (θ1 + θ2))) .

which provides the required partial derivatives as follows:

∂L
∂θ1

= − (m1 +m2) gl1 cos θ1 −m2gl2 cos (θ1 + θ2) (9.324)

∂L
∂θ̇1

= (m1 +m2) l
2
1θ̇1 +m2l

2
2

³
θ̇1 + θ̇2

´
+m2l1l2

³
2θ̇1 + θ̇2

´
cos θ2 (9.325)

d

dt

µ
∂L
∂θ̇1

¶
= (m1 +m2) l

2
1θ̈1 +m2l

2
2

³
θ̈1 + θ̈2

´
+m2l1l2

³
2 θ̈1 + θ̈2

´
cos θ2

−m2l1l2θ̇2

³
2θ̇1 + θ̇2

´
sin θ2 (9.326)

∂L
∂θ2

= −m2l1l2θ̇1

³
θ̇1 + θ̇2

´
sin θ2 −m2gl2 cos (θ1 + θ2) (9.327)

∂L
∂θ̇2

= m2l
2
2

³
θ̇1 + θ̇2

´
+m2l1l2θ̇1 cos θ2 (9.328)

d

dt

µ
∂L
∂θ̇2

¶
= m2l

2
2

³
θ̈1 + θ̈2

´
+m2l1l2θ̈1 cos θ2 −m2l1l2θ̇1θ̇2 sin θ2 (9.329)

Therefore, the equations of motion for the 2R manipulator are

Q1 =
d

dt

µ
∂L
∂θ̇1

¶
− ∂L

∂θ1

= (m1 +m2) l
2
1θ̈1 +m2l

2
2

³
θ̈1 + θ̈2

´
+m2l1l2

³
2 θ̈1 + θ̈2

´
cos θ2 −m2l1l2θ̇2

³
2θ̇1 + θ̇2

´
sin θ2

+(m1 +m2) gl1 cos θ1 +m2gl2 cos (θ1 + θ2) (9.330)
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Q2 =
d

dt

µ
∂L
∂θ̇2

¶
− ∂L

∂θ2

= m2l
2
2

³
θ̈1 + θ̈2

´
+m2l1l2θ̈1 cos θ2 −m2l1l2θ̇1θ̇2 sin θ2

+m2l1l2θ̇1

³
θ̇1 + θ̇2

´
sin θ2 +m2gl2 cos (θ1 + θ2) . (9.331)

The generalized forces Q1 and Q2 are the required forces to drive the
generalized coordinates. In this case, Q1 is the torque at the base motor
and Q2 is the torque of the motor at m1.
The equations of motion can be rearranged to have a more systematic

form

Q1 =
¡
(m1 +m2) l

2
1 +m2l2 (l2 + 2l1 cos θ2)

¢
θ̈1

+m2l2 (l2 + l1 cos θ2) θ̈2

−2m2l1l2 sin θ2 θ̇1θ̇2 −m2l1l2 sin θ2 θ̇
2

2

+(m1 +m2) gl1 cos θ1 +m2gl2 cos (θ1 + θ2) (9.332)

Q2 = m2l2 (l2 + l1 cos θ2) θ̈1 +m2l
2
2θ̈2

+m2l1l2 sin θ2 θ̇
2

1 +m2gl2 cos (θ1 + θ2) . (9.333)

Example 371 Mechanical energy.
If a system of masses mi are moving in a potential force field

Fmi
= −∇iV (9.334)

their Newton equations of motion will be

mir̈i = −∇iV i = 1, 2, · · ·n. (9.335)

The inner product of equations of motion with ṙi and adding the equations

nX
i=1

miṙi · r̈i = −
nX
i=1

ṙi ·∇iV (9.336)

and then, integrating over time

1

2

nX
i=1

miṙi · ṙi = −
Z nX

i=1

ri ·∇iV (9.337)

shows that

K = −
Z nX

i=1

µ
∂V

∂xi
xi +

∂V

∂yi
yi +

∂V

∂zi
zi

¶
= −V +E (9.338)
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FIGURE 9.16. A wheel turning, without slip, over a cylindrical hill.

where E is the constant of integration. E is called the mechanical energy
of the system and is equal to kinetic plus potential energies.

E = K + V (9.339)

Example 372 Falling wheel.
Figure 9.16 illustrates a wheel turning, without slip, over a cylindrical

hill. We may use the conservation of mechanical energy to find the angle
at which the wheel leaves the hill.
At the initial instant of time, the wheel is at point A. We assume the

initial kinetic and potential, and hence, the mechanical energies are zero.
When the wheel is turning over the hill, its angular velocity, ω, is

ω =
v

r
(9.340)

where v is the speed at the center of the wheel. At any other point B, the
wheel achieves some kinetic energy and loses some potential energy. At a
certain angle, where the normal component of the weight cannot provide
more centripetal force,

mg cos θ =
mv2

R+ r
. (9.341)

the wheel separates from the surface. Employing the conservation of energy,
we have

EA = EB (9.342)

KA + VA = KB + VB. (9.343)

The kinetic and potential energy at the separation point B are

KB =
1

2
mv2 +

1

2
ICω

2 (9.344)

VB = −mg (R+ r) (1− cos θ) (9.345)
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FIGURE 9.17. A turning wheel moving up a step.

where IC is the mass moment of inertia for the wheel about its center.
Therefore,

1

2
mv2 +

1

2
ICω

2 = mg (R+ r) (1− cos θ) (9.346)

and substituting (9.340) and (9.341) providesµ
1 +

IC
mr2

¶
(R+ r) g cos θ = 2g (R+ r) (1− cos θ) (9.347)

and therefore, the separation angle is

θ = cos−1
2mr2

IC + 3mr2
. (9.348)

Let’s examine the equation for a disc wheel with

IC =
1

2
mr2. (9.349)

and find the separation angle.

θ = cos−1
4

7
(9.350)

≈ 0.96 rad

≈ 55.15 deg

Example 373 Turning wheel over a step.
Figure 9.17 illustrates a wheel of radius R turning with speed v to go over

a step with height H < R.
We may use the principle of energy conservation and find the speed of the

wheel after getting across the step. Employing the conservation of energy,
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we have

EA = EB (9.351)

KA + VA = KB + VB (9.352)
1

2
mv21 +

1

2
ICω

2
1 + 0 =

1

2
mv22 +

1

2
ICω

2
2 +mgH (9.353)µ

m+
IC
R2

¶
v21 =

µ
m+

IC
R2

¶
v22 + 2mgH (9.354)

and therefore,

v2 =

vuutv21 −
2gH

1 +
IC
mR2

. (9.355)

The condition for having a real v2 is

v1 >

vuut 2gH

1 +
IC
mR2

. (9.356)

The second speed (9.355) and the condition (9.356) for a solid disc are

v2 =

r
v21 −

4

3
Hg (9.357)

v1 >

r
4

3
Hg (9.358)

because we assumed that
IC =

1

2
mR2. (9.359)

Example 374 Trebuchet.
A trebuchet, shown schematically in Figure 9.18, is a shooting weapon of

war powered by a falling massive counterweight m1. A beam AB is pivoted
to the chassis with two unequal sections a and b.
The figure shows a trebuchet at its initial configuration. The origin of

a global coordinate frame is set at the pivot point. The counterweight m1

is at (x1, y1) and is hinged at the shorter arm of the beam at a distance c
from the end B. The mass of the projectile is m2 and it is at the end of
a massless sling with a length l attached to the end of the longer arm of
the beam. The three independent variable angles α, θ, and γ describe the
motion of the device. We consider the parameters a, b, c, d, l, m1, and m2

constant, and determine the equations of motion by the Lagrange method.
Figure 9.19 illustrates the trebuchet when it is in motion. The position

coordinates of masses m1 and m2 are

x1 = b sin θ − c sin (θ + γ) (9.360)

y1 = −b cos θ + c cos (θ + γ) (9.361)
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FIGURE 9.18. A trebuchet at starting position.

and

x2 = −a sin θ − l sin (−θ + α) (9.362)

y2 = −a cos θ − l cos (−θ + α) . (9.363)

Taking a time derivative provides the velocity components

ẋ1 = bθ̇ cos θ − c
³
θ̇ + γ̇

´
cos (θ + γ) (9.364)

ẏ1 = bθ̇ sin θ − c
³
θ̇ + γ̇

´
sin (θ + γ) (9.365)

ẋ2 = l (c− α̇) cos (α− θ)− aθ̇ cos (θ) (9.366)

ẏ2 = aθ̇ sin θ − l
³
θ̇ − α̇

´
sin (α− θ) . (9.367)
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which shows that the kinetic energy of the system is

K =
1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1

¡
ẋ21 + ẏ21

¢
+
1

2
m2

¡
ẋ22 + ẏ22

¢
=

1

2
m1

³¡
b2 + c2

¢
θ̇
2
+ c2γ̇2 + 2c2θ̇γ̇

´
−m1bcθ̇

³
θ̇ + γ̇

´
cos γ

+
1

2
m2

³¡
a2 + l2

¢
θ̇
2
+ l2α̇2 − 2l2θ̇α̇

´
−m2alθ̇

³
θ̇ − α̇

´
cos (2θ − α) . (9.368)

The potential energy of the system can be calculated by y-position of the
masses.

V = m1gy1 +m2gy2

= m1g (−b cos θ + c cos (θ + γ))

+m2g (−a cos θ − l cos (−θ + α)) (9.369)

Having the energies K and V , we can set up the Lagrangean L.
L = K − V (9.370)

Using the Lagrangean, we are able to find the three equations of motion.

d

dt

µ
∂L
∂θ̇

¶
− ∂L

∂θ
= 0 (9.371)

d

dt

µ
∂L
∂α̇

¶
− ∂L

∂α
= 0 (9.372)

d

dt

µ
∂L
∂γ̇

¶
− ∂L

∂γ
= 0. (9.373)

The trebuchet appeared in 500 to 400 B.C. China and was developed by
Persian armies around 300 B.C. It was used by the Arabs against the Ro-
mans during 600 to 1200 A.D. The trebuchet is also called the manjaniq,
catapults, or onager. The "Manjaniq" is the root of the words "machine"
and "mechanic".

9.7 Summary

The translational and rotational equations of motion for a rigid body, ex-
pressed in the global coordinate frame, are

GF =
Gd

dt
Gp (9.374)

GM =
Gd

dt
GL (9.375)
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FIGURE 9.19. A trebuchet in motion.

where GF and GM indicate the resultant of the external forces and mo-
ments applied on the rigid body, measured at the mass center C. The vector
Gp is the momentum and GL is the moment of momentum for the rigid
body at C

p = mv (9.376)

L = rC × p. (9.377)

The expression of the equations of motion in the body coordinate frame
are

BF = Gṗ+ B
GωB × Bp

= m BaB +m B
GωB × BvB (9.378)

BM = BL̇+B
GωB × BL

= BI B
Gω̇B +

B
GωB ×

¡
BI B

GωB

¢
(9.379)

where I is the moment of inertia for the rigid body.

I =

⎡⎣ Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎤⎦ . (9.380)
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The elements of I are functions of the mass distribution of the rigid body
and are defined by

Iij =

Z
B

¡
r2i δmn − ximxjn

¢
dm , i, j = 1, 2, 3 (9.381)

where δij is Kronecker’s delta.
Every rigid body has a principal body coordinate frame in which the

moment of inertia is in the form

BI =

⎡⎣ I1 0 0
0 I2 0
0 0 I3

⎤⎦ . (9.382)

The rotational equation of motion in the principal coordinate frame sim-
plifies to

M1 = I1ω̇1 − (I2 − I2)ω2ω3

M2 = I2ω̇2 − (I3 − I1)ω3ω1 (9.383)

M3 = I3ω̇3 − (I1 − I2)ω1ω2.

The equations of motion for a mechanical system having n DOF can also
be found by the Lagrange equation

d

dt

µ
∂L
∂q̇r

¶
− ∂L

∂qr
= Qr r = 1, 2, · · ·n (9.384)

L = K − V (9.385)

where L is the Lagrangean of the system, K is the kinetic energy, V is the
potential energy, and Qr is the nonpotential generalized force.

Qr =
nX
i=1

µ
Qix

∂fi
∂q1

+Qiy
∂gi
∂q2

+Qiz
∂hi
∂qn

¶
(9.386)

The parameters qr, r = 1, 2, · · · , n are the generalized coordinates of the
system, Q =

£
Qix Qiy Qiz

¤T
is the external force acting on the ith

particle of the system, and Qr is the generalized force associated to qr.
When (xi, yi, zi) are Cartesian coordinates in a globally fixed coordinate
frame for the particle mi, then its coordinates may be functions of another
set of generalized coordinates q1, q2, q3, · · · , qn and possibly time t.

xi = fi(q1, q2, q3, · · · , qn, t) (9.387)

yi = gi(q1, q2, q3, · · · , qn, t) (9.388)

zi = hi(q1, q2, q3, · · · , qn, t) (9.389)
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9.8 Key Symbols

a, b, w, h length
a acceleration
C mass center
d position vector of the body coordinate frame
df infinitesimal force
dm infinitesimal mass
dm infinitesimal moment
E mechanical energy
F force
FC Coriolis force
g gravitational acceleration
H height
I moment of inertia matrix
I1, I2, I3 principal moment of inertia
K kinetic energy
l directional line
L moment of momentum
L = K − V Lagrangean
m mass
M moment
p momentum
P,Q points in rigid body
r radius of disc
r position vector
R radius
R rotation matrix
t time
û unit vector to show the directional line
v ≡ ẋ, v velocity
V potential energy
w eigenvector
W work
W eigenvector matrix
x, y, z, x displacement

δij Kronecker’s delta
Γij,k Christoffel operator
λ eigenvalue
ϕ, θ, ψ Euler angles
ω,ω angular velocity
k parallel
⊥ orthogonal
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Exercises

1. Kinetic energy of a rigid link.

Consider a straight and uniform bar as a rigid bar. The bar has a
mass m. Show that the kinetic energy of the bar can be expressed as

K =
1

6
m (v1 · v1 + v1 · v2 + v2 · v2)

where v1 and v2 are the velocity vectors of the endpoints of the bar.

2. Discrete particles.

There are three particles m1 = 10kg, m2 = 20 kg, m3 = 30 kg, at

r1 =

⎡⎣ 1
−1
1

⎤⎦ r1 =

⎡⎣ −1−3
2

⎤⎦ r1 =

⎡⎣ 2
−1
−3

⎤⎦ .
Their velocities are

v1 =

⎡⎣ 2
1
1

⎤⎦ v1 =

⎡⎣ −10
2

⎤⎦ v1 =

⎡⎣ 3
−2
−1

⎤⎦ .
Find the position and velocity of the system at C. Calculate the sys-
tem’s momentum and moment of momentum. Calculate the system’s
kinetic energy and determine the rotational and translational parts
of the kinetic energy.

3. Newton’s equation of motion in the body frame.

Show that Newton’s equation of motion in the body frame is⎡⎣ Fx
Fy
Fz

⎤⎦ = m

⎡⎣ ax
ay
az

⎤⎦+
⎡⎣ 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

⎤⎦⎡⎣ vx
vy
vz

⎤⎦ .
4. Work on a curved path.

A particle of mass m is moving on a circular path given by

GrP = cos θ Î + sin θ Ĵ + 4 K̂.

Calculate the work done by a force GF when the particle moves from
θ = 0 to θ = π

2 .

(a)
GF =

z2 − y2

(x+ y)
2 Î +

y2 − x2

(x+ y)
2 Ĵ +

x2 − y2

(x+ z)
2 K̂
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(b)
GF =

z2 − y2

(x+ y)
2 Î +

2y

x+ y
Ĵ +

x2 − y2

(x+ z)
2 K̂

5. Principal moments of inertia.

Find the principal moments of inertia and directions for the following
inertia matrices:

(a)

[I] =

⎡⎣ 3 2 2
2 2 0
2 0 4

⎤⎦
(b)

[I] =

⎡⎣ 3 2 4
2 0 2
4 2 3

⎤⎦
(c)

[I] =

⎡⎣ 100 20
√
3 0

20
√
3 60 0

0 0 10

⎤⎦
6. Rotated moment of inertia matrix.

A principal moment of inertia matrix B2I is given as

[I] =

⎡⎣ 3 0 0
0 5 0
0 0 4

⎤⎦ .
The principal frame was achieved by rotating the initial body coor-
dinate frame 30 deg about the x-axis, followed by 45 deg about the
z-axis. Find the initial moment of inertia matrix B1I.

7. Rotation of moment of inertia matrix.

Find the required rotation matrix that transforms the moment of
inertia matrix [I] to an diagonal matrix.

[I] =

⎡⎣ 3 2 2
2 2 0.1
2 0.1 4

⎤⎦
8. F Cubic equations.

The solution of a cubic equation

ax3 + bx2 + cx+ d = 0



9. Applied Dynamics 577

where a 6= 0, can be found in a systematic way.
Transform the equation to a new form with discriminant 4p3 + q2,

y3 + 3py + q = 0

using the transformation x = y − b
3a , where,

p =
3ac− b2

9a2

q =
2b3 − 9abc+ 27a2d

27a3
.

The solutions are then

y1 = 3
√
α− 3

p
β

y2 = e
2πi
3 3
√
α− e

4πi
3

3
p
β

y3 = e
4πi
3 3
√
α− e

2πi
3

3
p
β

where,

α =
−q +

p
q2 + 4p3

2

β =
−q +

p
q2 + 4p3

2
.

For real values of p and q, if the discriminant is positive, then one root
is real, and two roots are complex conjugates. If the discriminant is
zero, then there are three real roots, of which at least two are equal. If
the discriminant is negative, then there are three unequal real roots.

Apply this theory for the characteristic equation of the matrix [I] and
show that the principal moments of inertia are real.

9. Kinematics of a moving car on the Earth.

The location of a vehicle on the Earth is described by its longitude ϕ
from a fixed meridian, say, the Greenwich meridian, and its latitude
θ from the equator, as shown in Figure 9.20. We attach a coordinate
frame B at the center of the Earth with the x-axis on the equator’s
plane and the y-axis pointing to the vehicle. There are also two co-
ordinate frames E and G where E is attached to the Earth and G is
the global coordinate frame. Show that the angular velocity of B and
the velocity of the vehicle are

B
GωB = θ̇ ı̂B + (ωE + ϕ̇) sin θ ĵB + (ωE + ϕ̇) cos θ k̂
B
GvP = −r (ωE + ϕ̇) cos θ ı̂B + rθ̇ k̂.

Calculate the acceleration of the vehicle.
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θ

X Y

Z

x
y

z r

ωE

Z

(a) (b)

G

B
Y

z

x y

E

ϕ

θ

y

z

ωE

P
P

FIGURE 9.20. The location on the Earth is defined by longitude ϕ and latitude
θ.

10. Global differential of angular momentum.

Convert the moment of inertiaBI and the angular velocity B
GωB to

the global coordinate frame and then find the differential of angular
momentum. It is an alternative method to show that

Gd

dt
BL =

Gd

dt

¡
BI B

GωB

¢
= BL̇+B

GωB × BL

= Iω̇ + ω× (Iω) .

11. Lagrange method and nonlinear vibrating system.

Use the Lagrange method and find the equation of motion for the
pendulum shown in Figure 9.21. The stiffness of the linear spring is
k.

12. Forced vibration of a pendulum.

Figure 9.22 illustrates a simple pendulum having a length l and a bob
with mass m. Find the equation of motion if

(a) the pivot O has a dictated motion in X direction

XO = a sinωt

(b) the pivot O has a dictated motion in Y direction

YO = b sinωt
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Y

X

θ

m

O
C

l

k

a

FIGURE 9.21. A compound pendulum attached with a linear spring at the tip
point.

Y

X

θ

m

O
l

FIGURE 9.22. A pendulum with a vibrating pivot.

(c) the pivot O has a uniform motion on a circle

rO = R cosωt Î +R sinωt Ĵ.

13. Equations of motion from Lagrangean.

Consider a physical system with a Lagrangean as

L = 1

2
m (aẋ+ bẏ)

2 − 1
2
k (ax+ by)

2
.

and find the equations of motion. The coefficients m, k, a, and b are
constant.

14. Lagrangean from equation of motion.

Find the Lagrangean associated to the following equations of motions:

(a)
mr2θ̈ + k1l1θ + k2l2θ +mgl = 0
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θ
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B

M x

y

a

α
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l

b

m1

m2

c

d

FIGURE 9.23. A simplified models of a trebuchet.

(b)

r̈ − r θ̇
2
= 0

r2 θ̈ + 2r ṙ θ̇ = 0

15. Trebuchet.

Derive the equations of motion for the trebuchet shown in Figure
9.18.

16. Simplified trebuchet.

Three simplified models of a trebuchet are shown in Figures 9.23 to
9.25. Derive and compare their equations of motion.
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d

FIGURE 9.24. A simplified models of a trebuchet.

θ
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M x
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γ
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m1
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d

FIGURE 9.25. A simplified models of a trebuchet.
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Vehicle Planar Dynamics
In this chapter we develop a dynamic model for a rigid vehicle in a planar
motion. When the forward, lateral and yaw velocities are important and are
enough to examine the behavior of a vehicle, the planar model is applicable.

10.1 Vehicle Coordinate Frame

The equations of motion in vehicle dynamics are usually expressed in a set
of vehicle coordinate frame B(Cxyz), attached to the vehicle at the mass
center C, as shown in Figure 10.1. The x-axis is a longitudinal axis passing
through C and directed forward. The y-axis goes laterally to the left from
the driver’s viewpoint. The z-axis makes the coordinate system a right-
hand triad. When the car is parked on a flat horizontal road, the z-axis is
perpendicular to the ground, opposite to the gravitational acceleration g.

x
z

y

FxFz

Fy

Mz

My

Mx

ϕθ

ψ

C

pq

r

FIGURE 10.1. Vehicle body coordinate frame B(Cxyz).

To show the vehicle orientation, we use three angles: roll angle ϕ about
the x-axis, pitch angle θ about the y-axis, and yaw angle ψ about the z-
axis. Because the rate of the orientation angles are important in vehicle
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dynamics, we usually show them by a special character and call them roll
rate, pitch rate, and yaw rate respectively.

ϕ̇ = p (10.1)

θ̇ = q (10.2)

ψ̇ = r (10.3)

The resultant of external forces and moments, that the vehicle receives
from the ground and environment, makes the vehicle force system (F,M).
This force system will be expressed in the body coordinate frame.

BF = Fxı̂+ Fy ĵ+ Fzk̂ (10.4)
BM = Mxı̂+My ĵ+Mzk̂ (10.5)

The individual components of the 3D vehicle force system are shown in
Figure 10.2. These components have special names and importance.

1. Longitudinal force Fx. It is a force acting along the x-axis. The re-
sultant Fx > 0 if the vehicle is accelerating, and Fx < 0 if the vehicle
is braking. Longitudinal force is also called forward force, or traction
force.

2. Lateral force Fy. It is an orthogonal force to both Fx and Fz. The
resultant Fy > 0 if it is leftward from the driver’s viewpoint. Lateral
force is usually a result of steering and is the main reason to generate
a yaw moment and turn a vehicle.

3. Normal force Fz. It is a vertical force, normal to the ground plane.
The resultant Fz > 0 if it is upward. Normal force is also called
vertical force or vehicle load.

4. Roll moment Mx. It is a longitudinal moment about the x-axis. The
resultantMx > 0 if the vehicle tends to turn about the x-axis. The roll
moment is also called the bank moment, tilting torque, or overturning
moment.

5. Pitch moment My. It is a lateral moment about the y-axis. The re-
sultantMy > 0 if the vehicle tends to turn about the y-axis and move
the head down.

6. Yaw moment Mz. It is an upward moment about the z-axis. The
resultant Mz > 0 if the tire tends to turn about the z-axis. The yaw
moment is also called the aligning moment.

The position and orientation of the vehicle coordinate frame B(Cxyz) is
measured with respect to a grounded fixed coordinate frame G(OXY Z).
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FzMz

Mx

ϕ

ψ
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r
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Fy
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θq

X
Y

Z

B G

ψ

FIGURE 10.2. Illustration of a moving vehicle, indicated by its body coordinate
frame B in a global coordinate frame G.

The vehicle coordinate frame is called the body frame or vehicle frame, and
the grounded frame is called the global coordinate frame. Analysis of the
vehicle motion is equivalent to expressing the position and orientation of
B(Cxyz) in G(OXY Z). Figure 10.2 shows how a moving vehicle is indi-
cated by a body frame B in a global frame G.
The angle between the x and X axes is the yaw angle ψ and is called

the heading angle. The velocity vector v of the vehicle makes an angle β
with the body x-axis which is called sideslip angle or attitude angle. The
vehicle’s velocity vector v makes an angle β + ψ with the global X-axis
that is called the cruise angle. These angles are shown in the top view of a
moving vehicle in Figure 10.3.
There are many situations in which we need to number the wheels of a

vehicle. We start numbering from the front left wheel as number 1, and then
the front right wheel would be number 2. Numbering increases sequentially
on the right wheels going to the back of the vehicle up to the rear right
wheel. Then, we go to the left of the vehicle and continue numbering the
wheels from the rear left toward the front. Each wheel is indicated by a
position vector ri

Bri = xii+ yij + zik (10.6)

expressed in the body coordinate frame B. Numbering of a four wheel
vehicle is shown in Figure 10.3.

Example 375 Wheel numbers and their position vectors.
Figure 10.4 depicts a six-wheel passenger car. The wheel numbers are

indicated besides each wheel. The front left wheel is wheel number 1, and
the front right wheel is number 2. Moving to the back on the right side,
we count the wheels numbered 3 and 4. The back left wheel gets number 5,
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X

Y

C

x

y

v

β

d

ψ

BG
1

2

3

4
r2

r1

r3

r4

Yaw angle
Sideslipβ

ψ
Cruise angleψ + β

FIGURE 10.3. Top view of a moving vehicle to show the yaw angle ψ between
the x and X axes, the sideslip angle β between the velocity vector v and the
x-axis, and the crouse angle β + ψ between with the velocity vector v and the
X-axis.

and then moving forward on the left side, the only unnumbered wheel is the
wheel number 6.
If the global position vector of the car’s mass center is given by

Gd =

∙
XC

YC

¸
(10.7)

and the body position vectors of the wheels are

Br1 =

∙
a1
w/2

¸
(10.8)

Br2 =

∙
a1
−w/2

¸
(10.9)

Br3 =

∙
−a2
−w/2

¸
(10.10)

Br4 =

∙
−a3
−w/2

¸
(10.11)

Br5 =

∙
−a3
w/2

¸
(10.12)
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FIGURE 10.4. A six-wheel passenger car and its wheel numbering.

Br6 =

∙
−a2
w/2

¸
(10.13)

then the global position of the wheels are

Gr1 = Gd+ GRB
Br1

=

⎡⎢⎣ XC −
1

2
w sinψ + a1 cosψ

YC +
1

2
w cosψ + a1 sinψ

⎤⎥⎦ (10.14)

Gr2 = Gd+ GRB
Br2

=

⎡⎢⎣ XC +
1

2
w sinψ + a1 cosψ

YC −
1

2
w cosψ + a1 sinψ

⎤⎥⎦ (10.15)

Gr3 = Gd+ GRB
Br3

=

⎡⎢⎣ XC +
1

2
w sinψ − a2 cosψ

YC −
1

2
w cosψ − a2 sinψ

⎤⎥⎦ (10.16)
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Gr4 = Gd+ GRB
Br4

=

⎡⎢⎣ XC +
1

2
w sinψ − a3 cosψ

YC −
1

2
w cosψ − a3 sinψ

⎤⎥⎦ (10.17)

Gr5 = Gd+ GRB
Br5

=

⎡⎢⎣ XC −
1

2
w sinψ − a3 cosψ

YC +
1

2
w cosψ − a3 sinψ

⎤⎥⎦ (10.18)

Gr6 = Gd+ GRB
Br6

=

⎡⎢⎣ XC −
1

2
w sinψ − a2 cosψ

YC +
1

2
w cosψ − a2 sinψ

⎤⎥⎦ . (10.19)

The rotation matrix between the global G and body coordinate B is

GRB =

∙
cosψ − sinψ
sinψ cosψ

¸
. (10.20)

Example 376 Crouse angle, attitude angle, and heading angle.
Figure 10.5 illustrates a car moving on a road with the angles

ψ = 15deg (10.21)

β = 16deg . (10.22)

The heading angle of the car is

Heading angle = ψ

= 15deg (10.23)

which is the angle between the car’s longitudinal x-axis and a reference
X-axis on the road. The attitude angle of the car is

Attitude angle = β

= 16deg (10.24)

which is the angle between the direction of the car’s motion and its longi-
tudinal axis. The cruise angle of the car is

Heading angle = β + ψ

= 31deg (10.25)

which is the angle between the car’s direction of motion and the reference
X-axis on the road.
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FIGURE 10.5. A car moving on a road with sideslip angle β and heading angle
ψ.

10.2 Rigid Vehicle Newton-Euler Dynamics

A rigid vehicle is assumed to act similar to a flat box moving on a horizontal
surface. A rigid vehicle has a planar motion with three degrees of freedom
that are: translation in the x and y directions, and a rotation about the
z-axis. The Newton-Euler equations of motion for a rigid vehicle in the
body coordinate frame B, attached to the vehicle at its mass center C are:

Fx = mv̇x −mωz vy (10.26)

Fy = mv̇y +mωz vx (10.27)

Mz = ω̇z Iz. (10.28)

Proof. Figure 10.6 illustrates a rigid vehicle in a planar motion. A global
coordinate frame G is attached to the ground and a local coordinate frame
B is attached to the vehicle at the mass center C. The Z and z axes are
parallel, and the orientation of the frame B is indicated by the heading
angle ψ between the x and X axes. The global position vector of the mass
center is denoted by Gd.
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X
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FIGURE 10.6. A rigid vehicle in a planar motion.

The velocity vector of the vehicle, expressed in the body frame, is

BvC =

⎡⎣ vx
vy
0

⎤⎦ (10.29)

where vx is the forward component and vy is the lateral component of v.
The rigid body equations of motion in the body coordinate frame are:

BF = BRG
GF

= BRG

¡
m GaB

¢
= m B

GaB

= m Bv̇B +m B
GωB × BvB. (10.30)

BM =
Gd

dt
BL

= B
GL̇B

= BL̇+ B
GωB × BL

= BI B
Gω̇B +

B
GωB ×

¡
BI B

GωB

¢
. (10.31)

The force, moment, and kinematic vectors for the rigid vehicle are:

BFC =

⎡⎣ Fx
Fy
0

⎤⎦ (10.32)
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BMC =

⎡⎣ 0
0
Mz

⎤⎦ (10.33)

Bv̇C =

⎡⎣ v̇x
v̇y
0

⎤⎦ (10.34)

B
GωB =

⎡⎣ 0
0
ωz

⎤⎦ (10.35)

B
Gω̇B =

⎡⎣ 0
0
ω̇z

⎤⎦ . (10.36)

We may assume that the body coordinate is the principal coordinate frame
of the vehicle to have a diagonal moment of inertia matrix.

BI =

⎡⎣ I1 0 0
0 I2 0
0 0 I3

⎤⎦ (10.37)

Substituting the above vectors and matrices in the equations of motion
(10.30)-(10.31) provides the following equations:

BF = m Bv̇B +m B
GωB × BvB

= m

⎡⎣ v̇x
v̇y
0

⎤⎦+m

⎡⎣ 0
0
ωz

⎤⎦×
⎡⎣ vx

vy
0

⎤⎦
=

⎡⎣ mv̇x −mωzvy
mv̇y +mωzvx

0

⎤⎦ (10.38)

BM = BI B
Gω̇B +

B
GωB ×

¡
BI B

GωB

¢
=

⎡⎣ I1 0 0
0 I2 0
0 0 I3

⎤⎦⎡⎣ 0
0
ω̇z

⎤⎦
+

⎡⎣ 0
0
ωz

⎤⎦×
⎛⎝⎡⎣ I1 0 0

0 I2 0
0 0 I3

⎤⎦⎡⎣ 0
0
ωz

⎤⎦⎞⎠
=

⎡⎣ 0
0

I3 ω̇z

⎤⎦ (10.39)

The first two Newton equations (10.38) and the third Euler equation
(10.39) are the only nonzero equations that make up the set of equations
of motion (10.26)-(10.28) for the planar rigid vehicle.
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Example 377 Rigid vehicle and Lagrange method.
The kinetic energy of a rigid vehicle in a planar motion is,

K =
1

2
GvTB mGvB +

1

2
Gω

T
B

GI GωB

=
1

2

⎡⎣ vX
vY
0

⎤⎦T m

⎡⎣ vX
vY
0

⎤⎦+ 1
2

⎡⎣ 0
0
ωZ

⎤⎦T GI

⎡⎣ 0
0
ωZ

⎤⎦
=

1

2
mv2X +

1

2
mv2Y +

1

2
I3ω

2
Z

=
1

2
m
³
Ẋ2 + Ẏ 2

´
+
1

2
Iz ψ̇

2
(10.40)

where,

GI = GRB
BI GRT

B

=

⎡⎣ cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤⎦⎡⎣ I1 0 0
0 I2 0
0 0 I3

⎤⎦⎡⎣ cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤⎦T

=

⎡⎣ I1 cos
2 ψ + I2 sin

2 ψ (I1 − I2) sinψ cosψ 0
(I1 − I2) sinψ cosψ I2 cos

2 ψ + I1 sin
2 ψ 0

0 0 I3

⎤⎦ (10.41)

and

GvB =

⎡⎣ vX
vY
0

⎤⎦ =
⎡⎣ Ẋ

Ẏ
0

⎤⎦ (10.42)

GωB =

⎡⎣ 0
0
ωZ

⎤⎦ =
⎡⎣ 0
0
r

⎤⎦ =
⎡⎣ 0
0

ψ̇

⎤⎦ . (10.43)

The resultant external force system are:

GFC =

⎡⎣ FX
FY
0

⎤⎦ (10.44)

GMC =

⎡⎣ 0
0

MZ

⎤⎦ . (10.45)

Applying the Lagrange method

d

dt

µ
∂K

∂q̇i

¶
− ∂K

∂qi
= Fi i = 1, 2, · · ·n (10.46)
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and using the coordinates X, Y , and ψ for qi, generates the following equa-
tions of motion in the global coordinate frame:

m
d

dt
Ẋ = FX (10.47)

m
d

dt
Ẏ = FY (10.48)

Iz
d

dt
ψ̇ = MZ (10.49)

Example 378 Transforming to the body coordinate frame.
We may find the rigid vehicle’s equations of motion in the body coordinate

frame by expressing the global equations of motion (10.47)-(10.49) in the
vehicle’s body coordinate B, using the transformation matrix GRB.

GRB =

⎡⎣ cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤⎦ (10.50)

The velocity vector is equal to

GvC = GRB
BvC (10.51)⎡⎣ vX

vY
0

⎤⎦ =

⎡⎣ cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤⎦⎡⎣ vx
vy
0

⎤⎦
=

⎡⎣ vx cosψ − vy sinψ
vy cosψ + vx sinψ

0

⎤⎦ (10.52)

and therefore, the global acceleration components are

⎡⎣ v̇X
v̇Y
0

⎤⎦ =
⎡⎢⎢⎢⎢⎣
³
v̇x − ψ̇ vy

´
cosψ −

³
v̇y + ψ̇ vx

´
sinψ³

v̇y + ψ̇ vx

´
cosψ +

³
v̇x − ψ̇ vy

´
sinψ

0

⎤⎥⎥⎥⎥⎦ . (10.53)

The global Newton’s equation of motion is

GFC = m Gv̇C

and the force vector transformation is

GFC =
GRB

BFC (10.54)

therefore, the body coordinate expression for the equations of motion is

BFC = GRT
B

GFC

= mGRT
B

Gv̇C . (10.55)
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Substituting the associated vectors generates the Newton equations of mo-
tion in the body coordinate frame.

⎡⎣ Fx
Fy
0

⎤⎦ = mGRT
B

⎡⎢⎢⎢⎢⎣
³
v̇x − ψ̇ vy

´
cosψ −

³
v̇y + ψ̇ vx

´
sinψ³

v̇y + ψ̇ vx

´
cosψ +

³
v̇x − ψ̇ vy

´
sinψ

0

⎤⎥⎥⎥⎥⎦
= m

⎡⎣ v̇x − ψ̇ vy
v̇y + ψ̇ vx

0

⎤⎦ (10.56)

Applying the same procedure for moment transformation,

GMC = GRB
BMC⎡⎣ 0

0
MZ

⎤⎦ =

⎡⎣ cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤⎦⎡⎣ 0
0
Mz

⎤⎦
=

⎡⎣ 0
0
Mz

⎤⎦ (10.57)

we find the Euler equation in the body coordinate frame.

Mz = ω̇z Iz (10.58)

Example 379 Vehicle path.
When we find the translational and rotational velocities of a rigid vehicle,

vx, vy, r, we may find the path of motion for the vehicle by integration.

ψ = ψ0 +

Z
r dt (10.59)

x =

Z
(vx cosψ − vy sinψ) dt (10.60)

y =

Z
(vx sinψ + vy cosψ) dt (10.61)

Example 380 F Equations of motion using principal method.
The equations of motion for a rigid vehicle in a planar motion may also

be found by principle of differential calculus. Consider a vehicle at time
t = 0 that has a lateral velocity vy, a yaw rate r, and a forward velocity
vx. The longitudinal x-axis makes angle ψ with a fixed X-axis as shown
in Figure 10.7. Point P (x, y) indicates a general point of the vehicle. The
velocity components of point P are

vPx = vx − y r (10.62)

vPy = vy + x r (10.63)
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FIGURE 10.7. A vehicle at time t = 0 and t = dt moving with a lateral velocity
vy, a yaw rate r, and a forward velocity vx at a heading angle ψ.

because

BvP = BvC +
B
GωB × BrP

=

⎡⎣ vx
vy
0

⎤⎦+
⎡⎣ 0
0
r

⎤⎦×
⎡⎣ x

y
0

⎤⎦ . (10.64)

After an increment of time, at t = dt, the vehicle has moved to a new
position. The velocity components of point P at the second position are

v0Px = (vx + dvx)− y (r + dr) (10.65)

v0Py = (vy + dvy) + x (r + dr) . (10.66)

However,

vPx + dvPx = v0Px cos dψ − v0Py sin dψ (10.67)

vPy + dvPy = v0Px sin dψ + v0Py cos dψ. (10.68)

and therefore,

dvPx = [(vx + dvx)− y (r + dr)] cos dψ

− [(vy + dvy) + x (r + dr)] sin dψ − (vx − y r) (10.69)

dvPy = [(vx + dvx)− y (r + dr)] sin dψ

+ [(vy + dvy) + x (r + dr)] cos dψ − (vy + x r) . (10.70)
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We simplify Equations (10.69) and (10.70) and divide them by dt.

dvPx
dt

=
1

dt
([dvx − y dr] cos dψ)

− 1
dt
([(vy + dvy) + x (r + dr)] sin dψ) (10.71)

dvPy
dt

=
1

dt
([dvy + xdr] cos dψ)

+
1

dt
([(vx + dvx)− y (r + dr)] sin dψ) . (10.72)

When dt → 0, then sin dψ → ψ and cos dψ → 1, and we may substitute
ψ̇ = r to get the acceleration components of point P .

v̇Px = aPx = v̇x − vy r − y ṙ + x r2 (10.73)

v̇Py = aPy = v̇y + vx r + x ṙ − y r2 (10.74)

Let’s assume point P has a small mass dm. Multiplying dm by the accel-
eration components of point P and integrating over the whole rigid vehicle
must be equal to the applied external force system.

Fx =

Z
m

aPx dm (10.75)

Fy =

Z
m

aPy dm (10.76)

Mz =

Z
m

(xaPy − y aPx) dm (10.77)

Substituting for accelerations and assuming the body coordinate frame is
the principal frame at the mass center C, we find

Fx =

Z
m

¡
v̇x − vy r − y ṙ + x r2

¢
dm

= m (v̇x − vy r)− ṙ

Z
m

y dm+ r2
Z
m

x dm

= m (v̇x − vy r) (10.78)

Fy =

Z
m

¡
v̇y + vx r + x ṙ − y r2

¢
dm

= m (v̇y + vx r) + ṙ

Z
m

xdm− r2
Z
m

y dm

= m (v̇y + vx r) (10.79)
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Mz =

Z
m

¡
x
¡
v̇y + vx r + x ṙ − y r2

¢
− y

¡
v̇x − vy r − y ṙ + x r2

¢¢
dm

= ṙ

Z
m

¡
x2 + y2

¢
dm+ (v̇y + vx r)

Z
m

x dm

− (v̇x − vy r)

Z
m

y dm− 2r2
Z
m

xy dm

= Iz ṙ (10.80)

because for a principal coordinate frame we haveZ
m

xdm = 0 (10.81)Z
m

y dm = 0 (10.82)Z
m

xy dm = 0. (10.83)

10.3 Force System Acting on a Rigid Vehicle

To determine the force system on a rigid vehicle, first we define the force
system at the tireprint of a wheel. The lateral force at the tireprint depends
on the sideslip angle. Then, we transform and apply the tire force system
on the body of the vehicle.

10.3.1 Tire Force and Body Force Systems

Figure 10.8 depicts wheel number 1 of a vehicle. The components of the
force system in the xy-plane applied on a rigid vehicle, because of the
generated forces at the tireprint of the wheel number i, are

Fxi = Fxwi cos δi − Fywi sin δi (10.84)

Fyi = Fywi cos δi + Fxwi sin δi (10.85)

Mzi = Mzwi
+ xiFyi − yiFxi . (10.86)

Therefore, the total planar force system on the rigid vehicle in the body
coordinate frame is

BFx =
X
i

Fxi

=
X
i

Fxw cos δi −
X
i

Fyw sin δi (10.87)
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FIGURE 10.8. The force system at the tireprint of tire number 1.

BFy =
X
i

Fyi

=
X
i

Fyw cos δi +
X
i

Fxw sin δi (10.88)

BMz =
X
i

Mzi +
X
i

xiFyi −
X
i

yiFxi . (10.89)

Proof. The coordinate frame of the wheel is a local coordinate called the
wheel frame shown by T (xw, yw, zw) or Bw. For simplicity, we ignore the
difference between the tire frame at the center of tireprint and wheel frame
at the wheel center. The force system generated at the tireprint in the
wheel frame is

BwFw = Fxw ı̂1 + Fyw ĵ1 (10.90)
BwMw = Mzw k̂1 (10.91)

where

Fxw = Fxw1 − Fr1 cosα (10.92)

Fyw = Fyw1 − Fr1 sinα (10.93)

Mzw = Mzw1
(10.94)

The wheel force in the xw-direction, Fxw , is a combination of the longitu-
dinal force Fxw1 , defined by (3.96) or (4.59), and the tire roll resistance Fr1
defined in (3.64). The wheel force in the yw-direction, Fyw , is a combina-
tion of the lateral force Fyw1 defined by (3.130) and (3.153), and the tire
roll resistance Fr1 defined in (3.64). The wheel moment in the zw-direction,
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Mzw , is a combination of the aligning momentMzw1
defined by (3.133) and

(3.160).
The rotation matrix between the wheel frame Bw and the wheel-body

coordinate frame B1, parallel to the vehicle coordinate frame B, is

B1RBw =

∙
cos δ1 − sin δ1
sin δ1 cos δ1

¸
(10.95)

and therefore, the force system at the tireprint of the wheel, parallel to the
vehicle coordinate frame, is

B1Fw = BRBw
BwFw∙

Fx1
Fy1

¸
=

∙
cos δ1 − sin δ1
sin δ1 cos δ1

¸ ∙
Fxw
Fyw

¸
=

∙
Fxw cos δ1 − Fyw sin δ1
Fyw cos δ1 + Fxw sin δ1

¸
(10.96)

B1Mw = B1RBw
BwMw

Mz1 = Mzw . (10.97)

Transforming the force system of each tire to the body coordinate frame
B, located at the body mass center C, generates the total force system
applied on the vehicle

BF =
X
i

Fxi ı̂+
X
i

Fyi ĵ (10.98)

BM =
X
i

Mzi k̂ +
X
i

Bri × BFwi (10.99)

where, Bri is the position vector of the wheel number i.

Bri = xiı̂+ yiĵ+ zik̂ (10.100)

Expanding Equations (10.98) and (10.99) provides the total planar force
system.

BFx =
X
i

Fxw cos δi −
X
i

Fyw sin δi (10.101)

BFy =
X
i

Fyw cos δi +
X
i

Fxw sin δi (10.102)

BMz =
X
i

Mzi +
X
i

xiFyi −
X
i

yiFxi (10.103)
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FIGURE 10.9. Angular orientation of a moving tire along the velocity vector v
at a sideslip angle α and a steer angle δ.

10.3.2 Tire Lateral Force

Figure 10.9(a) illustrates a tire, moving along the velocity vector v at a
sideslip angle α. The tire is steered by the steer angle δ. If the angle between
the velocity vector v and the vehicle x-axis is shown by β, then

α = β − δ. (10.104)

The lateral force, generated by a tire, is dependent on sideslip angle α that
is proportional to the sideslip for small α.

Fy = −Cα α

= −Cα (β − δ) (10.105)

Proof. A tire coordinate frame Bw(xw, yw) is attached to the tire at the
center of tireprint as shown in Figure 10.9(a). The orientation of the tire
frame is measured with respect to another coordinate frame, parallel to
the vehicle frame B(x, y). The angle between the x and xw axes is the tire
steer angle δ, measured about the z-axis. The tire is moving along the tire
velocity vector v. The angle between the xw-axis and v is the sideslip angle
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α, and the angle between the body x-axis is the global sideslip angle β. The
angles α, β, and δ in Figure 10.9(a) are positive. The Figure shows that

α = β − δ. (10.106)

Practically, when a steered tire is moving forward, the relationship be-
tween the angles α, β, and δ are such that the velocity vector sits between
the x and xw axes. A practical situation is shown in Figure 10.9(b). A steer
angle will turn the heading of the tire by a δ angle. However, because of
tire flexibility, the velocity vector of the tire is lazier than the heading and
turns by a β angle, where β < δ. So, a positive steer angle generates a
negative sideslip angle. Analysis of Figure 10.9(b) and using the definition
for positive direction of the angles, shows that under a practical situation
we have the same relation (10.104).
According to (3.131), the existence of a sideslip angle is sufficient to

generate a lateral force Fy, which is proportional to α when the angle is
small.

Fy = −Cα α (10.107)

10.3.3 Two-wheel Model and Body Force Components

Figure 10.10 illustrates the forces in the xy-plane acting at the tireprints of
a front-wheel-steering four-wheel vehicle. When we ignore the roll motion
of the vehicle, the xy-plane remains parallel to the road’s XY -plane, and
we may use a two-wheel model for the vehicle. Figure 10.11 illustrates a
two-wheel model for a vehicle with no roll motion. The two-wheel model
is also called a bicycle model, although a two-wheel model does not act
similar to a bicycle.
The force system applied on a two-wheel vehicle, in which only the front

wheel is steerable, is

Fx = Fxf cos δ + Fxr − Fyf sin δ (10.108)

Fy = Fyf cos δ + Fyr + Fxf sin δ (10.109)

Mz = a1Fyf − a2Fyr (10.110)

where,
¡
Fxf , Fxr

¢
and

¡
Fyf , Fyr

¢
are the planar forces on the tireprint of

the front and rear wheels. The force system may be approximated by the
following equations, if the steer angle δ is assumed small:

Fx ≈ Fxf + Fxr (10.111)

Fy ≈ Fyf + Fyr (10.112)

Mz ≈ a1Fyf − a2Fyr (10.113)
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FIGURE 10.10. A front-wheel-steering four-wheel vehicle and the forces in the
xy-plane acting at the trireprints.

The vehicle lateral force Fy and momentMz depend on only the front and
rear wheels’ lateral forces Fyf and Fyr , which are functions of the wheels
sideslip angles αf and αr. They can be approximated by the following
equations:

Fy =

µ
−a1
vx

Cαf +
a2
vx

Cαr

¶
r − (Cαf + Cαr)β + Cαfδ (10.114)

Mz =

µ
−a

2
1

vx
Cαf −

a22
vx

Cαr

¶
r − (a1Cαf − a2Cαr)β + a1Cαfδ (10.115)

where Cαf = CαfL+CαfR and Cαr = CαrL+CαrR are equal to the sideslip
coefficients of the left and right wheels in front and rear, respectively.

Cαf = CαfL + CαfR (10.116)

Cαr = CαrL + CαrR (10.117)

Proof. For the two-wheel vehicle, we use the cot-average (7.3) of the outer
and inner steer angles as the only steer angle δ.

cot δ =
cot δo + cot δi

2
(10.118)
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FIGURE 10.11. A two-wheel model for a vehicle moving with no roll.

Furthermore, we define a single sideslip coefficient Cαf and Cαr as (10.116)
and (10.117) for the front and rear wheels. The coefficient Cαf and Cαr are
equal to the sum of the left and right wheels’ sideslip coefficients.
Employing Equations (10.87)-(10.89) and ignoring the aligning moments

Mzi , the applied forces on the two-wheel vehicle are:

Fx = Fx1 cos δ1 + Fx2 cos δ2 − Fy1 sin δ1 − Fy2 sin δ2

= Fxf cos δ + Fxr − Fyf sin δ (10.119)

Fy = Fy1 cos δ1 + Fy2 cos δ2 + Fx1 sin δ1 + Fx2 sin δ2

= Fyf cos δ + Fyr + Fxf sin δ (10.120)

Mz = a1Fyf − a2Fyr (10.121)

The force equations can be approximated by the following equations, if we
assume δ small.

Fx ≈ Fxf + Fxr (10.122)

Fy ≈ Fyr + Fyr (10.123)

Mz ≈ a1Fyf − a2Fyr (10.124)

Assume the wheel number i of a rigid vehicle is located at (xi, yi) in the
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body coordinate frame. The velocity of the wheel number i is

Bvi =
Bv+ Bψ̇ × Bri (10.125)

in which Bri is the position vector of the wheel number i, Bv is the velocity
vector of the vehicle at its mass center C, and Bψ̇ = rk̂ is the yaw rate of
the vehicle. Expanding Equation (10.125) provides the following velocity
vector for the wheel number i expressed in the vehicle coordinate frame at
C. ⎡⎣ vxi

vyi
0

⎤⎦ =

⎡⎣ vx
vy
0

⎤⎦+
⎡⎣ 0
0

ψ̇

⎤⎦×
⎡⎣ xi

yi
0

⎤⎦
=

⎡⎣ vx − yi ψ̇

vy + xi ψ̇
0

⎤⎦ (10.126)

The global sideslip βi for the wheel i, is the angle between the wheel velocity
vector vi and the vehicle body x-axis.

βi = tan−1
µ
vyi
vxi

¶
(10.127)

= tan−1

Ã
vy + xi ψ̇

vx − yi ψ̇

!
(10.128)

If the wheel number i has a steer angle δi then, its local sideslip angle αi,
that generates a lateral force Fyw on the tire, is

αi = βi − δi

= tan−1

Ã
vy + xiψ̇

vx − yiψ̇

!
− δi. (10.129)

The global sideslip angles βi for the front and rear wheels of a two-wheel
vehicle, βf and βr, are

βf = tan−1
µ
vyf
vxf

¶
= tan−1

µ
vy + a1 r

vx

¶
(10.130)

βr = tan−1
µ
vyr
vxr

¶
= tan−1

µ
vy − a2 r

vx

¶
(10.131)
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and the vehicle sideslip angle β is

β = tan−1
µ
vy
vx

¶
. (10.132)

Assuming small angles for global sideslips βf , β, and βr, the local sideslip
angles for the front and rear wheels, αf and αr, may be approximated as

αf = βf − δ

=
1

vx
(vy + a1r)− δ

= β +
a1r

vx
− δ (10.133)

αr =
1

vx
(vy − a2r)

= β − a2r

vx
. (10.134)

When the sideslip angles are small, the associated lateral forces are

Fyf = −Cαf αf (10.135)

Fyr = −Cαr αr (10.136)

and therefore, the second and third equations of motion (10.112) and
(10.113) can be written as

Fy = Fyf + Fyr

= −Cαf αf − Cαr αr

= −Cαf

µ
1

vx
(vy + a1r)− δ

¶
− Cαr

µ
β − a2r

vx

¶
(10.137)

Mz = a1Fyf − a2Fyr
= −Cαf αf − Cαr αr

= −Cαf αf

µ
1

vx
(vy + a1r)− δ

¶
− Cαr αr

µ
β − a2r

vx

¶
(10.138)

which reduce to the force system

Fy =

µ
−a1
vx

Cαf +
a2
vx

Cαr

¶
r − (Cαf + Cαr)β + Cαfδ (10.139)

Mz =

µ
−a

2
1

vx
Cαf −

a22
vx

Cαr

¶
r − (a1Cαf − a2Cαr)β + a1Cαfδ. (10.140)

The parameters Cαf , Cαr are the sideslip stiffness for the front and rear
wheels, r is the yaw rate, δ is the steer angle, and β is the sideslip angle of
the vehicle.
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These equations are dependent on three parameters, r, β, δ, and may be
written as

Fy = Fy (r, β, δ)

=
∂Fy
∂r

r +
∂Fy
∂β

β +
∂Fy
∂δ

δ

= Cr r + Cβ β + Cδ δ (10.141)

Mz = Mz (r, β, δ)

=
∂Mz

∂r
r +

∂Mz

∂β
β +

∂Mz

∂δ
δ

= Dr r +Dβ β +Dδ δ (10.142)

where the force system coefficients are

Cr =
∂Fy
∂r

= −a1
vx

Cαf +
a2
vx

Cαr (10.143)

Cβ =
∂Fy
∂β

= − (Cαf + Cαr) (10.144)

Cδ =
∂Fy
∂δ

= Cαf (10.145)

Dr =
∂Mz

∂r
= −a

2
1

vx
Cαf −

a22
vx

Cαr (10.146)

Dβ =
∂Mz

∂β
= − (a1Cαf − a2Cαr) (10.147)

Dδ =
∂Mz

∂δ
= a1Cαf . (10.148)

The coefficients Cr, Cβ, Cδ, Dr, Dβ , and Dδ are slopes of the curves for lat-
eral force Fy and yaw moment Mz as a function of r, β, and δ respectively.

Example 381 Physical significance of the coefficients Cr, Cβ, Cδ, Dr,
Dβ, and Dδ.
Assuming a steady-state condition and constant values for r, β, δ, Cαf ,

and Cαr, the lateral force Fy and the yaw moment Mz can be written as a
superposition of three independent forces proportional to r, β, and δ.

Fy = Cr r + Cβ β + Cδ δ (10.149)

Mz = Dr r +Dβ β +Dδ δ (10.150)

Cr indicates the proportionality between the lateral force Fy and the yaw
rate r. The value of Cr decreases by increasing the forward velocity of the
vehicle, vx. The sign of Cr is the same as the sign of Dβ.
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Cβ indicates the proportionality between the lateral force Fy and the ve-
hicle sideslip angle β. It is the lateral stiffness for the whole vehicle and
acts similarly to the lateral stiffness of tires Cα. Cβ is always negative.
Cδ indicates the proportionality between the lateral force Fy and the steer

angle δ. Cδ is always negative and generates greater lateral force by increas-
ing the steer angle.
Dr indicates the proportionality between the yaw momentMz and the yaw

rate r. Dδ is a negative number and is called the yaw damping coefficient
because it always tries to reduce the yaw moment. The value of Dδ increases
with a21Cαf and a22Cαr and decreases with the forward velocity of the vehicle,
vx. When Cαf = Cαr, it is maximum if a1 = a2.
Dβ indicates the proportionality between the yaw momentMz and the ve-

hicle sideslip angle β. Dβ indicates the under/oversteer behavior and hence,
indicates the directional stability of a vehicle. If the rear wheel produces
greater moment than the front wheel, the vehicle is stable and tries to re-
duce the effect of β. A negative Dβ tries to align the vehicle with the velocity
vector.
Dδ indicates the proportionality between the yaw moment Mz and the

steer angle δ. Because δ is the input command to control the maneuvering
of a vehicle, Dδ is called the control moment coefficient. Dδ is a positive
number and increases with a1 and Cαf .

Example 382 F Load transfer effect and rigid vehicle assumption.
If a vehicle has more than three wheels, the normal forces acting on

the wheels, Fzi , are indeterminate. The normal force on each tire of a
symmetric vehicle is

Fz1 =
1

2
Fzf +∆Fz (10.151)

Fz2 =
1

2
Fzf −∆Fz (10.152)

Fz3 =
1

2
Fzr −∆Fz (10.153)

Fz4 =
1

2
Fzr +∆Fz (10.154)

where ∆Fz is a change in wheel load due to an asymmetric reason such as
the engine torque T .
The rigid vehicle assumption must be linked with the compliance suspen-

sions to keep road contact through road irregularities and any asymmetric
load transfer.
Load transfer also occurs because of acceleration, however, assuming a

linear relationship between the wheel load Fz and the cornering stiffness Cα

makes the two-wheel model valid, because any increase in cornering stiffness
for the more loaded wheel compensates for the decrease in the cornering
stiffness of the unloaded wheel. However, when the acceleration is high,
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FIGURE 10.12. A two-wheel model for a vehicle moving with no roll.

the load transfer is higher than the linear limit and Cα is a descending
nonlinear function of Fz. Hence, at high acceleration, the load transfer
causes a decrease in cornering stiffness.

Example 383 Kinematic steering of a two-wheel vehicle.
For the two-wheel vehicle shown in Figure 10.12, we use the cot-average

(7.3) of the outer and inner steer angles as the input steer angle,

cot δ =
cot δo + cot δi

2
. (10.155)

where,

tan δi =
l

R1 −
w

2

(10.156)

tan δo =
l

R1 +
w

2

. (10.157)

The radius of rotation R for the two-wheel vehicle is given by (7.2)

R =
q
a22 + l2 cot2 δ. (10.158)

and is measured at the mass center of the steered vehicle.
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10.4 Two-wheel Rigid Vehicle Dynamics

We can approximate the planar equations of motion (10.26)-(10.28) along
with (10.111)-(10.113) for a two-wheel rigid vehicle with no roll motion,
and express its motion by the following set of equations:

v̇x =
1

m
Fx + r vy (10.159)

=
1

m

¡
Fxf + Fxr

¢
+ r vy

∙
v̇y
ṙ

¸
=

⎡⎢⎢⎣
Cβ

mvx

Cr

m
− vx

Dβ

Izvx

Dr

Iz

⎤⎥⎥⎦∙ vy
r

¸
+

⎡⎢⎢⎣
Cδ

m

Dδ

Iz

⎤⎥⎥⎦ δ

=

⎡⎢⎢⎣ −Cαf + Cαr

mvx

−a1Cαf + a2Cαr

mvx
− vx

−a1Cαf − a2Cαr

Izvx
−a

2
1Cαf + a22Cαr

Izvx

⎤⎥⎥⎦∙ vy
r

¸

+

⎡⎢⎢⎣
Cαf

m

a1Cαf

Iz

⎤⎥⎥⎦ δ (10.160)

These sets of equations are good enough to analyze a vehicle that is
moving at a constant forward speed. Having v̇x = 0, the first equation
(10.159) becomes independent, and the lateral velocity vy and yaw rate r
of the vehicle will change according to the two coupled equations (10.160).
Assuming the steer angle δ is the input command, the lateral velocity vy

and the yaw rate r may be assumed as the output. Hence, we may consider
Equation (10.160) as a linear control system, and write them as

q̇ = [A]q+ u (10.161)

in which [A] is a coefficient matrix, q is the vector of control variables, and
u is the vector of inputs.

[A] =

⎡⎢⎢⎣ −Cαf + Cαr

mvx

−a1Cαf + a2Cαr

mvx
− vx

−a1Cαf − a2Cαr

Izvx
−a

2
1Cαf + a22Cαr

Izvx

⎤⎥⎥⎦
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q =

∙
vy
r

¸
(10.162)

u =

⎡⎢⎢⎣
Cαf

m

a1Cαf

Iz

⎤⎥⎥⎦ δ (10.163)

Proof. The Newton-Euler equations of motion for a rigid vehicle in the
local coordinate frame B, attached to the vehicle at its mass center C, are
given in Equations (10.26)—(10.28) as

Fx = mv̇x −mr vy (10.164)

Fy = mv̇y +mr vx (10.165)

Mz = ṙ Iz. (10.166)

The approximate force system applied on a two-wheel rigid vehicle is found
in Equations (10.111)—(10.113)

Fx ≈ Fxf + Fxr (10.167)

Fy ≈ Fyf + Fyr (10.168)

Mz ≈ a1Fyf − a2Fyr (10.169)

and in terms of tire characteristics, in (10.114) and (10.115).

Fx =
Tw
Rw

(10.170)

Fy =

µ
−a1
vx

Cαf +
a2
vx

Cαr

¶
r − (Cαf + Cαr)β + Cαfδ (10.171)

Mz =

µ
−a

2
1

vx
Cαf −

a22
vx

Cαr

¶
r − (a1Cαf − a2Cαr)β + a1Cαfδ (10.172)

Substituting (10.170)—(10.172) in (10.164)—(10.166) produces the follow-
ing equations of motion:

mv̇x −mr vy = Fx (10.173)

mv̇y +mr vx =

µ
−a1
vx

Cαf +
a2
vx

Cαr

¶
r

− (Cαf + Cαr)β + Cαfδ (10.174)

ṙ Iz =

µ
−a

2
1

vx
Cαf −

a22
vx

Cαr

¶
r

− (a1Cαf − a2Cαr)β + a1Cαfδ (10.175)

These equations can be transformed to a set of differential equations for
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vx, vy, and r.

v̇x =
Fx
m
+ r vy (10.176)

v̇y =
1

m

µ
−a1
vx

Cαf +
a2
vx

Cαr

¶
r

− 1
m
(Cαf + Cαr)β +

1

m
Cαfδ − r vx (10.177)

ṙ =
1

Iz

µ
−a

2
1

vx
Cαf −

a22
vx

Cαr

¶
r

− 1
Iz
(a1Cαf − a2Cαr)β +

1

Iz
a1Cαfδ. (10.178)

The vehicle sideslip angle can be substituted by vehicle velocity compo-
nents

β =
vy
vx

(10.179)

and we can find a new form for the equations.

v̇x =
Fx
m
+ r vy (10.180)

v̇y =
1

mvx
(−a1Cαf + a2Cαr) r

− 1

mvx
(Cαf + Cαr) vy +

1

m
Cαfδ − r vx (10.181)

ṙ =
1

Izvx

¡
−a21Cαf − a22Cαr

¢
r

− 1

Izvx
(a1Cαf − a2Cαr) vy +

1

Iz
a1Cαfδ. (10.182)

The first equation (10.180) depends on the yaw rate r and the lateral
velocity vy, which are the output of the second and third equations, (10.181)
and (10.182). However, if we assume the vehicle is moving with a constant
forward speed,

vx = cte. (10.183)

then Equation (10.180) becomes an algebraic equation and then Equations
(10.181) and (10.182) become independent with (10.180). So, the second
and third equations may be treated independently of the first one.
Equations (10.181) and (10.182) may be considered as two coupled differ-

ential equations describing the behavior of a dynamic system. The dynamic
system receives the steering angle δ as the input, and uses vx as a parameter
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to generate two outputs, vy and r.

∙
v̇y
ṙ

¸
=

⎡⎢⎢⎣ −Cαf + Cαr

mvx

−a1Cαf + a2Cαr

mvx
− vx

−a1Cαf − a2Cαr

Izvx
−a

2
1Cαf + a22Cαr

Izvx

⎤⎥⎥⎦∙ vy
r

¸

+

⎡⎢⎢⎣
Cαf

m

a1Cαf

Iz

⎤⎥⎥⎦ δ (10.184)

Equation (10.184) may be rearranged in the following form to show the
input-output relationship:

q̇ = [A]q+ u (10.185)

The vector q is called the control variables vector, and u is called the inputs
vector. The matrix [A] is the control variable coefficients matrix.
Employing the force system coefficients Cr, Cβ, Cδ, Dr, Dβ , and Dδ for

a front-wheel steering vehicle, we may write the set of Equations (10.184)
as ∙

v̇y
ṙ

¸
=

⎡⎢⎢⎣
Cβ

mvx

Cr

m
− vx

Dβ

Izvx

Dr

Iz

⎤⎥⎥⎦∙ vy
r

¸
+

⎡⎢⎢⎣
Cδ

m

Dδ

Iz

⎤⎥⎥⎦ δ. (10.186)

Example 384 Equations of motion based on kinematic angles.
The equations of motion (10.160) can be expressed based on only the

angles β, r, and δ, by employing (10.179).
Taking a time derivative from Equation (10.179) for constant vx

β̇ =
v̇y
vx

(10.187)

and substituting it in Equations (10.177) shows that we can transform the
equation for β̇ to:

vxβ̇ =
1

m

µ
−a1
vx

Cαf +
a2
vx

Cαr

¶
r

− 1
m
(Cαf + Cαr)β +

1

m
Cαfδ − r vx. (10.188)

Therefore, the set of equations of motion can be expressed in terms of the
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vehicle’s angular variables β, r, and δ.

∙
β̇
ṙ

¸
=

⎡⎢⎢⎣
−Cαf + Cαr

mvx

−a1Cαf + a2Cαr

mv2x
− 1

−a1Cαf − a2Cαr

Iz
−a

2
1Cαf + a22Cαr

Izvx

⎤⎥⎥⎦∙ β
r

¸

+

⎡⎢⎢⎣
Cαf

mvx

a1Cαf

Iz

⎤⎥⎥⎦ δ (10.189)

Employing the force system coefficients Cr, Cβ, Cδ, Dr, Dβ, and Dδ for a
front-wheel steering vehicle, we may write the set of Equations (10.189) as

∙
β̇
ṙ

¸
=

⎡⎢⎢⎣
Cβ

mvx

Cr

mvx
− 1

Dβ

Iz

Dr

Iz

⎤⎥⎥⎦∙ β
r

¸
+

⎡⎢⎢⎣
Cδ

mvx

Dδ

Iz

⎤⎥⎥⎦ δ. (10.190)

Example 385 Four-wheel-steering vehicles.
Consider a vehicle with steerable wheels in both the front and rear. Let’s

indicate the steer angle in the front and rear by δf and δr respectively. To
find the planar equations of motion we start from Equation (10.104) for
the relationship between α, β, and δ

α = β − δ (10.191)

and apply the equation to the front and rear wheels.

αf = βf − δf =
1

vx
(vy + a1r)− δf

= β +
a1r

vx
− δf (10.192)

αr = βr − δr =
1

vx
(vy − a2r)− δr

= β − a2r

vx
− δr (10.193)

When the sideslip angles are small, the associated lateral forces are

Fyf = −Cαf αf (10.194)

Fyr = −Cαr αr (10.195)
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Substituting these equations in the second and third equations of motion
(10.112) and (10.113) results in the force system

Fy = Fyf + Fyr

=

µ
−a1
vx

Cαf +
a2
vx

Cαr

¶
r

− (Cαf + Cαr)β + Cαfδf + Cαrδr (10.196)

Mz = a1Fyf − a2Fyr

=

µ
−a

2
1

vx
Cαf −

a22
vx

Cαr

¶
r

− (a1Cαf − a2Cαr)β + a1Cαfδf − a2Cαrδr. (10.197)

The Newton-Euler equations of motion for a rigid vehicle are given in
Equations (10.26)—(10.28) as

Fx = mv̇x −mr vy (10.198)

Fy = mv̇y +mr vx (10.199)

Mz = ṙ Iz. (10.200)

and therefore, the equations of motion for a four-wheel-steering vehicle are

mv̇x −mr vy = Fx (10.201)

mv̇y +mr vx =

µ
−a1
vx

Cαf +
a2
vx

Cαr

¶
r

− (Cαf + Cαr)β + Cαfδf + Cαrδr (10.202)

ṙ Iz =

µ
−a

2
1

vx
Cαf −

a22
vx

Cαr

¶
r

− (a1Cαf − a2Cαr)β + a1Cαfδf − a2Cαrδr. (10.203)

These equations can be transformed to a set of differential equations for vx,
vy, and r.

v̇x =
Fx
m
+ r vy (10.204)

v̇y =
1

m

µ
−a1
vx

Cαf +
a2
vx

Cαr

¶
r

− 1
m
(Cαf + Cαr)β +

1

m
Cαfδf +

1

m
Cαrδr − r vx (10.205)

ṙ =
1

Iz

µ
−a

2
1

vx
Cαf −

a22
vx

Cαr

¶
r

− 1
Iz
(a1Cαf − a2Cαr)β +

1

Iz
a1Cαfδf −

1

Iz
a2Cαrδr (10.206)
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Using the vehicle sideslip angle

β =
vy
vx

(10.207)

we may transform the equations to the following set of three coupled first
order ordinary differential equations:

v̇x =
Fx
m
+ r vy (10.208)

v̇y =
1

mvx
(−a1Cαf + a2Cαr) r

− 1

mvx
(Cαf + Cαr) vy +

1

m
Cαfδf +

1

m
Cαrδr − r vx (10.209)

ṙ =
1

Izvx

¡
−a21Cαf − a22Cαr

¢
r

− 1

Izvx
(a1Cαf − a2Cαr) vy +

1

Iz
a1Cαfδf −

1

Iz
a2Cαrδr (10.210)

The second and third equations may be cast in the following matrix form
for

£
vy r

¤T
:

∙
v̇y
ṙ

¸
=

⎡⎢⎢⎣ −Cαf + Cαr

mvx

−a1Cαf + a2Cαr

mvx
− vx

−a1Cαf − a2Cαr

Izvx
−a

2
1Cαf + a22Cαr

Izvx

⎤⎥⎥⎦∙ vy
r

¸

+

⎡⎢⎢⎣
1

m
Cαf

1

m
Cαr

1

Iz
a1Cαf − 1

Iz
a2Cαr

⎤⎥⎥⎦∙ δf
δr

¸
(10.211)

or to the following form for
£
β r

¤T
:

∙
β̇
ṙ

¸
=

⎡⎢⎢⎣
−Cαf + Cαr

mvx

−a1Cαf + a2Cαr

mv2x
− 1

−a1Cαf − a2Cαr

Iz
−a

2
1Cαf + a22Cαr

Izvx

⎤⎥⎥⎦∙ β
r

¸

+

⎡⎢⎢⎣
1

mvx
Cαf

1

mvx
Cαr

1

Iz
a1Cαf − 1

Iz
a2Cαr

⎤⎥⎥⎦∙ δf
δr

¸
(10.212)

For computerization of the equations of motion, it is better to write them
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as

∙
v̇y
ṙ

¸
=

⎡⎢⎢⎣
Cβ

mvx

Cr

m
− vx

Dβ

Izvx

Dr

Iz

⎤⎥⎥⎦∙ vy
r

¸
+

⎡⎢⎢⎢⎣
Cδf

m

Cδr

m

Dδf

Iz

Dδr

Iz

⎤⎥⎥⎥⎦ δ (10.213)

or

∙
β̇
ṙ

¸
=

⎡⎢⎢⎣
Cβ

mvx

Cr

mvx
− 1

Dβ

Iz

Dr

Iz

⎤⎥⎥⎦∙ β
r

¸
+

⎡⎢⎢⎢⎣
Cδf

mvx

Cδr

mvx

Dδf

Iz

Dδr

Iz

⎤⎥⎥⎥⎦ δ (10.214)

where

Cr =
∂Fy
∂r

= −a1
vx

Cαf +
a2
vx

Cαr (10.215)

Cβ =
∂Fy
∂β

= − (Cαf + Cαr) (10.216)

Cδf =
∂Fy
∂δf

= Cαf (10.217)

Cδr =
∂Fy
∂δr

= Cαr (10.218)

Dr =
∂Mz

∂r
= −a

2
1

vx
Cαf −

a22
vx

Cαr (10.219)

Dβ =
∂Mz

∂β
= − (a1Cαf − a2Cαr) (10.220)

Dδf =
∂Mz

∂δf
= a1Cαr (10.221)

Dδr =
∂Mz

∂δr
= −a2Cαr. (10.222)

Equation (10.211) may be rearranged in the following form to show the
input-output relationship:

q̇ = [A]q+ [B]u (10.223)

The vector q is called the control variables vector,

q =

∙
vy
r

¸
(10.224)

and u is called the inputs vector.

u =

∙
δf
δr

¸
(10.225)
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The matrix [A] is the control variable coefficients matrix and the matrix
[B] is the input coefficient matrix.
To double check, we may substitute δr = 0, and δf = δ to reduce Equa-

tions (10.211) to (10.184) for a front-wheel-steering vehicle.

Example 386 Rear-wheel-steering vehicle.
Rear wheel steering is frequently employed in lift trucks and construction

vehicles. The equations of motion for rear steering vehicles are similar to
those in front steering. To find the equations of motion, we substitute δf = 0
in Equations (10.211) to find these equations

∙
v̇y
ṙ

¸
=

⎡⎢⎢⎣ −Cαf + Cαr

mvx

−a1Cαf + a2Cαr

mvx
− vx

−a1Cαf − a2Cαr

Izvx
−a

2
1Cαf + a22Cαr

Izvx

⎤⎥⎥⎦∙ vy
r

¸

+

⎡⎢⎢⎣
1

m
Cαr

− 1
Iz
a2Cαr

⎤⎥⎥⎦ δr. (10.226)

These equations are valid as long as the angles are very small. However,
most of the rear steering construction vehicles work at a big steer angle.
Therefore, these equations cannot predict the behavior of the construction
vehicles very well.

Example 387 F Better model for two-wheel vehicles.
Because of the steer angle, a reaction moment appears at the tireprints

of the front and rear wheels, which act as external moments M1 and M2

on the wheels. So the total steering reaction moment on the front and rear
wheels are

M1 ≈ 2DδfMz (10.227)

M2 ≈ 2DδrMz (10.228)

where

Dδf =
dMz

dδf
(10.229)

Dδr =
dMz

dδr
. (10.230)

Figure 10.13 illustrates a two-wheel vehicle model. The force system on the
vehicle is

Fx ≈ Fxf + Fxr (10.231)

Fy ≈ Fyf + Fyr (10.232)

Mz ≈ a1Fyf − a2Fyr +M1 +M2. (10.233)
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FIGURE 10.13. A two-wheel vehicle and its force system, including the steer
moment reactions.

Example 388 F The race care 180 deg quick turn from reverse.
You have seen that race car drivers can turn a 180 deg quickly when

the car is moving backward. Here is how they do this. The driver moves
backward when the car is in reverse gear. To make a fast 180 deg turn
without stopping, the driver may follow these steps: 1− The driver should
push the gas pedal to gain enough speed, 2− free the gas pedal and put the
gear in neutral, 3− cut the steering wheel sharply around 90 deg, 4− change
the gear to drive, and 5− push the gas pedal and return the steering wheel
to 0 deg after the car has completed the 180 deg turn.
The backward speed before step 2 may be around 20m/ s ≈ 70 km/h ≈

45mi/h. Steps 2 to 4 should be done fast and almost simultaneously. Figure
10.14(a) illustrates the 180 deg fast turning maneuver from reverse.
This example should never be performed by the reader of this book.

Example 389 F The race care 180 deg quick turn from forward.
You have seen that race car drivers can turn a 180 deg quickly when the

car is moving forward. Here is how they do this. The driver moves forward
when the car is in drive or a forward gear. To make a fast 180 deg turn
without stopping, the driver may follow these steps: 1− The driver should
push the gas pedal to gain enough speed, 2− free the gas pedal and put
the gear in neutral, 3− cut the steering wheel sharply around 90 deg while
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FIGURE 10.14. (a)- A 180 deg, fast turning maneuver from reverse. (b)- A
180deg, fast turning maneuver from forward.
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you pull hard the hand brake, 4− while the rear swings around, return
the steering wheel to 0 deg and put the gear into drive, and 5− push the
gas pedal after the car has completed the 180 deg turn. Figure 10.14(b)
illustrates this maneuver.
The forward speed before step 2 may be around 20m/ s ≈ 70 km/h ≈

45mi/h. Steps 2 to 4 should be done fast and almost simultaneously. The
180 deg fast turning from forward is more difficult than backward and can
be done because the hand brakes are connected to the rear wheels. It can be
done better when the rear of a car is lighter than the front to slides easier.
Road condition, nonuniform friction, slippery surface can cause flipping the
car and spinning out of control.
This example should never be performed by the reader of this book.

10.5 Steady-State Turning

The turning of a front-wheel-steering, two-wheel rigid vehicle at its steady-
state condition is governed by the following equations:

Fx = −mr vy (10.234)

Cr r + Cβ β + Cδ δ = mr vx (10.235)

Dr r +Dβ β +Dδ δ = 0 (10.236)

or equivalently, by the following equations:

Fx = −m
R
vx vy (10.237)

Cβ β +
¡
Cr vx −mv2x

¢ 1
R

= −Cδ δ (10.238)

Dβ β +Dr vx
1

R
= −Dδ δ. (10.239)

The first equation determines the required forward force to keep vx con-
stant. The second and third equations show the steady-state values of the
output variables, vehicle slip angle β, and path curvature κ,

κ =
1

R
(10.240)

=
r

vx
(10.241)

for a constant steering input δ at a constant forward speed vx. The output-
input relationships are defined by the following responses:
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1− Curvature response, Sκ

Sκ =
κ

δ

=
1

Rδ

=
CδDβ − CβDδ

vx (DrCβ − CrDβ +mvxDβ)
(10.242)

2− Sideslip response, Sβ

Sβ =
β

δ

=
Dδ (Cr −mvx)−DrCδ

DrCβ − CrDβ +mvxDβ
(10.243)

3− Yaw rate response, Sr

Sr =
r

δ

=
κ

δ
vx

= Sκvx

=
CδDβ − CβDδ

DrCβ − CrDβ +mvxDβ
(10.244)

4− Lateral acceleration response, Sa

Sa =
v2x/R

δ

=
κ

δ
v2x

= Sκv
2
x

=
(CδDβ − CβDδ) vx

DrCβ − CrDβ +mvxDβ
(10.245)

Proof. In steady-state conditions, all the variables are constant, and hence,
their derivatives are zero. Therefore, the equations of motion (10.173)—
(10.175) reduce to

Fx = −mr vy (10.246)

Fy = mr vx (10.247)

Mz = 0 (10.248)

where the lateral force Fy and yaw momentMz from (10.141) and (10.142)
are

Fy = Cr r + Cβ β + Cδ δ (10.249)

Mz = Dr r +Dβ β +Dδ δ. (10.250)
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Therefore, the equations describing the steady-state turning of a two-wheel
rigid vehicle are equal to

Fx = −mr vy (10.251)

Cr r + Cβ β + Cδ δ = mr vx (10.252)

Dr r +Dβ β +Dδ δ = 0. (10.253)

At steady-state turning, the vehicle will move on a circle with radius R at
a speed vx and angular velocity r, so

vx = Rr. (10.254)

Substituting (10.254) in Equations (10.251)-(10.253) shows that we may
write the equations as (10.237)-(10.239). Equation (10.237) may be used to
calculate the required traction force to keep the motion steady. However,
Equations (10.238) and (10.239) can be used to determine the steady-state
responses of the vehicle. We use the curvature definition (10.240) and write
the equations in matrix form∙

Cβ Cr vx −mv2x
Dβ Dr vx

¸ ∙
β
κ

¸
=

∙
−Cδ

−Dδ

¸
δ. (10.255)

Solving the equations for β and κ shows that∙
β
κ

¸
=

∙
Cβ Cr vx −mv2x
Dβ Dr vx

¸−1 ∙ −Cδ

−Dδ

¸
δ

=

⎡⎢⎢⎢⎢⎣
Dδ (Cr −mvx)−DrCδ

DrCβ − CrDβ +mvxDβ

CδDβ − CβDδ

vx (DrCβ − CrDβ +mvxDβ)

⎤⎥⎥⎥⎥⎦ δ. (10.256)

Using the solutions in (10.256) and Equation (10.254), we are able to define
different output-input relationships as (10.242)-(10.245).

Example 390 Force system coefficients for a car.
Consider a front-wheel-steering, four-wheel-car with the following char-

acteristics.
CαfL = CαfR = 500N/deg

≈ 112.4 lb/deg
≈ 28648N/ rad
≈ 6440 lb/ rad

(10.257)

CαrL = CαrR = 460N/deg
≈ 103.4 lb/deg
≈ 26356N/ rad
≈ 5924.4 lb/ rad

(10.258)
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mg = 9000N ≈ 2023 lb (10.259)

m = 917 kg ≈ 62.8 slug (10.260)

Iz = 1128 kgm2 ≈ 832 slug ft2 (10.261)

a1 = 91 cm ≈ 2.98 ft (10.262)

a2 = 164 cm ≈ 5.38 ft (10.263)

The sideslip coefficient of an equivalent bicycle model are

Cαf = CαfL + CαfR = 57296N/ rad (10.264)

Cαr = CαrL + CαrR = 52712N/ rad. (10.265)

The force system coefficients Cr, Cβ, Cδ, Dr, Dβ, and Dδ are then equal
to the following if vx is measured in [m/ s].

Cr = −a1
vx

Cαf +
a2
vx

Cαr =
34308

vx
Ns/ rad (10.266)

Cβ = − (Cαf + Cαr) = −1.1001× 105N/ rad (10.267)

Cδ = Cαf = 57296N/ rad (10.268)

Dr = −a
2
1

vx
Cαf −

a22
vx

Cαr = −
1.8922× 105

vx
Nms/ rad (10.269)

Dβ = − (a1Cαf − a2Cαr) = 34308Nm/ rad (10.270)

Dδ = a1Cαf = 52139Nm/ rad. (10.271)

The coefficients Cr and Dr are functions of the forward speed vx. As an
example Cr and Dr at

vx = 10m/ s = 36 km/h (10.272)

≈ 32.81 ft/ s ≈ 22.37mi/h

are

Cr = 3430.8N s/ rad (10.273)

Dr = −18922Nms/ rad (10.274)

and at

vx = 30m/ s = 108 km/h (10.275)

≈ 98.43 ft/ s ≈ 67.11mi/h

are

Cr = 1143.6N s/ rad (10.276)

Dr = −6307.3Nms/ rad. (10.277)
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Example 391 Steady state responses and forward velocity.
The steady-state responses are function of the forward velocity of a vehi-

cle. To visualize how these steady-state parameters vary when the speed of
a vehicle increases, we calculate Sκ, Sβ, Sr, and Sa for a vehicle with the
following values.

CαfL = CαfR ≈ 3000N/ rad (10.278)

CαrL = CαrR ≈ 3000N/ rad (10.279)

m = 1000 kg (10.280)

Iz = 1650 kgm2 (10.281)

a1 = 1.0m (10.282)

a2 = 1.5m (10.283)

Sκ =
0.9× 1010

vx(
2.25× 1010

vx
+ 3× 107vx)

(10.284)

Sβ =

1.35× 1010
vx

− 6× 107vx
2.25× 1010

vx
+ 3× 107vx

(10.285)

Sr = Sκvx =
0.9× 1010

2.25× 1010
vx

+ 3× 107vx)
(10.286)

Sa = Sκv
2
x =

0.9× 1010vx
2.25× 1010

vx
+ 3× 107vx)

(10.287)

Figures 10.15-10.18 illustrates how the steady-states vary by increasing the
forward velocity.

Example 392 Under steering, over steering, neutral steering.
Curvature response Sκ indicates how the radius of turning will change

with a change in steer angle. Sκ can be expressed as

Sκ =
κ

δ
=
1/R

δ
=
1

l

1

1 +Kv2x
(10.288)

K =
m

l2

µ
a2
Cαf

− a1
Cαr

¶
(10.289)

where K is called the stability factor. It determine that the vehicle is

1− Understeer if K > 0
2−Neutral if K = 0
3−Oversteer if K < 0.

(10.290)
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/1 RSκ =
δ

[ ]/xv m s

FIGURE 10.15. Curvature response, Sκ, as a function of forward velocity vx.

Sβ
β

=
δ

[ ]/xv m s

FIGURE 10.16. Sideslip response, Sβ , as a function of forward velocity vx.



626 10. Vehicle Planar Dynamics

r
rS =
δ

[ ]/xv m s

FIGURE 10.17. Yaw rate response, Sr, as a function of forward velocity vx.

/2
x

a
v RS =

δ

[ ]/xv m s

FIGURE 10.18. Lateral acceleration response, Sa, as a function of forward veloc-
ity vx.
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To find K we may rewrite Sκ as

Sκ =
κ

δ
=
1/R

δ
=

CδDβ − CβDδ

vx (DrCβ − CrDβ +mvxDβ)

=
1

vx

µ
DrCβ − CrDβ

CδDβ − CβDδ
+

mvxDβ

CδDβ − CβDδ

¶
=

1

l +
mv2xDβ

CδDβ − CβDδ

=
1

l

1

1 +
m

l

Dβ

CδDβ − CβDδ
v2x

=
1

l

1

1 +Kv2x
. (10.291)

Therefore,

K =
m

l

Dβ

CδDβ − CβDδ
(10.292)

which, after substituting the force system coefficients, K will be equal to

K =
m

l2

µ
a2
Cαf

− a1
Cαr

¶
. (10.293)

The sign of stability factor K determines if Sκ is an increasing or decreasing
function of velocity vx. The sign of K depends on the weight of a2

Cαf
and

a1
Cαr

, which are dependent on the position of mass center a1, a2, and sideslip
coefficients of the front and rear wheels Cαf , Cαr.
If K > 0 and

a2
Cαf

>
a1
Cαr

(10.294)

then Sκ =
κ
δ is a decreasing function of vx and hence, the curvature of

the path κ = 1/R decreases for a constant δ. Decreasing κ indicates that
the radius of the steady-state circle, R, increases by increasing speed vx. A
positive stability factor is desirable and a vehicle with K > 0 is stable and
is called understeer. We need to increase the steering angle if we increase
the speed of the vehicle, to keep the same turning circle if the vehicle is
understeer.
If K < 0 and

a2
Cαf

<
a1
Cαr

(10.295)

then Sκ = κ
δ is an increasing function of vx and hence, the curvature

of the path κ = 1/R increases for a constant δ. Increasing κ indicates
that the radius of the steady-state circle, R, decreases by increasing speed
vx. A negative stability factor is undesirable and a vehicle with K < 0 is
unstable and is called oversteer. We need to decrease the steering angle if
we increase the speed of the vehicle, to keep the same turning circle of an
oversteer vehicle.
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If K = 0 and
a2
Cαf

=
a1
Cαr

(10.296)

then Sκ =
κ
δ is not a function of vx and hence, the curvature of the path,

κ = 1/R remains constant for a constant δ. Having a constant κ indicates
that the radius of the steady-state circle, R, will not change by changing the
speed vx. A zero stability factor is neutral and a vehicle with K = 0 is on
the border of stability and is called a neutral steer. When driving a neutral
steer vehicle, we do not need to change the steering angle if we increase or
decrease the speed of the vehicle, to keep the same turning circle.
As an example, consider a car with the following characteristics:

Cαf = 57296N/ rad (10.297)

Cαr = 52712N/ rad (10.298)

m = 917 kg ≈ 62.8 slug (10.299)

a1 = 91 cm ≈ 2.98 ft (10.300)

a2 = 164 cm ≈ 5.38 ft (10.301)

This car has a stability factor K and a curvature response Sκ equal to

K =
m

l2

µ
a2
Cαf

− a1
Cαr

¶
= 1.602× 10−3 (10.302)

Sκ =
1

l

1

1 +Kv2x
=

0.392 16

1 + 1.602× 10−3v2x
. (10.303)

Now assume we fill the trunk and change the car’s characteristics to a new
set.

m = 1400 kg ≈ 95.9 slug (10.304)

a1 = 125 cm ≈ 4.1 ft (10.305)

a2 = 130 cm ≈ 4.26 ft (10.306)

The new stability factor K and curvature response Sκ are

K = −2.21× 10−4 (10.307)

Sκ = − 0.392 16

2.21× 10−4v2x − 1
. (10.308)

Figure 10.19 compares the curvature response Sκ for two situations of a
neutral steering. We assumed that increasing weight did not change the tire
characteristics, and we kept same sideslip coefficients.

Example 393 Critical speed vc.
If K < 0 then Sκ =

κ
δ =

1
l

1
1+Kv2x

increases with increasing vx. The
steering angle must be decreased to maintain a constant radius path. When
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[ ]/xv m s

Sκ

K 0>

K 0<

K 0=

FIGURE 10.19. Comarison of the curvature response Sκ for a car with
K = 1.602× 10−3, K = −2.21× 10−4, and K = 0.

the speed vx is equal to the following critical value

vc =

r
− 1
K

(10.309)

then
Sκ →∞ (10.310)

and any decrease in steering angle cannot keep the path. When vx = vc, the
curvature κ is not a function of steering angle δ, and any radius of rotation
is possible for a constant δ. The critical speed makes the system unstable.
Controlling an oversteer vehicle gets harder by vx → vc and becomes un-
controllable when vx = vc.
The critical speed of an oversteer car with the characteristics

Cαf = 57296N/ rad (10.311)

Cαr = 52712N/ rad (10.312)

m = 1400 kg ≈ 95.9 slug (10.313)

a1 = 125 cm ≈ 4.1 ft (10.314)

a2 = 130 cm ≈ 4.26 ft (10.315)

is

vc =

r
− 1
K
= 67.33m/ s (10.316)

because

K =
m

l2

µ
a2
Cαf

− a1
Cαr

¶
= −2.2059× 10−4. (10.317)
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Example 394 Neutral steer point.
The neutral steer point of a bicycle vehicle is the point along the lon-

gitudinal axis at which the mass center allows neutral steering. To find the
neutral steer point PN we defined a distance aN from the front axle to have
K = 0

l − aN
Cαf

− aN
Cαr

= 0 (10.318)

therefore,

aN =
Cαr

Cαf + Cαr
l. (10.319)

The neutral distance dN

dN = aN − a1 (10.320)

indicates how much the mass center can move to have neutral steering.
For example, the neutral steer point PN for a car with the characteristics

Cαf = 57296N/ rad (10.321)

Cαr = 52712N/ rad (10.322)

a1 = 91 cm ≈ 2.98 ft (10.323)

a2 = 164 cm ≈ 5.38 ft (10.324)

is at
aN = 1.2219m. (10.325)

Therefore, the mass center can move a distance dN forward and still have
an understeer car.

dN = aN − a1

≈ 31.2 cm (10.326)

Example 395 F Constant lateral force and steady-state response.
Consider a situation in which there is a constant lateral force Fy on

a vehicle and there is no steering angle. At steady-state conditions, the
following equations describe the motion of the vehicle.

Fy = mr vx (10.327)

Mz = 0 (10.328)

Fy = Cr r + Cβ β (10.329)

Mz = Dr r +Dβ β (10.330)

Equation (10.329) and (10.330) may be used to define these steady-state
responses

Sy1 =
κ

Fy
=
1/R

Fy
=

Dβ

vx (CrDβ − CβDr)
(10.331)
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Sy2 =
r

Fy
=

Dβ

CrDβ − CβDr
(10.332)

A constant lateral force can be a result of driving straight on a banked road,
or having a side wind. A nonzero lateral rotation response Sy1 indicates that
the vehicle will turn with δ = 0 and Fy 6= 0. The lateral rotation response
Sy1 may be transformed to the following equation to be a function of the
stability factor K:

Sy1 =
1

vx

µ
Cr − Cβ

Dr

Dβ

¶ =
a1Cαf − a2Cαr

vxCαfCαrl2

= − 1

vxl2

µ
a2
Cαf

− a1
Cαr

¶
= − 1

mvx
K (10.333)

To drain the rain and water from roads, we build the roads on flat ground,
a little banked from the center to the shoulder. Consider a moving car on
a straight banked road. There is a lateral gravitational force for the bank
angle θ

Fy = −mg sin θ

≈ −mgθ (10.334)

to pull the car downhill. If the car is an understeer and K > 0 then the car
will turn downhill, while an oversteer car with K < 0 will turn uphill.

Example 396 F SAE steering definition.
SAE steer definitions for under and oversteer behaviors are as follows:
US− A vehicle is understeer if the ratio of the steering wheel angle gradi-

ent to the overall steering ratio is greater than the Ackerman steer gradient.
OS− A vehicle is oversteer if the ratio of the steering wheel angle gradient

to the overall steering ratio is less than the Ackerman steer gradient.
AS− Ackerman steering gradient is

SA =
l

v2x
=

d (l/R)

d (v2x/R)
(10.335)

10.6 F Linearized Model for a Two-Wheel Vehicle

When the sideslip angle β is very small, the equations of motion of bicycle
reduce to the following set of equations:

Fx = mv̇ −mrvβ (10.336)

Fy = mv
³
r + β̇

´
+mβv̇ (10.337)

Mz = Iz ṙ (10.338)
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Fy = (−Cαf − Cαr)β +
1

v
(a2Cαr − a1Cαf ) r

+δfCαf + δrCαr (10.339)

Mz = (a2Cαr − a1Cαf )β −
1

v

¡
a21Cαf + a22Cαr

¢
r

+a1Cαfδf − a2Cαrδr. (10.340)

Although these equations are not linear, because of assumption β ¿ 1,
they are called linearized equations of motion.
When the speed of the vehicle is constant, then the equations are

Fx = −mrvβ (10.341)

Fy = mv
³
r + β̇

´
(10.342)

Mz = Iz ṙ. (10.343)

Proof. For a small sideslip, β, we may assume that,

vx = v cosβ ≈ v (10.344)

vy = v sinβ ≈ vβ. (10.345)

Therefore, the equations of motion (10.164)—(10.166) will be simplified to

Fx = mv̇x −mrvy

= mv̇ −mrvβ (10.346)

Fy = mv̇y +mrvx

= m
³
v̇β + vβ̇

´
+mrv (10.347)

Mz = ṙIz. (10.348)

Substitute v̇ = 0 for a constant velocity, and these equations will be equal
to (10.341)-(10.343).
The sideslip angle αf and αr can also be linearized to

αf = βf − δf

=
1

vx
(vy + a1r)− δf

= β +
a1r

v
− δf (10.349)

αr = βr − δr

=
1

vx
(vy − a2r)− δr

= β − a2r

v
− δr. (10.350)

The front and rear lateral forces are

Fyf = −Cαf αf (10.351)

Fyr = −Cαr αr (10.352)
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Substituting these equations in (10.346)-(10.348) and using the definitions

Fx ≈ Fxf + Fxr (10.353)

Fy ≈ Fyf + Fyr (10.354)

Mz ≈ a1Fyf − a2Fyr (10.355)

results in the force system

Fy = Fyf + Fyr

= (−Cαf − Cαr)β +
1

v
(a2Cαr − a1Cαf ) r

+δfCαf + δrCαr (10.356)

Mz = a1Fyf − a2Fyr

= (a2Cαr − a1Cαf )β −
1

v

¡
a21Cαf + a22Cαr

¢
r

+a1Cαfδf − a2Cαrδr (10.357)

Factorization can transform the force system to (10.339)-(10.340).

Example 397 F Front-wheel-steering and constant velocity.
In most cases, the front wheel is the only steerable wheel, hence δf = δ

and δr = 0. This simplifies the equations of motion for a front steering
vehicle at constant velocity to

Fx = −mrvβ (10.358)

mvβ̇ = (−Cαf − Cαr)β

+

µ
−1
v
(a1Cαf − a2Cαr)−mv

¶
r + Cαfδ (10.359)

Iz ṙ = (a2Cαr − a1Cαf )β

+

µ
−1
v

¡
Cαfa

2
1 + Cαra

2
2

¢¶
r + (a1Cαf ) δ. (10.360)

The second and third equations may be written in a matrix form for simpler
calculation.

∙
β̇
ṙ

¸
=

⎡⎢⎢⎣
− (Cαf + Cαr)

mv

a2Cαr − a1Cαf

mv2
− 1

a2Cαr − a1Cαf

Iz

−
¡
Cαfa

2
1 + Cαra

2
2

¢
vIz

⎤⎥⎥⎦∙ β
r

¸

+

⎡⎢⎢⎣
Cαf

mv

a1Cαf

Iz

⎤⎥⎥⎦ δ (10.361)
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Example 398 F Steady state conditions and a linearized system.
The equations of motion for a front steering, two-wheel model of four-

wheel vehicles are given in equation (10.361) for linearized angle β. At a
steady-state condition we have ∙

β̇
ṙ

¸
= 0 (10.362)

and therefore,

∙
β
r

¸
=

⎡⎢⎢⎣
−Cαf − Cαr

mv

a2Cαr − a1Cαf

mv2
− 1

a2Cαr − a1Cαf

Iz

−Cαfa
2
1 − Cαra

2
2

vIz

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

Cαf

mv
δ

a1Cαf

Iz
δ

⎤⎥⎥⎦

=

⎡⎢⎢⎢⎣
−
¡
a22Cαr + a1a2Cαr −mv2a1

¢
Cαfδ

CαfCαr (a1 + a2)
2 −mv2 (a1Cαf − a2Cαr)

− (a1 + a2) vCαfCαrδ

CαfCαr (a1 + a2)
2 −mv2 (a1Cαf − a2Cαr)

⎤⎥⎥⎥⎦ . (10.363)

Using Equation (10.363) we can define the following steady-state re-
sponses:
2− Sideslip response, Sβ

Sβ =
β

δ
=
−
¡
a22Cαr + a1a2Cαr −mv2a1

¢
Cαf

CαfCαrl2 −mv2 (a1Cαf − a2Cαr)
(10.364)

3− Yaw rate response, Sr

Sr =
r

δ
=

−CαfCαrlv

CαfCαrl2 −mv2 (a1Cαf − a2Cαr)
(10.365)

At steady-state conditions we have

r =
v

R
(10.366)

where R is the radius of the circular path of the vehicle. Employing Equation
(10.366) we are able to define two more steady-state responses as follows:
1− Curvature response, Sκ

Sκ =
κ

δ
=

1

Rδ
=

r

vδ
=
1

v
Sr

=
−lCαfCαr

CαfCαrl2 −mv2 (a1Cαf − a2Cαr)
(10.367)

4− Lateral acceleration response, Sa

Sa =
v2/R

δ
=

κ

δ
v2 = Sκv

2

=
−lCαfCαrv

2

CαfCαrl2 −mv2 (a1Cαf − a2Cαr)
(10.368)
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The above steady-state responses are comparable to the steady-states num-
bered 1 to 4 given in Equations (10.242)-(10.245) for a more general case.

Example 399 F Understeer and oversteer for a linearized model.
Employing the curvature response Sκ in Equation (10.367) we may define

Sκ =
κ

δ
=
1/R

δ
=

−lCαfCαr

CαfCαrl2 −mv2 (a1Cαf − a2Cαr)

=
1

l +
mv2 (a1Cαf − a2Cαr)

−lCαfCαr

=
1

l

1

1 +
mv2 (a1Cαf − a2Cαr)

−l2CαfCαr

=
1

l

1

1 +Kv2x
(10.369)

where

K =
m

l2

µ
a2
Cαf

− a1
Cαr

¶
. (10.370)

This K is the same as the stability factor given in Equation (10.293).
Therefore, the stability factor remains the same if we use the linearized
equations.

Example 400 F Source of nonlinearities.
There are three main reasons for nonlinearity in rigid vehicle equations of

motion: product of variables, trigonometric functions, and nonlinear nature
of forces. When the steer angle δ and sideslip angles αi and β are very
small, it is reasonable to ignore all kinds of nonlinearities. This is called
low angles condition driving, and is correct for low turn and normal
speed driving.

10.7 F Time Response

To analyze the time response of a vehicle and examine how the vehicle will
respond to a steering input, the following set of coupled ordinary differential
equations must be solved.

v̇x =
1

m
Fx + r vy (10.371)
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∙
v̇y
ṙ

¸
=

⎡⎢⎢⎣ −Cαf + Cαr

mvx

−a1Cαf + a2Cαr

mvx
− vx

−a1Cαf − a2Cαr

Izvx
−a

2
1Cαf + a22Cαr

Izvx

⎤⎥⎥⎦∙ vy
r

¸

+

⎡⎢⎢⎣
Cαf

m

a1Cαf

Iz

⎤⎥⎥⎦ δ (t) (10.372)

The answers to this set of equations to a given time dependent steer angle
are

vx = vx (t) (10.373)

vy = vy (t) (10.374)

r = r (t) . (10.375)

Such a solution is called time response or transient response.
Assuming a constant forward velocity, the first equation (10.371) simpli-

fies to
Fx = −mr vy (10.376)

and Equations (10.372) become independent from the first one. The set of
Equations (10.372) can be written in the following form:

q̇ = [A]q+ u (10.377)

in which [A] is a constant coefficient matrix, q is the vector of control
variables, and u is the vector of inputs.

[A] =

⎡⎢⎢⎣ −Cαf + Cαr

mvx

−a1Cαf + a2Cαr

mvx
− vx

−a1Cαf − a2Cαr

Izvx
−a

2
1Cαf + a22Cαr

Izvx

⎤⎥⎥⎦

q =

∙
vy
r

¸
(10.378)

u =

⎡⎢⎢⎣
Cαf

m

a1Cαf

Iz

⎤⎥⎥⎦ δ (t) (10.379)

To solve the inverse dynamic problem and find the vehicle response, the
steering function δ (t) must be given.
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Example 401 F Direct and indirect, or forward and inverse dynamic
problem.
Two types of dynamic problems may be defined: 1−direct or forward and,

2−indirect or inverse. In forward dynamics a set of desired functions vx =
vx (t), vy = vy (t), r = r (t) are given and the required δ (t) is asked for. In
the inverse dynamic problem, an input function δ = δ (t) is given and the
output functions vx = vx (t), vy = vy (t), r = r (t) are asked for.
The forward dynamic problem needs differentiation and the inverse dy-

namic problem needs integration. Generally speaking, solving an inverse
dynamic problem is more complicated than a forward dynamic problem.

Example 402 F Analytic solution to a step steer input.
Consider a vehicle with the following characteristics

Cαf = 60000N/ rad (10.380)

Cαr = 60000N/ rad (10.381)

m = 1000 kg (10.382)

Iz = 1650 kgm2 (10.383)

a1 = 1.0m (10.384)

a2 = 1.5 cm (10.385)

vx = 20m/ s. (10.386)

The force system coefficients for the vehicle from (10.143)-(10.148) are

Cr = 1500N s/ rad (10.387)

Cβ = −120000N/ rad (10.388)

Cδ = 60000N/ rad (10.389)

Dr = −9750Nms/ rad (10.390)

Dβ = 30000Nm/ rad (10.391)

Dδ = 60000Nm/ rad. (10.392)

Let’s assume the steering input is

δ (t) =

½
0.2 rad ≈ 11.5 deg t > 0
0 t ≤ 0 . (10.393)

The equations of motion for a zero initial condition

q0 =

∙
vy (0)
r (0)

¸
=

∙
0
0

¸
(10.394)

are

v̇y + 6vy + 18.5r = 60δ (t)

= 12 (10.395)

ṙ + .909vy + 5.909r = 36.363δ (t)

= 7.272. (10.396)
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[ ]t s

[ ]/yv m s

FIGURE 10.20. Lateral velocity response to a sudden change in steer angle.

The solution of the equations of motion are∙
vy (t)
r (t)

¸
=

∙
−1.217 + e−5.95t (4.69 sin 4.1t+ 1.21 cos 4.1t)
1.043 + e−5.95t (0.258 sin 4.1t− 1.043 cos 4.1t)

¸
.

(10.397)
To examine the response of the vehicle to a sudden change in steer angle
while going straight at a constant speed, we plot the kinematic variables of
the vehicle. Figures 10.20 and 10.21 depict the solutions vy (t) and r (t)
respectively.
The steering input is positive and therefore, the vehicle must turn left, in

a positive direction of the y-axis. The yaw rate in Figure 10.21 is positive
and correctly shows that the vehicle is turning about the z-axis. We can find
the lateral velocity of the front and rear wheels,

vy1 = vy + a1r (10.398)

vy2 = vy − a2r (10.399)

by having vy and r. The lateral speed of the front and rear wheels are shown
in Figures 10.22 and 10.23. The sideslip angle β = vy/vx and the radius of
rotation R = vx/r are also shown in Figures 10.24 and 10.25.
Figure 10.26 illustrates the vehicle at a steady-state condition when it is

turning on a circle. The steer angle δ is shown, however, the angles α and
β are too small to be shown.

Example 403 F Time series and free response.
The response of a vehicle to zero steer angle

δ (t) = 0 (10.400)
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[ ]t s

[ ]r rad/s

FIGURE 10.21. Yaw velocity response to a sudden change in steer angle.

[ ]t s

[ ]/
1yv m s

FIGURE 10.22. Lateral velocity response of the front wheel to a sudden change
in steer angle.
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[ ]t s

[ ]/
2yv m s

FIGURE 10.23. Lateral velocity response of the rear wheel to a sudden change
in steer angle.

[ ]t s

[ ]degβ

FIGURE 10.24. Sideslip response to a sudden change in steer angle.
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FIGURE 10.25. Radius of rotation response to a sudden change in steer angle.

δ
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FIGURE 10.26. A vehicle in a steady state condition when it is turning in a
circle.
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at constant speed is called free response. The equation of motion under free
dynamics is

q̇ = [A]q. (10.401)

To solve the equations, let’s assume

[A] =

∙
a b
c d

¸
(10.402)

and therefore, the equations of motion are∙
v̇y
ṙ

¸
=

∙
a b
c d

¸ ∙
vy
r

¸
(10.403)

Because the equations are linear, the solutions are an exponential function

vy = Aeλt (10.404)

r = Beλt. (10.405)

Substituting the solutions∙
Aλeλt

Bλeλt

¸
=

∙
a b
c d

¸ ∙
Aeeλt

Beλt

¸
(10.406)

shows that ∙
a− λ b
c d− λ

¸ ∙
Aest

Beλt

¸
= 0. (10.407)

Therefore, the condition to for functions (10.404) and (10.405) to be the
solution of the equation (10.403) is that the exponent λ is the eigenvalue
of [A]. To find λ, we may expand the determinant of the above coefficient
matrix

det

∙
a− λ b
c d− λ

¸
= λ2 − (a+ d)λ+ (ad− bc) (10.408)

and find the characteristic equation

λ2 − (a+ d)λ+ (ad− bc) = 0. (10.409)

The solution of the characteristic equations is

λ =
1

2
(a+ d)± 1

2

q
(a− d)

2
+ 4bc. (10.410)

Having the eigenvalues λ1,2 provides the following general solution for the
free dynamics of a bicycle vehicle.

vy = A1e
λ1t +A2e

λ2t (10.411)

r = B1e
λ1t +B2e

λ2t. (10.412)
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The coefficients A1, A2, B1, and B2, must be found from initial conditions:
As an example, consider a vehicle with the following characteristics

Cαf = 57296N/ rad (10.413)

Cαr = 52712N/ rad (10.414)

m = 1400 kg ≈ 95.9 slug (10.415)

Iz = 1128 kgm2 ≈ 832 slug ft2 (10.416)

a1 = 125 cm ≈ 4.1 ft (10.417)

a2 = 130 cm ≈ 4.26 ft (10.418)

vx = 20m/ s (10.419)

which start from

q0 =

∙
vy (0)
r (0)

¸
=

∙
1
0

¸
. (10.420)

Substituting these values provide the following equations of motion:∙
v̇y
ṙ

¸
=

∙
−3.929 −31.051
−13.716 −79170.337

¸ ∙
vy
r

¸
(10.421)

and their solutions are

vy = −0.173× 10−3
¡
e−3.92t − e−79170.34t

¢
(10.422)

r = e−3.92t + 0.68× 10× 10−7e−79170.34t. (10.423)

Figures 10.27 and 10.28 illustrate the time response. Figure 10.29 is a
magnification of Figure 10.28 to show that r does not jump to a negative
point but decreases rapidly and then approaches zero gradually.

Example 404 F Matrix exponentiation.
The exponential function e[A]t is called matrix exponentiation. This func-

tion is defined as a matrix time series.

e[A]t = I + [A] t+
[A]

2

2!
t2 +

[A]
3

3!
t3 + · · · (10.424)

This series always converges. As an example assume

[A] =

∙
0.1 0.2
−0.3 0.4

¸
(10.425)

then

e[A]t ≈
∙
1 0
0 1

¸
+

∙
0.1 0.2
−0.3 0.4

¸
t+

1

2

∙
0.1 0.2
−0.3 0.4

¸2
t2 + · · ·

≈
∙
1 + 0.1t− 0.025 t2 + · · · 0.2t+ 0.05t2 + · · ·
−0.3t− 0.075 t2 + · · · 1 + 0.4t+ 0.05t2 + · · ·

¸
. (10.426)
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[ ]t s

[ ]/yv m s

FIGURE 10.27. Lateral velocity response in example 403.

[ ]t s

[ ]r rad/s

FIGURE 10.28. Yaw velocity response in example 403.
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[ ]t s

[ ]r rad/s

FIGURE 10.29. Yaw velocity response in example 403.

Example 405 F Time series and free response.
The response of a vehicle to zero steer angle

δ (t) = 0 (10.427)

at constant speed is called free response. The equation of motion under free
dynamics is

q̇ = [A]q. (10.428)

The solution of this differential equation with the initial conditions

q (0) = q0 (10.429)

is

q (t) = e[A]tq0. (10.430)

q (t)→ 0 for ∀q0, if the eigenvalues of [A] are negative.
The free dynamic in a series can be expressed as

q (t) = e[A]tq0

=

Ã
I + [A] t+

[A]2

2!
t2 +

[A]3

3!
t3 + · · ·

!
q0. (10.431)
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For example, consider a vehicle with the following characteristics:

Cαf = 57296N/ rad (10.432)

Cαr = 52712N/ rad (10.433)

m = 1400 kg ≈ 95.9 slug (10.434)

Iz = 1128 kgm2 ≈ 832 slug ft2 (10.435)

a1 = 125 cm ≈ 4.1 ft (10.436)

a2 = 130 cm ≈ 4.26 ft (10.437)

vx = 20m/ s (10.438)

which start from

q0 =

∙
vy (0)
r (0)

¸
=

∙
1
0

¸
. (10.439)

Employing the vehicle’s characteristics, we have

[A] =

∙
−3.929 −31.051
−13.716 −79170.337

¸
(10.440)

and therefore, the time response of the vehicle is∙
vy (t)
r (t)

¸
=

∙
1 0
0 1

¸ ∙
1
0

¸
+

∙
−3.929 −31.051
−13.716 −79170.337

¸
t

∙
1
0

¸
+
1

2

∙
−3.929 −31.051
−13.716 −79170.337

¸2
t2
∙
1
0

¸
+
1

6

∙
−3.929 −31.051
−13.716 −79170.337

¸3
t3
∙
1
0

¸
· · · . (10.441)

Accepting an approximate solution up to cubic degree provides the following
approximate solution:∙

vy (t)
r (t)

¸
≈
∙
−5.620 3× 106t3 + 220.67t2 − 3.929t+ 1
−1.432 9× 1010t3 + 5.4298× 105t2 − 13.716t

¸
(10.442)

Example 406 F Response of an understeer vehicle to a step input.
The response of dynamic systems to a step input is a traditional method

to examine the behavior of dynamic systems. A step input for vehicle dy-
namics is a sudden change in steer angle from zero to a nonzero constant
value.
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Consider a vehicle with the following characteristics:

Cαf = 57296N/ rad (10.443)

Cαr = 52712N/ rad (10.444)

m = 917kg ≈ 62.8 slug (10.445)

Iz = 1128 kgm2 ≈ 832 slug ft2 (10.446)

a1 = 0.91m ≈ 2.98 ft (10.447)

a2 = 1.64m ≈ 5.38 ft (10.448)

vx = 20m/ s. (10.449)

and a sudden change in the steering input to a constant value

δ (t) =

½
0.1 rad ≈ 5.7296 deg t > 0
0 t ≤ 0 . (10.450)

The equations of motion for a zero initial condition

q0 =

∙
vy (0)
r (0)

¸
=

∙
0
0

¸
(10.451)

are

v̇y + 5.998 3vy + 18.12931734r = 62.48200654δ (t)

= 6.248200654 (10.452)

ṙ − 1.520758865vy − 4.181178085r = 46.22283688δ (t)

= 4.622283688. (10.453)

The force system coefficients for the vehicle from (10.143)-(10.148) are

Cr = −a1
vx

Cαf +
a2
vx

Cαr = 1715.416N s/ rad (10.454)

Cβ = − (Cαf + Cαr) = −110008N/ rad (10.455)

Cδ = Cαf = 57296N/ rad (10.456)

Dr = −a
2
1

vx
Cαf −

a22
vx

Cαr = −9461.05064Nms/ rad (10.457)

Dβ = − (a1Cαf − a2Cαr) = 34308.32Nm/ rad (10.458)

Dδ = a1Cαf = 52139.36Nm/ rad. (10.459)

Equations (10.242)-(10.245) indicate that the steady-state response of the
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[ ]t s

[ ]/yv m s

FIGURE 10.30. Lateral velocity response in example 406.

vehicle, when t→∞, are

Sκ =
κ

δ
=

1

Rδ
= 0.2390051454 (10.460)

Sβ =
β

δ
= −0.2015419091 (10.461)

Sr =
r

δ
=

κ

δ
vx = Sκvx = 4.780102908 (10.462)

Sa =
v2x/R

δ
=

κ

δ
v2x = Sκv

2
x = 95.60205816. (10.463)

Therefore, the steady-state characteristics of the vehicle with δ = 0.1 must
be

R = 41.84010341m (10.464)

β = −0.02015 rad ≈ −1.1545 deg (10.465)

r = 0.4780102908 rad/ s (10.466)

v2x
R

= 9.560205816m/ s2 (10.467)

Substituting the input function (10.470) and solving the equations pro-
vides the following solutions:∙

vy (t)
r (t)

¸
=

∙
−0.4 + e−7.193t(1.789 sin 5.113t+ 0.403 cos 5.113t)
0.478 + e−7.193t(0.232 sin 5.113t+ 0.478 cos 5.113t)

¸
(10.468)

Figures 10.30 and 10.31 depict the solutions.
Having vy (t) and r (t) are enough to calculate the other kinematic vari-

ables as well as the required forward force Fx to maintain the constant
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[ ]t s

[ ]r rad/s

FIGURE 10.31. Yaw rate response in example 406.

speed.

Fx = −mr vy (10.469)

Figures 10.32 and 10.33 show the kinematics variables of the vehicle, and
Figure 10.34 depicts how the require Fx is changing as a function of time.

Example 407 F Response of an oversteer vehicle to a step input.
Let’s assume the steering input is

δ (t) =

½
0.1 rad ≈ 5.7296 deg t > 0
0 t ≤ 0 (10.470)

and the vehicle characteristics are

Cαf = 57296N/ rad (10.471)

Cαr = 52712N/ rad (10.472)

m = 1400 kg ≈ 95.9 slug (10.473)

Iz = 1128 kgm2 ≈ 832 slug ft2 (10.474)

a1 = 1.25m ≈ 4.1 ft (10.475)

a2 = 1.30m ≈ 4.26 ft (10.476)

vx = 20m/ s. (10.477)

The equations of motion for a zero initial conditions

q0 =

∙
vy (0)
r (0)

¸
=

∙
0
0

¸
(10.478)
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[ ]t s

[ ]rad/sβ

FIGURE 10.32. Sideslip angle response in example 406.

[ ]t s
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FIGURE 10.33. Radius of rotation response in example 406.
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[ ]t s

[ ]xF N

FIGURE 10.34. The required forward force Fx to keep the speed constant, in
example 406.

are

v̇y + 3.928857143vy + 20.11051429r = 40.92571429δ (t)

= 4.092571429 (10.479)

ṙ + 0.1371631206vy + 7.917033690r = 63.4929078δ (t)

= 6.34929078. (10.480)

Substituting the input function (10.470) and solving the equations pro-
vides the following solutions:∙

vy (t)
r (t)

¸
=

∙
6.3e−3.328t − 2.943e−8.518t − 3.361
−0.188e−3.328t − 0.672e−8.518t + 0.188

¸
(10.481)

Figures 10.35 and 10.36 depict the solutions.

Example 408 F Standard steer inputs.
Step and sinusoidal excitation inputs are the most general input to ex-

amine the behavior of a vehicle. Furthermore, some other transient inputs
may also be used to analyze the dynamic behavior of a vehicle. Single sine
steering, linearly increasing steering, and half sine lane change steering are
the most common transient steering inputs.

Example 409 F Position of the rotation center.
The position of the center of rotation O in the vehicle body coordinate is

at

x = −R sinβ (10.482)

y = R cosβ (10.483)
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FIGURE 10.35. Lateral velocity response for example 407.
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FIGURE 10.36. Yaw velocity response for example 407.
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FIGURE 10.37. A two-wheel vehicle model with the vehicle body coordinate
frame and the center of rotation O.

because β is positive when it is about a positive direction of the z-axis. Fig-
ure 10.37 illustrates a two-wheel vehicle model, the vehicle body coordinate
frame, and the center of rotation O.
At the steady-state condition the radius of rotation can be found from

the curvature response Sκ, and the angle β can be found from the sideslip
response Sβ.

R =
1

δSκ
=

vx (DrCβ − CrDβ +mvxDβ)

(CδDβ − CβDδ) δ
(10.484)

β = δSβ =
Dδ (Cr −mvx)−DrCδ

DrCβ − CrDβ +mvxDβ
δ (10.485)

Therefore, the position of the center point O is at

x = −vx (DrCβ − CrDβ +mvxDβ)

(CδDβ − CβDδ) δ

× sin Dδ (Cr −mvx)−DrCδ

DrCβ − CrDβ +mvxDβ
δ (10.486)
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y =
vx (DrCβ − CrDβ +mvxDβ)

(CδDβ − CβDδ) δ

× cos Dδ (Cr −mvx)−DrCδ

DrCβ − CrDβ +mvxDβ
δ. (10.487)

Assuming a small β, we may find the position of O approximately.

x ≈ −Dδ (Cr −mvx)−DrCδ

CδDβ − CβDδ
vx (10.488)

y ≈ DrCβ − CrDβ +mvxDβ

(CδDβ − CβDδ) δ
vx. (10.489)

Example 410 F Second-order equations.
The coupled equations of motion (10.160) may be modified to a second-

order differential equation of only one variable. To do this, let’s rewrite the
equations.

v̇y =
1

mvx

¡
vyCβ + rCrvx −mrv2x + δvxCδ

¢
(10.490)

ṙ =
1

Izvx
(vyDβ + rDrvx + δvxDδ) (10.491)

Assuming a constant forward speed

vx = cte (10.492)

and taking a derivative from Equation (10.491) provides the equation.

r̈ =
1

Izvx
(v̇yDβ + ṙDrvx) (10.493)

We substitute Equation (10.490) in (10.493)

r̈ =
1

Izvx

µ
1

mvx

¡
vyCβ + rCrvx −mrv2x + δvxCδ

¢¶
Dβ

+
1

Izvx
ṙDrvx + δ̇vxDδ (10.494)

and then substitute for vy from (10.491) and get the following equation:

mIzvxr̈ − (IzCβ +mDrvx) ṙ + (DrCβ − CrFβ +mvxDβ) r

= −
³
δCδDβ − δCβDδ +mδ̇vxDδ

´
(10.495)

This equation is similar to the equation of motion for a force vibration
single DOF system

meqẍ+ ceqẋ+ keqx = feq (t) (10.496)
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where the equivalent mass meq, damping ceq, stiffness keq, and force feq (t)
are

meq = mIzvx (10.497)

ceq = − (IzCβ +mDrvx) (10.498)

keq = DrCβ − CrFβ +mvxDβ (10.499)

fe (t) = −mdδ (t)

dt
vxDδ + (CδDβ − CβDδ+) δ (t) . (10.500)

We may use Equation (10.495) and determine the behavior of a vehicle
similar to analysis of a vibrating system. The response of the equation to
a step steering input may be expressed by rise time, peak time, overshoot,
and settling time.

10.8 Summary

A vehicle may be effectively modeled as a rigid bicycle in a planar motion
by ignoring the roll of the vehicle. Such a vehicle has three DOF in a body
coordinate frame attached to the vehicle at C: forward motion, lateral
motion, and yaw motion. The dynamic equations of such a vehicle are can
be expressed in (vx, vy, r) variables in the following set of three coupled
first order ordinary differential equations.

v̇x =
Fx
m
+ r vy (10.501)

v̇y =
1

mvx
(−a1Cαf + a2Cαr) r

− 1

mvx
(Cαf + Cαr) vy +

1

m
Cαfδf +

1

m
Cαrδr − r vx (10.502)

ṙ =
1

Izvx

¡
−a21Cαf − a22Cαr

¢
r

− 1

Izvx
(a1Cαf − a2Cαr) vy +

1

Iz
a1Cαfδf −

1

Iz
a2Cαrδr. (10.503)

The second and third equations may be written in a matrix form for£
vy r

¤T
∙
v̇y
ṙ

¸
=

⎡⎢⎢⎣ −Cαf + Cαr

mvx

−a1Cαf + a2Cαr

mvx
− vx

−a1Cαf − a2Cαr

Izvx
−a

2
1Cαf + a22Cαr

Izvx

⎤⎥⎥⎦∙ vy
r

¸

+

⎡⎢⎢⎣
1

m
Cαf

1

m
Cαr

1

Iz
a1Cαf − 1

Iz
a2Cαr

⎤⎥⎥⎦∙ δf
δr

¸
(10.504)
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or in a matrix form for
£
β r

¤T
.

∙
β̇
ṙ

¸
=

⎡⎢⎢⎣
−Cαf + Cαr

mvx

−a1Cαf + a2Cαr

mv2x
− 1

−a1Cαf − a2Cαr

Iz
−a

2
1Cαf + a22Cαr

Izvx

⎤⎥⎥⎦∙ β
r

¸

+

⎡⎢⎢⎣
1

m
Cαf

1

m
Cαr

1

Iz
a1Cαf − 1

Iz
a2Cαr

⎤⎥⎥⎦∙ δf
δr

¸
(10.505)
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10.9 Key Symbols

a ≡ ẍ acceleration
ai distance of the axle number i from the mass center
[A] force coefficient matrix
b1 distance of the hinge point from rear axle
b2 distance of trailer axle from the hinge point
B(Cxyz) vehicle coordinate frame
C mass center
Cα sideslip coefficient
Cαf front sideslip coefficient
CαfL front left sideslip coefficient
CαfR front right sideslip coefficient
Cαr rear sideslip coefficient
CαrL rear left sideslip coefficient
CαrR rear right sideslip coefficient
Cr, · · · , Dδ force system coefficients
Cr proportionality coefficient between Fy and r
Cβ proportionality coefficient between Fy and β
Cδ proportionality coefficient between Fy and δ
Dr proportionality coefficient between Mz and r
Dβ proportionality coefficient between Mz and β
Dδ proportionality coefficient between Mz and δ
d frame position vector
dN neutral distance
dm mass element
Fi generalized force
Fx longitudinal force, forward force, traction force
Fy lateral force
Fyf front lateral force
Fyr rear lateral force
Fz normal force, vertical force, vehicle load
F,M vehicle force system
g,g gravitational acceleration
G(OXY Z) global coordinate frame
I mass moment of inertia
K kinetic energy
K stability factor
L moment of momentum
L Lagrangean
m mass
Mx roll moment, bank moment, tilting torque
My pitch moment
Mz yaw moment, aligning moment
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p = ϕ̇ roll rate
p momentum
PN neutral steer point
q = θ̇ pitch rate
q control variable vector
qi generalized coordinate
r = ψ̇ yaw rate
r position vector
R radius of rotation
Rw tire radius
GRB rotation matrix to go from B frame to G frame
Sκ = κ/δ curvature response
Sβ = β/δ sideslip response
Sr = r/δ yaw rate response
Sa = v2x/R/δ lateral acceleration response
Sy1 , Sy2 steady-state responses
SA = 1/v

2
x Ackerman steering gradient

t time
T tire coordinate frame
Tw wheel torque
u input vector
v ≡ ẋ, v velocity
V potential energy
w wheelbase
x, y, z, x displacement

α sideslip angle
β global sideslip angle
β vehicle sideslip angle, attitude angle
β attitude angle
β + ψ cruise angle
δ steer angle
δf front steer angle
δr rear steer angle
θ pitch angle
θ̇ = q pitch rate
κ = 1/R curvature
λ eigenvalue
ϕ roll angle
ϕ̇ = p roll rate
ψ yaw angle
ψ̇ = r yaw rate
ψ heading angle
ω angular velocity
ω̇ angular acceleration
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Exercises

1. Force system coefficients.

Consider a front-wheel-steering car with the following characteristics
and determine the force system coefficients Cr, Cβ, Cδ, Dr, Dβ , and
Dδ.

CαfL = CαfR = 500N/deg

CαrL = CαrR = 460N/deg

m = 1245 kg

Iz = 1328 kgm2

a1 = 110 cm

a2 = 132 cm

vx = 30m/ s

2. Force system and two-wheel model of a car.

Consider a front-wheel-steering car with the following characteristics

CαrL = CαrR = CαfL = CαfR = 500N/deg

a1 = 110 cm

a2 = 132 cm

m = 1205 kg

Iz = 1300 kgm2

and determine the force system that applies on the two-wheel model
of the car.

Fy = Cr r + Cβ β + Cδ δ

Mz = Dr r +Dβ β +Dδ δ

Then, write the equations of motion of the car as

Fx = mv̇x −mr vy

Fy = mv̇y +mr vx

Mz = ṙ Iz.

3. Equations of motion for a front-wheel-steering car.

Consider a front-wheel-steering car with the following characteristics

CαrL = CαrR = CαfL = CαfR = 500N/deg
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a1 = 110 cm

a2 = 132 cm

m = 1245 kg

Iz = 1328 kgm2

vx = 40m/ s

and develop the equations of motion

q̇ = [A]q+ u.

4. Equations of motion in different variables.

Consider a car with the following characteristics

CαrL = CαrR = CαfL = CαfR = 500N/deg

a1 = 100 cm

a2 = 120 cm

m = 1000 kg

Iz = 1008 kgm2

vx = 40m/ s

and develop the equations of motion

(a) in terms of (v̇x, v̇y, ṙ), if the car is front-wheel steering.

(b) in terms of (v̇x, v̇y, ṙ), if the car is four-wheel steering.

(c) in terms of
³
v̇x, β̇, ṙ

´
, if the car is front-wheel steering.

(d) in terms of
³
v̇x, β̇, ṙ

´
, if the car is four-wheel steering.

5. Steady state response parameters.

Consider a car with the following characteristics

CαfL = CαfR = 500N/deg

CαrL = CαrR = 520N/deg

m = 1245 kg

Iz = 1328 kgm2

a1 = 110 cm

a2 = 132 cm

vx = 40m/ s

and determine the steady-state curvature response Sκ, sideslip re-
sponse Sβ, yaw rate response, Sr, and lateral acceleration response
Sa.
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6. Steady state motion parameters.

Consider a car with the following characteristics

CαfL = CαfR = 600N/deg

CαrL = CαrR = 550N/deg

m = 1245 kg

Iz = 1128 kgm2

a1 = 120 cm

a2 = 138 cm

vx = 20m/ s

δ = 3deg

and determine the steady state values of r, R, β, and v2x/R.

7. F Inertia and steady state parameters.

Consider a car that is made up of a uniform solid box with dimensions
260 cm×140 cm×40 cm. If the density of the box is ρ = 1000 kg/m3,
and the other characteristics are

CαfL = CαfR = 600N/deg

CαrL = CαrR = 550N/deg

a1 = a2 =
l

2

then,

(a) determine m, Iz.

(b) determine the steady-state responses Sκ, Sβ , Sr, and Sa as func-
tions of vx.

(c) determine the velocity vx at which the car has a radius of turning
equal to

R = 35m

when
δ = 4deg .

(d) determine the steady state parameters r, R, β, and v2x/R at that
speed.

(e) set the speed of the car at

vx = 20m/ s

and plot the steady-state responses Sκ, Sβ, Sr, and Sa for vari-
able ρ.
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8. Stability factor and understeer behavior.

Examine the stability factor K and

(a) determine the condition to have an understeer car, if a1 = a2.

(b) determine the condition to have an understeer car, if Cαf = Cαr.

(c) do the results show that if we use the same type of tires in front
and rear with Cαf = Cαr, then the front of the car must be
heavier?

(d) do the results show that if we have a car with a1 = a2, then we
must use different tires in the front and rear such that Cαr >
Cαf?

9. Stability factor and mass of the car.

Find a1 and a2 in terms of Fz1 , Fz2 , and mg to rewrite the stability
factor K to see the effect of a car’s mass distribution.

10. Stability factor and car behavior.

Examine the stability factor of a car with the parameters

CαfL = CαfR = 500N/deg

CαrL = CαrR = 460N/deg

m = 1245 kg

Iz = 1328 kgm2

a1 = 110 cm

a2 = 132 cm

vx = 30m/ s

and

(a) determine if the car is understeer, neutral, or oversteer?

(b) determine the neutral distance dN .

11. Critical speed of a car.

Consider a car with the characteristics

CαfL = CαfR = 700N/deg

CαrL = CαrR = 520N/deg

m = 1245 kg

Iz = 1328 kgm2

a1 = 118 cm

a2 = 122 cm.
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(a) determine if the car is understeer, neutral, or oversteer?

(b) in case of an oversteer situation, determine the neutral distance
dN and the critical speed vc of the car.

12. F Step input response at different speed.

Consider a car with the characteristics

CαfL = CαfR = 600N/deg

CαrL = CαrR = 750N/deg

m = 1245 kg

Iz = 1328 kgm2

a1 = 110 cm

a2 = 132 cm

and a step input

δ (t) =

½
5 deg t > 0
0 t ≤ 0 .

Determine the time response of the car at

(a) vx = 10m/ s.

(b) vx = 20m/ s.

(c) vx = 30m/ s.

(d) vx = 40m/ s.

13. F Step input response for different steer angle.

Consider a car with the characteristics

CαfL = CαfR = 600N/deg

CαrL = CαrR = 750N/deg

m = 1245 kg

Iz = 1328 kgm2

a1 = 110 cm

a2 = 132 cm

vx = 20m/ s.

Determine the time response of the car to a step input

δ (t) =

½
δ t > 0
0 t ≤ 0

when
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(a) δ = 3deg.

(b) δ = 5deg.

(c) δ = 10deg.

14. F Eigenvalues and free response.

Consider a car with the characteristics

CαfL = CαfR = 600N/deg

CαrL = CαrR = 750N/deg

m = 1245 kg

Iz = 1328 kgm2

a1 = 110 cm

a2 = 132 cm

vx = 20m/ s.

(a) Determine the eigenvalues of the coefficient matrix [A] and find
out if the car is stable at zero steer angle.

(b) In either case, determine the weight distribution ratio, a1/a2,
such that the car is neutral stable.

(c) Recommend a condition for the weight distribution ratio, a1/a2,
such that the car is stable.

15. F Time response to different steer functions.

Consider a car with the characteristics

CαfL = CαfR = 600N/deg

CαrL = CαrR = 750N/deg

m = 1245 kg

Iz = 1328 kgm2

a1 = 110 cm

a2 = 132 cm

vx = 20m/ s

and a step input

δ (t) =

½
5 deg t > 0
0 t ≤ 0 .

Determine the time response of the car to

(a) δ (t) = sin 0.1t for 0 < t < 10π and δ (t) = 0 for t ≤ 0 and
t ≥ 10π.

(b) δ (t) = sin 0.5t for 0 < t < 2π and δ (t) = 0 for t ≤ 0 and t ≥ 2π.
(c) δ (t) = sin t for 0 < t < π and δ (t) = 0 for t ≤ 0 and t ≥ π.
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F Vehicle Roll Dynamics
In this chapter, we develop a dynamic model for a rigid vehicle having for-
ward, lateral, yaw, and roll velocities. The model of a rollable rigid vehicle is
more exact and more effective compared to the rigid vehicle planar model.
Using this model, we are able to analyze the roll behavior of a vehicle as
well as its maneuvering.

11.1 F Vehicle Coordinate and DOF

Figure 11.1 illustrates a vehicle with a body coordinate B(Cxyz) at the
mass center C. The x-axis is a longitudinal axis passing through C and di-
rected forward. The y-axis goes laterally to the left from the driver’s view-
point. The z-axis makes the coordinate system a right-hand triad. When
the car is parked on a flat horizontal road, the z-axis is perpendicular to
the ground, opposite to the gravitational acceleration g. The equations of
motion of the vehicle are expressed in B(Cxyz).

x

z

y
Fy

Mz
Mxϕ

ψ p
r Fx

Roll axis

FIGURE 11.1. The DOF of a roll model of rigid vehicles are: x, y, ϕ, ψ.

Angular orientation and angular velocity of a vehicle are expressed by
three angles: roll ϕ, pitch θ, yaw ψ, and their rates: roll rate p, pitch rate



666 11. F Vehicle Roll Dynamics

q, yaw rate r.

p = ϕ̇ (11.1)

q = θ̇ (11.2)

r = ψ̇ (11.3)

The vehicle force system (F,M) is the resultant of external forces and
moments that the vehicle receives from the ground and environment. The
force system may be expressed in the body coordinate frame as:

BF = Fxı̂+ Fy ĵ+ Fzk̂ (11.4)
BM = Mxı̂+My ĵ+Mzk̂ (11.5)

The roll model vehicle dynamics can be expressed by four kinematic
variables: the forward motion x, the lateral motion y, the roll angle ϕ, and
the roll angle ψ. In this model, we do not consider vertical movement z,
and pitch motion θ.

11.2 F Equations of Motion

A rolling rigid vehicle has a motion with four degrees of freedom, which
are translation in x and y directions, and rotation about the x and z axes.
The Newton-Euler equations of motion for such a rolling rigid vehicle in
the body coordinate frame B are:

Fx = mv̇x −mr vy (11.6)

Fy = mv̇y +mr vx (11.7)

Mz = Izω̇z = Iz ṙ (11.8)

Mx = Ixω̇x = Ixṗ. (11.9)

Proof. Consider the vehicle shown in Figure 11.2. A global coordinate
frame G is fixed on the ground, and a local coordinate frame B is attached
to the vehicle at the mass center C. The orientation of the frame B can be
expressed by the heading angle ψ between the x and X axes, and the roll
angle ϕ between the z and Z axes. The global position vector of the mass
center is denoted by Gd.
The rigid body equations of motion in the body coordinate frame are:

BF = BRG
GF

= BRG

¡
mGaB

¢
= m B

GaB

= m Bv̇B +m B
GωB × BvB. (11.10)



11. F Vehicle Roll Dynamics 667

Cx

z

Fx

Mz

Mx

ϕ

ψ

p

r

y
Fy

X Y

Z

B G

ψ d

FIGURE 11.2. A vehicle with roll, and yaw rotations.

BM =
Gd

dt
BL

= B
GL̇B

= BL̇+ B
GωB × BL

= BI B
Gω̇B +

B
GωB ×

¡
BI B

GωB

¢
. (11.11)

The velocity vector of the vehicle, expressed in the body frame, is

BvC =

⎡⎣ vx
vy
0

⎤⎦ (11.12)

where vx is the forward component and vy is the lateral component of v.
The other kinematic vectors for the rigid vehicle are:

Bv̇C =

⎡⎣ v̇x
v̇y
0

⎤⎦ (11.13)

B
GωB =

⎡⎣ ωx
0
ωz

⎤⎦ =
⎡⎣ p
0
r

⎤⎦ (11.14)

B
Gω̇B =

⎡⎣ ω̇x
0
ω̇z

⎤⎦ =
⎡⎣ ṗ
0
ṙ

⎤⎦ . (11.15)

We may assume that the body coordinate is the principal coordinate frame
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of the vehicle to have a diagonal moment of inertia matrix.

BI =

⎡⎣ I1 0 0
0 I2 0
0 0 I3

⎤⎦ (11.16)

Substituting the above vectors and matrices in the equations of motion
(11.10) and (11.11) provides the following equations:

BF = m Bv̇B +m B
GωB × BvB (11.17)⎡⎣ Fx

Fy
0

⎤⎦ = m

⎡⎣ v̇x
v̇y
0

⎤⎦+m

⎡⎣ ωx
0
ωz

⎤⎦×
⎡⎣ vx

vy
0

⎤⎦
=

⎡⎣ mv̇x −mωzvy
mv̇y +mωzvx

mωxvy

⎤⎦ (11.18)

BM = BI B
Gω̇B +

B
GωB ×

¡
BI B

GωB

¢
(11.19)⎡⎣ Mx

0
Mz

⎤⎦ =

⎡⎣ I1 0 0
0 I2 0
0 0 I3

⎤⎦⎡⎣ ω̇x
0
ω̇z

⎤⎦
+

⎡⎣ ωx
0
ωz

⎤⎦×
⎛⎝⎡⎣ I1 0 0

0 I2 0
0 0 I3

⎤⎦⎡⎣ ωx
0
ωz

⎤⎦⎞⎠
=

⎡⎣ I1ω̇x
I1ωxωz − I3ωxωz

I3ω̇z

⎤⎦ (11.20)

The first two Newton equations (11.18) are the equations of motion in
the x and y directions.∙

Fx
Fy

¸
=

∙
mv̇x −mωzvy
mv̇y +mωzvx

¸
(11.21)

The third Newton’s equation

mωxvy = 0 (11.22)

is static equation. It provides a compatibility condition to keep the vehicle
on the road.
The first and third Euler equations (11.20) are the equations of motion

about the x and z axes. ∙
Mx

Mz

¸
=

∙
I1ω̇x
I3ω̇z

¸
(11.23)
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The second Euler equation

I1ωxωz − I3ωxωz = 0 (11.24)

is another static equation. It provides the required pitch moment condition
to keep the vehicle on the road.

Example 411 F Motion of a six DOF vehicle.
Consider a vehicle that moves in space. Such a vehicle has six DOF. To

develop the equations of motion of such a vehicle, we need to define the
kinematic characteristics as follows:

BvC =

⎡⎣ vx
vy
vz

⎤⎦ (11.25)

Bv̇C =

⎡⎣ v̇x
v̇y
v̇z

⎤⎦ (11.26)

B
GωB =

⎡⎣ ωx
ωy
ωz

⎤⎦ (11.27)

B
Gω̇B =

⎡⎣ ω̇x
ω̇y
ω̇z

⎤⎦ (11.28)

The acceleration vector of the vehicle in the body coordinate is

Ba = Bv̇B +
B
GωB × BvB

=

⎡⎣ v̇x + ωyvz − ωzvy
v̇y + ωzvx − ωxvz
v̇z + ωxvy − ωyvx

⎤⎦ (11.29)

and therefore, the Newton equations of motion for the vehicle are⎡⎣ Fx
Fy
Fz

⎤⎦ = m

⎡⎣ v̇x + ωyvz − ωzvy
v̇y + ωzvx − ωxvz
v̇z + ωxvy − ωyvx

⎤⎦ . (11.30)

To find the Euler equations of motion,

BM = BI B
Gω̇B +

B
GωB ×

¡
BI B

GωB

¢
(11.31)

we need to define the moment of inertia matrix and perform the required
matrix calculations. Assume the body coordinate system is the principal
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coordinate frame. So,

BI B
Gω̇B +

B
GωB ×

¡
BI B

GωB

¢⎡⎣ I1 0 0
0 I2 0
0 0 I3

⎤⎦⎡⎣ ω̇x
ω̇y
ω̇z

⎤⎦+
⎡⎣ ωx

ωy
ωz

⎤⎦×
⎛⎝⎡⎣ I1 0 0

0 I2 0
0 0 I3

⎤⎦⎡⎣ ωx
ωy
ωz

⎤⎦⎞⎠
=

⎡⎣ ω̇xI1 − ωyωzI2 + ωyωzI3
ω̇yI2 + ωxωzI1 − ωxωzI3
ω̇zI3 − ωxωyI1 + ωxωyI2

⎤⎦ (11.32)

and therefore, the Euler equations of motion for the vehicle are⎡⎣ Mx

My

Mz

⎤⎦ =
⎡⎣ ω̇xI1 − ωyωzI2 + ωyωzI3

ω̇yI2 + ωxωzI1 − ωxωzI3
ω̇zI3 − ωxωyI1 + ωxωyI2

⎤⎦ . (11.33)

Example 412 F Roll rigid vehicle from general motion.
We may derive the equations of motion for a roll rigid vehicle from the

general equations of motion for a vehicle with six DOF (11.30) and (11.33).
Consider a bicycle model of a four-wheel vehicle moving on a road. Be-

cause the vehicle cannot move in z-direction and cannot turn about the
y-axis, we have

vz = 0 (11.34)

v̇z = 0 (11.35)

ωy = 0 (11.36)

ω̇y = 0. (11.37)

Furthermore, the overall force in the z-direction and overall moment in
y-direction for such a bicycle must be zero,

Fz = 0 (11.38)

My = 0 (11.39)

Substitution Equations (11.34)-(11.39) in (11.30) and (11.33) results in
the force system. ⎡⎣ Fx

Fy
0

⎤⎦ = m

⎡⎣ v̇x − ωzvy
v̇y + ωzvx
ωxvy

⎤⎦ (11.40)

⎡⎣ Mx

0
Mz

⎤⎦ =

⎡⎣ ω̇xI1
ωxωzI1 − ωxωzI3

ω̇zI3

⎤⎦ (11.41)
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C

x

y

1

Fx1

Fy1

1δ

xw

yw

Mzw

Fxw

Fyw

B
Bw

B1

Mxw

Mx1
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x1

y1

Mz1

Myw

FIGURE 11.3. The force system at the tireprint of tire number 1, and their
resultant force system at C.

11.3 F Vehicle Force System

To determine the force system on a rigid vehicle, we define the force system
at the tireprint of a wheel. The lateral force at the tireprint depends on the
sideslip angle. Then, we transform and apply the tire force system on the
rollable model of the vehicle.

11.3.1 F Tire and Body Force Systems

Figure 11.3 depicts wheel number 1 of a vehicle. The components of the
applied force system on the rigid vehicle, because of the generated forces
at the tireprint of the wheel number i, are

Fxi = Fxwi cos δi − Fywi sin δi (11.42)

Fyi = Fywi cos δi + Fxwi sin δi (11.43)

Mxi = Mxwi
+ yiFzi − ziFyi (11.44)

Myi = Mywi
+ ziFxi − xiFzi (11.45)

Mzi = Mzwi
+ xiFyi − yiFxi (11.46)

where (xi, yi, zi) are body coordinates of the wheel number i. It is possible
to ignore the components of the tire moment at the tireprint, Mxwi

, Mywi
,

Mzwi
, and simplify the equations.

The total planar force system on the rigid vehicle in the body coordinate
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frame is
BFx =

X
i

Fxi

=
X
i

Fxw cos δi −
X
i

Fyw sin δi (11.47)

BFy =
X
i

Fyi

=
X
i

Fyw cos δi +
X
i

Fxw sin δi (11.48)

BFz =
X
i

Fzi = mg (11.49)

BMx =
X
i

Mxi +
X
i

yiFzi −
X
i

ziFyi (11.50)

BMy =
X
i

Myi +
X
i

ziFxi −
X
i

xiFzi (11.51)

BMz =
X
i

Mzi +
X
i

xiFyi −
X
i

yiFxi . (11.52)

Proof. To simplify the roll model of vehicle dynamics, we ignore the dif-
ference between the tire frame at the center of tireprint and wheel frame
at the wheel center for small roll angles.
Ignoring the lateral moment at the tireprint Myw , the force system gen-

erated at the tireprint of the wheel in the wheel frame Bw is
BwFw = Fxw ı̂1 + Fyw ĵ1 + Fzw k̂1 (11.53)
BwMw = Mxw ı̂1 +Mzw k̂1 (11.54)

The rotation matrix between the wheel frame Bw and the wheel-frame
coordinate frame B1, parallel to the vehicle body coordinate frame B, is

B1RBw =

⎡⎣ cos δ1 − sin δ1 0
sin δ1 cos δ1 0
0 0 1

⎤⎦ (11.55)

and therefore, the force system at the tireprint of the wheel, parallel to the
vehicle coordinate frame, is

B1Fw = BRBw
BwFw (11.56)⎡⎣ Fx1

Fy1
Fz1

⎤⎦ =

⎡⎣ cos δ1 − sin δ1 0
sin δ1 cos δ1 0
0 0 1

⎤⎦⎡⎣ Fxw
Fyw
Fzw

⎤⎦
=

⎡⎣ Fxw cos δ1 − Fyw sin δ1
Fyw cos δ1 + Fxw sin δ1

Fzw

⎤⎦ (11.57)
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B1Mw = B1RBw
BwMw (11.58)⎡⎣ Mx1

My1

Mz1

⎤⎦ =

⎡⎣ cos δ1 − sin δ1 0
sin δ1 cos δ1 0
0 0 1

⎤⎦⎡⎣ Mxw

0
Mzw

⎤⎦
=

⎡⎣ Mxw cos δ1
Mxw sin δ1

Mzw

⎤⎦ (11.59)

Transforming the force system of each tire to the body coordinate frame
B, located at the vehicle mass center C, generates the total force system
applied on the vehicle

BF =
X
i

BiFw

=
X
i

Fxi ı̂+
X
i

Fyi ĵ (11.60)

BM =
X
i

BiMw

=
X
i

Mxi ı̂+
X
i

Myi ĵ+
X
i

Mzi k̂ +
X
i

Bri × BFwi (11.61)

where Bri is the position vector of the wheel number i.

Bri = xiı̂+ yiĵ+ zik̂ (11.62)

In deriving Equation (11.60), we have used the equation
P

i Fzi −mg = 0.
Expanding Equations (11.60) and (11.61) provides the total vehicle force
system.

BFx =
X
i

Fxw cos δi −
X
i

Fyw sin δi (11.63)

BFy =
X
i

Fyw cos δi +
X
i

Fxw sin δi (11.64)

BMx =
X
i

Mxi +
X
i

yiFzi −
X
i

ziFyi (11.65)

BMy =
X
i

Myi +
X
i

ziFxi −
X
i

xiFzi (11.66)

BMz =
X
i

Mzi +
X
i

xiFyi −
X
i

yiFxi (11.67)

For a two-wheel vehicle model we have

x1 = a1

x2 = −a2 (11.68)

y1 = y2 = 0.
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For such a vehicle, the force system reduces to

BFx = Fx1 cos δ1 + Fx2 cos δ2 − Fy1 sin δ1 − Fy2 sin δ2 (11.69)
BFy = Fy1 cos δ1 + Fy2 cos δ2 + Fx1 sin δ1 + Fx2 sin δ2 (11.70)
BMx = Mx1 +Mx2 − z1Fy1 − z2Fy2 (11.71)
BMy = My1 +My2 + z2Fx2 + z1Fx1 − a1Fz1 − a2Fz2 (11.72)
BMz = Mz1 +Mz2 + a1Fy1 + a2Fy2 . (11.73)

It is common to assume
Mzi = 0 (11.74)

and therefore,
BMz = a1Fyf − a2Fyr . (11.75)

11.3.2 F Tire Lateral Force

If the steer angle of the steering mechanism is denoted by δ, then the actual
steer angle δa of a rollable vehicle is

δa = δ + δϕ (11.76)

where, δϕ is the roll-steering angle.

δϕ = Cδϕϕ (11.77)

The roll-steering angle δϕ is proportional to the roll angle ϕ and the coef-
ficient Cδϕ is called the roll-steering coefficient. The roll-steering happens
because of the suspension mechanisms that generate some steer angle when
deflected. The tire sideslip angle of each tire of a rollable vehicle is

αi = βi − δa

= βi − δi − δϕ. (11.78)

where βi is the angle between the velocity vector v and the vehicle body
x-axis, and is called the tire slip angle.
The generated lateral force by such a tire for a small sideslip angle, is

Fy = −Cα αi − Cϕϕi

= −Cα (βi − δi − Cδϕϕi)− Cϕϕ (11.79)

and Cϕ is the tire camber trust coefficient, because of the vehicle’s roll. The
tire slip angle βi can be approximated by

βi =
vy + xi r − Cβip

vx
(11.80)
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to find the tire lateral force Fy in terms of the vehicle kinematic variables.

Fy = −xi
Cα

vx
r +

CαCβ

vx
p− Cαβ + (CαCδϕ − Cϕ)ϕ+ Cαδi (11.81)

β =
vy
vx

. (11.82)

Cβi is tire slip coefficient.

Proof. When a vehicle rolls, there are some new reactions in the tires
that introduce new dynamic terms in the behavior of the tire. The most
important reactions are:
1−Tire camber trust Fyϕ, which is a lateral force because of the vehicle

roll. Tire camber trust may be assumed proportional to the vehicle roll
angle ϕ.

Fyϕ = −Cϕϕ (11.83)

Cϕ =
dFy
dϕ

. (11.84)

2−Tire roll steering angle δϕ, which is the tire steer angle because of the
vehicle roll. Most suspension mechanisms provide some steer angle when
the vehicle rolls and the mechanism deflects. The tire roll steering may be
assumed proportional to the roll angle.

δϕ = Cδϕϕ (11.85)

Cδϕ =
dδ

dϕ
(11.86)

Therefore, the actual steer angle δa of such a tire is

δa = δ + δϕ. (11.87)

Assume the wheel number i of a rigid vehicle is located at

Bri =
£
xi yi zi

¤T
. (11.88)

The velocity of the wheel number i is
Bvi =

Bv+ Bω × Bri (11.89)

in which Bv is the velocity vector of the vehicle at its mass center C, and
Bω = ϕ̇ı̂ + ψ̇k̂ = pı̂ + rk̂ is the angular velocity of the vehicle. Expand-
ing Equation (11.89) provides the following velocity vector for the wheel
number i expressed in the vehicle coordinate frame at C.⎡⎣ vxi

vyi
vzi

⎤⎦ =

⎡⎣ vx
vy
0

⎤⎦+
⎡⎣ ϕ̇
0

ψ̇

⎤⎦×
⎡⎣ xi

yi
zi

⎤⎦
=

⎡⎣ vx − ψ̇yi
vy − ϕ̇zi + ψ̇xi

ϕ̇yi

⎤⎦ (11.90)
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Consider a bicycle model for the rollable vehicle to have

yi = 0 (11.91)

x1 = a1 (11.92)

x2 = −a2. (11.93)

The tire slip angle βi for the wheel i, is defined as the angle between the
wheel velocity vector vi and the vehicle body x-axis. When the roll angle
is very small, βi is

βi = tan−1
µ
vyi
vxi

¶
(11.94)

≈ vyi
vxi
≈ vy − ϕ̇zi + ψ̇xi

vx
(11.95)

If the wheel number i has a steer angle δi then, its sideslip angle αi, that
generates a lateral force Fyw on the tire, is

αi = βi − δi

≈ vy − ϕ̇zi + ψ̇xi
vx

− δi + δϕi . (11.96)

The tire slip angle βi for the front and rear wheels of a two-wheel vehicle,
βf and βr, are

βf = tan−1
µ
vyf
vxf

¶
≈

vyf
vxf
≈ vy + a1 r − zfp

vx
(11.97)

βr = tan−1
µ
vyr
vxr

¶
≈ vyr

vxr
≈ vy − a2 r − zrp

vx
(11.98)

and the vehicle slip angle β is

β = tan−1
µ
vy
vx

¶
≈ vy

vx
. (11.99)

The zi coordinate of the wheels is not constant however, its variation is
small. To show the effect of zi, we may substitute it by coefficient Cβi
called the tire roll rate coefficient, and define coefficients Cβf and Cβr to
express the change in βi because of roll rate p.

βi = Cβip (11.100)

Cβi =
dβi
dp

(11.101)
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Therefore,

βf = tan−1
µ
vy + a1 r − Cβf p

vx

¶
(11.102)

βr = tan−1
µ
vy − a2 r − Cβrp

vx

¶
. (11.103)

Assuming small angles for slip angles βf , β, and βr, the tire sideslip
angles for the front and rear wheels, αf and αr, may be approximated as

αf =
1

vx
(vy + a1r − zfp)− δ − δϕf

= β + a1
r

vx
− Cβf

p

vx
− δ − Cδϕfϕ (11.104)

αr =
1

vx
(vy − a2r − zrp)− δϕr

= β − a2
r

vx
− Cβr

p

vx
− Cδϕrϕ. (11.105)

11.3.3 F Body Force Components on a Two-wheel Model

Figure 11.4 illustrates a top view of a car and the force systems acting at the
tireprints of a front-wheel-steering four-wheel vehicle. When we consider
the roll motion of the vehicle, the xy-plane does not remain parallel to
the road’s XY -plane, however, we may still use a two-wheel model for the
vehicle.
Figure 11.5 illustrates the force system and Figure 11.6 illustrates the

kinematics of a two-wheel model for a vehicle with roll and yaw rotations.
The rolling two-wheel model is also called the bicycle model.
The force system applied on the bicycle vehicle, having only the front

wheel steerable, is

Fx =
2X
i=1

(Fxi cos δ − Fyi sin δ) (11.106)

Fy =
2X
i=1

Fyi (11.107)

Mx = Mxf +Mxr − wcf ϕ̇− wkfϕ (11.108)

Mz = a1Fyf − a2Fyr (11.109)

where
¡
Fxf , Fxr

¢
and

¡
Fyf , Fyr

¢
are the planar forces on the tireprint of

the front and rear wheels. The force system may be approximated by the
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FIGURE 11.4. Top view of a car and the forces system acting at the tireprints.

following equations, if the steer angle δ is assumed small:

Fx ≈ Fxf + Fxr (11.110)

Fy ≈ Fyf + Fyr (11.111)

Mx ≈ CTfFyf + CTrFyr − kϕϕ− cϕϕ̇ (11.112)

Mz ≈ a1Fyf − a2Fyr (11.113)

The vehicle’s lateral force Fy and moment Mz depend only on the front
and rear wheels’ lateral forces Fyf and Fyr , which are functions of the
wheels sideslip angles αf and αr. They can be approximated by the follow-
ing equations:

Fy =

µ
a2
vx

Cαr −
a1
vx

Cαf

¶
r +

µ
CαfCβf

vx
+

CαrCβr

vx

¶
p

+(−Cαf − Cαr)β +
³
CαfCδϕf − Cϕr − Cϕf + CαrCδϕr

´
ϕ

+Cαfδ (11.114)
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FIGURE 11.5. A two-wheel model for a vehicle with roll and yaw rotations.

Mx =

µ
a2
vx

CTrCαr −
a1
vx

CTfCαf

¶
r

+

µ
1

vx
CβfCTfCαf +

1

vx
CβrCTrCαr − cϕ

¶
p

+
³
−CTf

³
Cϕf − CαfCδϕf

´
− CTr

¡
Cϕr − CαrCδϕr

¢
− kϕ

´
ϕ

+CTfCαfδ (11.115)

Mz =

µ
−a

2
1

vx
Cαf −

a22
vx

Cαr

¶
r +

µ
a1
vx

CβfCαf −
a2
vx

CβrCαr

¶
p

+(a2Cαr − a1Cαf )β

+
³
a2
¡
Cϕr − CαrCδϕr

¢
− a1

³
Cϕf − CαfCδϕf

´´
ϕ

+a1Cαfδ (11.116)

where Cαf = CαfL+CαfR and Cαr = CαrL+CαrR are equal to the sideslip
coefficients of the left and right wheels in front and rear, respectively.

Cαf = CαfL + CαfR (11.117)

Cαr = CαrL + CαrR (11.118)
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FIGURE 11.6. Kinematics of a two-wheel model for a vehicle with roll and yaw
rotations.

Proof. For a two-wheel vehicle, we use the cot-average (7.3) of the outer
and inner steer angles as the only steer angle δ.

cot δ =
cot δo + cot δi

2
(11.119)

Furthermore, we define a single sideslip coefficient Cαf and Cαr for the
front and rear wheels. The coefficient Cαf and Cαr are equal to sum of the
left and right wheels’ sideslip coefficients.
Employing Equations (11.47)-(11.52) the forward and lateral forces on

the rollable bicycle would be

Fx = Fxf cos δ + Fxr − Fyf sin δ (11.120)

Fy = Fyf + Fyr . (11.121)

The yaw moment equation does not interact with the vehicle roll. We may
also ignore the moments Mzi and assume that the forward forces on the
front left and right wheels are equal, as well as the forward forces on the
rear left and right wheels. So, the terms

P
i yiFxi cancel each other and

the yaw moment reduces to

Mz = a1Fyf − a2Fyr . (11.122)
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The vehicle roll moment Mx is a summation of the slip and camber
moments on the front and rear wheels,Mxf ,Mxr , and the moment because
of change in normal loads of the left and right wheels yiFzi . Let’s assume
that the slip and camber moments are proportional to the wheels’ lateral
force and write them as

Mxf = CTfFyf (11.123)

Mxr = CTrFyr (11.124)

where CTf and CTr are the overall torque coefficient of the front and rear
wheels respectively.

CTf =
dMxf

dFyf
(11.125)

CTr =
dMxr

dFyr
(11.126)

Roll moment because of change in normal force of the left and right
wheels is a result of force change in springs and dampers. These unbalanced
forces generate a roll stiffness moment that is proportional to the vehicle’s
roll angle

Mxk = −kϕϕ (11.127)

Mxc = −cϕϕ̇ (11.128)

where kϕ and cϕ are the roll stiffness and roll damping of the vehicle.

kϕ = wk

= w (kf + kr) (11.129)

cϕ = wc

= w (cf + cr) (11.130)

w is the track of the vehicle and k and c are sum of the front and rear
springs’ stuffiness and shock absorbers damping. The coefficients kϕ and
cϕ are called the roll stiffness and roll damping, respectively.

k = kf + kr (11.131)

c = cf + cr (11.132)

Therefore, the applied roll moment on the vehicle can be summarized as

Mx = Mxf +Mxr +Mxc +Mxk

= CTfFyf + CTrFyr − w (cf + cr) ϕ̇− w (kf + kr)ϕ. (11.133)
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If we assume a small steer angle δ, the vehicle force system can be approx-
imated by the following equations:

Fx ≈ Fxf + Fxr (11.134)

Fy ≈ Fyf + Fyr (11.135)

Mx ≈ CTfFyf + CTrFyr − kϕϕ− cϕϕ̇ (11.136)

Mz ≈ a1Fyf − a2Fyr . (11.137)

Substituting for the lateral forces from (11.81), and expanding Equations
(11.134)-(11.137) provides the following force system.

Fx = Fxf + Fxr (11.138)

Fy = Fyf + Fyr
= −Cαf αf − Cϕfϕ− Cαr αr − Cϕrϕ

= −Cαf

µ
β + a1

r

vx
− Cβf

p

vx
− δ − Cδϕfϕ

¶
− Cϕfϕ

−Cαr

µ
β − a2

r

vx
− Cβr

p

vx
− Cδϕrϕ

¶
− Cϕrϕ

=

µ
a2
vx

Cαr −
a1
vx

Cαf

¶
r +

µ
CαfCβf

vx
+

CαrCβr

vx

¶
p

+(−Cαf − Cαr)β +
³
CαfCδϕf − Cϕr − Cϕf + CαrCδϕr

´
ϕ

+Cαfδ (11.139)

Mx = CTfFyf + CTrFyr − kϕϕ− cϕp

= −CTf

µ
Cαf

µ
β + a1

r

vx
− Cβf

p

vx
− δ − Cδϕfϕ

¶
+ Cϕfϕ

¶
−CTr

µ
Cαr

µ
β − a2

r

vx
− Cβr

p

vx
− Cδϕrϕ

¶
+ Cϕrϕ

¶
−kϕϕ− cϕp

=

µ
a2
vx

CTrCαr −
a1
vx

CTfCαf

¶
r

+

µ
1

vx
CβfCTfCαf +

1

vx
CβrCTrCαr − cϕ

¶
p

+
¡
−CTfCαf − CTrCαr

¢
β

+
³
−CTf

³
Cϕf − CαfCδϕf

´
− CTr

¡
Cϕr − CαrCδϕr

¢
− kϕ

´
ϕ

+CTfCαfδ (11.140)
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Mz = a1Fyf − a2Fyr

= −a1
µ
Cαf

µ
β + a1

r

vx
− Cβf

p

vx
− δ − Cδϕfϕ

¶
+ Cϕfϕ

¶
+a2

µ
Cαr

µ
β − a2

r

vx
− Cβr

p

vx
− Cδϕrϕ

¶
+ Cϕrϕ

¶
=

µ
−a

2
1

vx
Cαf −

a22
vx

Cαr

¶
r +

µ
a1
vx

CβfCαf −
a2
vx

CβrCαr

¶
p

+(a2Cαr − a1Cαf )β

+
³
a2
¡
Cϕr − CαrCδϕr

¢
− a1

³
Cϕf − CαfCδϕf

´´
ϕ

+a1Cαfδ (11.141)

The parameters Cαf and Cαr are the sideslip stiffness for the front and
rear wheels, r is the yaw rate, p is the roll rate, ϕ is the roll angle, δ is the
steer angle, and β is the slip angle of the vehicle.
These equations are dependent on five parameters: r, p, β, ϕ, δ, and may

be written as

Fy = Fy (r, p, β, ϕ, δ)

=
∂Fy
∂r

r +
∂Fy
∂p

p+
∂Fy
∂β

β +
∂Fy
∂ϕ

ϕ+
∂Fy
∂δ

δ

= Cr r + Cp p+ Cβ β + Cϕ ϕ+ Cδ δ (11.142)

Mx = Mx (r, p, β, ϕ, δ)

=
∂Mx

∂r
r +

∂Mx

∂p
p+

∂Mx

∂β
β +

∂Mx

∂ϕ
ϕ+

∂Mx

∂δ
δ

= Er r +Ep p+Eβ β +Eϕ ϕ+Eδ δ (11.143)

Mz = Mz (r, p, β, ϕ, δ)

=
∂Mz

∂r
r +

∂Mz

∂p
p+

∂Mz

∂β
β +

∂Mz

∂ϕ
ϕ+

∂Mz

∂δ
δ

= Dr r +Dp p+Dβ β +Dϕ ϕ+Dδ δ (11.144)

where the force system coefficients are

Cr =
∂Fy
∂r

= −a1
vx

Cαf +
a2
vx

Cαr (11.145)

Cp =
∂Fy
∂p

=
CαfCβf

vx
+

CαrCβr

vx
(11.146)

Cβ =
∂Fy
∂β

= − (Cαf + Cαr) (11.147)
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Cϕ =
∂Fy
∂ϕ

= CαrCδϕr + CαfCδϕf − Cϕf − Cϕr (11.148)

Cδ =
∂Fy
∂δ

= Cαf (11.149)

Er =
∂Mx

∂r
= −a1

vx
CTfCαf +

a2
vx

CTrCαr (11.150)

Ep =
∂Mx

∂p
=
1

vx
CβfCTfCαf +

1

vx
CβrCTrCαr − cϕ (11.151)

Eβ =
∂Mx

∂β
= −CTfCαf − CTrCαr (11.152)

Eϕ =
∂Mx

∂ϕ
= −CTf

³
Cϕf − CαfCδϕf

´
− kϕ

−CTr

¡
Cϕr − CαrCδϕr

¢
(11.153)

Eδ =
∂Mx

∂δ
= CTfCαf . (11.154)

Dr =
∂Mz

∂r
= −a

2
1

vx
Cαf −

a22
vx

Cαr (11.155)

Dp =
∂Mz

∂p
=

a1
vx

CβfCαf −
a2
vx

CβrCαr (11.156)

Dβ =
∂Mz

∂β
= − (a1Cαf − a2Cαr) (11.157)

Dϕ =
∂Mz

∂ϕ
= −a1

³
Cϕf − CαfCδϕf

´
+ a2

¡
Cϕr − CαrCδϕr

¢
(11.158)

Dδ =
∂Mz

∂δ
= a1Cαf . (11.159)

The force system coefficients are slopes of the curves for lateral force Fy,
roll moment Mx, and yaw moment Mz as a function of r, p, β, ϕ, and δ
respectively.

11.4 F Two-wheel Rigid Vehicle Dynamics

We may combine the equations of motion (11.6)-(11.9) along with (11.110)-
(11.116) for a two-wheel rollable rigid vehicle, and express its motion by
the following set of equations:

v̇x =
1

m
Fx + r vy (11.160)

=
1

m

¡
Fxf + Fxr

¢
+ r vy
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⎡⎢⎢⎣
v̇y
ṗ
ϕ̇
ṙ

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cβ

mvx

Cp

m

Cϕ

m

Cr

m
− vx

Eβ

Ixvx

Ep

Ix

Eϕ

Ix

Er

Ix
0 1 0 0
Dβ

Izvx

Dp

Iz

Dϕ

Iz

Dr

Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣
vy
p
ϕ
r

⎤⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Cδ

m

Eδ

Ix
0
Dδ

Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
δ (11.161)

These sets of equations are very useful to analyze vehicle motions, espe-
cially when they move at a constant forward speed.
Assuming v̇x = 0, the first equation (11.160) becomes an independent

algebraic equation, while the lateral velocity vy, roll rate p, roll angle ϕ,
and yaw rate r of the vehicle will change according to the four coupled
equations (11.161).
Assuming the steer angle δ is the input command, the other variables

vy, p, ϕ, and r may be assumed as the outputs. Hence, we may consider
Equation (11.161) as a linear control system, and write the equations as

q̇ = [A]q+ u (11.162)

in which [A] is the coefficient matrix, q is the vector of control variables,
and u is the vector of inputs.

[A] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cβ

mvx

Cp

m

Cϕ

m

Cr

m
− vx

Eβ

Ixvx

Ep

Ix

Eϕ

Ix

Er

Ix
0 1 0 0
Dβ

Izvx

Dp

Iz

Dϕ

Iz

Dr

Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11.163)

q =

⎡⎢⎢⎣
vy
p
ϕ
r

⎤⎥⎥⎦ (11.164)

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Cδ

m

Eδ

Ix
0
Dδ

Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
δ (11.165)

Proof. The Newton-Euler equations of motion for a rigid vehicle in the
local coordinate frame B, attached to the vehicle at its mass center C, are
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given in Equations (11.6)-(11.9) as

Fx = mv̇x −mr vy (11.166)

Fy = mv̇y +mr vx (11.167)

Mz = Izω̇z = Iz ṙ (11.168)

Mx = Ixω̇x = Ixṗ. (11.169)

The approximate force system applied on a two-wheel vehicle is found in
Equations (11.110)-(11.113)

Fx ≈ Fxf + Fxr (11.170)

Fy ≈ Fyf + Fyr (11.171)

Mx ≈ CTfFyf + CTrFyr − kϕϕ− cϕϕ̇ (11.172)

Mz ≈ a1Fyf − a2Fyr (11.173)

and in terms of tire characteristics, in (11.114)-(11.116). These equations
could be summarized in (11.142)-(11.144) as follows:

Fy = Cr r + Cp p+ Cβ β + Cϕ ϕ+ Cδ δ (11.174)

Mx = Er r +Ep p+Eβ β +Eϕ ϕ+Eδ δ (11.175)

Mz = Dr r +Dp p+Dβ β +Dϕ ϕ+Dδ δ (11.176)

Substituting (11.174)—(11.176) in (11.166)—(11.169) produces the follow-
ing set of equations of motion:

mv̇x −mr vy = Fx (11.177)

mv̇y +mr vx = Cr r + Cp p+ Cβ β + Cϕ ϕ+ Cδ δ (11.178)

Ixṗ = Er r +Ep p+Eβ β +Eϕ ϕ+Eδ δ (11.179)

ṙ Iz = Dr r +Dp p+Dβ β +Dϕ ϕ+Dδ δ (11.180)

Employing
β =

vy
vx

(11.181)

we are able to transform these equations to a set of differential equations
for vx, vy, p, and r.

v̇x =
Fx
m
+ r vy (11.182)

v̇y =

µ
Cr

m
− vx

¶
r +

Cp

m
p+

Cβ

m

vy
vx
+

Cϕ

m
ϕ+

Cδ

m
δ (11.183)

ṗ =
1

Ix

µ
Er r +Ep p+Eβ

vy
vx
+Eϕ ϕ+Eδ δ

¶
(11.184)

ṙ =
1

Iz

µ
Dr r +Dp p+Dβ

vy
vx
+Dϕ ϕ+Dδ δ

¶
. (11.185)
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The first equation (11.182) depends on the yaw rate r and the lateral
velocity vy, which are the outputs of the other equations, (11.183)-(11.185).
However, if we assume the vehicle is moving with a constant forward speed,

vx = cte. (11.186)

then Equations (11.183)-(11.185) become independent with (11.182), and
may be treated independent of the first equation.
Equations (11.183)-(11.185) may be considered as three coupled differen-

tial equations describing the behavior of a dynamic system. The dynamic
system receives the steering angle δ as an input, and uses vx as a parameter
to generates four outputs: vy, p, ϕ, and r.

⎡⎢⎢⎣
v̇y
ṗ
ϕ̇
ṙ

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cβ

mvx

Cp

m

Cϕ

m

Cr

m
− vx

Eβ

Ixvx

Ep

Ix

Eϕ

Ix

Er

Ix
0 1 0 0
Dβ

Izvx

Dp

Iz

Dϕ

Iz

Dr

Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣
vy
p
ϕ
r

⎤⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Cδ

m

Eδ

Ix
0
Dδ

Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
δ (11.187)

Equation (11.187) may be rearranged to show the input-output relation-
ship.

q̇ = [A]q+ u (11.188)

The vector q is called the control variables vector, and u is called the inputs
vector. The matrix [A] is the control variable coefficients matrix.

Example 413 Equations of motion based on kinematic angles.
The equations of motion (11.187) can be expressed based on the angles

β, p, ϕ, r, and δ, by employing (11.181).
Taking a derivative from Equation (11.181) for constant vx

β̇ =
v̇y
vx

(11.189)

and substituting in Equations (11.178) shows that we can transform the
equation for β̇.

mvxβ̇ +mr vx = Cr r + Cp p+ Cβ β + Cϕ ϕ+ Cδ δ (11.190)

Therefore, the set of equations of motion can be expressed in terms of the
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vehicle’s angular variables.

⎡⎢⎢⎣
β̇
ṗ
ϕ̇
ṙ

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cβ

mvx

Cp

mvx

Cϕ

mvx

Cr

mvx
− 1

Eβ

Ix

Ep

Ix

Eϕ

Ix

Er

Ix
0 1 0 0
Dβ

Iz

Dp

Iz

Dϕ

Iz

Dr

Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣
β
p
ϕ
r

⎤⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Cδ

m

Eδ

Ix
0
Dδ

Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
δ

(11.191)

11.5 F Steady-State Motion

Turning of a front steering, two-wheel, rollable rigid vehicle at steady-state
condition is governed by the following equations:

Fx = −mr vy (11.192)

Cr r + Cp p+ Cβ β + Cϕ ϕ+ Cδ δ = mr vx (11.193)

Er r +Ep p+Eβ β +Eϕ ϕ+Eδ δ = 0 (11.194)

Dr r +Dp p+Dβ β +Dϕ ϕ+Dδ δ = 0 (11.195)

or equivalently, by the following equations

Fx = −m
R
vx vy (11.196)¡

Cr vx −mv2x
¢ 1
R
+ Cβ β + Cp p+ Cϕ ϕ = −Cδ δ (11.197)

Er vx
1

R
+Eβ β +Ep p+Eϕ ϕ = −Eδ δ (11.198)

Dr vx
1

R
+Dβ β +Dp p+Dϕ ϕ = −Dδ δ. (11.199)

The first equation determines the required forward force to keep vx con-
stant. The next three equations show the steady-state values of the output
variables, which are: path curvature κ,

κ =
1

R

=
r

vx
(11.200)

vehicle slip angle β, vehicle roll rate p, and vehicle roll angle ϕ for a con-
stant steering input δ at a constant forward speed vx. The output-input
relationships are defined by the following responses:
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1− Curvature response, Sκ

Sκ =
κ

δ
=

1

Rδ

= − Z1
vxZ0

(11.201)

2− Slip response, Sβ

Sβ =
β

δ

=
Z2
Z0

(11.202)

3− Yaw rate response, Sr

Sr =
r

δ
=

κ

δ
vx = Sκvx

= −Z1
Z0

(11.203)

4− Lateral acceleration response, Sa

Sa =
v2x/R

δ
=

κ

δ
v2x = Sκv

2
x

=
vxZ1
Z0

(11.204)

5− Roll angle response, Sϕ

Sϕ =
ϕ

δ

= −Z3
Z0

(11.205)

Z0 = Eβ (DrCϕ − CrDϕ +mvxDϕ) +

Eϕ (CrDβ −DrCβ −mvxDβ) +Er (CβDϕ −DβCϕ) (11.206)

Z1 = Eβ (CϕDδ − vxCδDϕ)−Eϕ (CβDδ − vxCδDβ)

+Eδ (CβDϕ −DβCϕ) (11.207)

Z2 = Eϕ (mvxDδ − CrDδ +DrvxCδ) +Er (CϕDδ − vxCδDϕ)

−Eδ (DrCϕ − CrDϕ +mvxDϕ) (11.208)

Z3 = Eβ (mvxDδ − CrDδ +DrvxCδ) +Er (CβDδ − vxCδDβ)

−Eδ (DrCβ − CrDβ +mvxDβ) (11.209)
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Proof. In steady-state conditions, all the variables are constant and hence,
their derivatives are zero. Therefore, the equations of motion (11.166)—
(11.169) reduce to

Fx = −mr vy (11.210)

Fy = mr vx (11.211)

Mx = 0 (11.212)

Mz = 0 (11.213)

where the lateral force Fy, roll moment Mx, and yaw moment Mz from
(11.174)—(11.176) would be

Fy = Cr r + Cβ β + Cϕ ϕ+ Cδ δ (11.214)

Mx = Er r +Eβ β +Eϕ ϕ+ Eδ δ (11.215)

Mz = Dr r +Dβ β +Dϕ ϕ+Dδ δ (11.216)

Therefore, the equations describing the steady-state turning of a two-wheel
rigid vehicle are equal to

Fx = −mr vy (11.217)

Cr r + Cβ β + Cϕ ϕ+ Cδ δ = mr vx (11.218)

Er r +Eβ β +Eϕ ϕ+Eδ δ = 0 (11.219)

Dr r +Dβ β +Dϕ ϕ+Dδ δ = 0. (11.220)

Equation (11.217) may be used to calculate the required traction force to
keep the motion steady. However, Equations (11.218) and (11.220) can be
used to determine the steady-state responses of the vehicle.

Cr
vx
R
+ Cβ β + Cϕ ϕ+ Cδ δ = m

vx
R

vx (11.221)

Er
vx
R
+Eβ β +Eϕ ϕ+Eδ δ = 0 (11.222)

Dr
vx
R
+Dβ β +Dϕ ϕ+Dδ δ = 0. (11.223)

At steady-state turning, the vehicle will move on a circle with radius R
at a speed vx and angular velocity r, so

vx = Rr. (11.224)

By substituting (11.224) in Equations (11.218)-(11.220) and employing the
curvature definition (11.200), we may write the equations in matrix form⎡⎣ Cβ Cr vx −mv2x Cϕ

Eβ Er vx Eϕ

Dβ Dr vx Dϕ

⎤⎦⎡⎣ β
κ
ϕ

⎤⎦ =
⎡⎣ −Cδ

−Eδ

−Dδ

⎤⎦ δ. (11.225)

Solving the equations for β, κ, and ϕ enables us to define different output-
input relationships as (11.201)-(11.205).
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Example 414 Force system coefficients for a car.
Consider a front steering, four-wheel car with the following characteris-

tics:

CαfL = CαfR ≈ 26000N/ rad (11.226)

CαrL = CαrR ≈ 32000N/ rad (11.227)

m = 838.7 kg

Ix = 300 kgm2

Iz = 1391 kgm2

a1 = 0.859m

a2 = 1.486m

kϕ = 26612N/ rad

cϕ = 1700N s/ rad (11.228)

Cβf = −0.4
Cβr = −0.1
CTf = −0.4
CTr = −0.2
Cδϕf = 0.01

Cδϕr = 0

Cϕf = −3200
Cϕr = 0 (11.229)

vx = 16.6m/ s (11.230)

δ = 0.1 rad (11.231)

The sideslip coefficients of an equivalent bicycle model are

Cαf = CαfL + CαfR = 52000N/ rad (11.232)

Cαr = CαrL + CαrR = 64000N/ rad (11.233)

The force system coefficients are equal to the following if vx is measured in
[m/ s]:

Cr = 2521.8

Cp = −1360
Cβ = −116000
Cϕ = 8400

Cδ = 52000 (11.234)
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Er = −57.68
Ep = −1220
Eβ = 33600

Eϕ = −29972
Eδ = −20800 (11.235)

Dr = −8984.7178
Dp = −417.84
Dβ = 50436

Dϕ = 7215.6

Dδ = 44668. (11.236)

The Zi parameters and the steady-state responses of the vehicle are as fol-
lows:

Z0 = 0.5377445876× 1014

Z1 = −0.1940746914× 1016

Z2 = .02619612932× 1015

Z3 = −0.2526173904× 1015 (11.237)

Sκ =
κ

δ
=
1/R

δ
= 1.804524824

Sβ =
β

δ
= 4.871481726

Sr =
r

δ
= 36.09049647

Sa =
v2x/R

δ
= −721.8099294

Sϕ =
ϕ

δ
= 4.697720744 (11.238)

Having the steady-state responses, we are able to calculate the steady-
state characteristic of the motion.

R = 5.54m (11.239)

β = .487 rad ≈ 27.9 deg (11.240)

r = 3.61 rad/ s (11.241)

v2x
R

= −72.18m/ s2 (11.242)

Example 415 F Camber trust.
When a vehicle rolls, the road wheels of almost all types of suspensions

take up a camber angle in the same sense as the roll. The wheel camber is
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always less than the roll angle. The camber angle in independent suspen-
sions is higher than in dependent suspensions.
At steady-state conditions, camber at the front wheels increases the un-

dersteer characteristic of the vehicle, while camber at the rear increases the
oversteer characteristic of the vehicle. Most road vehicles are made such
that in a turn, the rear wheels remain upright and the front wheels cam-
ber. These vehicles have an increasing understeer behavior with roll and are
more stable.

Example 416 F Roll steer.
Positive roll steer means the wheel steers about the z-axis when the vehicle

rolls about the x-axis. So, when the vehicle turns to the right, a positive roll
steer wheel will steer to the left.
Positive roll steer at the front wheels increases the understeer charac-

teristic of the vehicle, while roll steer at the rear increases the oversteer
characteristic of the vehicle. Most road vehicles’ suspension is made such
that in a turn the front wheels have positive roll steering. These vehicles
have an increasing understeer behavior with roll and are more stable.

11.6 F Time Response

The equations of motion must analytically or numerically be integrated to
analyze the time response of a vehicle and examine how the vehicle will
respond to a steering input. The equations of motion are a set of coupled
ordinary differential equations as expressed here.

v̇x =
1

m
Fx + r vy (11.243)

⎡⎢⎢⎣
v̇y
ṗ
ϕ̇
ṙ

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cβ

mvx

Cp

m

Cϕ

m

Cr

m
− vx

Eβ

Ixvx

Ep

Ix

Eϕ

Ix

Er

Ix
0 1 0 0
Dβ

Izvx

Dp

Iz

Dϕ

Iz

Dr

Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣
vy
p
ϕ
r

⎤⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Cδ

m

Eδ

Ix
0
Dδ

Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
δ (t)

(11.244)
Their answers to a given time-dependent steer angle δ (t) are

vx = vx (t) (11.245)

vy = vy (t) (11.246)

p = p (t) (11.247)

ϕ = ϕ (t) (11.248)

r = r (t) . (11.249)
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Such a solution is called the time response or transient response of the
vehicle.
Assuming a constant forward velocity, the first equation (11.243) simpli-

fies to
Fx = −mr vy (11.250)

and Equation (11.244) becomes independent from the first one. The set of
Equations (11.244) can be written in the form

q̇ = [A]q+ u (11.251)

in which [A] is a constant coefficient matrix, q is the vector of control
variables, and u is the vector of inputs.
To solve the inverse dynamics problem and find the vehicle response, the

steering function δ (t) must be given.

Example 417 F Free dynamics and free response.
The response of a vehicle to zero steer angle δ (t) = 0 at constant speed

is called free response. The equation of motion under a free dynamics
is

q̇ = [A]q. (11.252)

To solve the equation, let’s assume

[A] =

⎡⎢⎢⎣
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤⎥⎥⎦ (11.253)

and therefore, the equations of motion are⎡⎢⎢⎣
v̇y
ṗ
ϕ̇
ṙ

⎤⎥⎥⎦ =
⎡⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤⎥⎥⎦
⎡⎢⎢⎣

vy
p
ϕ
r

⎤⎥⎥⎦ (11.254)

Because the equations are linear, the solutions are an exponential function

vy = A1e
λt (11.255)

p = A2e
λt (11.256)

ϕ = A3e
λt (11.257)

r = A4e
λt. (11.258)

Substituting the solutions shows that the condition for functions (11.255)-
(11.258) to be the solution of the equations (11.254) is that the exponent λ
is the eigenvalue of [A]. To find λ, we may expand the determinant of the
above coefficient matrix and find the characteristic equation

det [A] = 0. (11.259)
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Having the eigenvalues λ1,2,3,4 provides the following general solution for
the free dynamics of the vehicle:

vy = A11e
λ1t +A12e

λ2t +A13e
λ3t +A14e

λ4t (11.260)

p = A21e
λ1t +A22e

λ2t +A23e
λ3t +A24e

λ4t (11.261)

ϕ = A31e
λ1t +A32e

λ2t +A33e
λ3t +A34e

λ4t (11.262)

r = A41e
λ1t +A42e

λ2t +A43e
λ3t +A44e

λ4t. (11.263)

The coefficients Aij must be found from initial conditions. The free dynam-
ics and hence the vehicle, is stable as long as the eigenvalues have negative
real part.
As an example, consider a vehicle with the characteristics given in (11.226)-

(11.229), and the following steer angle and forward velocity.

vx = 20m/ s (11.264)

δ = 0.1 rad (11.265)

Substituting those values provide the following equations of motion for free
dynamics.⎡⎢⎢⎣

v̇y
ṗ
ϕ̇
ṙ

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−6.91 −1.62 10.01 −16.99
5.6 −4.067 −99.9 −.192
0 1 0 0
1.81 −0.3 5.19 −6.46

⎤⎥⎥⎦
⎡⎢⎢⎣

vy
p
ϕ
r

⎤⎥⎥⎦ (11.266)

The eigenvalues of the coefficient matrix are

λ1 = −2.503 + 9.6154i
λ2 = −2.503− 9.6154i
λ3 = −6.2155 + 6.2528i
λ4 = −6.2155− 6.2528i (11.267)

which shows the vehicle is stable because all of the eigenvalues have real
negative parts.
Substituting the eigenvalues in Equations (11.260)-(11.263) provides the

solution with unknown coefficients. Let’s examine the free dynamics behav-
ior of the vehicle for a nonzero initial condition.

q0 =

⎡⎢⎢⎣
vy (0)
p (0)
ϕ (0)
r (0)

⎤⎥⎥⎦ =
⎡⎢⎢⎣

0
0.1
0
0

⎤⎥⎥⎦ (11.268)

Figures 11.7 to 11.10 illustrate the time responses of the vehicle.
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[ ]t s

[ ]/
2yv m s

FIGURE 11.7. Lateral velocity response over time.

[ ]t s

[ ]/p rad s

FIGURE 11.8. Roll rate response over time.
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[ ]t s

[ ]radϕ

FIGURE 11.9. Roll angle response over time.

[ ]t s

[ ]/r rad s

FIGURE 11.10. Yaw rate response over time.
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[ ]t s

[ ]/yv m s

FIGURE 11.11. Lateral velocity response for a step steer angle.

Example 418 F Response to a step input.
The response of dynamic systems to a step input is a standard test to

examine the behavior of dynamic systems. Step input for vehicle dynamics
is a sudden change in steer angle from zero to a nonzero constant value.
Consider a vehicle with the characteristics given in (11.226)-(11.229)

and a sudden change in the steering input to a constant value

δ (t) =

½
0.2 rad ≈ 11.459 deg t > 0
0 t ≤ 0 . (11.269)

The equations of motion for non-zero initial conditions

q0 =

⎡⎢⎢⎣
⎡⎢⎢⎣

vy (0)
p (0)
ϕ (0)
r (0)

⎤⎥⎥⎦
⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0.1
0
0

⎤⎥⎥⎦ (11.270)

are

v̇y + 6.91vy + 1.62p− 10.01ϕ+ 16.99r = 62δ (t) (11.271)

ṗ− 5.6vy + 4.06p+ 99.91ϕ+ .192r = −69.33 (t) (11.272)

ϕ̇− p = 0 (11.273)

ṙ − 1.81vy + 0.3p− 5.19ϕ+ 6.46r = 32.11δ (t) (11.274)

Figures 11.11 to 11.14 depict the solutions.
Having vy (t), p(t), ϕ(t), and r (t) are enough to calculate any other

kinematic variables as well as the required forward force Fx to maintain a
constant speed.

Fx = −mr vy (11.275)

Figure 11.15 illustrates the required forward force Fx(t).
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[ ]t s

[ ]/p rad s

FIGURE 11.12. Roll rate response for a step steer angle.

[ ]t s

[ ]radϕ

FIGURE 11.13. Roll angle response for a step steer angle.
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[ ]t s

[ ]/r rad s

FIGURE 11.14. Yaw rate response for a step steer angle.

[ ]t s

[ ]xF N

FIGURE 11.15. The required forward force Fx to maintain the speed constant.
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Example 419 F Passing maneuver.
Passing and lane-change maneuvers are two other standard tests to ex-

amine a vehicle’s dynamic responses. Passing can be expressed by a half-
sine or a sine-squared function for steering input. Two examples of such
functions are

δ (t) =

⎧⎨⎩ δ0 sinωt t1 < t <
π

ω
0

π

ω
< t < t1

rad (11.276)

δ (t) =

⎧⎨⎩ δ0 sin
2 ωt t1 < t <

π

ω
0

π

ω
< t < t1

rad (11.277)

ω =
πL

vx
. (11.278)

where L is the moving length during the passing and vx is the forward speed
of the vehicle. The path of a passing car would be similar to Figure 11.16.
Let’s examine a vehicle with the characteristics given in (11.226)-(11.229)

and a change in half-sine steering input δ (t).

δ (t) =

⎧⎨⎩ 0.2 sin
πL

vx
t 0 < t <

vx
L

0
vx
L

< t < 0
rad (11.279)

L = 100m (11.280)

vx = 30m/ s. (11.281)

The equations of motion for zero initial conditions are as given in (11.271)-
(11.274).
Figures 11.17 to 11.20 show the time responses of the vehicle for the

steering function (11.279).

Example 420 F Passing with a sine-square steer function.
A good driver should change the steer angle as smoothly as possible to

minimize undesired roll angle and roll fluctuation. A sine-square steer func-
tion

δ (t) =

⎧⎨⎩ δ0 sin
2 ωt t1 < t <

π

ω
0

π

ω
< t < t1

rad (11.282)

ω =
πL

vx
. (11.283)

which is introduced in Equation (11.277), makes for smoother passing steer-
ing. The responses of the vehicle in Example 419 to the steering (11.282)
are illustrated in Figures 11.21 to 11.24.
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FIGURE 11.16. A passing maneuver.
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[ ]t s

[ ]/
2yv m s

FIGURE 11.17. Lateral velocity response for the steering function (11.279).
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FIGURE 11.18. Roll rate response for the steering function (11.279).
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[ ]t s

[ ]radϕ

FIGURE 11.19. Roll angle response for the steering function (11.279).
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FIGURE 11.20. Yaw rate response for the steering function (11.279).
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FIGURE 11.21. Lateral velocity response for the steering function (11.282).
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FIGURE 11.22. Roll rate response for the steering function (11.282).
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[ ]t s

[ ]radϕ

FIGURE 11.23. Roll angle response for the steering function (11.282).
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FIGURE 11.24. Yaw rate response for the steering function (11.282).
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Example 421 F Vehicle driving and classical feedback control.
Driving a car is a problem in feedback control. The driver compares de-

sired direction, speed, and acceleration with actual direction, speed, and
acceleration. The driver uses the cars’s indicator and measuring devices,
as well as human sensors to sense actual direction, speed, and accelera-
tion. When the actual data differs from the desired values, the driver uses
the control devices such as gas pedal, brake, steering, and gear selection to
improve the actual.

Example 422 F Hatchback, notchback, and station models of a platform.

It is common in vehicle manufacturing companies to install different bod-
ies on the same chassis and platform to make different models easier. Con-
sider a hatchback, notchback, and station models of a car that use the same
platform. To compare the dynamic behavior of the three models, we may
examine their response to a step input.
The common characteristics of the cars are

CαfL = CαfR ≈ 26000N/ rad (11.284)

CαrL = CαrR ≈ 32000N/ rad (11.285)

l = 2.345m

Cβf = −0.4
Cβr = −0.1
CTf = −0.4
CTr = −0.4
Cδϕf = 0.01

Cδϕr = 0.01

Cϕf = −3200
Cϕr = 0

kϕ = 26612N/ rad

cϕ = 1700N s/ rad. (11.286)

For the hatchback, we use

m = 838.7 kg

Ix = 300kgm2

Iz = 1391 kgm2

a1 = 0.859m

a2 = 1.486m (11.287)
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[ ]t s
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Notchback
Hatchback

Station

FIGURE 11.25. Lateral velocity response for hatchback, notchback, and station
models of a car to a step steer angle.

and for the notchback we have

m = 845.4 kg

Ix = 350kgm2

Iz = 1490 kgm2

a1 = 0.909m

a2 = 1.436m (11.288)

and finally for the station model we use the following data.

m = 859kg

Ix = 400kgm2

Iz = 1680 kgm2

a1 = 0.945m

a2 = 1.4m (11.289)

Assume the cars are moving at

vx = 16.6m/ s (11.290)

and the step input of the steer angle is

δ = 0.1 rad. (11.291)

Figure 11.25 compares the lateral velocity responses of the three models. It
shows that the steady-state lateral velocity of the station model is a negative,
while the hatchback’s is a positive. When the lateral velocity is zero, the
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Notchback
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Station

FIGURE 11.26. Roll rate response for hatchback, notchback, and station models
of a car to a step steer angle.
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FIGURE 11.27. Roll angle response for hatchback, notchback, and station models
of a car to a step steer angle.
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Notchback
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Station

FIGURE 11.28. Yaw rate response for hatchback, notchback, and station models
of a car to a step steer angle.

velocity vector of the car, v, is perpendicular to the turning radius R at C.
A positive vy indicates that R is perpendicular to a point behind C, and a
negative vy indicates that R is perpendicular to a point in front of C.
Figure 11.26 compares the roll rate responses of the three models. The

hatchback model has the least longitudinal moment of inertia and hence
shows the fastest roll rate response. It will also reach to the zero steady-
state value faster than the other models.
Figure 11.27 compares the roll angle responses of the three models. The

station model has the largest roll angle because of the highest longitudinal
moment of inertia. It will also reach to the steady-state roll angle later than
the other models.
Figure 11.28 compares the yaw rate responses of the three models. The

station model has the highest yaw rate because of the highest vertical mo-
ment of inertia. It will also reach to the steady-state yaw rate later than
the other models.

11.7 Summary

The most applied dynamic model for vehicle motion shows the yaw and
roll DOF as well as the x and y motions. Such a model is called the rigid
vehicle roll model and can be expressed by the following five differential
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equations.

v̇x =
1

m
Fx + r vy

⎡⎢⎢⎣
v̇y
ṗ
ϕ̇
ṙ

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cβ

mvx

Cp

m

Cϕ

m

Cr

m
− vx

Eβ

Ixvx

Ep

Ix

Eϕ

Ix

Er

Ix
0 1 0 0
Dβ

Izvx

Dp

Iz

Dϕ

Iz

Dr

Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣
vy
p
ϕ
r

⎤⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Cδ

m

Eδ

Ix
0
Dδ

Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
δ

The vehicle receives the steering angle δ as an input to generate five out-
puts vx, vy, p, ϕ, and r. However, keeping the forward speed constant,
vx = cte, and using it as a parameter, can uncouple the first equation the
others. So, a constant forward speed is used in many of the vehicle dynamic
examinations of vehicles.
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11.8 Key Symbols

a, ẍ,a, v̇ acceleration
afwd front wheel drive acceleration
arwd rear wheel drive acceleration
a1 = x1 distance of first axle from mass center
a2 = −x2 distance of second axle from mass center
A,B,C constant parameters
[A] control variable coefficient matrix
b1 distance of left wheels from mass center
b2 distance of right wheels from mass center
c damping
cf damping of front suspension
cr damping of rear suspension
cϕ = dMxk/dϕ̇ vehicle roll damping
C mass center of vehicle
Cαi = dFy/dαi tire sideslip coefficient
Cβi = vx dβi/dp tire roll rate coefficient
Cδϕi

= dδ/dϕi tire roll steering coefficient
Cϕi = dFy/dϕi tire camber trust coefficient
CTi = dMx/dFy tire torque coefficient
Cr = ∂Fy/∂r vehicle yaw-rate lateral-force coefficient
Cp = ∂Fy/∂p vehicle roll-rate lateral-force coefficient
Cβ = ∂Fy/∂β vehicle slip-angle lateral-force coefficient
Cϕ = ∂Fy/∂ϕ vehicle yaw-angle lateral-force coefficient
Cδ = ∂Fy/∂δ vehicle steer-angle lateral-force coefficient
Dr = ∂Mz/∂r vehicle yaw-rate yaw-moment coefficient
Dp = ∂Mz/∂p vehicle roll-rate yaw-moment coefficient
Dβ = ∂Mz/∂β vehicle slip-angle yaw-moment coefficient
Dϕ = ∂Mz/∂ϕ vehicle yaw-angle yaw-moment coefficient
Dδ = ∂Mz/∂δ vehicle steer-angle yaw-moment coefficient
Er = ∂Mx/∂r vehicle yaw-rate roll-moment coefficient
Ep = ∂Mx/∂p vehicle roll-rate roll-moment coefficient
Eβ = ∂Mx/∂β vehicle slip-angle roll-moment coefficient
Eϕ = ∂Mx/∂ϕ vehicle yaw-angle roll-moment coefficient
Eδ = ∂Mx/∂δ vehicle steer-angle roll-moment coefficient
F,F force
Fx traction or brake force under a wheel
Fx1 traction or brake force under front wheels
Fx2 traction or brake force under rear wheels
Fxt horizontal force at hinge
Fz normal force under a wheel
Fz1 normal force under front wheels
Fz2 normal force under rear wheels
Fz3 normal force under trailer wheels
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Fzt normal force at hinge
g, g gravitational acceleration
h height of C
H height
I mass moment of inertia
I1, I2, I3 principal mass moment of inertia
k stiffness
kf stiffness of front suspension
kr stiffness of rear suspension
kϕ = dMxk/dϕ vehicle roll stiffness
l wheel base
L road wave length
L angular momentum
m car mass
M,M moment
p = ϕ̇ roll rate
p translational momentum
q = θ̇ pitch rate
q control variable vector
q0 initial condition vector
u control input vector
r = ψ̇ yaw rate
r position vector
R tire radius
R rotation matrix
Rf front tire radius
RH radius of curvature
Rr rear tire radius
Sa = v2x/R/δ lateral acceleration response
Sr = r/δ yaw rate response
Sβ = β/δ sideslip response
Sκ = κ/δ curvature response
Sϕ = ϕ/δ roll angle response
t time
v, ẋ,v velocity
vc critical velocity
vx forward velocity
vc lateral velocity
w track
zi deflection of axil number i
x, y, z vehicle coordinate axes
xi, yi, zi coordinates of wheel number i in B
xw, yw, zw axes of a wheel coordinate frame
X,Y,Z global coordinate axes
Z0, Z1, Z2, Z3 steady-state response parameters
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α tire sideslip angle between vw and xw-axis
β = vy/vx vehicle slip angle between v and x-axis
βf front tire slip angle
βi tire slip angle between v and x-axis
βr rear tire slip angle
δ vehicle steer angle
δ0 a constant steer angle value
δw tire steer angle between xw-axis and x-axis
δ1, δf steer angle of front wheels
δ2, δr steer angle of rear wheels
δa actual steer angle
δϕ roll-steer angle
η atan2 (a, b)
θ pitch angle
κ = 1/R path curvature
λ eigenvalue
μ friction coefficient
φ slope angle
φM maximum slope angle
ϕ roll angle
ψ yaw angle
ω angular frequency
ω,ω angular velocity
ω̇, ω̇ angular acceleration

Subscriptions
dyn dynamic
f front
fwd front-wheel-drive
i wheel number
L left
M maximum
r rear
R right
rwd rear-wheel-drive
st statics
w wheel
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Exercises

1. F Force system coefficients.

Consider a front-wheel-steering car with the following characteristics
and determine the force system coefficients Cr, Cp, Cβ , Cϕ, Cδ, Er,
Ep, Eβ, Eϕ, Eδ, Dr, Dp, Dβ , Dϕ, and Dδ.

CαfL = CαfR = 600N/deg

CαrL = CαrR = 560N/deg

m = 1245 kg

Ix = 300 kgm2

Iz = 1328 kgm2

a1 = 110 cm

a2 = 132 cm

kϕ = 26612N/ rad

cϕ = 1700N s/ rad

vx = 30m/ s

Cβf = −0.4
Cβr = −0.1
CTf = −0.4
CTr = −0.2
Cδϕf = 0.01

Cδϕr = 0.01

Cϕf = −3200
Cϕr = −300

2. F Force system and two-wheel model of a car.

Consider a front-wheel-steering car with the following characteristics

CαrL = CαrR = CαfL = CαfR = 500N/deg

a1 = 110 cm

a2 = 132 cm

m = 1205 kg

Ix = 300 kgm2

Iz = 1328 kgm2
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kϕ = 26612N/ rad

cϕ = 1700N s/ rad

vx = 30m/ s

Cβf = −0.4
Cβr = −0.1
CTf = −0.4
CTr = −0.2

Cδϕf = 0.01

Cδϕr = 0.01

Cϕf = −3200
Cϕr = −300

and determine the force system that applies on the two-wheel model
of the car.

Fy = Cr r + Cp p+ Cβ β + Cϕ ϕ+ Cδ δ

Mx = Er r +Ep p+Eβ β +Eϕ ϕ+Eδ δ

Mz = Dr r +Dp p+Dβ β +Dϕ ϕ+Dδ δ

Then, write the equations of motion of the car as

Fx = mv̇x −mr vy

Fy = mv̇y +mr vx

Mz = Iz ṙ

Mx = Ixṗ.

3. F Equations of motion for a front-wheel-steering car.

Consider a front-wheel-steering car with the following characteristics

CαrL = CαrR = CαfL = CαfR = 500N/deg

a1 = 110 cm

a2 = 132 cm

m = 1245 kg

Iz = 1328 kgm2

vx = 40m/ s
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Ix = 300 kgm2

kϕ = 26612N/ rad

cϕ = 1700N s/ rad

Cβf = −0.4
Cβr = −0.1
CTf = −0.4
CTr = −0.2

Cδϕf = 0.01

Cδϕr = 0.01

Cϕf = −3200
Cϕr = −300

and develop the equations of motion

q̇ = [A]q+ u.

4. F Equations of motion in different variables.

Consider a car with the following characteristics

CαrL = CαrR = CαfL = CαfR = 500N/deg

a1 = 100 cm

a2 = 120 cm

m = 1000 kg

Iz = 1008 kgm2

vx = 40m/ s

Ix = 300 kgm2

kϕ = 26612N/ rad

cϕ = 1700N s/ rad

Cβf = −0.4
Cβr = −0.1
CTf = −0.4
CTr = −0.2

Cδϕf = 0.01

Cδϕr = 0.01

Cϕf = −3200
Cϕr = −300



718 11. F Vehicle Roll Dynamics

and develop the equations of motion

(a) in terms of (v̇x, v̇y, ṗ, ϕ̇, ṙ), if the car is front-wheel steering.

(b) in terms of
³
v̇x, β̇, ṗ, ϕ̇, ṙ

´
, if the car is front-wheel steering.

5. F Steady state response parameters.

Consider a car with the following characteristics

CαfL = CαfR = 500N/deg

CαrL = CαrR = 520N/deg

m = 1245 kg

Iz = 1328 kgm2

a1 = 110 cm

a2 = 132 cm

vx = 40m/ s

Ix = 300 kgm2

kϕ = 26612N/ rad

cϕ = 1700N s/ rad

Cβf = −0.4
Cβr = −0.1
CTf = −0.4
CTr = −0.2

Cδϕf = 0.01

Cδϕr = 0.01

Cϕf = −3200
Cϕr = −300

and determine the steady-state curvature response Sκ, sideslip re-
sponse Sβ, yaw rate response, Sr, roll angle response, Sϕ, and lateral
acceleration response Sa.

6. F Steady state motion parameters.

Consider a car with the following characteristics

CαfL = CαfR = 600N/deg

CαrL = CαrR = 550N/deg
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m = 1245 kg

Iz = 1128 kgm2

a1 = 120 cm

a2 = 138 cm

vx = 20m/ s

δ = 3deg

Ix = 300 kgm2

kϕ = 26612N/ rad

cϕ = 1700N s/ rad

Cβf = −0.4
Cβr = −0.1
CTf = −0.4
CTr = −0.2

Cδϕf = 0.01

Cδϕr = 0.01

Cϕf = −3200
Cϕr = −300

and determine the steady state values of r, R, β, ϕ, and v2x/R.

7. F Inertia and steady state parameters.

Consider a car that is made up of a uniform solid box with dimensions
260 cm×140 cm×40 cm. If the density of the box is ρ = 1000 kg/m3,
and the other characteristics are

CαfL = CαfR = 600N/deg

CαrL = CαrR = 550N/deg

a1 = a2 =
l

2

kϕ = 26612N/ rad

cϕ = 1700N s/ rad

Cβf = −0.4
Cβr = −0.1
CTf = −0.4
CTr = −0.2
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Cδϕf = 0.01

Cδϕr = 0.01

Cϕf = −3200
Cϕr = −300

then,

(a) determine m, Iz.

(b) determine the steady-state responses Sκ, Sβ , Sr, and Sa as func-
tions of vx.

(c) determine the velocity vx at which the car has a radius of turning
equal to

R = 35m

when
δ = 4deg .

(d) determine the steady state parameters r, R, β, ϕ, and v2x/R at
that speed.

(e) set the speed of the car at

vx = 20m/ s

and plot the steady-state responses Sκ, Sβ, Sr, and Sa for vari-
able ρ.

8. F Stability factor and understeer behavior.

Define a stability factor K for the vehicle roll model.

9. F Stability factor and mass of the car.

Find a1 and a2 in terms of Fz1 , Fz2 , and mg to rewrite the stability
factor K to see the effect of a car’s mass distribution.

10. F Stability factor and car behavior.

Examine the stability factor of a car with the parameters

CαfL = CαfR = 500N/deg

CαrL = CαrR = 460N/deg

m = 1245 kg

Iz = 1328 kgm2

a1 = 110 cm

a2 = 132 cm

vx = 30m/ s
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Ix = 300 kgm2

kϕ = 26612N/ rad

cϕ = 1700N s/ rad

Cβf = −0.4
Cβr = −0.1
CTf = −0.4
CTr = −0.2

Cδϕf = 0.01

Cδϕr = 0.01

Cϕf = −3200
Cϕr = −300

and determine if the car is understeer, neutral, or oversteer?

11. F Critical speed of a car.

Consider a car with the characteristics

CαfL = CαfR = 700N/deg

CαrL = CαrR = 520N/deg

m = 1245 kg

Iz = 1328 kgm2

a1 = 118 cm

a2 = 122 cm.

Ix = 300 kgm2

kϕ = 26612N/ rad

cϕ = 1700N s/ rad

Cβf = −0.4
Cβr = −0.1
CTf = −0.4
CTr = −0.2

Cδϕf = 0.01

Cδϕr = 0.01

Cϕf = −3200
Cϕr = −300
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(a) Define a critical speed for oversteer condition.

(b) Determine if the car is understeer, neutral, or oversteer?

12. F Step input response at different speed.

Consider a car with the characteristics

CαfL = CαfR = 600N/deg

CαrL = CαrR = 750N/deg

m = 1245 kg

Iz = 1328 kgm2

a1 = 110 cm

a2 = 132 cm

Ix = 300 kgm2

kϕ = 26612N/ rad

cϕ = 1700N s/ rad

Cβf = −0.4
Cβr = −0.1
CTf = −0.4
CTr = −0.2

Cδϕf = 0.01

Cδϕr = 0.01

Cϕf = −3200
Cϕr = −300

and a step input

δ (t) =

½
5 deg t > 0
0 t ≤ 0 .

Determine the time response of the car at

(a) vx = 10m/ s.

(b) vx = 20m/ s.

(c) vx = 30m/ s.

(d) vx = 40m/ s.
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13. F Step input response for different steer angle.

Consider a car with the characteristics

CαfL = CαfR = 600N/deg

CαrL = CαrR = 750N/deg

m = 1245 kg

Iz = 1328 kgm2

a1 = 110 cm

a2 = 132 cm

vx = 20m/ s

Ix = 300 kgm2

kϕ = 26612N/ rad

cϕ = 1700N s/ rad

Cβf = −0.4
Cβr = −0.1
CTf = −0.4
CTr = −0.2
Cδϕf = 0.01

Cδϕr = 0.01

Cϕf = −3200
Cϕr = −300

Determine the time response of the car to a step input

δ (t) =

½
δ t > 0
0 t ≤ 0

when

(a) δ = 3deg.

(b) δ = 5deg.

(c) δ = 10deg.

14. F Eigenvalues and free response.

Consider a car with the characteristics

CαfL = CαfR = 600N/deg

CαrL = CαrR = 750N/deg
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m = 1245 kg

Iz = 1328 kgm2

a1 = 110 cm

a2 = 132 cm

vx = 20m/ s.

Ix = 300 kgm2

kϕ = 26612N/ rad

cϕ = 1700N s/ rad

Cβf = −0.4
Cβr = −0.1
CTf = −0.4
CTr = −0.2

Cδϕf = 0.01

Cδϕr = 0.01

Cϕf = −3200
Cϕr = −300

(a) Determine the eigenvalues of the coefficient matrix [A] and find
out if the car is stable at zero steer angle.

(b) In either case, determine the weight distribution ratio, a1/a2,
such that the car is neutral stable.

(c) Recommend a condition for the weight distribution ratio, a1/a2,
such that the car is stable.

15. F Time response to different steer functions.

Consider a car with the characteristics

CαfL = CαfR = 600N/deg

CαrL = CαrR = 750N/deg

m = 1245 kg

Iz = 1328 kgm2

a1 = 110 cm

a2 = 132 cm

vx = 20m/ s
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Ix = 300 kgm2

kϕ = 26612N/ rad

cϕ = 1700N s/ rad

Cβf = −0.4
Cβr = −0.1
CTf = −0.4
CTr = −0.2

Cδϕf = 0.01

Cδϕr = 0.01

Cϕf = −3200
Cϕr = −300

and a step input

δ (t) =

½
5 deg t > 0
0 t ≤ 0 .

Determine the time response of the car to

(a) δ (t) = sin 0.1t for 0 < t < 10π and δ (t) = 0 for t ≤ 0 and
t ≥ 10π.

(b) δ (t) = sin 0.5t for 0 < t < 2π and δ (t) = 0 for t ≤ 0 and t ≥ 2π.
(c) δ (t) = sin t for 0 < t < π and δ (t) = 0 for t ≤ 0 and t ≥ π.

16. F Research exercise 1.

Consider a bicycle model of a car such that tires are always upright
and remain perpendicular to the road surface. Develop the equations
of motion for the roll model of the car.

17. F Research exercise 2.

Employ the tire frame T at the tireprint, wheel frameW at the wheel
center, and wheel-body frame C that is at the point corresponding
to the wheel center at zero δ and zero γ, and remains parallel to
the vehicle frame B. Develop the W , C, and B expressions of the
generated forces at the tireprint in T frame, and develop a better set
of equations for the roll model of a car.

18. F Research exercise 3.

Use the caster theory to find the associated camber angle γ for a steer
angle δ, when the caster angle ϕ and lean angle θ are given. Then
provide a better set of equations for the roll model of vehicles.



Part IV

Vehicle Vibration



12

Applied Vibrations
Vibration is an avoidable phenomena in vehicle dynamics. In this chapter,
we review the principles of vibrations, analysis methods, and their appli-
cations, along with the frequency and time responses of systems. Special
attention is devoted to frequency response analysis, because most of the
optimization methods for vehicle suspensions and vehicle vibrating compo-
nents are based on frequency responses.

12.1 Mechanical Vibration Elements

Mechanical vibrations is a result of continuous transformation of kinetic
energy K to potential energy V , back and forth. When the potential energy
is at its maximum, the kinetic energy is zero and vice versa. Because a
periodic fluctuations of kinetic energy appears as a periodic motion of a
massive body, we call this energy transformation mechanical vibrations.

k

y

xv

y

x
.

.

cm

Mass Spring Damper

FIGURE 12.1. A mass m, spring k, and damper c.

The mechanical element that stores kinetic energy is calledmass, and the
mechanical element that stores potential energy, is called spring. If the total
value of mechanical energy E = K + V decreases during a vibration, there
is a mechanical element that dissipates energy. The dissipative element is
called . A mass, spring, and damper are illustrated as symbols in Figure
12.1.
The amount of stored kinetic energy in a mass m is proportional to the

square of its velocity, v2. The velocity v ≡ ẋ may be a function of position



730 12. Applied Vibrations

and time.

K =
1

2
mv2 (12.1)

The required force fm to move a mass m is proportional to its acceleration
a ≡ ẍ.

fm = ma (12.2)

A spring is characterized by its stiffness k. A force fk to generate a
deflection in spring is proportional to relative displacement of its ends. The
stiffness k may be a function of position and time.

fk = −kz
= −k(x− y) (12.3)

If k is constant then, the value of stored potential energy in the spring is
equal to the work done by the spring force fk during the spring deflection.

V = −
Z

fk dz = −
Z
−kz dz (12.4)

The spring potential energy is then a function of displacement. If the stiff-
ness of a spring, k, is not a function of displacements, it is called linear
spring. Then, its potential energy is

V =
1

2
kz2. (12.5)

Damping of a damper is measured by the value of mechanical energy loss
in one cycle. Equivalently, a damper may be defined by the required force
fc to generate a motion in the damper. If fc is proportional to the relative
velocity of the its ends, it is a linear damper with a constant damping c.

fc = −c ż
= −c(ẋ− ẏ) (12.6)

Such a damping is also called viscous damping.
A vibrating motion x is characterized by period T , which is the re-

quired time for one complete cycle of vibration, starting from and ending
at (ẋ = 0, ẍ < 0). Frequency f is the number of cycles in one T .

f =
1

T
(12.7)

In theoretical vibrations, we usually work with angular frequency ω [ rad/ s],
and in applied vibrations we use cyclic frequency f [ Hz].

ω = 2πf (12.8)
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k1

x x

k2

k3

Equilibrium In motion Free body diagram

(a) (b) (c)

k1

k2

k3

x3

x2+x3

x1+x2+x3

k1x1=k1x2=k3x3

FIGURE 12.2. Three serial springs

When there is no applied external force or excitation on a vibrating
system, any possible motion of the system is called free vibration. A free
vibrating system will oscillate if any one of the kinematic states x, ẋ, or ẍ
is not zero. If we apply any external force or excitation, a possible motion
of the system is called forced vibration. There are four types of applied
excitations: harmonic, periodic, transient, and random. The harmonic and
transient excitations are more applied, and more predictable than the pe-
riodic and random types. When the excitation is a sinusoidal function of
time, it is called harmonic excitation and when the excitation disappears
after a while or stays steady, it is transient excitation. A random excitation
has no short term pattern, however, we may define some long term averages
to characterize a random excitation.
We use f to indicate a harmonically-variable force with amplitude F , to

be consistent with a harmonic motion x with amplitude X. We also use f
for cyclic frequency, however, f is a force unless it is indicated that it is a
frequency.

Example 423 Serial springs and dampers.
Serial springs have the same force, and a resultant displacement equal

to the sum of individual displacements. Figure 12.2 illustrates three serial
springs attached to a massless plate and the ground.
The equilibrium position of the springs is the un-stretched configuration

in Figure 12.2(a). Applying a displacement x as shown in Figure 12.2(b)
generates the free body diagram as shown in Figure 12.2(c). Each spring
makes a force fi = −kixi where xi is the length change in spring number
i. The total displacement of the springs, x, is the sum of their individual
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displacements, x =
P

xi.

x = x1 + x2 + x3. (12.9)

We may substitute a set of serial springs with only one equivalent spring,
having a stiffness keq, that produces the same displacement x under the
same force fk.

fk = −k1x1
= −k2x2
= −k3x3
= −keqx (12.10)

Substituting (12.10) in (12.9)

fs
keq

=
fs
k1
+

fs
k2
+

fs
k3

(12.11)

shows that the inverse of the equivalent stiffness of the serial springs, 1/keq,
is the sum of their inverse stiffness,

P
1/ki.

1

keq
=
1

k1
+
1

k2
+
1

k3
(12.12)

We assume that velocity ẋ has no effect on the force of a linear spring.
Serial dampers have the same force, fc, and a resultant velocity ẋ equal

to the sum of individual velocities,
P

ẋi. We may substitute a set of ser-
ial dampers with only one equivalent damping ceq that produces the same
velocity ẋ under the same force fc. For three parallel dampers, the velocity
and force balance

ẋ = ẋ1 + ẋ2 + ẋ3 (12.13)

fc = −c1ẋ
= −c2ẋ
= −c3ẋ
= −ceqẋ (12.14)

show that the equivalent damping is

1

ceq
=
1

c1
+
1

c2
+
1

c3
. (12.15)

We assume that displacement x has no effect on the force of a linear
damper.
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FIGURE 12.3. Three parallel springs.

Example 424 Parallel springs and dampers.
Parallel springs have the same displacement x, with a resultant force,

fk, equal to sum of the individual forces
P

fi. Figure 12.3 illustrates three
parallel springs between a massless plate and the ground.
The equilibrium position of the springs is the un-stretched configuration

shown in Figure 12.3(a). Applying a displacement x to all the springs in
Figure 12.3(b) generates the free body diagram shown in Figure 12.3(c).
Each spring makes a force −kx opposite to the direction of displacement.
The resultant force of the springs is

fk = −k1x− k2x− k3x. (12.16)

We may substitute parallel springs with only one equivalent stiffness keq
that produces the same force fk under the same displacement.

fk = −keqx (12.17)

Therefore, the equivalent stiffness of the parallel springs is sum of their
stiffness.

keq = k1 + k2 + k3 (12.18)

Parallel dampers have the same speed ẋ, and a resultant force fc equal to
the sum of individual forces. We may substitute parallel dampers with only
one equivalent damping ceq that produces the same force fc under the same
velocity. Consider three parallel dampers such as is shown in Figure 12.4.
Their force balance and equivalent damping would be

fc = −c1ẋ− c2ẋ− c3ẋ (12.19)

fc = −ceqẋ (12.20)

ceq = c1 + c2 + c3. (12.21)
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FIGURE 12.4. Three parallel dampers

Example 425 Flexible frame.
Figure 12.5 depicts a massm hanging from a frame. The frame is flexible,

so it can be modeled by some springs attached to each other, as shown in
Figure 12.6(a). If we assume that each beam is simply supported, then the
equivalent stiffness for a lateral deflection of each beam at their midspan is

k5 =
48E5I5

l35
(12.22)

k4 =
48E4I4

l34
(12.23)

k3 =
48E3I3

l33
. (12.24)

When the mass is vibrating, the elongation of each spring would be similar
to Figure 12.6(b). Assume we separate the mass and springs, and then apply
a force f at the end of spring k1 as shown in Figure 12.6(c). Because the
springs k1, k2, and k3 have the same force, and their resultant displacement
is the sum of individual displacements, they are in series.
The springs k4 and k5 are neither in series nor parallel. To find their

equivalent, let’s assume that springs k4 and k5 support a force equal to f/2.
Therefore,

δ4 =
f

2k4
(12.25)

δ5 =
f

2k5
(12.26)
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FIGURE 12.6. Equivalent springs model for the flexible frame.
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FIGURE 12.7. A vibrating system with a massive spring.

and the displacement at midspan of the lateral beam is

δ45 =
δ4 + δ5
2

. (12.27)

Assuming

δ45 =
f

k45
(12.28)

we can define an equivalent stiffness k45 for k4 and k5 as

1

k45
=

1

2

µ
1

2k4
+

1

2k5

¶
=

1

4

µ
1

k4
+
1

k5

¶
. (12.29)

Now the equivalent spring k45 is in series with the series of k1, k2, and k3.
Hence the overall equivalent spring keq is

1

keq
=

1

k1
+
1

k2
+
1

k3
+

1

k45

=
1

k1
+
1

k2
+
1

k3
+

1

4k4
+

1

4k5
. (12.30)

Example 426 F Massive spring.
In modeling of vibrating systems we ignore the mass of springs and

dampers. This assumption is valid as long as the mass of springs and
dampers are much smaller than the mass of the body they support. How-
ever, when the mass of spring ms or damper md is comparable with the
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mass of body m, we may define a new system with an equivalent mass meq

meq = m+
1

3
ms (12.31)

which is supported by massless spring and damper.
Consider a vibrating system with a massive spring as shown in Figure

12.7(a). The spring has a mass ms, and a length l, when the system is at
equilibrium. The mass of spring is uniformly distributed along its length,
so, we may define a length density as

ρ =
m

l
. (12.32)

To show (12.31), we seek for a system with a mass meq and a massless
spring, which can keep the same amount of kinetic energy as the original
system. Figure 12.7(b) illustrates the system when the mass m is at position
x and has a velocity ẋ. The spring is between the mass and the ground. So,
the base of spring has no velocity, while the other end has the same velocity
as m. Let’s define a coordinate z that goes from the grounded base of the
spring to the end point. An element of spring at z has a length dz and a
mass dm.

dm = ρ dz (12.33)

Assuming a linear velocity distribution of the elements of spring, as shown
in Figure 12.7(c), we find the velocity ż of dm as

ż =
z

l
ẋ. (12.34)

The kinetic energy of the system is a summation of kinetic energy of the
mass m and kinetic energy of the spring.

K =
1

2
mẋ2 +

1

2

Z l

0

¡
dm ż2

¢
=
1

2
mẋ2 +

1

2

Z l

0

ρ
³z
l
ẋ
´2

dz

=
1

2
mẋ2 +

1

2

ρ

l2
ẋ2
Z l

0

z2 dz

=
1

2
mẋ2 +

1

2

ρ

l2
ẋ2
µ
1

3
l3
¶

=
1

2
mẋ2 +

1

2

µ
1

3
ρl

¶
ẋ2

=
1

2

µ
m+

1

3
ms

¶
ẋ2

=
1

2
meqẋ

2 (12.35)

Therefore, an equivalent system should have a massless spring and a mass
meq = m+ 1

3ms to keep the same amount of kinetic energy.
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FIGURE 12.8. A one DOF vibrating systems.

12.2 Newton’s Method and Vibrations

Every vibrating system can be modeled as a combination of masses mi,
dampers ci, and springs ki. Such a model is called a discrete or lumped
model of the system. A one DOF vibrating system, with the following
equation of motion, is shown in Figure 12.8.

ma = −cv − kx+ f (x, v, t) (12.36)

To apply Newton’s method and find the equations of motion, we assume
all the masses mi are out of the equilibrium at positions xi with velocities
ẋi. Such a situation is shown in Figure 12.8(b) for a one DOF system. The
free body diagram as shown in Figure 12.8(c), illustrates the applied forces
and then, Newton’s equation (9.11)

GF =
Gd

dt
Gp =

Gd

dt

¡
mGv

¢
(12.37)

generates the equations of motion.
The equilibrium position of a vibrating system is where the potential

energy of the system, V , is extremum.

∂V

∂x
= 0 (12.38)

We usually set V = 0 at the equilibrium position. Linear systems with
constant stiffness have only one equilibrium or infinity equilibria, while
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FIGURE 12.9. Two, three, and one DOF models for vertical vibrations of vehicles.

nonlinear systems may have multiple equilibria. An equilibrium is stable if

∂2V

∂x2
> 0 (12.39)

and is unstable if
∂2V

∂x2
< 0. (12.40)

The arrangement and the number of employed elements can be used to
classify discrete vibrating systems. The number of masses, times the DOF
of each mass, makes the total DOF of the vibrating system n. The final
set of equations would be n second-order differential equations to be solved
for n generalized coordinates. When each mass has one DOF, then the
system’s DOF is equal to the number of masses. The DOF may also be
defined as the minimum number of independent coordinates that defines
the configuration of a system.
A one, two, and three DOF model for analysis of vertical vibrations of

a vehicle are shown in Figure 12.9(a)-(c). The system in Figure 12.9(a) is
called the quarter car model, which ms represents a quarter mass of the
body, and mu represents a wheel. The parameters ku and cu are models
for tire stiffness and damping. Similarly, ks and cu are models for the main
suspension of the vehicle. Figure 12.9(c) is called the 1/8 car model which
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FIGURE 12.10. A 1/8 car model and its free body diagram.

does not show the wheel of the car, and Figure 12.9(b) is a quarter car with
a driver md and the driver’s seat modeled as kd and cd.

Example 427 1/8 car model.
Figure 12.9(c) and 12.10(a) show the simplest model for vertical vibra-

tions of a vehicle. This model is sometimes called 1/8 car model. The mass
ms represents one quarter of the car’s body, which is mounted on a sus-
pension made of a spring ks and a damper cs. When ms is vibrating at
a position such as in Figure 12.10(b), its free body diagram is as Figure
12.10(c) shows.
Applying Newton’s method, the equation of motion would be

msẍ = −ks (xs − y)− cs (ẋs − ẏ) (12.41)

which can be simplified to the following equation, when we separate the
input y and output x variables.

msẍ+ csẋs + ksxs = ksy + csẏ. (12.42)

Example 428 Equivalent mass and spring.
Figure 12.11(a) illustrates a pendulum made by a point mass m attached

to a massless bar with length l. The coordinate θ shows the angular position
of the bar. The equation of motion for the pendulum can be found by using
the Euler equation and employing the free-body-diagram shown in Figure
12.11(b).

ml2θ̈ = −mgl sin θ (12.43)

Simplifying the equation of motion and assuming a very small swing angle
shows that

lθ̈ + gθ = 0. (12.44)
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FIGURE 12.11. Equivalent mass-spring vibrator for a pendulum.

This equation is equivalent to an equation of motion for a mass-spring
system made by a mass m ≡ l, and a spring with stiffness k ≡ g. The
displacement of the mass would be x ≡ θ. Figure 12.11(c) depicts such an
equivalent mass-spring system.

Example 429 Force proportionality.
The equation of motion for a vibrating system is a balance between four

different forces. A force proportional to displacement, −kx, a force propor-
tional to velocity, −cv, a force proportional to acceleration, ma, and an
applied external force f (x, v, t), which can be a function of displacement,
velocity, and time. Based on Newton’s method, the force proportional to
acceleration, ma, is always equal to the sum of all the other forces.

ma = −cv − kx+ f (x, v, t) (12.45)

Example 430 A two-DOF base excited system.
Figure 12.12(a)-(c) illustrate the equilibrium, motion, and free body di-

agram of the two-DOF system shown in 12.9(a). The free body diagram is
plotted based on the assumption

xs > xu > y. (12.46)

Applying Newton’s method provides two equations of motion as follows

ms ẍs = −ks (xs − xu)− cs (ẋs − ẋu) (12.47)

mu ẍu = ks (xs − xu) + cs (ẋs − ẋu)

−ku (xu − y)− cu (ẋu − ẏ) . (12.48)
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The assumption (12.46) is not necessarily fulfilled. We can find the same
Equations (12.47) and (12.48) using any other assumption, such as xs <
xu > y, xs > xu < y, or xs < xu < y. However, having an assumption
helps to make a consistent free body diagram.
We usually rearrange the equations of motion for a linear system in a

matrix form
[M ] ẋ+ [c] ẋ+ [k]x = F (12.49)

to take advantage of matrix calculus. Rearrangement of Equations (12.47)
and (12.48) results in the following set of equations:∙

ms 0
0 mu

¸ ∙
ẍs
ẍu

¸
+

∙
cs −cs
−cs cs + cu

¸ ∙
ẋs
ẋu

¸
+∙

ks −ks
−ks ks + ku

¸ ∙
xs
xu

¸
=

∙
0

kuy + cuẏ

¸
(12.50)

Example 431 F Inverted pendulum.
Figure 12.13(a) illustrates an inverted pendulum with a tip mass m and

a length l. The pendulum is supported by two identical springs attached
to point B at a distance a < l from the pivot A. A free body diagram of
the pendulum is shown in Figure 12.13(b). The equation of motion may be
found by taking a moment about A. X

MA = IAθ̈ (12.51)

mg (l sin θ)− 2kaθ (a cos θ) = ml2θ̈ (12.52)
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FIGURE 12.13. An inverted pendulum with a tip mass m and two supportive
springs.

To derive Equation (12.52) we assumed that the springs are long enough
to remain almost straight when the pendulum oscillates. Rearrangement
and assuming a very small θ shows that the nonlinear equation of motion
(12.52) can be approximated by

ml2θ̈ +
¡
mgl − 2ka2

¢
θ = 0 (12.53)

which is equivalent to a linear oscillator

meq θ̈ + keqθ = 0 (12.54)

with an equivalent mass meq and and equivalent keq.

meq = ml2 (12.55)

keq = mgl − 2ka2 (12.56)

The potential energy of the inverted pendulum can be expressed as

V = −mgl (1− cos θ) + ka2θ2 (12.57)

which has a zero value at θ = 0. The potential energy V is approximately
equal to the following equation if θ is very small

V ≈ −1
2
mglθ2 + ka2θ2 (12.58)
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because
cos θ ≈ 1− 1

2
θ2 +O

¡
θ4
¢
. (12.59)

To find the equilibrium positions of the system, we should solve the following
equation for any possible θ.

∂V

∂x
= −2mglθ + 2ka2θ = 0 (12.60)

The solution of the equation is

θ = 0 (12.61)

that shows the upright vertical position is the only equilibrium of the in-
verted pendulum as long as θ is very small. However, if

mgl = ka2 (12.62)

then any θ around θ = 0 can be an equilibrium position and hence, the
inverted pendulum would have infinity equilibria.
A second derivative of the potential energy

∂2V

∂x2
= −2mgl + 2ka2 (12.63)

indicates that the equilibrium position θ = 0 is stable if

ka2 > mgl. (12.64)

A stable equilibrium pulls the system back, if it deviates from the equilib-
rium, while an unstable equilibrium repels the system. Vibration happens
when the equilibrium is stable.

12.3 Frequency Response of Vibrating Systems

Frequency response is the steady-state solution of equations of motion, when
the system is harmonically excited. Steady-state response refers to a con-
stant amplitude oscillation, after the effect of initial conditions dies out. A
harmonic excitation is any combination of sinusoidal functions that applies
on a vibrating system. If the system is linear, then a harmonic excitation
generates a harmonic response with a frequency-dependent amplitude. In
frequency response analysis, we are looking for the steady-state amplitude
of oscillation as a function of the excitation frequency.
A vast amount of vibrating systems in vehicle dynamics can be modeled

by a one-DOF system. Consider a one-DOF mass-spring-damper system.
There are four types of one-DOF harmonically excited systems:
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1− base excitation,
2− eccentric excitation,
3− eccentric base excitation,
4− forced excitation.
These four systems are shown in Figure 12.14 symbolically.

Base excitation is the most practical model for vertical vibration of ve-
hicles. Eccentric excitation is a model for every type of rotary motor on a
suspension, such as engine on engine mounts. Eccentric base excitation is
a model for vibration of any equipment mounted on an engine or vehicle.
Forced excitation, has almost no practical application, however, it is the
simplest model for forced vibrations, with good pedagogical use.
For simplicity, we first examine the frequency response of a harmonically

forced vibrating system.

12.3.1 Forced Excitation

Figure 12.15 illustrates a one DOF vibrating mass m supported by spring
k and a damper c. The absolute motion ofm with respect to its equilibrium
position is measured by the coordinate x. A sinusoidal excitation force

f = F sinωt (12.65)

is applied on m and makes the system vibrate.
The equation of motion for the system is

mẍ+ cẋ+ kx = F sinωt (12.66)

which generates a frequency response equal to either of the following func-
tions:

x = A1 sinωt+B1 cosωt (12.67)

= X sin (ωt− ϕx) (12.68)

The steady-state response has an amplitude X

X

F/k
=

1q
(1− r2)2 + (2ξr)2

(12.69)

and a phase ϕx

ϕx = tan
−1 2ξr

1− r2
(12.70)

where we use the frequency ratio r, ωn, and damping ratio ξ.

r =
ω

ωn
(12.71)

ξ =
c

2
√
km

(12.72)

ωn =

r
k

m
(12.73)



746 12. Applied Vibrations

m

k c

x

y

(a) (b)

(c)

k c

x

me
e

ω

m

k c

x

y

m

k c

x

f

me e

ω

(d)

m-me

mb-me

FIGURE 12.14. The four practical types of one-DOF harmonically excited sys-
tems: a−base excitation, b−eccentric excitation, c−eccentric base excitation,
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FIGURE 12.15. A harmonically forced excitated, single-DOF system.

Phase ϕx indicates the angular lag of the response x with respect to the
excitation f . Because of the importance of the function X = X (ω), it is
common to call this function the frequency response of the system. Further-
more, we may use frequency response to every characteristic of the system
that is a function of excitation frequency, such as velocity frequency re-
sponse Ẋ = Ẋ (ω) and transmitted force frequency response fT = fT (ω).

The frequency responses forX and ϕx as a function of r and ξ are plotted
in Figures 12.16 and 12.17.

Proof. Applying Newton’s method and using the free body diagram of the
system, as shown in Figure 12.18, generates the equation of motion (12.66),
which is a linear differential equation.
The steady-state solution of the linear equation is the same function

as the excitation with an unknown amplitude and phase. Therefore, the
solution can be (12.67), or (12.68). The solution should be substituted in
the equation of motion to find the amplitude and phase of the response.
We examine the solution (12.67) and find the following equation:

−mω2 (A1 sinωt+B1 cosωt)

+cω (A1 cosωt−B1 sinωt)

+k (A1 sinωt+B1 cosωt)

= F sinωt (12.74)

The functions sinωt and cosωt are orthogonal, therefore, their coefficient
must be balanced on both sides of the equal sign. Balancing the coefficients
of sinωt and cosωt provides a set of two equations for A1 and B1.∙

k −mω2 −cω
cω k −mω2

¸ ∙
A1
B1

¸
=

∙
F
0

¸
(12.75)
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FIGURE 12.18. Free body diagram of the harmonically forced excitated, sin-
gle-DOF system shown in Figure 12.15.

Solving for coefficients A1 and B1∙
A1
B1

¸
=

∙
k −mω2 −cω

cω k −mω2

¸−1 ∙
F
0

¸

=

⎡⎢⎢⎢⎣
k −mω2

(k −mω2)
2
+ c2ω2

F

−cω
(k −mω2)2 + c2ω2

F

⎤⎥⎥⎥⎦ (12.76)

provides the steady-state solution (12.67).
Amplitude X and phase ϕx can be found by equating Equations (12.67)

and (12.68).

A1 sinωt+B1 cosωt = X sin (ωt− ϕx)

= X cosϕx sinωt−X sinϕx cosωt (12.77)

It shows that,

A1 = X cosϕx (12.78)

B1 = −X sinϕx (12.79)

and therefore,

X =
q
A21 +B2

1 (12.80)

tanϕx =
−B1
A1

. (12.81)

Substituting A1 and B1 from (12.76) results in the following solutions.

X =
1q

(k −mω2)
2
+ c2ω2

F (12.82)

tanϕx =
cω

k −mω2
(12.83)
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However, we may use more practical expressions (12.69) and (12.70) for
amplitude X and phase ϕx by employing r and ξ.
When we apply a constant force f = F onm, a displacement, δs, appears.

δs =
F

k
(12.84)

If we call δs "static amplitude" and X "dynamic amplitude," then, X/δs is
the ratio of dynamic to static amplitudes. The dynamic amplitude is equal
to the static amplitude, X = δs, at r = 0, and approaches zero, X → 0,
when r → ∞. However, X gets a high value when r → 1 and ω → ωn.
Theoretically, X → ∞ if ξ = 0 and r = 1. Frequency domains around the
natural frequency is called resonance zone. The amplitude of vibration in
resonance zone can be reduces by introducing damping.

Example 432 A forced vibrating system
Consider a mass-spring-damper system with

m = 2kg

k = 100000N/m

c = 100N s/m. (12.85)

The natural frequency frequency and damping ratio of the system are

ωn =

r
k

m
=

r
100000

2
= 223.61 rad/ s ≈ 35.6Hz (12.86)

ξ =
c

2
√
km

=
100

2
√
100000× 2

= 0.1118. (12.87)

If a harmonic force f
f = 100 sin 100t (12.88)

is applied on m, then the steady-state amplitude of vibrations of the mass,
X, would be

X =
F/kq

(1− r2)2 + (2ξr)2
= 1.24× 10−3m (12.89)

because
r =

ω

ωn
= 0.44721. (12.90)

The phase ϕx of the vibration is

ϕx = tan
−1 2ξr

1− r2
= 0.124 rad ≈ 7.12 deg . (12.91)

Therefore, the steady-state vibrations of the mass m can be expressed by the
following function.

x = 1.24× 10−3 sin (100t− 0.124) (12.92)
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The value of X and ϕx may also be found from Figures 12.16 and 12.17
approximately.

Example 433 Velocity and acceleration frequency responses.
When we calculate the position frequency response

x = A1 sinωt+B1 cosωt

= X sin (ωt− ϕx) (12.93)

we are able to calculate the velocity and acceleration frequency responses by
derivative.

ẋ = A1ω cosωt−B1ω sinωt

= Xω cos (ωt− ϕx)

= Ẋ cos (ωt− ϕx) (12.94)

ẍ = −A1ω2 sinωt−B1ω
2 cosωt

= −Xω2 sin (ωt− ϕx)

= Ẍ sin (ωt− ϕx) (12.95)

The amplitude of velocity and acceleration frequency responses are shown
by Ẋ, Ẍ

Ẋ =
ωq

(k −mω2)2 + c2ω2
F (12.96)

Ẍ =
ω2q

(k −mω2)2 + c2ω2
F (12.97)

which can be written as

Ẋ

F/
√
km

=
rq

(1− r2)2 + (2ξr)2
(12.98)

Ẍ

F/m
=

r2q
(1− r2)2 + (2ξr)2

. (12.99)

The velocity and acceleration frequency responses (12.98) and (12.99) are
plotted in Figures 12.19 and 12.20.

Example 434 Transmitted force to the base.
A forced excited system, such as the one in Figure 12.15, transmits a

force, fT , to the ground. The transmitted force is equal to the sum of forces
in spring and damper.

fT = fk + fc

= kx+ cẋ (12.100)
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Substituting x from (12.67), and A1, B1 from (12.76), shows that the
frequency response of the transmitted force is

fT = k (A1 sinωt+B1 cosωt) + c ω (A1 cosωt−B1 sinωt)

= (kA1 − cωB1) sin tω + (kB1 + cωA1) cos tω

= FT sin
¡
ωt− ϕFT

¢
. (12.101)

The amplitude FT and phase ϕFT of fT are

FT
F

=

√
k + c2ω2q

(k −mω2)2 + c2ω2
(12.102)

=

q
1 + (2ξr)2q

(1− r2)2 + (2ξr)2
(12.103)

tanϕFT =
cω

k −mω2
=

2ξr

1− r2
(12.104)

because

FT =

q
(kA1 − cωB1)

2
+ (kB1 + cωA1)

2 (12.105)

tanϕFT =
− (kB1 + cωA1)

kA1 − cωB1
(12.106)

The transmitted force frequency response FT /F is plotted in Figure 12.21,
and because ϕFT is the same as Equation (12.70), a graph for ϕFT is the
same as the one in Figure 12.17.

Example 435 Alternative method to find transmitted force fT .
It is possible to use the equation of motion and substitute x from (12.67),

to find the transmitted force frequency response of fT as

fT = F sinωt−mẍ

= F sinωt+mω2 (A1 sinωt+B1 cosωt)

=
¡
mA1ω

2 + F
¢
sin tω +mω2B1 cos tω

= FT sin (ωt− ϕx) . (12.107)

Amplitude FT and phase ϕFT would be the same as (12.103) and (12.104),
because

FT =

q
(mA1ω2 + F )

2
+ (mω2B1)

2

=

√
k + c2ω2q

(k −mω2)2 + c2ω2
(12.108)

tanϕFT =
−mω2B1

mω2A1 + F
=

cω

k −mω2
. (12.109)
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Example 436 No mechanical harmonically forced vibration.
In mechanics, there is no way to apply a periodic force on an object

without attaching a mechanical device and applying a displacement. Hence,
the forced vibrating system shown in Figure 12.15 has no practical applica-
tion in mechanics. However, it is possible to make m from a ferromagnetic
material to apply an alternative or periodic magnetic force.

Example 437 F Orthogonality of functions sinωt and cosωt.
Two functions f(t) and g(t) are orthogonal in [a, b] ifZ b

a

f(t) g(t) dt = 0. (12.110)

The functions sinωt and cosωt are orthogonal in a period T = [0, 2π/ω].Z 2π/ω

0

sinωt cosωt dt = 0 (12.111)

Example 438 F Beating in linear systems.
Consider a displacement x(t) that is produced by two harmonic forces f1

and f2.

f1 = F1 cosω1t (12.112)

f2 = F2 cosω2t (12.113)

Assume that the steady-state response to f1 is

x1(t) = X1 cos (ω1t+ φ1) (12.114)
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and response to f2 is

x2(t) = X2 cos (ω2t+ φ2) (12.115)

then, because of the linearity of the system, the response to f1 + f2 would
be x(t) = x1(t) + x2(t).

x(t) = x1(t) + x2(t)

= X1 cos (ω1t+ φ1) +X2 cos (ω2t+ φ2) (12.116)

It is convenient to express x(t) in an alternative method

x(t) =
1

2
(X1 +X2) (cos (ω1t+ φ1) + cos (ω2t+ φ2))

+
1

2
(X1 −X2) (cos (ω1t+ φ1)− cos (ω2t+ φ2)) (12.117)

and convert the sums to a product.

x(t) = (X1 +X2) cos

µ
ω1 + ω2
2

t− φ1 + φ2
2

¶
× cos

µ
ω1 − ω2
2

t− φ1 − φ2
2

¶
− (X1 −X2) sin

µ
ω1 + ω2
2

t− φ1 + φ2
2

¶
× sin

µ
ω1 − ω2
2

t− φ1 − φ2
2

¶
(12.118)

This equation may be expressed better as

x(t) = (X1 +X2) cos (Ω1t− Φ1) cos (Ω2t− Φ2)
− (X1 −X2) sin (Ω1t− Φ1) sin (Ω2t− Φ2) (12.119)

if we use the following notations.

Ω1 =
ω1 + ω2
2

(12.120)

Ω2 =
ω1 − ω2
2

(12.121)

Φ1 =
φ1 + φ2
2

(12.122)

Φ2 =
φ1 − φ2
2

. (12.123)

Figure 12.22 illustrates a sample plot of x(t) for

ω1 = 10

ω2 = 12

φ1 =
π

4

φ2 =
π

6
(12.124)
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The displacement x(t) indicates an oscillation between X1+X2 and X1−
X2, with the higher frequency Ω1 inside an envelope that oscillates, at the
lower frequency Ω2. This behavior is called beating.
When X1 = X2 = X then

x(t) = 2X cos (Ω1t− Φ1) cos (Ω2t− Φ2) (12.125)

which becomes zero at every half period T = 2π/Ω2.

12.3.2 Base Excitation

Figure 12.23 illustrates a one-DOF base excited vibrating system with a
mass m supported by a spring k and a damper c. Base excited system is a
good model for vehicle suspension system or any equipment the is mounted
on a vibrating base. The absolute motion of m with respect to its equilib-
rium position is measured by the coordinate x. A sinusoidal excitation
motion

y = Y sinωt (12.126)

is applied to the base of the suspension and makes the system vibrate.
The equation of motion for the system can be expressed by either one of

the following equations for the absolute displacement x

m ẍ+ c ẋ+ kx = cY ω cosωt+ kY sinωt (12.127)

ẍ+ 2ξωn ẋ+ ω2n x = 2ξωn ωY cosωt+ ω2n Y sinωt (12.128)

or either one of the following equations for the relative displacement z.

mz̈ + c ż + kz = mω2 Y sinωt (12.129)

z̈ + 2ξωn ż + ω2n z = ω2 Y sinωt (12.130)

z = x− y (12.131)
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FIGURE 12.23. A harmonically base excitated single DOF system.

The equations of motion generate the following absolute and relative fre-
quency responses.

x = A2 sinωt+B2 cosωt (12.132)

= X sin (ωt− ϕx) (12.133)

z = A3 sinωt+B3 cosωt (12.134)

= Z sin (ωt− ϕz) (12.135)

The frequency response of x has an amplitude X, and the frequency re-
sponse of z has an amplitude Z

X

Y
=

q
1 + (2ξr)2q

(1− r2)2 + (2ξr)2
(12.136)

Z

Y
=

r2q
(1− r2)2 + (2ξr)2

(12.137)

with the following phases ϕx and ϕz for x and z.

ϕx = tan−1
2ξr3

1− r2 + (2ξr)
2 (12.138)

ϕz = tan−1
2ξr

1− r2
(12.139)

The phase ϕx indicates the angular lag of the response x with respect to
the excitation y. The frequency responses for X, Z, and ϕx as a function
of r and ξ are plotted in Figures 12.24, 12.25, and 12.26.

Proof. Newton’s method and the free body diagram of the system, as
shown in Figure 12.27, generate the equation of motion

mẍ = −c (ẋ− ẏ)− k (x− y) (12.140)
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FIGURE 12.27. A harmonically based excitated single-DOF system.

which, after substituting (12.126), makes the equation of motion (12.127).
Equation (12.127) can be transformed to (12.128) by dividing over m and
using the definition (12.71)-(12.73) for natural frequency and damping ra-
tio.
A practical response for a base excited system is the relative displacement

z = x− y. (12.141)

Relative displacement is important because for every mechanical device
mounted on a suspension such as vehicle body, we need to control the
maximum or minimum distance between the base and the device. Taking
derivatives from (12.141)

z̈ = ẍ− ÿ (12.142)
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and substituting in (12.140)

m (z̈ + ÿ) = −c ż − kz (12.143)

can be transformed to Equations (12.129) and (12.130).
The steady-state solution of Equation (12.127) can be (12.132), or (12.133).

To find the amplitude and phase of the response, we substitute the solution
(12.132) in the equation of motion.

−mω2 (A2 sinωt+B2 cosωt)

+cω (A2 cosωt−B2 sinωt)

+k (A2 sinωt+B2 cosωt)

= cY ω cosωt+ kY sinωt (12.144)

The coefficients of the functions sinωt and cosωt must balance on both
sides of the equation.

kA2 −mA2ω
2 − cB2ω = Y k (12.145)

kB2 −mω2B2 + cωA2 = Y cω (12.146)

Therefore, we find two algebraic equations to calculate A2 and B2.∙
k −mω2 −cω

cω k −mω2

¸ ∙
A2
B2

¸
=

∙
Y k
Y cω

¸
(12.147)

Solving for the coefficients A2 and B2∙
A2
B2

¸
=

∙
k −mω2 −cω

cω k −mω2

¸−1 ∙
Y k
Y cω

¸

=

⎡⎢⎢⎢⎢⎣
k
¡
k −mω2

¢
+ c2ω2

(k −mω2)
2
+ c2ω2

Y

cω
¡
k −mω2

¢
− ckω

(k −mω2)2 + c2ω2
Y

⎤⎥⎥⎥⎥⎦ (12.148)

provides the steady-state solution (12.132).
The amplitude X and phase ϕx can be found by

X =
q
A22 +B2

2 (12.149)

tanϕx =
−B2
A2

(12.150)

which, after substituting A2 and B2 from (12.148), results in the following
solutions:

X =

√
k2 + c2ω2q

(k −mω2)
2
+ c2ω2

Y (12.151)

tanϕx =
−cmω3

k (k −mω2) + c2ω2
(12.152)
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A more practical expressions for X and ϕx are Equations (12.136) and
(12.138), which can be found by employing r and ξ.
To find the relative displacement frequency response (12.137), we sub-

stitute Equation (12.134) in (12.129).

−mω2 (A3 sinωt+B3 cosωt)

+cω (A3 cosωt−B3 sinωt)

+k (A3 sinωt+B3 cosωt)

= mω2 Y sinωt (12.153)

Balancing the coefficients of the functions sinωt and cosωt

kA2 −mA2ω
2 − cB2ω = mω2 Y (12.154)

kB2 −mω2B2 + cωA2 = 0 (12.155)

provides two algebraic equations to find A3 and B3.∙
k −mω2 −cω

cω k −mω2

¸ ∙
A3
B3

¸
=

∙
mω2 Y
0

¸
(12.156)

Solving for the coefficients A3 and B3∙
A3
B3

¸
=

∙
k −mω2 −cω

cω k −mω2

¸−1 ∙
mω2 Y
0

¸

=

⎡⎢⎢⎢⎣
mω2

¡
k −mω2

¢
(k −mω2)2 + c2ω2

Y

− mcω3

(k −mω2)
2
+ c2ω2

Y

⎤⎥⎥⎥⎦ (12.157)

provides the steady-state solution (12.134). The amplitude Z and phase ϕz
can be found by

Z =
q
A23 +B2

3 (12.158)

tanϕz =
−B3
A3

(12.159)

which, after substituting A3 and B3 from (12.157), results in the following
solutions.

Z =
mω2q

(k −mω2)2 + c2ω2
Y (12.160)

tanϕz =
cω

k −mω2
(12.161)

A more practical expression for Z and ϕz are Equations (12.137) and
(12.139).
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Example 439 A base excited system.
Consider a mass-spring-damper system with

m = 2kg

k = 100000N/m

c = 100N s/m. (12.162)

If a harmonic base excitation y

y = 0.002 sin 350t (12.163)

is applied on the system, then the absolute and relative steady-state ampli-
tude of vibrations of the mass, X and Z would be

X =
Y

q
1 + (2ξr)

2q
(1− r2)

2
+ (2ξr)

2
= 1.9573× 10−3m (12.164)

Z =
Y r2q

(1− r2)2 + (2ξr)2
= 9.589× 10−4m (12.165)

because

ωn =

r
k

m
= 223.61 rad/ s ≈ 35.6Hz (12.166)

ξ =
c

2
√
km

= 0.1118 (12.167)

r =
ω

ωn
= 1.5652. (12.168)

The phases ϕx and ϕz for x and z are

ϕx = tan−1
2ξr3

1− r2 + (2ξr)
2 = 0.489 rad ≈ 28.02 deg (12.169)

ϕz = tan−1
2ξr

1− r2
= 1.8585 rad ≈ 106.48 deg (12.170)

Therefore, the steady-state vibrations of the mass m can be expressed by the
following functions.

x = 1.9573× 10−3 sin (350t− 0.489) (12.171)

z = 9.589× 10−4 sin (350t− 1.8585) (12.172)

Example 440 Comparison between frequency responses.
A comparison shows that Equation (12.137) is equal to Equation (12.98),

and therefore the relative frequency response Z
Y for a base excited system,
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is the same as acceleration frequency response Ẍ
F/m for a forces excited

system. Also a graph for ϕz would be the same as Figure 12.17.
Comparing Equations (12.136) and (12.103) indicates that the amplitude

frequency response of a base excited system, X
Y is the same as the trans-

mitted force frequency response of a harmonically force excited system FT
F .

However, the phase of these two responses are different.

Example 441 Absolute velocity and acceleration of a base excited system.

Having the position frequency response of a base excited system

x = A2 sinωt+B2 cosωt

= X sin (ωt− ϕx) (12.173)

we are able to calculate the velocity and acceleration frequency responses.

ẋ = A2ω cosωt−B2ω sinωt

= Xω cos (ωt− ϕx)

= Ẋ cos (ωt− ϕx) (12.174)

ẍ = −A2ω2 sinωt−B2ω
2 cosωt

= −Xω2 sin (ωt− ϕx)

= Ẍ sin (ωt− ϕx) (12.175)

The amplitude of velocity and acceleration frequency responses, Ẋ, Ẍ are

Ẋ =
ω
√
k2 + c2ω2q

(k −mω2)
2
+ c2ω2

Y (12.176)

Ẍ =
ω2
√
k2 + c2ω2q

(k −mω2)2 + c2ω2
Y (12.177)

which can be written as

Ẋ

ωnY
=

r

q
1 + (2ξr)2q

(1− r2)2 + (2ξr)2
(12.178)

Ẍ

ω2nY
=

r2
q
1 + (2ξr)2q

(1− r2)2 + (2ξr)2
. (12.179)

The velocity and acceleration frequency responses (12.178) and (12.179)
are plotted in Figures 12.28 and 12.29.
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There is a point in both figures, called the switching point or node,
at which the behavior of Ẋ and Ẍ as a function of ξ switches. Before the
node, Ẋ and Ẍ increase by increasing ξ, while they decrease after the node.
To find the node, we may find the intersection between frequency response
curves for ξ = 0 and ξ = ∞. We apply this method to the acceleration
frequency response.

lim
ξ→0

Ẍ

ω2nY
= ± r2

(1− r2)
(12.180)

lim
ξ→∞

Ẍ

ω2nY
= ±r2 (12.181)

Therefore, the frequency ratio r at the intersection of these two limits is
the solution of the equation

r2
¡
r2 − 2

¢
= 0. (12.182)

The nodal frequency response is then equal to

r =

√
2

2
. (12.183)

The value of acceleration frequency response at the node is a function of ξ.

lim
r→
√
2
2

Ẍ

ω2nY
=

p
2ξ2 + 1p
8ξ2 + 1

(12.184)

Applying the same method for the velocity frequency response results in the
same nodal frequency ratio r =

√
2
2 . However, the value of the frequency

response at the node is different.

lim
r→
√
2
2

Ẋ

ωnY
=
√
2

p
2ξ2 + 1p
8ξ2 + 1

(12.185)

Example 442 Relative velocity and acceleration of a base excited system.

We may use the relative displacement frequency response of a base excited
system

z = A3 sinωt+B3 cosωt

= Z sin (ωt− ϕz) (12.186)

and calculate the relative velocity and acceleration frequency responses.

ż = A3ω cosωt−B3ω sinωt

= Zω cos (ωt− ϕz)

= Ż cos (ωt− ϕz) (12.187)
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z̈ = −A3ω2 sinωt−B3ω
2 cosωt

= −Zω2 sin (ωt− ϕz)

= Z̈ sin (ωt− ϕz) (12.188)

The amplitude of velocity and acceleration frequency responses, Ż, Z̈

Ż =
mω3q

(k −mω2)
2
+ c2ω2

Y (12.189)

Z̈ =
mω4q

(k −mω2)
2
+ c2ω2

Y (12.190)

can be written as

Ż

ωnY
=

r3q
(1− r2)

2
+ (2ξr)

2
(12.191)

Z̈

ω2nY
=

r4q
(1− r2)

2
+ (2ξr)

2
. (12.192)

Example 443 Transmitted force to the base of a base excited system.
The transmitted force fT to the ground by a base excited system, such as

is shown in Figure 12.23, is equal to the sum of forces in the spring and
damper.

fT = fk + fc

= k (x− y) + c (ẋ− ẏ) (12.193)

which based on the equation of motion (12.140) is also equal to

fT = −mẍ. (12.194)

Substituting ẍ from (12.175) and (12.179) shows that the frequency re-
sponse of the transmitted force can be written as

FT
kY

=
ω2
√
k2 + c2ω2q

(k −mω2)2 + c2ω2
(12.195)

=
r2
q
1 + (2ξr)2q

(1− r2)2 + (2ξr)2
. (12.196)

The frequency response of FT
kY is the same as is shown in Figure 12.29.
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Example 444 F Line of maxima in X/Y .
The peak value of the absolute displacement frequency response X/Y hap-

pens at different r depending on ξ. To find this relationship, we take a
derivative of X/Y , given in Equation (12.136), with respect to r and solve
the equation.

d

dr

X

Y
=

2r
¡
1− r2 − 2r4ξ2

¢
p
1 + 4r2ξ2

³
(1− r2)

2
+ (2ξr)

2
´ 3
2

= 0 (12.197)

Let’s indicate the peak amplitude by Xmax and the associated frequency by
rmax. The value of r2max is

r2max =
1

4ξ2

µ
−1±

q
1 + 8ξ2

¶
(12.198)

which is only a function of ξ.
Substituting the positive sign of (12.198) in (12.136) determines the peak

amplitude Xmax.

Xmax

Y
=

2
√
2ξ2 4
p
8ξ2 + 1q

8ξ2 +
¡
8ξ4 − 4ξ2 − 1

¢p
8ξ2 + 1 + 1

(12.199)

Figure 12.30 shows Xmax and rmax as a function of ξ.

Example 445 F Line of maxima in Z/Y .
The peak value of the relative displacement frequency response Z/Y hap-

pens at r > 1 depending on ξ. To find this relationship, we take a derivative
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of Z/Y , given in Equation (12.137), with respect to r and solve the equa-
tion.

d

dr

Z

Y
=

2r
¡
1− r2 − 2r4ξ2

¢³
(1− r2)

2
+ (2ξr)

2
´ 3
2

= 0 (12.200)

Let’s indicate the peak amplitude by Zmax and the associated frequency by
rmax. The value of r2max is

r2max =
1p

1− 2ξ2
(12.201)

which has a real value for

ξ <

√
2

2
. (12.202)

Substituting (12.201) in (12.137) determines the peak amplitude Zmax.

Zmax
Y

=
1

2ξ
p
1− 2ξ2

(12.203)

As an example, the maximum amplitude of a system with

m = 2kg

k = 100000N/m

c = 100N s/m

ωn = 223.61 rad/ s

ξ = 0.1118

Y = 0.002m (12.204)

is

Zmax =
Y

2ξ
p
1− 2ξ2

= 9. 058 5× 10−3m (12.205)

that occurs at

rmax =
1

4
p
1− 2ξ2

= 1.0063. (12.206)

12.3.3 Eccentric Excitation

Figure 12.31 illustrates a one-DOF eccentric excited vibrating system with
a mass m supported by a suspension made of a spring k and a damper c.
There is an unbalance mass me at a distance e that is rotating with an
angular velocity ω. An eccentric excited vibrating system is a good model
for vibration analysis of the engine of a vehicle, or any rotary motor that
is mounted on a stationary base with a flexible suspension.
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FIGURE 12.31. An eccentric excitated single-DOF system.

The absolute motion of m with respect to its equilibrium position is
measured by the coordinate x. When the lateral motion of m is protected,
a harmonic excitation force

fx = meeω
2 sinωt (12.207)

is applied on m and makes the system vibrate. The distance e is called the
eccentricity and me is called the eccentric mass.
The equation of motion for the system can be expressed by

mẍ+ c ẋ+ kx = meeω
2 sinωt (12.208)

or

ẍ+ 2ξωn ẋ+ ω2n x = εeω2 sinωt (12.209)

ε =
me

m
. (12.210)

The absolute displacement responses of the system is

x = A4 sinωt+B4 cosωt (12.211)

= X sin (ωt− ϕe) (12.212)

which has an amplitude X, and phases ϕe

X

eε
=

r2q
(1− r2)2 + (2ξr)2

(12.213)

ϕe = tan
−1 2ξr

1− r2
(12.214)

Phase ϕe indicates the angular lag of the response x with respect to the
excitationmeeω

2 sinωt. The frequency responses forX and ϕe as a function
of r and ξ are plotted in Figures 12.32 and 12.33.
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FIGURE 12.33. The frequency response for ϕe.
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FIGURE 12.34. Free body diagram of an eccentric excitated single-DOF system.

Proof. Employing the free body diagram of the system, as shown in Fig-
ure 12.34, and applying Newton’s method in the x-direction generate the
equation of motion

mẍ = −c ẋ− kx+meeω
2 sinωt. (12.215)

Equation (12.208) can be transformed to (12.209) by dividing over m
and using the following definitions for natural frequency, damping ratio,
and frequency ratio.

ωn =

r
k

m
(12.216)

ξ =
c

2
√
km

(12.217)

r =
ω

ωn
(12.218)

The parameter ε = me

m is called the mass ratio and indicates the ratio
between the eccentric mass me and the total mass m.
The steady-state solution of Equations (12.208) can be (12.211), or (12.212).

To find the amplitude and phase of the response, we substitute the solution
(12.211) in the equation of motion.

−mω2 (A4 sinωt+B4 cosωt)

+cω (A4 cosωt−B4 sinωt)

+k (A4 sinωt+B4 cosωt)

= meeω
2 sinωt (12.219)

The coefficients of the functions sinωt and cosωt must balance on both
sides of the equation.

kA4 −mA4ω
2 − cB4ω = meeω

2 (12.220)

kB4 −mω2B4 + cωA4 = 0 (12.221)
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Therefore, we find two algebraic equations to calculate A4 and B4.∙
k − ω2m −cω

cω k − ω2m

¸ ∙
A4
B4

¸
=

∙
eω2me

0

¸
(12.222)

Solving for the coefficients A4 and B4∙
A4
B4

¸
=

∙
k − ω2m −cω

cω k − ω2m

¸−1 ∙
eω2me

0

¸

=

⎡⎢⎢⎢⎣
k −mω2 − ω2me

(k − ω2m)2 + c2ω2
eω2me

−cω
(k − ω2m)

2
+ c2ω2

eω2me

⎤⎥⎥⎥⎦ (12.223)

provides the steady-state solution (12.211).
The amplitude X and phase ϕe can be found by

X =
q
A24 +B2

4 (12.224)

tanϕe =
−B4
A4

(12.225)

which, after substituting A4 and B4 from (12.223), results in the following
solutions.

X =
ω2emeq

(k −mω2)
2
+ c2ω2

(12.226)

tanϕe =
cω

k −mω2
(12.227)

A more practical expression forX and ϕe is Equation (12.213) and (12.214),
which can be found by employing r and ξ.

Example 446 An eccentric excited system.
Consider an engine with a mass m

m = 110 kg (12.228)

that is supported by four engine mounts, each with the following equivalent
stiffness and damping.

k = 100000N/m (12.229)

c = 1000N s/m. (12.230)

The engine is running at

ω = 5000 rpm ≈ 523.60 rad/ s ≈ 83.333Hz (12.231)
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with the following eccentric parameters.

me = 0.001 kg (12.232)

e = 0.12m (12.233)

The natural frequency ωn, damping ratio ξ, and mass ratio ε of the system,
and frequency ratio r are

ωn =

r
k

m
=

r
400000

110
= 60.302 rad/ s ≈ 9.6Hz (12.234)

ξ =
c

2
√
km

= 0.30151 (12.235)

ε =
me

m
=
0.001

110
= 9.0909× 10−6 (12.236)

r =
ω

ωn
=
523.60

60.302
= 8.683 (12.237)

The engine’s amplitude of vibration is

X =
r2eεq

(1− r2)2 + (2ξr)2

= 1.1028× 10−6m. (12.238)

However, if the speed of the engine is at the natural frequency of the system,

ω = 576.0 rpm ≈ 60.302 rad/ s ≈ 9.6Hz (12.239)

then the amplitude of the engine’s vibration increases to

X =
r2eεq

(1− r2)
2
+ (2ξr)

2

= 1.8091× 10−6m. (12.240)

Example 447 Eccentric exciting systems.
All rotating machines such as engines, turbines, generators, and turn-

ing machines can have imperfections in their rotating components or have
irregular mass distribution, which creates dynamic imbalances. When the
unbalanced components rotate, an eccentric load applies to the structure.
The load can be decomposed into two perpendicular harmonic forces in the
plane of rotation in lateral and normal directions of the suspension. If the
lateral force component is balanced by a reaction, the normal component
provides a harmonically variable force with an amplitude depending on the
eccentricity mee. Unbalanced rotating machines are a common source of
vibration excitation.
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Example 448 Absolute velocity and acceleration of an eccentric excited
system.
Using the position frequency response of an eccentric excited system

x = A4 sinωt+B4 cosωt

= X sin (ωt− ϕe) (12.241)

we can find the velocity and acceleration frequency responses.

ẋ = A4ω cosωt−B4ω sinωt

= Xω cos (ωt− ϕe)

= Ẋ cos (ωt− ϕe) (12.242)

ẍ = −A4ω2 sinωt−B4ω
2 cosωt

= −Xω2 sin (ωt− ϕe)

= Ẍ sin (ωt− ϕe) (12.243)

The amplitude of velocity and acceleration frequency responses, Ẋ, Ẍ are

Ẋ

eε
=

ω3emeq
(k −mω2)

2
+ c2ω2

(12.244)

Ẍ

eε
=

ω4emeq
(k −mω2)2 + c2ω2

(12.245)

which can be written as

Ẋ

eεωn
=

r3q
(1− r2)2 + (2ξr)2

(12.246)

Ẍ

eεω2n
=

r4q
(1− r2)

2
+ (2ξr)

2
. (12.247)

Example 449 Transmitted force to the base of an eccentric excited system.

The transmitted force

fT = FT sin (ωt− ϕT ) (12.248)

to the ground by an eccentric excited system is equal to the sum of forces
in the spring and damper.

fT = fk + fc

= kx+ cẋ (12.249)
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FIGURE 12.35. An eccentric base excitated single-DOF system.

Substituting x and ẋ from (12.211) shows that

fT = (kA4 − cωB4) sin tω + (kB4 + cωA4) cos tω (12.250)

therefore the amplitude of the transmitted force is

FT =

q
(kA4 − cωB4)

2
+ (kB4 + cωA4)

2

= eω2me

s
c2ω2 + k2

(k −mω2)
2
+ c2ω2

. (12.251)

The frequency response of the transmitted force can be simplified to the
following applied equation.

FT
eω2me

=

q
1 + (2ξr)

2q
(1− r2)

2
+ (2ξr)

2
(12.252)

12.3.4 F Eccentric Base Excitation

Figure 12.35 illustrates a one-DOF eccentric base excited vibrating system
with a massm suspended by a spring k and a damper c on a base with mass
mb. The base has an unbalance mass me at a distance e that is rotating
with angular velocity ω. The eccentric base excited system is a good model
for vibration analysis of different equipment that are attached to the engine
of a vehicle, or any equipment mounted on a rotary motor.
Using the relative motion of m with respect to the base

z = x− y (12.253)

we may develop the equation of motion as
mmb

mb +m
z̈ + c ż + kz =

mme

mb +m
eω2 sinωt (12.254)
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eε
.

or

z̈ + 2ξωn ż + ω2n z = εeω2 sinωt (12.255)

ε =
me

mb
. (12.256)

The relative displacement response of the system is

z = A5 sinωt+B5 cosωt (12.257)

= Z sin (ωt− ϕb) (12.258)

which has an amplitude Z and phases ϕb.

Z

eε
=

r2q
(1− r2)

2
+ (2ξr)

2
(12.259)

ϕb = tan−1
2ξr

1− r2
(12.260)

The frequency responses for Z, and ϕb as a function of r and ξ are plotted
in Figures 12.36 and 12.37.

Proof. The free body diagram shown in Figure 12.38, along with Newton’s
method in the x-direction, may be used to find the equation of motion.

mẍ = −c (ẋ− ẏ)− k (x− y) (12.261)

mbÿ = c (ẋ− ẏ) + k (x− y)−meeω
2 sinωt (12.262)
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system.
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Using z = x− y, and
z̈ = ẍ− ÿ (12.263)

we may combine Equations (12.261) and (12.262) to find the equation of
relative motion.

mmb

mb +m
z̈ + c ż + kz =

mme

mb +m
eω2 sinωt (12.264)

Equation (12.264) can be transformed to (12.255) if we divide it by mmb

mb+m
and use the following definitions:

ξ =
c

2

r
k

mmb

mb +m

(12.265)

ωn =

r
k
mb +m

mmb
. (12.266)

The parameter ε = me

mb
is called the mass ratio and indicates the ratio

between the eccentric mass me and the total base mass mb.
The steady-state solution of Equation (12.255) can be (12.257). To find

the amplitude and phase of the response, we substitute the solution in the
equation of motion.

−ω2 (A5 sinωt+B5 cosωt)

+2ξωnω (A5 cosωt−B5 sinωt)

+ω2n (A5 sinωt+B5 cosωt)

= εeω2 sinωt (12.267)

The coefficients of the functions sinωt and cosωt must balance on both
sides of the equation.

ω2nA5 − ω2A5 − 2ξωωnB5 = εω2e (12.268)

2ξA5ωωn −B5ω
2 +B5ω

2
n = 0 (12.269)

Therefore, we find two algebraic equations to calculate A5 and B5.∙
ω2n − ω2 −2ξωωn
2ξωωn ω2n − ω2

¸ ∙
A5
B5

¸
=

∙
εω2e
0

¸
(12.270)

Solving for the coefficients A5 and B5∙
A5
B5

¸
=

∙
ω2n − ω2 −2ξωωn
2ξωωn ω2n − ω2

¸−1 ∙
εω2e
0

¸

=

⎡⎢⎢⎢⎣
ω2n − ω2

(ω2n − ω2)
2
+ (2ξωωn)

2 εω
2e

−2ξωωn
(ω2n − ω2)

2
+ (2ξωωn)

2 εω
2e

⎤⎥⎥⎥⎦ (12.271)
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provides the steady-state solution (12.255).
The amplitude Z and phase ϕb can be found by

X =
q
A25 +B2

5 (12.272)

tanϕb =
−B5
A5

(12.273)

which, after substituting A5 and B5 from (12.271), results in the following
solutions:

Z =
ω2eεq

(ω2n − ω2)2 + (2ξωωn)
2

(12.274)

tanϕb =
2ξωωn
ω2n − ω2

(12.275)

Equations (12.274) and (12.275) can be simplified to more practical expres-
sions (12.259) and (12.260) by employing r = ω

ωn
.

Example 450 F A base eccentric excited system.
Consider an engine with a mass mb

mb = 110kg (12.276)

and an air intake device with a mass

m = 2kg (12.277)

that is mounted on the engine using an elastic mounts, with the following
equivalent stiffness and damping.

k = 10000N/m (12.278)

c = 100N s/m. (12.279)

The engine is running at

ω = 576.0 rpm ≈ 60.302 rad/ s ≈ 9.6Hz (12.280)

with the following eccentric parameters.

me = 0.001 kg (12.281)

e = 0.12m (12.282)

The natural frequency ωn, damping ratio ξ, and mass ratio ε of the system,
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and frequency ratio r are

ωn =

r
k
mb +m

mmb
= 100 rad/ s ≈ 15.9Hz (12.283)

ξ =
c

2

r
k

mmb

mb +m

= 0.49995 (12.284)

ε =
me

mb
= 9.0909× 10−6 (12.285)

r =
ω

ωn
= 0.60302. (12.286)

The relative amplitude of the device’s vibration is

Z =
eεr2q

(1− r2)2 + (2ξr)2
= 4.525× 10−7m. (12.287)

Example 451 F Absolute displacement of the upper mass in an eccentric
base excited system.
Equation (12.261)

ẍ = − c

m
(ẋ− ẏ)− k

m
(x− y)

= − c

m
ż − k

m
z (12.288)

along with the solution (12.257) may be used to calculate the displacement
frequency response of the upper mass m in the eccentric base excited system
shown in Figure 12.35. Assuming a steady-state displacement

x = A6 sinωt+B6 cosωt (12.289)

= X sin (ωt− ϕbx) (12.290)

we have

−ω2 (A6 sinωt+B6 cosωt) = − c

m
ż − k

m
z

= − c

m
ω (A5 cosωt−B5 sinωt)

− k

m
(A5 sinωt+B5 cosωt)

=

µ
c

m
ωB5 −

k

m
A5

¶
sin tω

+

µ
− k

m
B5 −

c

m
ωA5

¶
cos tω (12.291)
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and therefore,

−ω2A6 =
c

m
ωB5 −

k

m
A5 (12.292)

−ω2B6 = − k

m
B5 −

c

m
ωA5. (12.293)

Substituting A5 and B5 from (12.271) and using

X =
q
A26 +B2

6 (12.294)

tanϕbx =
−B6
A6

(12.295)

shows that

A6 = −
2cξω2ωn + k

¡
ω2n − ω2

¢
(ω2n − ω2)

2
+ (2ξωωn)

2

1

m
εe (12.296)

B6 =
−c
¡
ω2n − ω2

¢
+ 2kξωn

(ω2n − ω2)
2
+ (2ξωωn)

2

1

m
εωe (12.297)

the amplitude X of steady-state vibration of the upper mass in an eccentric
base excited system is

X =

√
c2ω2 + k2q

(ω2n − ω2)2 + (2ξωωn)
2

ε

m
e. (12.298)

12.3.5 F Classification for the Frequency Responses of
One-DOF Forced Vibration Systems

A harmonically excited one-DOF systems can be one of the four systems
shown in Figure 12.39 as a concise version of Figure 12.14. The dimension-
less amplitude of different applied steady-state responses of these systems
is equal to one of the following equations (12.299)-(12.306), and the phase
of the motion is equal to one of the equations (12.307)-(12.310).

S0 =
1q

(1− r2)2 + (2ξr)2
(12.299)

S1 =
rq

(1− r2)
2
+ (2ξr)

2
(12.300)

S2 =
r2q

(1− r2)
2
+ (2ξr)

2
(12.301)

S3 =
r3q

(1− r2)
2
+ (2ξr)

2
(12.302)
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FIGURE 12.39. The four practical types of one DOF harmonically excited sys-
tems: a−base excitation, b−eccentric excitation, c−eccentric base excitation,
d−forced excitation.

S4 =
r4q

(1− r2)
2
+ (2ξr)

2
(12.303)

G0 =

q
1 + (2ξr)

2q
(1− r2)

2
+ (2ξr)

2
(12.304)

G1 =
r

q
1 + (2ξr)

2q
(1− r2)

2
+ (2ξr)

2
(12.305)

G2 =
r2
q
1 + (2ξr)

2q
(1− r2)

2
+ (2ξr)

2
(12.306)

Φ0 = tan−1
2ξr

1− r2
(12.307)

Φ1 = tan−1
1− r2

−2ξr (12.308)

Φ2 = tan−1
−2ξr
1− r2

(12.309)

Φ3 = tan−1
2ξr3

(1− r2)
2
+ (2ξr)

2 (12.310)

The function S0 and G0 are the main parts in all the amplitude frequency
responses. To have a sense about the behavior of different responses, we use
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plot them as a function of r and using ξ as a parameter. Mass m, stiffness
k, and damper c of the system are fixed and hence, the excitation frequency
ω is the only variable. We combine m, k, c, ω and define two parameters r
and ξ to express frequency responses by two variable functions.
To develop a clear classification let’s indicate the frequency responses

related to the systems shown in Figure 12.39 by adding a subscript and
express their different responses as follow:

1− For a base excitation system, we usually use the frequency responses
of the relative and absolute kinematics ZB, ŻB, Z̈B , XB, ẊB , ẌB, along
with the transmitted force frequency response FTB .
2− For an eccentric excitation system, we usually use the frequency re-

sponses of the absolute kinematicsXE , ẊE , ẌE , along with the transmitted
force frequency response FTE .
3− For an eccentric base excitation system, we usually use the frequency

responses of the relative and absolute kinematics ZR, ŻR, Z̈R, XR, ẊR,
ẌR, YR, ẎR, ŸR, along with the transmitted force frequency response FTR .
4− For a forced excitation system, we usually use the frequency responses

of the absolute kinematics XF , ẊF , ẌF , along with the transmitted force
frequency response FTF

The frequency response of different features of the four systems in Figure
12.39 may be summarized and labeled as follows:

S0 =
XF

F/k
(12.311)

S1 =
ẊF

F/
√
km

(12.312)

S2 =
ẌF

F/m
=

ZB
Y
=

XE

eεE
=

ZR
eεR

(12.313)

S3 =
ŻB
ωnY

=
ẊE

eεEωn
=

ŻR
eεRωn

(12.314)

S4 =
Z̈B
ω2nY

=
ẌE

eεEω2n
=

Z̈R
eεRω2n

(12.315)

G0 =
FTF
F

=
XB

Y
(12.316)

G1 =
ẊB

ωnY
(12.317)

G2 =
ẌB

ω2nY
=

FTB
kY

=
FTE

eω2nme
=

FTR
eω2nme

³
1 +

mb

m

´
(12.318)
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Figures A.1-A.8 in Appendix A visualize the frequency responses used
in analysis and designing of the systems. However, the exact value of the
responses should be found from the associated equations.

Proof. The equations of motion for a harmonically forced vibrating one
DOF system is always equal to

mq̈ + cq̇ + kq = f (q, q̇, t) (12.319)

where, the variable q is a general coordinate to show the absolute displace-
ment x, or relative displacement z = x− y. The forcing term f (x, ẋ, t) is a
harmonic function which in the general case can be a combination of sinωt
and cosωt, where ω is the excitation frequency.

f (q, q̇, t) = a sinωt+ b cosωt. (12.320)

Depending on the system and the frequency response we are looking for,
the coefficients a and b are zero, constant, or proportional to ω, ω2, ω3, ω4,
· · · , ωn. To cover every practical harmonically forced vibrating systems,
let’s assume

a = a0 + a1ω + a2ω
2 (12.321)

b = b0 + b1ω + b2ω
2. (12.322)

We usually divide the equation of motion (12.319) by m to express that
with ξ and ωn

q̈ + 2ξωnq̇ + ω2nq =
¡
A0 +A1ω +A2ω

2
¢
sinωt

+
¡
B0 +B1ω +B2ω

2
¢
cosωt (12.323)

where,

A0 +A1ω +A2ω
2 =

1

m

¡
a0 + a1ω + a2ω

2
¢

(12.324)

B0 +B1ω +B2ω
2 =

1

m

¡
b0 + b1ω + b2ω

2
¢
. (12.325)

The solution of the equation of motion would be a harmonic response with
unknown coefficients.

q = A sinωt+B cosωt (12.326)

= Q sin (ωt− ϕ) (12.327)

To find the steady-state amplitude of the response Q

Q =
p
A2 +B2 (12.328)

ϕ = tan−1
−B
A

(12.329)



12. Applied Vibrations 785

we should substitute the solution in the equation of motion.

−ω2 (A sinωt+B cosωt) + 2ξωnω (A cosωt−B sinωt)

+ω2n (A sinωt+B cosωt)

=
¡
A0 +A1ω +A2ω

2
¢
sinωt+

¡
B0 +B1ω +B2ω

2
¢
cosωt (12.330)

The coefficients of the functions sinωt and cosωt must balance on both
sides of the equation.

ω2nA− ω2A− 2ξωωnB = A0 +A1ω +A2ω
2 (12.331)

2ξAωωn −Bω2 +Bω2n = B0 +B1ω +B2ω
2 (12.332)

Therefore, we find two algebraic equations to calculate A and B.∙
ω2n − ω2 −2ξωωn
2ξωωn ω2n − ω2

¸ ∙
A
B

¸
=

∙
A0 +A1ω +A2ω

2

B0 +B1ω +B2ω
2

¸
(12.333)

Solving for the coefficients A and B∙
A
B

¸
=

∙
ω2n − ω2 −2ξωωn
2ξωωn ω2n − ω2

¸−1 ∙
A0 +A1ω +A2ω

2

B0 +B1ω +B2ω
2

¸

=

⎡⎢⎢⎢⎣
Z1

(1− r2)2 + (2ξr)2

Z2

(1− r2)2 + (2ξr)2

⎤⎥⎥⎥⎦ (12.334)

Z1 = 2ξr
1

ω2n

¡
B2ω

2 +B1ω +B0
¢

+
1

ω2n

¡
1− r2

¢ ¡
A2ω

2 +A1ω +A0
¢

(12.335)

Z2 =
1

ω2n

¡
1− r2

¢ ¡
B2ω

2 +B1ω +B0
¢

−2ξr 1
ω2n

¡
A2ω

2 +A1ω +A0
¢

(12.336)

provides the steady-state solution amplitude Q and phase ϕ

Q =
p
A2 +B2 (12.337)

tanϕ =
−B
A

. (12.338)

We are able to reproduce any of the steady-state responses Si and Gi by
setting the coefficients A0, A1, A2, B0, B1, and B2 properly.
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Example 452 F Base excited frequency responses.
A one DOF base excited vibrating system is shown in Figure 12.23. The

equation of relative motion z = x − y with a harmonic excitation y =
Y sinωt is

z̈ + 2ξωn ż + ω2n z = ω2 Y sinωt. (12.339)

This equation can be found from Equation (12.323) if

A0 = 0

A1 = 0

A2 = Y

B0 = 0

B1 = 0

B2 = 0. (12.340)

So, the frequency response of the system would be

Z = Q =
p
A2 +B2

=
r2q

(1− r2)
2
+ (2ξr)

2
Y (12.341)

because,

∙
A
B

¸
=

⎡⎢⎢⎢⎣
Z1

(1− r2)
2
+ (2ξr)

2

Z2

(1− r2)
2
+ (2ξr)

2

⎤⎥⎥⎥⎦ (12.342)

Z1 = r2
¡
1− r2

¢
Y (12.343)

Z2 = 2ξr3Y. (12.344)

12.4 Time Response of Vibrating Systems

Linear vibrating systems have a general equation of motion as the set of
differential equations,

[m] ẍ+ [c] ẋ+ [k]x = F (12.345)

with the following initial conditions.

x(0) = x0 (12.346)

ẋ(0) = ẋ0 (12.347)
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The time response of the system is the solution x = x(t), t > 0 for a
set of coupled ordinary differential equations. Such a problem is called an
initial-value problem.
Consider a one-DOF vibrating system

mẍ+ cẋ+ kx = f (x, ẋ, t) (12.348)

with the initial conditions

x(0) = x0 (12.349)

ẋ(0) = ẋ0. (12.350)

The coefficients m, c, k are assumed constant, although, they may be
functions of time in more general problems. The solution of such a problem,
x = x(t), t > 0, is unique.
The order of an equation is the highest number of derivatives. In me-

chanical vibrations of lumped models, we work with a set of second-order
differential equations. If x1(t), x2(t), · · · , xn(t), are solutions of an n-order
equation, then its general solution is

x(t) = a1x1(t) + a2x2(t) + · · ·+ anxn(t). (12.351)

When f = 0, the equation is called homogeneous,

mẍ+ cẋ+ kx = 0 (12.352)

otherwise it is non-homogeneous. The solution of the non-homogeneous
equation (12.348) is equal to

x(t) = xh(t) + xp(t) (12.353)

where, xh(t) is the homogeneous solution, and xp(t) is the particular solu-
tion. In mechanical vibration, the homogeneous equation is called free vibra-
tion and its solution is called free vibration response. The non-homogeneous
equation is called forced vibration and its solution is called forced vibration
response.
An exponential function

x = eλt (12.354)

satisfies every homogeneous linear differential equation. Therefore, the ho-
mogeneous response of the second order equation (12.352) is

xh(t) = a1e
λ1t + a2e

λ2t (12.355)

where the constants a1 and a2 depend on the initial conditions. The para-
meters λ1 and λ2 are called characteristic parameters or eigenvalues of the
system The eigenvalues are the solution of an algebraic equation, called
a characteristic equation, which is the result of substituting the solution
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(12.354) in Equation (12.352). The characteristic equation is the condition
to make the solution (12.354) satisfy the equation of motion (12.352).
A general particular solution of a forced equation is hard to find, however,

we know that the forcing function f = f(t) is a combination of the following
functions:

1− a constant, such as f = a
2− a polynomial in t, such as f = a0 + a1t+ a2t

2 + · · ·+ ant
n

3− an exponential function, such as f = eat

4− a harmonic function, such as f = F1 sin at+ F2 cos at

if the particular solution xp(t) has the same form as a forcing term.

1− xp(t) =a constant, such as xp(t) = C
2− xp(t) =a polynomial of the same degree, such as xp(t) = C0 + C1t+

C2t
2 + · · ·+ Cnt

n

3− xp(t) =an exponential function, such as xp(t) = Ceat

4− xp(t) =a harmonic function, such as xp(t) = A sin at+B cos at.

If the system is force free, or the forcing term disappears after a while,
the solution of the equation is called time response or transient response.
The initial conditions are important in transient response.
When the system has some damping, the effect of initial conditions dis-

appears after a while, in both transient and forced vibration responses, and
a steady-state response remains. If the forcing term is harmonic, then the
steady-state solution is called frequency response.

Example 453 A homogeneous solution of a second-order linear equation.
Consider a system with the following equation of motion:

ẍ+ ẋ− 2x = 0 (12.356)

x0 = 1 (12.357)

ẋ0 = 7 (12.358)

To find the solution, we substitute an exponential solution x = eλt in the
equation of motion and find the characteristic equation.

λ2 + λ− 2 = 0 (12.359)

The eigenvalues are
λ1,2 = 1,−2 (12.360)

and therefore, the solution is

x = a1e
t + a2e

−2t. (12.361)

Taking a derivative
ẋ = a1e

t − 2a2e−2t (12.362)



12. Applied Vibrations 789
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FIGURE 12.40. A mass-spring, single degree-of-freedom vibrating system.

and employing the initial conditions

1 = a1 + a2 (12.363)

7 = a1 − 2a2 (12.364)

provides the constants a1, a2, and the solution x = x(t).

a1 = 3 (12.365)

a2 = −2 (12.366)

x = 3et − 2e−2t (12.367)

Example 454 Natural frequency.
Consider a free mass-spring system such as the one shown in Figure

12.40. The system is undamped and free of excitation forces, so its equation
of motion is

mẍ+ kx = 0. (12.368)

To find the solution, let’s try a harmonic solution with an unknown fre-
quency.

x = A sinΩt+B cosΩt (12.369)

Substituting (12.369) in (12.368) provides

−Ω2m (A sinΩt+B cosΩt) + k (A sinΩt+B cosΩt) = 0 (12.370)

which can be collected as¡
Bk −BmΩ2

¢
cosΩt+

¡
Ak −AmΩ2

¢
sinΩt = 0. (12.371)

The coefficients of sinΩt and cosΩt must be zero, and hence,

Ω =

r
k

m
(12.372)

x = A sin

r
k

m
t+B cos

r
k

m
t. (12.373)
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The frequency Ω =
p
k/m is the frequency of vibration of a free and un-

damped mass-spring system. It is called natural frequency and is shown
by a special character ωn.

ωn =

r
k

m
(12.374)

A system has as many natural frequencies as its degrees of freedom.

Example 455 Free vibration of a single-DOF system.
The simplest free vibration equation of motion is

mẍ+ c ẋ+ kx = 0 (12.375)

which is equivalent to

ẍ+ 2ξωn ẋ+ ω2nx = 0. (12.376)

The response of a system to free vibration is called transient response
and depends solely on the initial conditions x0 = x(0) and ẋ0 = ẋ(0).
To determine the solution of the linear equation (12.375), we may search

for a solution in an exponential form.

x = Aeλt (12.377)

Substituting (12.377) in (12.376) provides the characteristic equation

λ2 + 2ξωnλ+ ω2n = 0 (12.378)

to find the eigenvalues λ1,2.

λ1,2 = −ξωn ± ωn

q
ξ2 − 1 (12.379)

Therefore, the general solution for Equation (12.376) is

x = A1 e
λ1t +A2 e

λ2t

= A1 e
−ξωn+ωn

√
ξ2−1 t

+A2 e
−ξωn−ωn

√
ξ2−1 t

= e−ξωnt
¡
A1 e

iωd t +A2 e
−iωd t¢ (12.380)

ωd = ωn

q
1− ξ2 (12.381)

where ωd is called damped natural frequency.
By using the Euler equation

eiα = cosα+ i sinα (12.382)

we may modify solution (12.380) to the following forms:

x = e−ξωnt (B1 sinωdt+B2 cosωdt) (12.383)

x = Be−ξωnt sin (ωdt+ φ) (12.384)
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where

B1 = i (A1 −A2) (12.385)

B2 = A1 +A2 (12.386)

B =
q
B2
1 +B2

2 (12.387)

φ = tan−1
B2
B1

. (12.388)

Because the displacement x is a real physical quantity, coefficients B1 and
B2 in Equation (12.383) must also be real. This requires that A1 and A2
be complex conjugates. The motion described by Equation (12.384) con-
sists of a harmonic motion of frequency ωd = ωn

p
1− ξ2 and a decreasing

amplitude Be−ξωnt.

Example 456 Under-damped, critically-damped, and over-damped systems.

The time response of a damped one-DOF system is given by Equation
(12.380). The solution can be transformed to Equation (12.383) as long as
ξ < 1.
The value of a damping ratio controls the type of time response of a one-

DOF system. Depending on the value of damping, there are three major
solution categories:

1− under-damped,
2− critically-damped, and
3− over-damped.
An under damped system is when ξ < 1. For such a system, the char-

acteristic parameters (12.379) are a complex conjugate

λ1,2 = −ξωn ± iωn

q
1− ξ2 (12.389)

and therefore, the general solution (12.380)

x = A1 e
λ1t +A2 e

λ2t (12.390)

can be transformed to (12.383)

x = e−ξωnt (B1 sinωdt+B2 cosωdt) . (12.391)

An under-damped system has an oscillatory time response with a decaying
amplitude as shown in Figure 12.41 for ξ = 0.15, ωn = 20π rad, x0 = 1,
and ẋ0 = 0. The exponential function e±ξωnt is an envelope for the curve
of response.
A critically damped system is when ξ = 1. For such a system, the

characteristic parameters (12.379) are equal.

λ = λ1,2 = −ωn (12.392)
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FIGURE 12.41. A sample time response for an under-damped system.
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FIGURE 12.42. A sample time response for an critically-damped system.

When the characteristic values are equal, the time response of the system
is

x = A1 e
λt +A2 t e

λt (12.393)

which is equal to
x = e−ξωnt (A1 +A2t) . (12.394)

Figure 12.42 shows a critically-damped response for ξ = 1, ωn = 10π rad,
x0 = 1, and ẋ0 = 0.
An over damped system is when ξ > 1. The characteristic parameters

(12.379) for an over-damped system are two real numbers

λ1,2 = −ξωn ± ωn

q
ξ2 − 1 (12.395)

and therefore, the exponential solution cannot be converted to harmonic
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FIGURE 12.43. A sample time response for an over-damped system.

functions.
x = A1 e

λ1t +A2 e
λ2t (12.396)

Starting from any set of initial conditions, the time response of an over-
damped system goes to zero exponentially. Figure 12.43 shows an over-
damped response for ξ = 2, ωn = 10π rad, x0 = 1, and ẋ0 = 0.

Example 457 Free vibration and initial conditions.
Consider a one DOF mass-spring-damper in a free vibration. The general

motion of the system, given in Equation (12.383), is

x = e−ξωnt (B1 sinωdt+B2 cosωdt) . (12.397)

If the initial conditions of the system are

x(0) = x0 (12.398)

ẋ(0) = ẋ0 (12.399)

then,

x0 = B2 (12.400)

ẋ0 = −ξωnB2 +B1ωd (12.401)

and hence,

B1 =
ẋ0 + ξωnx0

ωd
(12.402)

B2 = x0. (12.403)

Substituting B1 and B2 in solution (12.397) generates the general solution
for free vibration of a single-DOF system.

x = e−ξωnt
µ
ẋ0 + ξωnx0

ωd
sinωdt+ x0 cosωdt

¶
(12.404)
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The solution can also be written as

x = e−ξωnt
µ
x0

µ
cosωdt+

ξ

ωd
ωn sinωdt

¶
+

ẋ0
ωd
sinωdt

¶
. (12.405)

If the initial conditions of the system are substituted in solution (12.384)

x = Be−ξωnt sin (ωdt+ φ) (12.406)

then,

x0 = B sinφ (12.407)

ẋ0 = −Bξωn sinφ+Bωd cosφ. (12.408)

To solve for B and φ, we may write

B =
x0
sinφ

(12.409)

tanφ =
ωdx0

ẋ0 + ξωnx0
(12.410)

and therefore,

B =
1

ωd

q
(ωdx0)

2
+ (ẋ0 + ξωnx0)

2
. (12.411)

Now the solution (12.406) becomes

x =
e−ξωnt

ωd

q
(ωdx0)

2
+ (ẋ0 + ξωnx0)

2

× sin
µ
ωdt+ tan

−1 ωdx0
ẋ0 + ξωnx0

¶
. (12.412)

Example 458 Free vibration, initial conditions, and critically damping.
If the system is critically damped, then the time response to free vibrations

is
x = e−ξωnt (A1 +A2t) . (12.413)

Using the initial conditions, x(0) = x0, ẋ(0) = ẋ0, we can find the coeffi-
cients A1 and A2 as

A1 = x0 (12.414)

A2 = ẋ0 + ξωnx0 (12.415)

and therefore the general critically-damped response is

x = e−ξωnt (x0 + (ẋ0 + ξωnx0) t) . (12.416)
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Example 459 Free vibration, initial conditions, and over damping.
If the system is over-damped, then the characteristic parameters λ1,2 are

real and the time response to free vibrations is a real exponential function.

x = A1 e
λ1t +A2 e

λ2t (12.417)

Using the initial conditions, x(0) = x0, ẋ(0) = ẋ0,

x0 = A1 +A2 (12.418)

ẋ0 = λ1A1 + λ2A2 (12.419)

we can find the coefficients A1 and A2 as

A1 =
ẋ0 − λ2x0
λ1 − λ2

(12.420)

A2 =
λ1x0 − ẋ0
λ1 − λ2

. (12.421)

Hence, the general over-damped response is

x =
ẋ0 − λ2x0
λ1 − λ2

eλ1t +
λ1x0 − ẋ0
λ1 − λ2

eλ2t. (12.422)

Example 460 Work done by a harmonic force.
The work done by a harmonic force

f(t) = F sin (ωt+ ϕ) (12.423)

acting on a body with a harmonic displacement

x(t) = X sin (ωt) (12.424)

during one period

T =
2π

ω
(12.425)

is equal to

W =

Z 2π/ω

0

f(t)dx

=

Z 2π/ω

0

f(t)
dx

dt
dt

= FXω

Z 2π/ω

0

sin (ωt+ ϕ) cos (ωt) dt

= FX

Z 2π

0

sin (ωt+ ϕ) cos (ωt) d (ωt)

= FX

Z 2π

0

¡
sinϕ cos2 ωt+ cosϕ sinωt cosωt

¢
d (ωt)

= πFX sinϕ. (12.426)



796 12. Applied Vibrations

The work W is a function of the phase ϕ between f and x. When ϕ = π
2

then the work is maximum

WMax = πF0X0 (12.427)

and when ϕ = 0, the work is minimum.

Wmin = 0 (12.428)

Example 461 F Response to a step input.
Step input is an standard and the most important transient excitation by

which we examine and compare vibrating systems. Consider a linear second
order system with the following equation of motion.

ẍ+ 2ξωnẋ+ ω2nx = f (t) (12.429)

ξ < 1 (12.430)

A step input, is a sudden change of the forcing function f (t) from zero to
a constant and steady value. If the value is unity then,

f (t) =

½
1N/ kg t > 0
0 t ≤ 0 . (12.431)

This excitation is called unit step input, and the response of the system is
called the unit step response. Linearity of the equation of motion guar-
antees that the response to a non-unit step input is proportional to the unit
step response.
Consider a force function as

f (t) =

½
F0N/ kg t > 0
0 t ≤ 0 . (12.432)

The general solution of Equation (12.429) along with (12.432) is equal to
sum of the homogeneous and particular solutions, x = xh + xp. The ho-
mogeneous solution was given by Equation (12.380) in Example 455. The
particular solution would be constant xp = C because the input is constant
f(t) = F0. Substituting xp = C in Equation (12.429) provides

C =
F0
ω2n

. (12.433)

Therefore, the general solution of Equation (12.429) is

x = xh + xp

=
F0
ω2n

+ e−ξωnt (A cosωdt+B sinωdt) t ≥ 0 (12.434)

ωd = ωn

q
1− ξ2. (12.435)
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FIGURE 12.44. Response of a one DOF vibrating system to a step input.

The zero initial conditions are the best to explore the natural behavior of
the system. Applying a zero initial condition

x(0) = 0 (12.436)

ẋ(0) = 0 (12.437)

provides two equations for A and B

F0
ω2n

+A = 0 (12.438)

ξωnA+ ωdB = 0 (12.439)

with the following solutions.

A = −F0
ω2n

(12.440)

B = − ξF0
ωdωn

(12.441)

Therefore, the step response is

x =
F0
ω2n

µ
1− e−ξωnt

µ
cosωdt+

ξωn
ωd

sinωdt

¶¶
. (12.442)

Figure 12.44 depicts a step input for the following numerical values.

ξ = 0.3

ωn = 1

F0 = 1 (12.443)
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There are some characteristics for a step response: rise time tr, peak
time tP , peak value xP , overshoot S = xP − F0

ω2n
, and settling time ts.

Rise time tr is the first time that the response x(t) reaches the value of
the step input F0

ω2n
.

tr =
2

ωd
tan−1

ξ + 1p
1− ξ2

(12.444)

Rise time may also be defines as the inverse of the largest slope of the step
response, or as the time it takes to pass from 10% to 90% of the steady-state
value.
Peak time tP is the first time that the response x(t) reaches its maximum

value.
tP =

π

ωd
(12.445)

Peak value xP is the value of x(t) when t = tP .

xP =
F0
ω2n

³
1 + e

−ξωn π
ωd

´
=

F0
ω2n

³
1 + e

−ξ π√
1−ξ2

´
(12.446)

Overshoot S indicates how much the response x(t) exceeds the step input.

S = xP −
F0
ω2n

=
F0
ω2n

e
−ξ π√

1−ξ2 (12.447)

Settling time ts is, by definition, four times of the time constant of the
exponential function e−ξωnt.

ts =
4

ξωn
(12.448)

Settling time may also be defines as the required time that the step response
x(t) needs to settles within a ±p% window of the step input. The value
p = 2 is commonly used.

ts ≈
ln
³
p
p
1− ξ2

´
ξωn

(12.449)

For the given data in (12.443) we find the following characteristic values.

tr = 1.966

tP = 3.2933

xP = 1.3723

S = 0.3723

ts = 13.333 (12.450)
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FIGURE 12.45. An x-response for the free vibration of an under-damped
one-DOF system.

12.5 Vibration Application and Measurement

The measurable vibration parameters, such as period T and amplitude X,
may be used to identify mechanical characteristics of the vibrating system.
In most vibration measurement and test methods, a transient or harmon-
ically steady-state vibration will be examined. Using time and kinematic
measurement devices, we measure amplitude and period of response, and
use the analytic equations to find the required data.

Example 462 Damping ratio determination.
Damping ratio of an under-damped one-DOF system can be found by

ξ =
1r

4 (n− 1)2 π2 + ln2 x1
xn

ln
x1
xn

(12.451)

≈ 1

2 (n− 1)π ln
x1
xn

(12.452)

which is based on a plot of x = x (t) and peak amplitudes xi.
To show this equation, consider the free vibration of an under-damped

one-DOF system with the following equation of motion:

ẍ+ 2ξωn ẋ+ ω2nx = 0. (12.453)

The time response of the system is given in Equation (12.383) as

x = X e−ξωnt cos (ωdt+ φ) (12.454)

where the constants X and φ are dependent on initial conditions.
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Figure 12.45 illustrates a sample of the x-response. The peak amplitudes
xi are

x1 = e−ξωnt1 (X cos (ωdt1 + φ)) (12.455)

x2 = e−ξωnt2 (X cos (ωdt2 + φ)) (12.456)
...

xn = e−ξωntn (X cos (ωdtn + φ)) . (12.457)

The ratio of the first two peaks is

x1
x2
= e−ξωn(t1−t2)

cos (ωdt1 + φ)

cos (ωdt2 + φ)
(12.458)

Because the time difference between t1 and t2 is the period of oscillation

Td = t2 − t1

=
2π

ωd

=
2π

ωn
p
1− ξ2

(12.459)

we may simplify Equation (12.458) to

x1
x2

= eξωnTd
cos (ωdt1 + φ)

cos (ωd (t1 + Td) + φ)

= eξωnTd
cos (ωdt1 + φ)

cos (ωdt1 + 2π + φ)

= eξωnTd . (12.460)

This equation shows that,

ln
x1
x2
= ξωnTd =

2πξp
1− ξ2

(12.461)

which can be used to evaluate the damping ratio ξ.

ξ ≈ 1r
4π2 + ln2

x1
x2

ln
x1
x2

(12.462)

For a better evaluation we may measure the ratio between x1 and any other
xn, and use the following equation:

ξ ≈ 1r
4 (n− 1)2 π2 + ln2 x1

xn

ln
x1
xn

(12.463)
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FIGURE 12.46. Static deflection and natural frequency determination.

If ξ << 1, then
p
1− ξ2 ≈ 1, and we may evaluate ξ from (12.461) with

a simpler equation.

ξ ≈ 1

2 (n− 1)π ln
x1
xn

(12.464)

Example 463 Natural frequency determination.
Natural frequency of a mass-spring-damper system can be found by mea-

suring the static deflection of the system. Consider a one-DOF system
shown in Figure 12.46(a) that barely touches the ground. Assume that the
spring has no tension or compression. When the system rests on the ground
as shown in Figure 12.46(b), the spring is compressed by a static deflection
δs = mg/k because of gravity. We may determine the natural frequency of
the system by measuring δs

ωn =

r
g

δs
(12.465)

because
δs =

mg

k
=

g

ω2n
. (12.466)

Example 464 Moments of inertia determination.
Mass moments of inertia are important characteristics of a vehicle that

affect its dynamic behavior. The main moments of inertia Ix, Iy, and Iz
can be calculated by an experiment.
Figure 12.47 illustrates an oscillating platform hung from point A. As-

sume the platform has a mass M and a moment of inertia I0 about the
pivot point A. Ignoring the mass of cables, we can write the Euler equation
about point A X

My = I0 θ̈ = −Mgh1 sin θ (12.467)
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FIGURE 12.47. An oscillating platform hung from point A.

and derive the equation of motion.

I0 θ̈ +Mgh1 sin θ = 0 (12.468)

If the angle of oscillation θ is very small, then sin θ ≈ θ and therefore,
Equation (12.468) reduces to a linear equation

θ̈ + ω2n θ = 0 (12.469)

ωn =

r
Mgh1
I0

(12.470)

where ωn is the natural frequency of the oscillation.
ωn can be assumed as the frequency of small oscillation about the point

A when the platform is set free after a small deviation from equilibrium
position. The natural period of oscillation Tn = 2π/ωn is what we can
measure, and therefore, the moment of inertia I0 is equal to

I0 =
1

4π2
Mgh1T

2
n . (12.471)

The natural period Tn may be measured by an average period of a few
cycles, or more accurately, by an accelerometer.
Now consider the swing shown in Figure 12.48. A car with mass m at

C is on the platform such that C is exactly above the mass center of the
platform. Because the location of the mass center C is known, the distance
between C and the fulcrum A is also known as h2.
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FIGURE 12.48. A car with mass m on an oscillating platform hung from point
A.

To find the car’s pitch mass moment of inertia Iy about C, we apply
the Euler equation about point A, when the oscillator is deviated from the
equilibrium condition. X

My = IA θ̈ (12.472)

−Mgh1 sin θ −mgh2 sin θ = I0 + Iy +mh22 (12.473)

Assuming very small oscillation, we may use sin θ ≈ θ and then Equation
(12.473) reduces to a linear oscillator

θ̈ + ω2n θ = 0 (12.474)

ωn =

s
(Mh1 +mh2) g

I0 + Iy +mh22
. (12.475)

Therefore, the pitch moment of inertia Iy can be calculated by measuring
the natural period of oscillation Tn = 2π/ωn from the following equation.

Iy =
1

4π2
(Mh1 +mh2) gT

2
n − I0 −mh22. (12.476)

To determine the roll moment of inertia, we may put the car on the
platform as shown in Figure 12.49.
Having Ix and Iy we may put the car on the platform, at an angle α, to

find its moment of inertia about the axis passing through C and parallel to
the swing axis. Then, the product moment of inertia Ixy can be calculated
by transformation calculus.
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FIGURE 12.49. Roll moment of inertia measurement, using a swinging platform.

Example 465 Sample data.
Tables 12.1 indicates an example of data for the mass center position,

moment of inertia, and geometry of street cars, that are close to a Mercedes-
Benz A-Class.

Table 12.1 - Sample data close to a Mercedes-Benz A-Class.
wheelbase 2424mm
front track 1492mm
rear track 1426mm
mass 1245 kg
a1 1100mm
a2 1323mm
h 580mm
Ix 335 kgm2

Iy 1095 kgm2

Iz 1200 kgm2

12.6 F Vibration Optimization Theory

The first goal in vibration optimization is to reduce the vibration amplitude
of a primary mass to zero, when the system is under a forced vibration.
There are two principal methods for decreasing the vibration amplitude of
a primary mass: vibration absorber, and vibration isolator.
When the suspension of a primary system is not easy to change, we add

another vibrating system, known as the vibration absorber or secondary
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FIGURE 12.50. A secondary vibration absorber system (m2, c2, k2) added to a
primary vibrating system (m1, k1).

system, to absorb the vibrations of the primary system. The vibration ab-
sorber increases the DOF of the system, and is an applied method for
vibration reduction in frequency domain. It can work very well in a few
specific frequencies, and may be designed to work well in a range of fre-
quencies.
Consider a mass m1 supported by a suspension made of only a spring k1,

as shown in Figure 12.50. There is a harmonic force f = F sinωt applied
on m1. We add a secondary system (m2, c2, k2) to the primary mass m1

and make a two-DOF vibrating system. Such a system is sometimes called
Frahm absorber, or Frahm damper.
It is possible to design the suspension of the secondary system (c2, k2)

to reduce the amplitude of vibration m1 to zero at any specific excitation
frequency ω. However, if the excitation frequency is variable, we can adjust
k2 at the optimal value k

F
2 ,

kF2 =
m1m2

(m1 +m2)
2 k1 (12.477)

and select c2 within the range

2m2ω1ξ
F
1 < c2 < 2m2ω1ξ

F
2

to minimize the amplitude of m1 over the whole frequency range. The
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optimal ξF1 and ξF2 are the positive values of

ξF1 =

s
−B −

√
B2 − 4AC
2A

(12.478)

ξF2 =

s
−B +

√
B2 − 4AC
2A

(12.479)

where

A = 16Z8 − 4r2 (4Z4 + 8Z5) (12.480)

B = 4Z9 − 4Z6r2 − Z7 (4Z4 + 8Z5) + 4Z3Z8 (12.481)

C = Z3Z9 − Z6Z7. (12.482)

and

Z3 = 2
¡
r2 − α2

¢
(12.483)

Z4 =
£
r2 (1 + ε)− 1

¤2
(12.484)

Z5 = r2 (1 + ε)
£
r2 (1 + ε)− 1

¤
(12.485)

Z6 = 2
£
εα2r2 −

¡
r2 − α2

¢ ¡
r2 − 1

¢¤
×
£
εα2 −

¡
r2 − α2

¢
−
¡
r2 − 1

¢¤
(12.486)

Z7 =
¡
r2 − α2

¢2
(12.487)

Z8 = r2
£
r2 (1 + ε)− 1

¤2
(12.488)

Z9 =
£
εα2r2 −

¡
r2 − 1

¢ ¡
r2 − α2

¢¤2
. (12.489)

Proof. The equations of motion for the system shown in Figure 12.50 are:

m1ẍ1 + c2 (ẋ1 − ẋ2) + k1x1 + k2 (x1 − x2) = F sinωt (12.490)

m2ẍ2 − c2 (ẋ1 − ẋ2)− k2 (x1 − x2) = 0. (12.491)

To find the frequency response of the system, we substitute the following
solutions in the equations of motion:

x1 = A1 cosωt+B1 sinωt (12.492)

x2 = A2 cosωt+B2 sinωt (12.493)

Assuming a steady-state condition, we find the following set of equations
for A1, B1, A2, B2⎡⎢⎢⎣

a11 c2ω −k2 −c2ω
−c2ω a22 c2ω −k2
−k2 −c2ω a33 c2ω
c2ω −k2 −c2ω a44

⎤⎥⎥⎦
⎡⎢⎢⎣

A1
B1
A2
B2

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
F
0
0

⎤⎥⎥⎦ (12.494)
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where,

a11 = a22 = k1 + k2 −m1ω
2 (12.495)

a33 = a44 = k2 −m2ω
2. (12.496)

The steady-state amplitude X1 for vibration of the primary mass m1 is
found by

X1 =
q
A21 +B2

1 (12.497)

and is equal to µ
X1

F

¶2
=

¡
k2 − ω2m2

¢2
+ ω2c22

Z21 + ω2c22Z
2
2

(12.498)

where,

Z1 =
¡
k1 − ω2m1

¢ ¡
k2 − ω2m2

¢
− ω2m2k2 (12.499)

Z2 = k1 − ω2m1 − ω2m2. (12.500)

Introducing the parameters

ε =
m2

m1
(12.501)

ω1 =

r
k1
m1

(12.502)

ω2 =

r
k2
m2

(12.503)

α =
ω2
ω1

(12.504)

r =
ω

ω1
(12.505)

ξ =
c2

2m2ω1
(12.506)

μ =
X1

F/k1
(12.507)

we may rearrange the frequency response (12.498) to the following equation.

μ2 =
4ξ2r2 +

¡
r2 − α2

¢2
4ξ2r2 [r2 (1 + ε)− 1]2 + [εα2r2 − (r2 − 1) (r2 − α2)]

2 (12.508)

The parameter ε is themass ratio betweenm2 and them1, ω1 is the angular
natural frequency of the main system, ω2 is the angular natural frequency
of the vibration absorber system, α is the natural frequency ratio, r is the
excitation frequency ratio, ξ is the damping ratio, and μ is the amplitude
ratio between dynamic amplitude X1 and the static deflection F/k1.
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FIGURE 12.51. Behavior of ferquency response μ for a set of parameters and
different damping ratios.

Figure 12.51 illustrates the behavior of frequency response μ for

ε = 0.1 (12.509)

α = 1 (12.510)

and

ξ = 0 (12.511)

ξ = 0.2 (12.512)

ξ = 0.3 (12.513)

ξ = ∞. (12.514)

All the curves pass through two nodes P andQ, independent of the damping
ratio ξ. To find the parameters that control the position of the nodes, we
find the intersection points of the curves for ξ = 0 and ξ = ∞. Setting
ξ = 0 and ξ =∞ results in the following equations:

μ2 =

¡
r2 − α2

¢2
[εα2r2 − (r2 − 1) (r2 − α2)]

2 (12.515)

μ2 =
1

[r2 (1 + ε)− 1]2
(12.516)

When ξ = 0, the system is an undamped, linear two-DOF system with
two natural frequencies. The vibration amplitude of the system approaches
infinity μ→∞ when the excitation frequency approaches either of the nat-
ural frequencies. When ξ =∞, there would be no relative motion between
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m1 and m2. The system reduces to an undamped, linear one-DOF system
with one natural frequency

ωn =

r
k1

m1 +m2
(12.517)

or

rn =
1√
1 + ε

. (12.518)

The vibration amplitude of the system approaches infinity μ → ∞ when
the excitation frequency approaches the natural frequency ω → ωni or
r → 1/ (1 + ε).
Using Equations (12.515) and (12.516), we find¡

r2 − α2
¢2

(εα2r2 − (r2 − 1) (r2 − α2))2
=

1

[r2 (1 + ε)− 1]2
(12.519)

which can be simplified to

εα2r2 −
¡
r2 − 1

¢ ¡
r2 − α2

¢
= ±

¡
r2 − α2

¢ £
r2 (1 + ε)− 1

¤
. (12.520)

The negative sign is equivalent to

r4ε = 0

which indicates that there is a common point at r = 0. The plus sign
produces a quadratic equation for r2

(2 + ε) r4 − r2
¡
2 + 2α2 (1 + ε)

¢
+ 2α2 = 0 (12.521)

with two positive solutions r1 and r2 corresponding to nodes P and Q.

r21,2 =
1

ε+ 2

³
α2 ±

p
(ε2 + 2ε+ 1)α4 − 2α2 + 1 + α2ε+ 1

´
(12.522)

r1 < rn < r2 (12.523)

Because the frequency response curves always pass through P and Q,
the optimal situation would be when the nodes P and Q have equal height.

μ (P ) = μ (Q) (12.524)

Because the value of μ2 at P and Q are independent of ξ, we may substitute
r1 and r2 in Equation (12.516) for μ corresponding to ξ =∞. However, μ
from Equation (12.516)

μ =
1

[r2 (1 + ε)− 1] (12.525)
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produces a positive number for r < rn and a negative number for r > rn.
Therefore,

μ (r1) = −μ (r2) (12.526)

generates the equality

1

1− r21 (1 + ε)
=

−1
1− r22 (1 + ε)

(12.527)

which can be simplified to

r21 + r22 =
2

1 + ε
. (12.528)

The sum of the roots from Equation (12.521) is

r21 + r22 =
2 + 2α2 (1 + ε)

1 + ε
(12.529)

and therefore,
2

1 + ε
=

£
2 + 2α2 (1 + ε)

¤
1 + ε

(12.530)

which provides

α =
1

1 + ε
. (12.531)

Equation (12.531) is the required condition to make the height of the nodes
P and Q equal, and hence, provides the optimal value of α. Having an
optimal value for α is equivalent to designing the optimal stiffness k2 for
the secondary suspension, because,

α =
ω2
ω1

=

r
m1

m2

r
k2
k1

(12.532)

and Equation (12.531) simplifies to

α =
m1

m1 +m2
(12.533)

to provide the following condition for optimal kF2 :

kF2 = k1
m1m2

(m1 +m2)
2 (12.534)

To determine the optimal damping ratio ξ, we force μ to have its max-
imum at P or Q. Having μMax at P guarantees that μ (r1) is the highest
value in a frequency domain around r1, and having μMax at Q, guarantees
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FIGURE 12.52. Optimal damping ratio ξ to have maximum of μ at P or Q.

that μ (r2) is the highest value in a frequency domain around r2. The po-
sition of μMax is controlled by ξ, so we may determine two optimal ξ at
which μMax is at μ (r1) and μ (r2). An example of this situation is shown
in Figure 12.52.
Using the optimal α from (12.531), the nodal frequencies are

r21,2 =
1

1 + ε

µ
1±

r
ε

2 + ε

¶
. (12.535)

To set the partial derivative ∂μ2/∂r2 equal to zero at the nodal frequencies

∂μ2

∂r2

¯̄̄̄
r21

= 0 (12.536)

∂μ2

∂r2

¯̄̄̄
r22

= 0 (12.537)

we write μ2 by numerator N (r) divided by denominator D (r)

μ2 =
N (r)

D (r)
(12.538)

which helps to find the derivative easier.

∂μ2

∂r2
=

1

D2

µ
D
∂N

∂r2
−N

∂D

∂r2

¶
=

1

D

µ
∂N

∂r2
− N

D

∂D

∂r2

¶
(12.539)
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Differentiating gives

∂N

∂r2
=

∂N

∂r2
= 4ξ2 + Z3 (12.540)

∂D

∂r2
= 4ξ2Z4 + 8ξ

2Z5 + Z6. (12.541)

Equations (12.540) and (12.541), along with (12.535), must be substituted
in (12.539) to be solved for ξ. After substitution, the equation ∂μ2/∂r2 = 0
would be

∂N

∂r2
− N

D

∂D

∂r2
=

¡
4ξ2 + Z3

¢ ¡
4ξ2Z8 + Z9

¢
−
¡
4ξ2r2 + Z7

¢ ¡
4ξ2Z4 + 8ξ

2Z5 + Z6
¢

= 0 (12.542)

because of
N

D
=
4ξ2r2 + Z7

4ξ2Z8 + Z9
. (12.543)

Equation (12.542) is a quadratic for ξ2¡
16Z8 − 4r2 (4Z4 + 8Z5)

¢
ξ4

+
¡
4Z9 − 4Z6r2 − Z7 (4Z4 + 8Z5) + 4Z3Z8

¢
ξ2

+(Z3Z9 − Z6Z7)

= A
¡
ξ2
¢2
+Bξ2 + C = 0 (12.544)

with the solution

ξ2 =
−B ±

√
B2 − 4AC
2A

. (12.545)

The positive value of ξ from (12.545) for r = r1 and r = r2 provides the
limiting values for ξF1 and ξF2 . Figure 12.52 shows the behavior of μ for
optimal α and ξ = 0, ξF1 , ξ

F
2 ,∞.

Example 466 F Optimal spring and damper for ε = 0.1.
Consider a Frahm vibration absorber with

ε =
m2

m1
= 0.1. (12.546)

We adjust the optimal frequency ratio α form Equation (12.531).

αF =
1

1 + ε
≈ 0.9091 (12.547)

and find the nodal frequencies r21,2 from (12.535).

r21,2 =
1

1 + ε

µ
1±

r
ε

2 + ε

¶
= 0.71071, 1.1075. (12.548)
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Now, we set r = r1 =
√
0.71071 ≈ 0.843 and evaluate the parameters Z3

to Z9 from (12.483)-(12.489)

Z3 = −0.231470544
Z4 = 0.0476190476

Z5 = −0.1705988426
Z6 = 0.0246326501

Z7 = 0.01339465321

Z8 = 0.03384338136

Z9 = 0.0006378406298 (12.549)

and the coefficients A, B, and C from (12.480)-(12.482)

A = 3.879887219

B = −0.08308086729
C = −0.0004775871233 (12.550)

to find the first optimal damping ratio ξ1.

ξF1 = 0.1616320694 (12.551)

Using r = r2 =
√
1.1075 ≈ 1.05236 we find the following numbers

Z3 = 0.562049056

Z4 = 0.04761904752

Z5 = 0.2658369375

Z6 = −0.375123324
Z7 = 0.07897478534

Z8 = 0.05273670508

Z9 = 0.003760704084 (12.552)

A = −9.421012739
B = 0.1167823931

C = 0.005076228579 (12.553)

to find the second optimal damping ratio ξ1.

ξF2 = 0.1738496023 (12.554)

Therefore, the optimal α is αF = 0.9091, and the optimal ξ is between
0.1616320694 < ξF < 0.1738496023.
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ε

α

FIGURE 12.53. Optimal value of the natural frequency ratio, α, as a function of
mass ratio ε.

Example 467 F The vibration absorber is most effective when r = α = 1.
When ξ = 0, then μ = 0 at r = 1, which shows the amplitude of the

primary mass reduces to zero if the natural frequency of the primary and
secondary systems are equal to the excitation frequency r = α = 1.

Example 468 F The optimal nodal amplitude.
Substituting the optimal α from (12.531) in Equation (12.521),

r4 − 2

2 + ε
r2 +

2

(2 + ε) (1 + ε)
2 = 0 (12.555)

provides the following nodal frequencies:

r21,2 =
1

1 + ε

µ
1±

r
ε

2 + ε

¶
(12.556)

Applying r1,2 in Equation (12.525) shows that the common nodal amplitude
μ (r1,2) is

μ =

r
2 + ε

ε
. (12.557)

Example 469 F Optimal α and mass ratio ε.
The optimal value of the natural frequency ratio, α, is only a function

of mass ratio ε, as determined in Equation (12.531). Figure 12.53 depicts
the behavior of α as a function of ε. The value of optimal α, and hence,
the value of optimal k2, decreases by increasing ε = m2/m1. Therefore, a
smaller mass for the vibration absorber needs a stiffer spring.
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FIGURE 12.54. Behavior of nodal frequencies r1,2 as a function of mass ratio ε.

Example 470 F Nodal frequencies r1,2 and mass ratio ε.
As shown in Equation (12.535), the nodal frequencies r1,2 for optimal α

(12.531), are only a function of the mass ratio ε.

r21,2 =
1

1 + ε

µ
1±

r
ε

2 + ε

¶
(12.558)

Figure 12.54 illustrates the behavior of r1,2 as a function of ε. When,
ε→ 0, the vibration absorber m2 vanishes, and hence, the system becomes a
one-DOF primary oscillator. Such a system has only one natural frequency
rn = 1 as given by Equation (12.518). It is the frequency that r1,2 will
approach by vanishing m2.
The nodal frequencies r1,2 are always on both sides of the singe-DOF

natural frequency rn
r1 < rn < r2 (12.559)

while all of them are decreasing functions of the mass ratio ε.

Example 471 F Natural frequencies for extreme values of damping.
By setting ξ = 0 for ε = 0.1, we find

μ =

¯̄̄̄
¯ r2 − 1
0.1r2 − (r2 − 1)2

¯̄̄̄
¯ (12.560)

and by setting ξ =∞, we find

μ =

¯̄̄̄
1

1.1r2 − 1

¯̄̄̄
. (12.561)

Having ξ = 0 is equivalent to no damping. When there is no damping,
μ approaches infinity at the real roots of its denominator, rn1 and rn2 ,
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which are the natural frequencies of the system. As an example, the natural
frequencies rn1 and rn2 for ε = 0.1, are

0.1r2 −
¡
r2 − 1

¢2
= 0 (12.562)

rn1 = 0.854 31 (12.563)

rn2 = 1.170 5. (12.564)

Having ξ = ∞ is equivalent to a rigid connection between m1 and m2.
The system would have only one DOF and therefore, μ approaches infinity
at the only roots of the denominator, rn

1.1r2 − 1 = 0 (12.565)

rn = 0.953 (12.566)

where, rn is always between rn1 and rn2 .

rn1 < rn < rn2 (12.567)

12.7 Summary

Generally speaking, vibration is a harmful and unwanted phenomenon. Vi-
bration is important when a non-vibrating system is connected to a vibrat-
ing system. To minimize the effects of vibration, we connect the systems by
a damping elastic isolator. For simplicity, we model the isolator by a spring
and damper parallel to each other. Such an isolator is called suspension.
Vibration can be physically expressed as a result of energy conversion.

It can mathematically be expressed by solutions of a set of differential
equations. If the system is linear, then its equations of motion can always
be arranged in the following matrix form:

[M ] ẋ+ [c] ẋ+ [k]x = F (x, ẋ, t) (12.568)

Vibration can be separated into free vibrations, when F = 0, and forced
vibrations, when F 6= 0. However, in applied vibrations, we usually separate
the solution of the equations of motion into transient and steady-state.
Transient response is the solution of the equations of motion when F = 0
or F is active for a short period of time. Because most industrial machines
are equipped with a rotating motor, periodic and harmonic excitation is
very common. Frequency response is the steady-state solution of equations
of motion when the system is harmonically excited. In frequency analysis
we seek the steady-state response of the system, after the effect of initial
conditions dies out.
Frequency response of mechanical systems, such as vehicles, is dominated

by the natural frequencies of the system and by excitation frequencies. The
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amplitude of vibration increases when an excitation frequency approaches
one of the natural frequencies of the system. Frequency domains around
the natural frequencies are called the resonance zone. The amplitude of
vibration in resonance zones can be reduced by introducing damping.
One-DOF, harmonically excited systems may be classified as base exci-

tation, eccentric excitation, eccentric base excitation, and forced excitation.
Every frequency response these systems can be expressed by one of the
functions Si, Gi, and Φi, each with a specific characteristic. We usually use
a graphical illustration to see the frequency response of the system as a
function of frequency ratio r = ω/ωn and damping ratio ξ = c/

√
4km.
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12.8 Key Symbols

a ≡ ẍ acceleration
a1 distance from mass center to front axle
a2 distance from mass center to rear axle
[a] , [A] coefficient matrix
A,B,C unknown coefficients for frequency responses
b1 distance from mass center to left wheel
b2 distance from mass center to right wheel
c damping
cF optimum damping
ceq equivalent damping
cij element of row i and column j of a damping matrix
[c] damping matrix
D denominator
e eccentricity arm
e exponential function
E mechanical energy
E Young modulus of elasticity
f = 1/T cyclic frequency [ Hz]
f, F force
fc damper force
feq equivalent force
fk spring force
fm required force to move a mass m
F amplitude of a harmonic force f = F sinωt
F0 constant force
Ft tension force
FT transmitted force
g gravitational acceleration
G0, G1, G2 amplitude frequency response
I area moment of inertia for beams
I mass moment of inertia for vehicles
I identity matrix
k stiffness
kF optimum stiffness
keq equivalent stiffness
kij element of row i and column j of a stiffness matrix
kR antiroll bar torsional stiffness
[k] stiffness matrix
K kinetic energy
l length
m mass
mb device mass
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me eccentric mass
mij element of row i and column j of a mass matrix
ms sprung mass
ms mass of spring
mu unsprung mass
[m] mass matrix
M mass of platform
N numerator
p momentum
Q general amplitude
r = ω/ωn frequency ratio
r, R radius
r1, r2 frequency ratio at nodes
rn = ωn/ω1 dimensionless natural frequency
S overshoot
S quadrature
S0, S1, · · · , S4 amplitude frequency response
t time
tp peak time
tr rise time
ts settling time
T period
Tn natural period
v ≡ ẋ, v velocity
V potential energy
w track of a car
wf front track of a car
wr rear track of a car
x, y, z, x displacement
x0 initial displacement
xh homogeneous solution
xp particular solution
xP peak displacement
ẋ0 initial velocity
X,Y,Z, amplitude
Zi, i = 1, 2, · · · short notation parameters

α = ω2/ω1 natural frequency ratio
δ deflection
δs static deflection
ε mass ratio
θ angular motion
Θ amplitude of angular vibration
λ eigenvalue
μ amplitude frequency response
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ϕ phase angle
Φ0,Φ1, · · · ,Φ3 phase frequency response
ω = 2πf angular frequency [ rad/ s]
ωn natural frequency
ξ damping ratio
ξF optimum damping ratio

Subscriptions
d driver
f front
M maximum
r rear
s sprung mass
u unsprung mass
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Exercises

1. Natural frequency and damping ratio.

A one DOF mass-spring-damper has m = 1kg, k = 1000N/m and
c = 100N s/m. Determine the natural frequency, and damping ratio
of the system.

2. Equivalent spring.

Determine the equivalent spring for the vibrating system that is
shown in Figure 12.55.

xk1

m

k2

E,I,l

FIGURE 12.55. Spring connected cantilever beam.

3. F Equivalent mass for massive spring.

Figure 12.56 illustrates an elastic cantilever beam with a tip mass m.
The beam has characteristics: elasticity E, area moment of inertia I,
mass ms. Assume that when the tip mass m oscillates laterally, the
beam gets a harmonic shape.

y = Y sin
πx

2l

4. Ideal spring connected pendulum.

Determine the kinetic and potential energies of the pendulum in Fig-
ure 12.57, at an arbitrary angle θ. The free length of the spring is
l = a− b.

5. F General spring connected pendulum.

Determine the potential energy of the pendulum in Figure 12.57, at
an angle θ, if:

(a) The free length of the spring is l = a− 1.2b.
(b) The free length of the spring is l = a− 0.8b.
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y

mE,I,l,ms

x

FIGURE 12.56. An elastic and massive cantilever beam with a tip mass m.

a

k

b

mθ

FIGURE 12.57. Spring connected pendulum.

6. F Spring connected rectilinear oscillator.

Determine the kinetic and potential energies of the oscillator shown
in Figure 12.58. The free length of the spring is a.

(a) Express your answers in terms of the variable angle θ.

(b) Express your answers in terms of the variable distance x.

(c) Determine the equation of motion for large and small θ.

(d) Determine the equation of motion for large and small x.

7. F Cushion mathematical model.

Figure 12.59 illustrates a mathematical model for cushion suspension.
Such a model can be used to analyze the driver’s seat, or a rubbery
pad suspension.

(a) Derive the equations of motion for the variables x and z and
using y as a known input function.

(b) Eliminate z and derive a third-order equation for x.
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a
k

m
θ

x

FIGURE 12.58. Spring connected rectilinear oscillator.

m

k1
c

x

y

k2 z

FIGURE 12.59. Mathematical model for cushion suspension.

8. Forced excitation and spring stiffness.

A forced excited mass-spring-damper system has

m = 200 kg

c = 1000N s/m.

Determine the stiffness of the spring, k, such that the natural fre-
quency of the system is oneHz. What would be the amplitude of
displacement, velocity and acceleration of m if a force F is applied
on the mass m.

F = 100 sin 10t

9. Forced excitation and system parameters.

A forced excited m-k-c system is under a force f .

F = 100 sin 10t

If the mass m = 200 kg should not have a dimensionless steady-state
amplitude higher than two when it is excited at the natural frequency,
determine m, c, k, X, ϕx, and FT .
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10. Base excited system and spring stiffness.

A base excited m-k-c system has

m = 200 kg

c = 1000N s/m.

Determine the stiffness of the spring, k, such that the steady-state
amplitude of m is lass than 0.07m when the base is excited as

y = 0.05 sin 2πt

at the natural frequency of the system.

11. Base excited system and absolute acceleration.

Assume a base excited m-k-c system is vibrating at the node of its
absolute acceleration frequency response. If the base is excited ac-
cording to

y = 0.05 sin 2πt

determine ωn, Ẍ, X.

12. Eccentric excitation and transmitted force.

An engine with massm = 175 kg and eccentricitymee = 0.4×0.1 kgm
is turning at ωe = 4000 rpm.

(a) Determine the steady-state amplitude of its vibration, if there
are four engine mounts, each with k = 10000N/m and c =
100N s/m.

(b) Determine the transmitted force to the base.

13. F Eccentric base excitation and absolute displacement.

An eccentric base excited system has m = 3kg, mb = 175 kg, mee =
0.4 × 0.1 kgm, and ω = 4000 rpm. If Z/(eε) = 2 at r = 1, calculate
X and Y .

14. Characteristic values and free vibrations.

An m-k-c system has

m = 250 kg

k = 8000N/m

c = 1000N s/m.

Determine the characteristic values of the system and its free vibra-
tion response, for zero initial conditions.
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15. F Response to the step input.

Consider an m-k-c system with

m = 250 kg

k = 8000N/m

c = 1000N s/m.

Determine the step input parameters, tr, tP , xP , S, and ts for 2%
window.

16. Damping ratio determination.

Consider a vibrating system that after n = 100 times oscillation, the
peak amplitude drops by 2%. Determine the exact and approximate
values of ξ.

17. The car lateral moment of inertia.

Consider a car with the following characteristics:

b1 746mm
b2 740mm
mass 1245 kg
a1 1100mm
a2 1323mm
h 580mm
Ix 335 kgm2

Iy 1095 kgm2

Determine the period of oscillation when the car is on a solid steel
platform with dimension 2000mm× 3800mm× 35mm,

(a) laterally

(b) longitudinally.

18. F Optimal vibration absorber.

Consider a primary system with m1 = 250 kg and k = 8000N/m.

(a) Determine the best suspension for the secondary system with
m2 = 1kg to act as a vibration absorber.

(b) Determine the natural frequencies of the two system for the
optimized vibration absorber.

(c) Determine the nodal frequencies and amplitudes of the primary
system.
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19. F Frequency response.

Prove the following equations:

G2 =
FTB
kY

G2 =
FTE

eω2nme

G2 =
FTR

eω2nme

³
1 +

mb

m

´



13

Vehicle Vibrations
Vehicles are multiple-DOF systems as the one that is shown in Figure 13.1.
The vibration behavior of a vehicle, which is called ride or ride comfort, is
highly dependent on the natural frequencies and mode shapes of the vehicle.
In this chapter, we review and examine the applied methods of determining
the equations of motion, natural frequencies, and mode shapes of different
models of vehicles.

x

ϕ
θ

FIGURE 13.1. A full car vibrating model of a vehicle.

13.1 Lagrange Method and Dissipation Function

Lagrange equation,

d

dt

µ
∂K

∂q̇r

¶
− ∂K

∂qr
= Fr r = 1, 2, · · ·n (13.1)

or,
d

dt

µ
∂L
∂q̇r

¶
− ∂L

∂qr
= Qr r = 1, 2, · · ·n (13.2)

as introduced in Equations (9.243) and (9.298), can both be applied to
find the equations of motion for a vibrating system. However, for small
and linear vibrations, we may use a simpler and more practical Lagrange
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equation such as

d

dt

µ
∂K

∂q̇r

¶
− ∂K

∂qr
+

∂D

∂q̇r
+

∂V

∂qr
= fr r = 1, 2, · · ·n (13.3)

where K is the kinetic energy, V is the potential energy, and D is the
dissipation function of the system

K =
1

2
ẋT [m] ẋ

=
1

2

nX
i=1

nX
j=1

ẋimij ẋj (13.4)

V =
1

2
xT [k]x

=
1

2

nX
i=1

nX
j=1

xikijxj (13.5)

D =
1

2
ẋT [c] ẋ

=
1

2

nX
i=1

nX
j=1

ẋicij ẋj (13.6)

and fr is the applied force on the mass mr.

Proof. Consider a one-DOF mass-spring-damper vibrating system. When
viscous damping is the only type of damping in the system, we may employ
a function known as Rayleigh dissipation function

D =
1

2
cẋ2 (13.7)

to find the damping force fc by differentiation.

fc = −
∂D

∂ẋ
. (13.8)

Remembering the elastic force fk can be found from a potential energy
V

fk = −
∂V

∂x

then, the generalized force F can be separated to

F = fc + fk + f

= −∂D
∂ẋ
− ∂V

∂x
+ f (13.9)
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kx

x

m

k

x

c

m

k c

m

kx.

f

f f

FIGURE 13.2. A one DOF forced mass-spring-damper system.

where f is the non-conservative applied force on mass m. Substituting
(13.9) in (13.1)

d

dt

µ
∂K

∂ẋ

¶
− ∂K

∂x
= −∂D

∂ẋ
− ∂V

∂x
+ f (13.10)

gives us the Lagrange equation for a viscous damped vibrating system.

d

dt

µ
∂K

∂ẋ

¶
− ∂K

∂x
+

∂D

∂ẋ
+

∂V

∂x
= f (13.11)

When the vibrating system has n DOF, then the kinetic energy K, po-
tential energy V , and dissipating function D are as (13.4)-(13.6). Applying
the Lagrange equation to the n-DOF system would result n second-order
differential equations (13.3).

Example 472 A one-DOF forced mass-spring-damper system.
Figure 13.2 illustrates a single DOF mass-spring-damper system with an

external force f applied on the mass m. The kinetic and potential energies
of the system, when it is in motion, are

K =
1

2
mẋ2 (13.12)

V =
1

2
kx2 (13.13)

and its dissipation function is

D =
1

2
cẋ2. (13.14)
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m1

k1 k2

m2 m3

k3 k4

x1 x2 x3

FIGURE 13.3. An undamped three-DOF system.

Substituting (13.12)-(13.14) in Lagrange equation (13.3), generates the fol-
lowing equation of motion:

d

dt
(mẋ) + cẋ+ kx = f, (13.15)

because

∂K

∂ẋ
= mẋ (13.16)

∂K

∂x
= 0 (13.17)

∂D

∂ẋ
= cẋ (13.18)

∂V

∂x
= kx. (13.19)

Example 473 An undamped three-DOF system.
Figure 13.3 illustrates an undamped three-DOF linear vibrating system.

The kinetic and potential energies of the system are:

K =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 +

1

2
m3ẋ

2
3 (13.20)

V =
1

2
k1x

2
1 +

1

2
k2 (x1 − x2)

2 +
1

2
k3 (x2 − x3)

2 +
1

2
k4x

2
3 (13.21)

Because there is no damping in the system, we may find the Lagrangean L

L = K − V (13.22)

and use Equation (13.2) with Qr = 0

∂L
∂x1

= −k1x1 − k2 (x1 − x2) (13.23)

∂L
∂x2

= k2 (x1 − x2)− k3 (x2 − x3) (13.24)

∂L
∂x3

= k3 (x2 − x3)− k4x3 (13.25)
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∂L
∂ẋ1

= m1ẋ1 (13.26)

∂L
∂ẋ2

= m2ẋ2 (13.27)

∂L
∂ẋ3

= m3ẋ3 (13.28)

to find the equations of motion:

m1ẍ1 + k1x1 + k2 (x1 − x2) = 0 (13.29)

m2ẍ2 − k2 (x1 − x2) + k3 (x2 − x3) = 0 (13.30)

m3ẍ3 − k3 (x2 − x3) + k4x3 = 0 (13.31)

These equations can be rewritten in matrix form for simpler calculation.

⎡⎣ m1 0 0
0 m2 0
0 0 m3

⎤⎦⎡⎣ ẍ1
ẍ2
ẍ3

⎤⎦
+

⎡⎣ k1 + k2 −k2 0
−k2 k2 + k3 −k3
0 −k3 k3 + k4

⎤⎦⎡⎣ x1
x2
x3

⎤⎦ = 0 (13.32)

Example 474 An eccentric excited one-DOF system.
An eccentric excited one-DOF system is shown in Figure 12.31 with mass

m supported by a suspension made up of a spring k and a damper c. There
is also a mass me at a distance e that is rotating with an angular velocity
ω. We may find the equation of motion by applying the Lagrange method.
The kinetic energy of the system is

K =
1

2
(m−me) ẋ

2 +
1

2
me (ẋ+ eω cosωt)

2
+
1

2
me (−eω sinωt)2

(13.33)
because the velocity of the main vibrating mass m−me is ẋ, and the velocity
of the eccentric mass me has two components ẋ+ eω cosωt and −eω sinωt.
The potential energy and dissipation function of the system are:

V =
1

2
kx2 (13.34)

D =
1

2
cẋ2. (13.35)
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Applying the Lagrange equation (13.3),

∂K

∂ẋ
= mẋ+meeω cosωt (13.36)

d

dt

µ
∂K

∂ẋ

¶
= mẍ−meeω

2 sinωt (13.37)

∂D

∂ẋ
= cẋ (13.38)

∂V

∂x
= kx (13.39)

provides the equation of motion

mẍ+ c ẋ+ kx = meeω
2 sinωt (13.40)

that is the same as Equation (12.208).

Example 475 An eccentric base excited vibrating system.
Figure 12.35 illustrates a one DOF eccentric base excited vibrating sys-

tem. A mass m is mounted on an eccentric excited base by a spring k and
a damper c. The base has a mass mb with an attached unbalance mass me

at a distance e. The mass me is rotating with an angular velocity ω.
We may derive the equation of motion of the system by applying Lagrange

method. The required functions are:

K =
1

2
mẋ2 +

1

2
(mb −me) ẏ

2

+
1

2
me (ẏ − eω cosωt)

2
+
1

2
me (eω sinωt)

2 (13.41)

V =
1

2
k (x− y)

2 (13.42)

D =
1

2
c (ẋ− ẏ)2 . (13.43)

Applying the Lagrange method (13.3), provides the equations

mẍ+ c (ẋ− ẏ) + k (x− y) = 0 (13.44)

mbÿ +meeω
2 sinωt− c (ẋ− ẏ)− k (x− y) = 0 (13.45)

because

∂K

∂ẋ
= mẋ (13.46)

d

dt

µ
∂K

∂ẋ

¶
= mẍ (13.47)

∂D

∂ẋ
= c (ẋ− ẏ) (13.48)

∂V

∂x
= k (x− y) (13.49)
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R θ
r C
ϕ

FIGURE 13.4. A uniform disc, rolling in a circular path.

∂K

∂ẏ
= mbẏ −meeω cosωt (13.50)

d

dt

µ
∂K

∂ẏ

¶
= mbÿ +meeω

2 sinωt (13.51)

∂D

∂ẏ
= −c (ẋ− ẏ) (13.52)

∂V

∂y
= −k (x− y) . (13.53)

Using z = x − y, we may combine Equations (13.44) and (13.45) to find
the equation of relative motion

mmb

mb +m
z̈ + c ż + kz =

mme

mb +m
eω2 sinωt (13.54)

that is equal to

z̈ + 2ξωn ż + ω2n z = εeω2 sinωt (13.55)

ε =
me

mb
. (13.56)

Example 476 F A rolling disc in a circular path.
Figure 13.4 illustrates a uniform disc with mass m and radius r. The

disc is rolling without slip in a circular path with radius R. The disc may
have a free oscillation around θ = 0.
When the oscillation is very small, we may substitute the oscillating disc

with an equivalent mass-spring system. To find the equation of motion, we
employ the Lagrange method. The energies of the system are

K =
1

2
mv2C +

1

2
Icω

2

=
1

2
m(R− r)2θ̇

2
+
1

2

µ
1

2
mr2

¶³
ϕ̇− θ̇

´2
(13.57)

V = −mg(R− r) cos θ. (13.58)

When there is no slip, there is a constraint between θ and ϕ

Rθ = rϕ (13.59)
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y

x

m1

O

1θ

2θ

m2

l1

l2

FIGURE 13.5. A double pendulum.

which can be used to eliminate ϕ from K.

K =
3

4
m (R− r)

2
θ̇
2

(13.60)

Based on the following partial derivatives:

d

dt

µ
∂L
∂θ̇

¶
=

3

2
m (R− r)2 θ̈ (13.61)

∂L
∂θ

= −mg(R− r) sin θ (13.62)

we find the equation of motion for the oscillating disc.

3

2
(R− r) θ̈ + g sin θ = 0 (13.63)

When θ is very small, this equation is equivalent to a mass-spring system
with meq = 3 (R− r) and keq = 2g.

Example 477 F A double pendulum.
Figure 13.5 illustrates a double pendulum made by a series of two pen-

dulums. There are two massless rods with lengths l1 and l2, and two point
masses m1 and m2. The variables θ1 and θ2 can be used as the generalized
coordinates to express the system configuration. To calculate the Lagrangean
of the system and find the equations of motion, we start by defining the
global position of the masses.
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x1 = l1 sin θ1 (13.64)

y1 = −l1 cos θ1 (13.65)

x2 = l1 sin θ1 + l2 sin θ2 (13.66)

y2 = −l1 cos θ1 − l2 cos θ2 (13.67)

Time derivatives of the coordinates are

ẋ1 = l1θ̇1 cos θ1 (13.68)

ẏ1 = l1θ̇1 sin θ1 (13.69)

ẋ2 = l1θ̇1 cos θ1 + l2θ̇2 cos θ2 (13.70)

ẏ2 = l1θ̇1 sin θ1 + l2θ̇2 sin θ2 (13.71)

and therefore, the squares of the masses’ velocities are

v21 = ẋ21 + ẏ21

= l21 θ̇
2

1 (13.72)

v22 = ẋ22 + ẏ22

= l21 θ̇
2

1 + l22 θ̇
2

2 + 2l1l2θ̇1θ̇2 cos (θ1 − θ2) . (13.73)

The kinetic energy of the pendulum is then equal to

K =
1

2
m1v

2
1 +

1

2
m2v

2
2

=
1

2
m1l

2
1 θ̇

2

1 +
1

2
m2

³
l21 θ̇

2

1 + l22 θ̇
2

2 + 2l1l2θ̇1θ̇2 cos (θ1 − θ2)
´
. (13.74)

The potential energy of the pendulum is equal to sum of the potentials of
each mass.

V = m1gy1 +m2gy2

= −m1gl1 cos θ1 −m2g (l1 cos θ1 + l2 cos θ2) (13.75)

The kinetic and potential energies make the following Lagrangean:

L = K − V

=
1

2
m1l

2
1 θ̇

2

1 +
1

2
m2

³
l21 θ̇

2

1 + l22 θ̇
2

2 + 2l1l2θ̇1θ̇2 cos (θ1 − θ2)
´

+m1gl1 cos θ1 +m2g (l1 cos θ1 + l2 cos θ2) (13.76)

Employing Lagrange method (13.2) we find the following equations of mo-
tion:

d

dt

µ
∂L
∂θ̇1

¶
− ∂L

∂θ1
= (m1 +m2) l

2
1 θ̈1 +m2l1l2θ̈2 cos (θ1 − θ2)

−m2l1l2θ̇
2

2 sin (θ1 − θ2) + (m1 +m2) l1g sin θ1

= 0 (13.77)
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FIGURE 13.6. A chain pendulum.

d

dt

µ
∂L
∂θ̇2

¶
− ∂L

∂θ2
= m2l

2
2 θ̈2 +m2l1l2θ̈1 cos (θ1 − θ2)

+m2l1l2θ̇
2

1 sin (θ1 − θ2) +m2l2g sin θ2

= 0 (13.78)

Example 478 F Chain pendulum.
Consider an n-chain-pendulum as shown in Figure 13.6. Each pendulum

has a massless length li with a concentrated point mass mi, and a general-
ized angular coordinate θi measured from the vertical direction.
The xi and yi components of the mass mi are

xi =
iX

j=1

lj sin θj (13.79)

yi = −
iX

j=1

lj cos θj . (13.80)

We find their time derivatives

ẋi =
iX

j=1

lj θ̇j cos θj (13.81)

ẏi =
iX

j=1

lj θ̇j sin θj (13.82)
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and the square of ẋi and ẏi

ẋ2i =

⎛⎝ iX
j=1

lj θ̇j cos θj

⎞⎠Ã iX
k=1

lkθ̇k cos θk

!

=
nX
j=1

nX
k=1

ljlkθ̇j θ̇k cos θj cos θk (13.83)

ẏ2i =

⎛⎝ iX
j=1

lj θ̇j sin θj

⎞⎠Ã iX
k=1

lkθ̇k sin θk

!

=
iX

j=1

iX
k=1

ljlkθ̇j θ̇k sin θj sin θk (13.84)

to calculate the velocity vi of the mass mi.

v2i = ẋ2i + ẏ2i

=
iX

j=1

iX
k=1

ljlkθ̇j θ̇k (cos θj cos θk + sin θj sin θk)

=
iX

j=1

iX
k=1

ljlkθ̇j θ̇k cos (θj − θk)

=
iX

r=1

l2r θ̇
2

r + 2
iX

j=1

iX
k=j+1

ljlkθ̇j θ̇k cos (θj − θk) (13.85)

Now, we may calculate the kinetic energy, K, of the chain.

K =
1

2

nX
i=1

miv
2
i

=
1

2

nX
i=1

mi

⎛⎝ iX
r=1

l2r θ̇
2

r + 2
iX

j=1

iX
k=j+1

ljlkθ̇j θ̇k cos (θj − θk)

⎞⎠
=

1

2

nX
i=1

iX
r=1

mil
2
r θ̇
2

r +
nX
i=1

iX
j=1

iX
k=j+1

miljlkθ̇j θ̇k cos (θj − θk) (13.86)

The potential energy of the ith pendulum is related to mi

Vi = migyi

= −mig
iX

j=1

lj cos θj (13.87)
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and therefore, the potential energy of the chain is

V =
nX
i=1

migyi

= −
nX
i=1

iX
j=1

miglj cos θj (13.88)

To find the equations of motion for the chain, we may use the Lagrangean
L

L = K − V (13.89)

and apply the Lagrange equation

d

dt

µ
∂L
∂q̇s

¶
− ∂L

∂qs
= 0 s = 1, 2, · · ·n (13.90)

or
d

dt

µ
∂K

∂q̇s

¶
− ∂K

∂qs
+

∂V

∂qs
= 0 s = 1, 2, · · ·n. (13.91)

13.2 F Quadratures

If [m] is an n×n square matrix and x is an n× 1 vector, then S is a scalar
function called quadrature and is defined by

S = xT [m]x. (13.92)

The derivative of the quadrature S with respect to the vector x is

∂S

∂x
=
³
[m] + [m]

T
´
x. (13.93)

Kinetic energy K, potential energy V , and dissipation function D, are
quadratures

K =
1

2
ẋT [m] ẋ (13.94)

V =
1

2
xT [k]x (13.95)

D =
1

2
ẋT [c] ẋ (13.96)

and therefore,

∂K

∂ẋ
=

1

2

³
[m] + [m]

T
´
ẋ (13.97)

∂V

∂x
=

1

2

³
[k] + [k]

T
´
x (13.98)

∂D

∂ẋ
=

1

2

³
[c] + [c]T

´
ẋ. (13.99)
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Employing quadrature derivatives and the Lagrange method,

d

dt

∂K

∂ẋ
+

∂K

∂x
+

∂D

∂ẋ
+

∂V

∂x
= F (13.100)

the equation of motion for a linear n degree-of-freedom vibrating system
becomes

[m] ẍ+ [c] ẋ+ [k]x = F (13.101)

where, [m], [c], [k] are symmetric matrices.

[m] =
1

2

³
[m] + [m]

T
´

(13.102)

[c] =
1

2

³
[c] + [c]

T
´

(13.103)

[k] =
1

2

³
[k] + [k]T

´
(13.104)

Quadratures are also called Hermitian form.

Proof. Let’s define a general asymmetric quadrature as

S = xT [a]y

=
X
i

X
j

xiaijyj . (13.105)

If the quadrature is symmetric, then x = y and

S = xT [a]x

=
X
i

X
j

xiaijxj . (13.106)

The vectors x and y may be functions of n generalized coordinates qi and
time t.

x = x (q1, q2, · · · , qn, t) (13.107)

y = y (q1, q2, · · · , qn, t) (13.108)

q =
£
q1 q2 · · · qn

¤T
(13.109)

The derivative of x with respect to q is a square matrix

∂x

∂q
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂x1
∂q1

∂x2
∂q1

· · · ∂xn
∂q1

∂x1
∂q2

∂x2
∂q2

· · · · · ·
· · · · · · · · · · · ·
∂x1
∂qn

· · · · · · ∂xn
∂qn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(13.110)
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that can also be expressed by

∂x

∂q
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂x

∂q1
∂x

∂q2
· · ·
∂x

∂qn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(13.111)

or
∂x

∂q
=

∙
∂x1
∂q

∂x2
∂q

· · · ∂xn
∂q

¸
. (13.112)

Now a derivative of S with respect to an element of qk is

∂S

∂qk
=

∂

∂qk

X
i

X
j

xiaijyj

=
X
i

X
j

∂xi
∂qk

aijyj +
X
i

X
j

xiaij
∂yj
∂qk

=
X
j

X
i

∂xi
∂qk

aijyj +
X
i

X
j

∂yj
∂qk

aijxi

=
X
j

X
i

∂xi
∂qk

aijyj +
X
j

X
i

∂yi
∂qk

ajixj (13.113)

and hence, the derivative of S with respect to q is

∂S

∂q
=

∂x

∂q
[a]y+

∂y

∂q
[a]

T
x. (13.114)

If S is a symmetric quadrature then,

∂S

∂q
=

∂

∂q

¡
xT [a]x

¢
=

∂x

∂q
[a]x+

∂x

∂q
[a]

T
x. (13.115)

and if q = x, then the derivative of a symmetric S with respect to x is

∂S

∂x
=

∂

∂x

¡
xT [a]x

¢
=

∂x

∂x
[a]x+

∂x

∂x
[a]T x

= [a]x+ [a]
T
x

=
³
[a] + [a]T

´
x. (13.116)
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If [a] is a symmetric matrix, then

[a] + [a]T = 2 [a] (13.117)

however, if [a] is not a symmetric matrix, then [a] = [a]+[a]T is a symmetric
matrix because

aij = aij + aji

= aji + aij

= aji (13.118)

and therefore,
[a] = [a]

T
. (13.119)

Kinetic energy K, potential energy V , and dissipation function D can
be expressed by quadratures.

K =
1

2
ẋT [m] ẋ (13.120)

V =
1

2
xT [k]x (13.121)

D =
1

2
ẋT [c] ẋ (13.122)

Substituting K, V , and D in the Lagrange equation provides the equations
of motion:

F =
d

dt

∂K

∂ẋ
+

∂K

∂x
+

∂D

∂ẋ
+

∂V

∂x

=
1

2

d

dt

∂

∂ẋ

¡
ẋT [m] ẋ

¢
+
1

2

∂

∂ẋ

¡
ẋT [c] ẋ

¢
+
1

2

∂

∂x

¡
xT [k]x

¢
=

1

2

∙
d

dt

³³
[m] + [m]

T
´
ẋ
´
+
³
[c] + [c]

T
´
ẋ+

³
[k] + [k]

T
´
x

¸
=

1

2

³
[m] + [m]T

´
ẍ+
1

2

³
[c] + [c]T

´
ẋ+
1

2

³
[k] + [k]T

´
x

= [m] ẍ+ [c] ẋ+ [k]x (13.123)

where

[m] =
1

2

³
[m] + [m]T

´
(13.124)

[c] =
1

2

³
[k] + [k]

T
´

(13.125)

[k] =
1

2

³
[c] + [c]

T
´
. (13.126)

From now on, we assume that every equation of motion is found from the
Lagrange method to have symmetric coefficient matrices. Hence, we show
the equations of motion as,

[m] ẍ+ [c] ẋ+ [k]x = F (13.127)
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FIGURE 13.7. A quarter car model with driver.

and use [m], [c], [k] as a substitute for [m], [c], [k]

[m] ≡ [m] (13.128)

[c] ≡ [c] (13.129)

[k] ≡ [k] . (13.130)

Example 479 F A quarter car model with driver’s chair.
Figure 13.7 illustrates a quarter car model plus a driver, which is modeled

by a mass md over a linear cushion above the sprung mass ms.
Assuming

y = 0 (13.131)

we can find the free vibration equations of motion by the Lagrange method
and quadrature derivative.
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The kinetic energy K of the system can be expressed by

K =
1

2
muẋ

2
u +

1

2
msẋ

2
s +

1

2
mdẋ

2
d

=
1

2

£
ẋu ẋs ẋd

¤⎡⎣ mu 0 0
0 ms 0
0 0 md

⎤⎦⎡⎣ ẋu
ẋs
ẋd

⎤⎦
=

1

2
ẋT [m] ẋ (13.132)

and the potential energy V can be expressed as

V =
1

2
ku (xu)

2
+
1

2
ks (xs − xu)

2
+
1

2
kd (xd − xs)

2

=
1

2

£
xu xs xd

¤⎡⎣ ku + ks −ks 0
−ks ks + kd −kd
0 −kd kd

⎤⎦⎡⎣ xu
xs
xd

⎤⎦
=

1

2
xT [k]x. (13.133)

Similarly, the dissipation function D can be expressed by

D =
1

2
ku (ẋu)

2
+
1

2
ks (ẋs − ẋu)

2
+
1

2
kd (ẋd − ẋs)

2

=
1

2

£
ẋu ẋs ẋd

¤⎡⎣ cu + cs −cs 0
−cs cs + cd −cd
0 −cd cd

⎤⎦⎡⎣ ẋu
ẋs
ẋd

⎤⎦
=

1

2
ẋT [c] ẋ. (13.134)

Employing the quadrature derivative method, we may find derivatives of K,
V , and D with respect to their variable vectors as follow:

∂K

∂ẋ
=

1

2

³
[m] + [m]T

´
ẋ

=
1

2

³
[k] + [k]

T
´⎡⎣ ẋu

ẋs
ẋd

⎤⎦
=

⎡⎣ mu 0 0
0 ms 0
0 0 md

⎤⎦⎡⎣ ẋu
ẋs
ẋd

⎤⎦ (13.135)
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∂V

∂x
=

1

2

³
[k] + [k]

T
´
x

=
1

2

³
[k] + [k]

T
´⎡⎣ xu

xs
xd

⎤⎦
=

⎡⎣ ku + ks −ks 0
−ks ks + kd −kd
0 −kd kd

⎤⎦⎡⎣ xu
xs
xd

⎤⎦ (13.136)

∂D

∂ẋ
=

1

2

³
[c] + [c]T

´
ẋ

=
1

2

³
[c] + [c]

T
´⎡⎣ ẋu

ẋs
ẋd

⎤⎦
=

⎡⎣ cu + cs −cs 0
−cs cs + cd −cd
0 −cd cd

⎤⎦⎡⎣ ẋu
ẋs
ẋd

⎤⎦ (13.137)

Therefore, we find the system’s free vibration equations of motion.

[m] ẍ+ [c] ẋ+ [k]x = 0 (13.138)

⎡⎣ mu 0 0
0 ms 0
0 0 md

⎤⎦⎡⎣ ẍu
ẍs
ẍd

⎤⎦+
⎡⎣ cu + cs −cs 0
−cs cs + cd −cd
0 −cd cd

⎤⎦⎡⎣ ẋu
ẋs
ẋd

⎤⎦
+

⎡⎣ ku + ks −ks 0
−ks ks + kd −kd
0 −kd kd

⎤⎦⎡⎣ xu
xs
xd

⎤⎦ = 0 (13.139)

Example 480 F Different [m], [c], and [k] arrangements.
Mass, damping, and stiffness matrices [m], [c], [k] for a vibrating system

may be arranged in different forms with the same overall kinetic energy
K, potential energy V , and dissipation function D. As an example, the
potential energy V for the quarter car model that is shown in Figure 13.7
may be expressed by different [k].

V =
1

2
ku (xu)

2 +
1

2
ks (xs − xu)

2 +
1

2
kd (xd − xs)

2 (13.140)

V =
1

2
xT

⎡⎣ ku + ks −ks 0
−ks ks + kd −kd
0 −kd kd

⎤⎦x (13.141)
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V =
1

2
xT

⎡⎣ ku + ks −2ks 0
0 ks + kd −2kd
0 0 kd

⎤⎦x (13.142)

V =
1

2
xT

⎡⎣ ku + ks 0 0
−2ks ks + kd 0
0 −2kd kd

⎤⎦x (13.143)

The matrices [m], [c], and [k], in K, D, and V , may not be symmet-
ric however, the matrices [m], [c], and [k] in ∂K/∂ẋ, ∂D/∂ẋ, ∂V/∂x are
symmetric.
When a matrix [a] is diagonal, it is symmetric and

[a] = [a] . (13.144)

A diagonal matrix cannot be written in different forms. The matrix [m] in
Example 479 is diagonal and hence, K has only one form (13.132).

Example 481 F Positive definite matrix.
A matrix [a] is called positive definite if xT [a]x > 0 for all x 6= 0. A

matrix [a] is called positive semidefinite if xT [a]x ≥ 0 for all x. Kinetic
energy is positive definite and it means we cannot have K = 0 unless ẋ = 0.
Potential energy is positive semidefinite and it means we have V ≥ 0 as
long as x > 0, however, it is possible to have a especial x0 > 0 at which
V = 0.

13.3 Natural Frequencies and Mode Shapes

Unforced and undamped vibrations of a system is a basic response of the
system which expresses its natural behavior. We call a system with no
damping and no external excitation, a free system. A free system is governed
by the following set of differential equations.

[m] ẍ+ [k]x = 0 (13.145)

The response of the free system is harmonic

x =
nX
i=1

ui (Ai sinωit+Bi cosωit) i = 1, 2, 3, · · ·n

=
nX
i=1

Ciui sin (ωit− ϕi) i = 1, 2, 3, · · ·n (13.146)

where, ωi are the natural frequencies and ui are the mode shapes of the
system.
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The natural frequencies ωi are solutions of the characteristic equation of
the system

det
£
[k]− ω2 [m]

¤
= 0 (13.147)

and the mode shapes ui, corresponding to ωi, are solutions of the following
equation. £

[k]− ω2i [m]
¤
ui = 0 (13.148)

The unknown coefficients Ai and Bi, or Ci and ϕi, must be determined
from the initial conditions.

Proof. By eliminating the force and damping terms from the general equa-
tions of motion

[m] ẍ+ [c] ẋ+ [k]x = F (13.149)

we find the equations for free systems.

[m] ẍ+ [k]x = 0 (13.150)

Let’s search for a possible solution of the following form

x = u q(t) (13.151)

xi = ui q(t) i = 1, 2, 3, · · ·n. (13.152)

This solution implies that the amplitude ratio of two coordinates during
motion does not depend on time. Substituting (13.151) in Equation (13.150)

[m]u q̈(t) + [k]u q(t) = 0 (13.153)

and separating the time dependent terms, ends up with the following equa-
tion.

− q̈(t)
q(t)

= [[m]u]
−1
[[k]u]

=

Pn
j=1 kijujPn
j=1mijuj

i = 1, 2, 3, · · ·n (13.154)

Because the right hand side of this equation is time independent and the
left hand side is independent of the index i, both sides must be equal to
a constant. Let’s assume the constant be a positive number ω2. Hence,
Equation (13.154) can be separated into two equations

q̈(t) + ω2q(t) = 0 (13.155)

and £
[k]− ω2 [m]

¤
u = 0 (13.156)

or
nX
j=1

¡
kij − ω2mij

¢
uj = 0 i = 1, 2, 3, · · ·n. (13.157)
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The solution of (13.155) is

q(t) = sinωt+ cosωt

= sin (ωt− ϕ) (13.158)

which shows that all the coordinates of the system, xi, have harmonic mo-
tion with identical frequency ω and identical phase angle ϕ. The frequency
ω can be determined from Equation (13.156) which is a set of homogeneous
equations for the unknown u.
The set of equations (13.156) has a solution u = 0, which is the rest

position of the system and shows no motion. This solution is called trivial
solution and is unimportant. To have a nontrivial solution, the determinant
of the coefficient matrix must be zero.

det
£
[k]− ω2 [m]

¤
= 0 (13.159)

Determining the constant ω, such that the set of equations (13.156) provide
a nontrivial solution, is called eigenvalue problem. Expanding the determi-
nant (13.159) provides an algebraic equation that is called the characteristic
equation. The characteristic equation is an nth order equation in ω2, and
provides n natural frequencies ωi. The natural frequencies ωi can be set in
the following order.

ω1 ≤ ω2 ≤ ω3 ≤ · · · ≤ ωn (13.160)

Having n values for ω indicates that the solution (13.158) is possible with
n different frequencies ωi, i = 1, 2, 3, · · ·n.
We may multiply the Equation (13.150) by [m]−1

ẍ+ [m]−1 [k]x = 0 (13.161)

and find the the characteristic equation (13.159) as

det [[A]− λI] = 0 (13.162)

where
[A] = [m]

−1
[k] . (13.163)

So, determination of the natural frequencies ωi would be equivalent to
determining the eigenvalues λi of the matrix [A] = [m]

−1 [k].

λi = ω2i (13.164)

Determining the vectors ui to satisfy Equation (13.156) is called the
eigenvector problem. To determine ui, we may solve Equation (13.156) for
every ωi £

[k]− ω2i [m]
¤
ui = 0 (13.165)

and find n different ui. In vibrations and vehicle dynamics, the eigenvector
ui corresponding to the eigenvalue ωi is called the mode shape.
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Alternatively, we may find the eigenvectors of matrix [A] = [m]−1 [k]

[[A]− λiI]ui = 0 (13.166)

instead of finding the mode shapes from ((13.165)).
Equations (13.165) are homogeneous so, if ui is a solution, then aui is also

a solution. Hence, the eigenvectors are not unique and may be expressed
with any length. However, the ratio of any two elements of an eigenvector
is unique and therefore, ui has a unique shape. If one of the elements of
ui is assigned, the remaining n− 1 elements are uniquely determined. The
shape of an eigenvector indicates the relative amplitudes of the coordinates
of the system in vibration.
Because the length of an eigenvector is not uniquely defined, there are

many options to express ui. The most common expressions are:

1− normalization,
2− normal form,
3− high-unit,
4− first-unit,
5− last-unit.

In the normalization expression, we may adjust the length of ui such
that

uTi [m]ui = 1 (13.167)

or

uTi [k]ui = 1 (13.168)

and call ui a normal mode with respect to [m] or [k] respectively.
In the normal form expression, we adjust ui such that its length has a

unity value.
In the high-unit expression, we adjust the length of ui such that the

largest element has a unity value.
In the first-unit expression, we adjust the length of ui such that the first

element has a unity value.
In the last-unit expression, we adjust the length of ui such that the last

element has a unity value.

Example 482 Eigenvalues and eigenvectors of a 2× 2 matrix.
Consider a 2× 2 matrix is given as

[A] =

∙
5 3
3 6

¸
. (13.169)

To find the eigenvalues λi of [A], we find the characteristic equation of the
matrix by subtracting an unknown λ from the main diagonal, and taking
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the determinant.

det [[A]− λI] = det

∙∙
5 3
3 6

¸
− λ

∙
1 0
0 1

¸¸
= det

∙
5− λ 3
3 6− λ

¸
= λ2 − 11λ+ 21 (13.170)

The solution of the characteristic equation (13.170) are

λ1 = 8.5414 (13.171)

λ2 = 2.4586. (13.172)

To find the corresponding eigenvectors u1 and u2 we solve the following
equations.

[[A]− λ1I]u1 = 0 (13.173)

[[A]− λ2I]u2 = 0 (13.174)

Let’s denote the eigenvectors by

u1 =

∙
u11
u12

¸
(13.175)

u2 =

∙
u21
u22

¸
(13.176)

therefore,

[[A]− λ1I]u1 =

∙∙
5 3
3 6

¸
− 8.5414

∙
1 0
0 1

¸¸ ∙
u11
u12

¸
=

∙
3u12 − 3.5414u11
3u11 − 2.5414u12

¸
= 0 (13.177)

[[A]− λ2I]u2 =

∙∙
5 3
3 6

¸
− 2.4586

∙
1 0
0 1

¸¸ ∙
u21
u22

¸
=

∙
2.5414u21 + 3u22
3u21 + 3.5414u22

¸
= 0. (13.178)

Assigning last-unit eigenvectors

u12 = 1 (13.179)

u22 = 1 (13.180)

provides

u1 =

∙
−1.180 5
1.0

¸
(13.181)

u2 =

∙
0.84713
1.0

¸
. (13.182)
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Example 483 F Unique ratio of the eigenvectors’ elements.
To show an example that the ratio of the elements of eigenvectors is

unique, we examine the eigenvectors u1 and u2 in Example 482.

u1 =

∙
3u12 − 3.5414u11
3u11 − 2.5414u12

¸
(13.183)

u2 =

∙
2.5414u21 + 3u22
3u21 + 3.5414u22

¸
(13.184)

The ratio u11/u12 may be found from the first row of u1 in (13.183)

u11
u12

=
3

3.5414
= 0.84712 (13.185)

or from the second row

u11
u12

=
2.5414

3
= 0.84713 (13.186)

to examine their equality.
The ratio u21/u22 may also be found from the first or second row of u2

in (13.184) to check their equality.

u21
u22

= − 3

2.5414
= −3.5414

3
= −1.1805 (13.187)

Example 484 F Characteristics of free systems.
Free systems have two characteristics: 1−natural frequencies, and 2−mode

shapes. An n DOF vibrating system will have n natural frequencies ωi and
n mode shapes ui. The natural frequencies ωi are cores for the system’s
resonance zones, and the eigenvectors ui show the relative vibration of dif-
ferent coordinates of the system at the resonance ωi. The highest element
of each mode shape ui, indicates the coordinate or the component of the
system which is most willing to vibrate at ωi.

Example 485 Importance of free systems.
The response of free systems is the core for all other responses of the

vibrating system. When there is damping, then the response of the system
is bounded by the free undamped solution. When there is a forcing function,
the natural frequencies of the free response indicate the resonance zones at
which the amplitude of the response may go to infinity if an excitation
frequency of the force function matches.

Example 486 F Sign of the separation constant ω2.
Both, left and right sides of Equation (13.154) must be equal to a con-

stant. The sign of the constant is dictated by physical considerations. A free
and undamped vibrating system is conservative and as a constant mechan-
ical energy, so the amplitude of vibration must remain finite when t→∞.
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FIGURE 13.8. A quarter car model.

If the constant is positive, then the response is harmonic with a constant
amplitude, however, if the constant is negative, the response is hyperbolic
with an exponentially increasing amplitude.

Example 487 F Quarter car natural frequencies and mode shapes.
Figure 13.8 illustrates a quarter car model which is made of two solid

masses ms and mu denoted as sprung and unsprung masses, respectively.
The sprung mass ms represents 1/4 of the body of the vehicle, and the
unsprung mass mu represents one wheel of the vehicle. A spring of stiffness
ks, and a shock absorber with viscous damping coefficient cs support the
sprung mass. The unsprung mass mu is in direct contact with the ground
through a spring ku, and a damper cu representing the tire stiffness and
damping.
The governing differential equations of motion for the quarter car model

are

ms ẍs = −ks (xs − xu)− cs (ẋs − ẋu) (13.188)

mu ẍu = ks (xs − xu) + cs (ẋs − ẋu)

−ku (xu − y)− cu (ẋu − ẏ) (13.189)

which can be expressed in a matrix form

[M ] ẋ+ [c] ẋ+ [k]x = F (13.190)∙
ms 0
0 mu

¸ ∙
ẍs
ẍu

¸
+

∙
cs −cs
−cs cs + cu

¸ ∙
ẋs
ẋu

¸
+∙

ks −ks
−ks ks + ku

¸ ∙
xs
xu

¸
=

∙
0

kuy + cuẏ

¸
. (13.191)
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To find the natural frequencies and mode shapes of the quarter car model,
we have to drop the damping and forcing terms and analyze the following
set of equations.∙

ms 0
0 mu

¸ ∙
ẍs
ẍu

¸
+

∙
ks −ks
−ks ks + ku

¸ ∙
xs
xu

¸
= 0 (13.192)

Consider a vehicle with the following characteristics.

ms = 375kg

mu = 75kg

ku = 193000N/m

ks = 35000N/m. (13.193)

The equations of motion for this vehicle are∙
375 0
0 75

¸ ∙
ẍs
ẍu

¸
+

∙
35000 −35000
−35000 2.28× 105

¸ ∙
xs
xu

¸
= 0.

(13.194)
The natural frequencies of the vehicle can be found by solving its charac-
teristic equation.

det
£
[k]− ω2 [m]

¤
= det

∙
35000 −35000
−35000 2.28× 105

¸
− ω2

∙
375 0
0 75

¸
= det

∙
35 000− 375ω2 −35 000
−35 000 2.28× 105 − 75ω2

¸
= 28125ω4 − 8.8125× 107ω2 + 6.755× 109 (13.195)

ω1 = 8.8671 rad/ s

≈ 1.41Hz (13.196)

ω2 = 55.269 rad/ s

≈ 8.79Hz (13.197)

To find the corresponding mode shapes, we use Equation (13.165).£
[k]− ω21 [m]

¤
u1

=

∙∙
35000 −35000
−35000 2.28× 105

¸
− 3054.7

∙
375 0
0 75

¸¸ ∙
u11
u12

¸
=

∙
−1.1105× 106u11 − 35000u12
−35000u11 − 1102.5u12

¸
= 0 (13.198)

£
[k]− ω22 [m]

¤
u2

=

∙∙
35000 −35000
−35000 2.28× 105

¸
− 78.625

∙
375 0
0 75

¸¸ ∙
u21
u22

¸
=

∙
5515.6u21 − 35000u22

2.221× 105u22 − 35000u21

¸
= 0 (13.199)
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FIGURE 13.9. A bicycle vibrating model of a vehicle.

Searching for the first-unit expression of u1 and u2 provides the following
mode shapes.

u1 =

∙
1

−3.1729× 10−3
¸

(13.200)

u2 =

∙
1

0.157 58

¸
(13.201)

Therefore, the free vibrations of the quarter car is

x =
nX
i=1

ui (Ai sinωit+Bi cosωit) i = 1, 2 (13.202)∙
xs
xu

¸
=

∙
1

−3.1729× 10−3
¸
(A1 sin 8.8671t+B1 cos 8.8671t)

+

∙
1

0.157 58

¸
(A2 sin 55.269t+B2 cos 55.269t) (13.203)

13.4 Bicycle Car and Body Pitch Mode

Quarter car model is excellent to examine and optimize the body bounce
mode of vibrations. However, we may expand the vibrating model of a
vehicle to include pitch and other modes of vibrations as well. Figure 13.9
illustrates a bicycle vibrating model of a vehicle. This model includes the
body bounce x, body pitch θ, wheels hop x1 and x2 and independent road
excitations y1 and y2.
The equations of motion for the bicycle vibrating model of a vehicle are
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as follow.

mẍ+ c1

³
ẋ− ẋ1 − a1θ̇

´
+ c2

³
ẋ− ẋ2 + a2θ̇

´
+k1 (x− x1 − a1θ) + k2 (x− x2 + a2θ) = 0 (13.204)

Iz θ̈ − a1c1

³
ẋ− ẋ1 − a1θ̇

´
+ a2c2

³
ẋ− ẋ2 + a2θ̇

´
−a1k1 (x− x1 − a1θ) + a2k2 (x− x2 + a2θ) = 0 (13.205)

m1ẍ1 − c1

³
ẋ− ẋ1 − a1θ̇

´
+ kt1 (x1 − y1)

−k1 (x− x1 − a1θ) = 0 (13.206)

m2ẍ2 − c2

³
ẋ− ẋ2 + a2θ̇

´
+ kt2 (x2 − y2)

−k2 (x− x2 + a2θ) = 0 (13.207)

As a reminder, the definition of the employed parameters are indicated
in Table 13.1.

Table 13.1 - Parameters of a bicycle vibrating vehicle.
Parameter Meaning

m half of body mass
m1 mass of a front wheel
m2 mass of a rear wheel
x body vertical motion coordinate
x1 front wheel vertical motion coordinate
x2 rear wheel vertical motion coordinate
θ body pitch motion coordinate
y1 road excitation at the front wheel
y2 road excitation at the rear wheel
Iy half of body lateral mass moment of inertia
a1 distance of C from front axle
a2 distance of C from rear axle

Proof. Figure 13.10 shows a better vibrating model of the system. The
body of the vehicle is assumed to be a rigid bar. This bar has a mass m,
which is half of the total body mass, and a lateral mass moment of inertia
Iy, which is half of the total body mass moment of inertia. The front and
real wheels have a mass m1 and m2 respectively. The tires stiffness are
indicated by different parameters kt1 and kt2 . It is because the rear tires
are usually stiffer than the fronts, although in a simpler model we may
assume kt1 = kt2 . Damping of tires are much smaller than the damping of
shock absorbers so, we may ignore the tire damping for simpler calculation.

To find the equations of motion for the bicycle vibrating model, we use
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FIGURE 13.10. Bicycle model for a vehicle vibrations.

the Lagrange method. The kinetic and potential energies of the system are

K =
1

2
mẋ2 +

1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 +

1

2
Iz θ̇

2
(13.208)

V =
1

2
kt1 (x1 − y1)

2
+
1

2
kt2 (x2 − y2)

2

+
1

2
k1 (x− x1 − a1θ)

2 +
1

2
k2 (x− x2 + a2θ) (13.209)

and the dissipation function is

D =
1

2
c1

³
ẋ− ẋ1 − a1θ̇

´2
+
1

2
c2

³
ẋ− ẋ2 + a2θ̇

´
. (13.210)

Applying Lagrange method

d

dt

µ
∂K

∂q̇r

¶
− ∂K

∂qr
+

∂D

∂q̇r
+

∂V

∂qr
= fr r = 1, 2, · · · 4 (13.211)

provides the following equations of motion (13.204)-(13.207). These set of
equations may be rearranged in a matrix form

[m] ẍ+ [c] ẋ+ [k]x = F (13.212)

where,

x =

⎡⎢⎢⎣
x
θ
x1
x2

⎤⎥⎥⎦ (13.213)

[m] =

⎡⎢⎢⎣
m 0 0 0
0 Iz 0 0
0 0 m1 0
0 0 0 m2

⎤⎥⎥⎦ (13.214)
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[c] =

⎡⎢⎢⎣
c1 + c2 a2c2 − a1c1 −c1 −c2

a2c2 − a1c1 c1a
2
1 + c2a

2
2 a1c1 −a2c2

−c1 a1c1 c1 0
−c2 −a2c2 0 c2

⎤⎥⎥⎦ (13.215)

[k] =

⎡⎢⎢⎣
k1 + k2 a2k2 − a1k1 −k1 −k2

a2k2 − a1k1 k1a
2
1 + k2a

2
2 a1k1 −a2k2

−k1 a1k1 k1 + kt1 0
−k2 −a2k2 0 k2 + kt2

⎤⎥⎥⎦ (13.216)

F =

⎡⎢⎢⎣
0
0

y1kt1
y2kt2

⎤⎥⎥⎦ . (13.217)

Example 488 Natural frequencies and mode shapes of a bicycle car model.

Consider a vehicle with a heavy solid axle in the rear and independent
suspensions in front. the vehicle has the following characteristics.

m =
840

2
kg

m1 = 53kg

m2 =
152

2
kg

Iy = 1100 kgm2 (13.218)

a1 = 1.4m

a2 = 1.47m (13.219)

k1 = 10000N/m

k2 = 13000N/m

kt1 = kt2 = 200000N/m (13.220)

The natural frequencies of this vehicle can be found by using the undamped
and free vibration equations of motion. The characteristic equation of the
system is

det
£
[k]− ω2 [m]

¤
=

8609× 109ω8 − 1.2747× 1013ω6

+2.1708× 1016ω4 − 1.676× 1018ω2 + 2.9848× 1019 (13.221)
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because

[m] =

⎡⎢⎢⎣
420 0 0 0
0 1100 0 0
0 0 53 0
0 0 0 76

⎤⎥⎥⎦ (13.222)

[k] =

⎡⎢⎢⎣
23000 5110 −10000 −13000
5110 47692 14000 −19110
−10000 14000 2.1× 105 0
−13000 −19110 0 2.13× 105

⎤⎥⎥⎦ . (13.223)

To find the natural frequencies we may solve the characteristic equation
(13.221) or search for eigenvalues of [A] = [m]−1 [k].

[A] = [m]−1 [k]

=

⎡⎢⎢⎣
54.762 12.167 −23.810 −30.952
4.6455 43.356 12.727 −17.373
−188.68 264.15 3962.3 0
−171.05 −251.45 0 2802.6

⎤⎥⎥⎦ (13.224)

The eigenvalues of [A] are

λ1 = 37.657

λ2 = 54.943

λ3 = 2806.1

λ4 = 3964.3 (13.225)

therefore, the natural frequencies of the bicycle car model are

ω1 =
p
λ1 = 6.1365 rad/ s ≈ 0.97665Hz

ω2 =
p
λ2 = 7. 412 4 rad/ s ≈ 1.1797Hz

ω3 =
p
λ3 = 52.973 rad/ s ≈ 8.4309Hz

ω4 =
p
λ4 = 62.963 rad/ s ≈ 10.021Hz. (13.226)

The normal form of the mode shapes of the system are

u1 =

⎡⎢⎢⎣
0.61258
−0.7854

8.2312× 10−2
−3.353× 10−2

⎤⎥⎥⎦ (13.227)

u2 =

⎡⎢⎢⎣
0.95459
0.28415

2.6886× 10−2
0.08543

⎤⎥⎥⎦ (13.228)
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u3 =

⎡⎢⎢⎣
1.1273× 10−2
6.3085× 10−3
3.9841× 10−4
−0.99992

⎤⎥⎥⎦ (13.229)

u4 =

⎡⎢⎢⎣
6.0815× 10−3
−3.2378× 10−3
−0.99998

−1.9464× 10−4

⎤⎥⎥⎦ (13.230)

The biggest element of the fourth mode shape u4 belongs to x1. It shows
that in the fourth mode of vibrations at ω4 ≈ 10.021Hz the front wheel will
have the largest amplitude, while the amplitude of the other components are

Θ =
u42
u43

=
−3.2378× 10−3
−0.99998 X1 = 3.2379× 10−3X1 (13.231)

X =
u41
u43

=
6.0815× 10−3
−0.99998 X1 = −6.0816× 10−3X1 (13.232)

X2 =
u44
u43

=
−3.2378× 10−3
−0.99998 X1 = 3.2379× 10−3X1. (13.233)

Example 489 Comparison of the mode shapes of a bicycle car model.
In Example 488, the biggest element of the first mode shape u1 belongs

to θ, the biggest element of the second mode shape u2 belongs to x, and
the biggest element of the first mode shape u3 belongs to x2. Similar to
the fourth mode shape u4, we can find the relative amplitude of different
coordinates at each mode. Consider a car starts to move on a bumpy road at
a very small acceleration. By increasing the speed, the first resonance occurs
at ω1 ≈ 0.97665Hz, at which the pitch vibration is the most observable
vibration. The second resonance occurs at ω2 ≈ 1.1797Hz when the bounce
vibration of the body is the most observable vibration. The third and fourth
resonances at ω3 ≈ 8.4309Hz and ω4 ≈ 10.021Hz are related to rear and
front wheels respectively.
When the excitation frequency of a multiple DOF system increases, we

will see that observable vibration moves from a coordinate to the others in
the order of natural frequencies and associated mode shapes. When the ex-
citation frequency is exactly at a natural frequency, the relative amplitudes
of vibration are exactly similar to the associated mode shape. If the excita-
tion frequency is not on a natural frequency, then vibration of the system
is a combination of all modes of vibration. However, the weight factor of
the closer modes are higher.

13.5 Half Car and Body Roll Mode

To examine and optimize the roll vibration of a vehicle we may use a half
car vibrating model. Figure 13.11 illustrates a half car model of a vehicle.
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FIGURE 13.11. A half car vibrating model of a vehicle.

This model includes the body bounce x, body roll ϕ, wheels hop x1 and x2
and independent road excitations y1 and y2.
The equations of motion for the half car vibrating model of a vehicle are

as follow.

mẍ+ c (ẋ− ẋ1 + b1ϕ̇) + c (ẋ− ẋ2 − b2ϕ̇)

+k (x− x1 + b1ϕ) + k (x− x2 − b2ϕ) = 0 (13.234)

Ixϕ̈+ b1c (ẋ− ẋ1 + b1ϕ̇)− b2c (ẋ− ẋ2 − b2ϕ̇)

+b1k (x− x1 + b1ϕ)− b2k (x− x2 − b2ϕ) + kRϕ = 0 (13.235)

m1ẍ1 − c (ẋ− ẋ1 + b1ϕ̇) + kt (x1 − y1)

−k (x− x1 + b1ϕ) = 0 (13.236)

m2ẍ2 − c (ẋ− ẋ2 − b2ϕ̇) + kt (x2 − y2)

−k (x− x2 − b2ϕ) = 0 (13.237)

The half car model may be different for the front half and rear half due to
different suspensions and mass distribution. Furthermore, different antiroll
bars with different torsional stiffness may be used in the front and rear
halves.
Proof. Figure 13.12 shows a better vibrating model of the system. The
body of the vehicle is assumed to be a rigid bar. This bar has a mass m,
which is the front or rear half of the total body mass, and a longitudinal
mass moment of inertia Ix, which is half of the total body mass moment
of inertia. The left and right wheels have a mass m1 and m2 respectively,
although they are usually equal. The tires stiffness are indicated by kt.
Damping of tires are much smaller than the damping of shock absorbers
so, we may ignore the tire damping for simpler calculation. The suspension
of the car has stiffness k and damping c for the left and right wheels. It
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FIGURE 13.12. Half car model for a vehicle vibrations.

is common to make the suspension of the left and right wheels mirror.
So, their stiffness and damping are equal. However, the half car model has
different k, c, and kt for front or rear.
The vehicle may also have an antiroll bar with a torsional stiffness kR in

front and or rear. Using a simple model, the antiroll bar provides a torque
MR proportional to the roll angle ϕ.

MR = −kRϕ (13.238)

However, a better model of the antiroll bar effect is

MR = −kR
µ
ϕ− x1 − x2

w

¶
. (13.239)

To find the equations of motion for the half car vibrating model, we use
the Lagrange method. The kinetic and potential energies of the system are

K =
1

2
mẋ2 +

1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 +

1

2
Ixϕ̇

2 (13.240)

V =
1

2
kt (x1 − y1)

2 +
1

2
kt (x2 − y2)

2 +
1

2
kRϕ

2

+
1

2
k (x− x1 + b1ϕ)

2
+
1

2
k (x− x2 − b2ϕ) (13.241)

and the dissipation function is

D =
1

2
c (ẋ− ẋ1 + b1ϕ̇)

2
+
1

2
c (ẋ− ẋ2 − b2ϕ̇) . (13.242)

Applying the Lagrange method

d

dt

µ
∂K

∂q̇r

¶
− ∂K

∂qr
+

∂D

∂q̇r
+

∂V

∂qr
= fr r = 1, 2, · · · 4 (13.243)
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provides the following equations of motion (13.234)-(13.237). The set of
equations of motion may be rearranged in a matrix form

[m] ẍ+ [c] ẋ+ [k]x = F (13.244)

where,

x =

⎡⎢⎢⎣
x
ϕ
x1
x2

⎤⎥⎥⎦ (13.245)

[m] =

⎡⎢⎢⎣
m 0 0 0
0 Ix 0 0
0 0 m1 0
0 0 0 m2

⎤⎥⎥⎦ (13.246)

[c] =

⎡⎢⎢⎣
2c cb1 − cb2 −c −c

cb1 − cb2 cb21 + cb22 −cb1 cb2
−c −cb1 c 0
−c cb2 0 c

⎤⎥⎥⎦ (13.247)

[k] =

⎡⎢⎢⎣
2k kb1 − kb2 −k −k

kb1 − kb2 kb21 + kb22 + kR −kb1 kb2
−k −kb1 k + kt 0
−k kb2 0 k + kt

⎤⎥⎥⎦ (13.248)

F =

⎡⎢⎢⎣
0
0

y1kt
y2kt

⎤⎥⎥⎦ . (13.249)

Example 490 Natural frequencies and mode shapes of a half car model.
Consider a vehicle with the following characteristics.

m =
840

2
kg

m1 = 53 kg

m2 = 53 kg

Ix = 820 kgm2 (13.250)

b1 = 0.7m

b2 = 0.75m (13.251)

k = 10000N/m

kt = kt = 200000N/m

kR = 25000Nm/ rad (13.252)
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The natural frequency of this vehicle is found by using the undamped and
free vibration equations of motion.

[m] ẍ+ [k]x = 0 (13.253)

The characteristic equation of the system is

det
£
[k]− ω2 [m]

¤
= 6742× 108ω8 − 8.192 0× 1012ω6

+1.9363× 1016ω4 − 8.3728× 1018ω2

+3.2287× 1020 (13.254)

because

[m] =

⎡⎢⎢⎣
420 0 0 0
0 820 0 0
0 0 53 0
0 0 0 53

⎤⎥⎥⎦ (13.255)

[k] =

⎡⎢⎢⎣
2.1× 105 −500 −10000 −10000
−500 35525 −7000 7500
−10000 −7000 2.1× 105 0
−10000 7500 0 2.1× 105

⎤⎥⎥⎦ . (13.256)

To find the natural frequencies we may solve the characteristic equation
(13.221) or search for eigenvalues of [A] = [m]−1 [k].

[A] = [m]
−1
[k]

=

⎡⎢⎢⎣
500.0 −1.1905 −23.810 −23.810
−0.609 76 43.323 −8.5366 9.1463
−188.68 −132.08 3962.3 0
−188.68 141.51 0 3962.3

⎤⎥⎥⎦ (13.257)

The eigenvalues of [A] are

λ1 = 42.702

λ2 = 497.32

λ3 = 3962.9

λ4 = 3964.9 (13.258)

therefore, the natural frequencies of the half car model are

ω1 =
p
λ1 = 6.5347 rad/ s ≈ 1.04Hz

ω2 =
p
λ2 = 22.301 rad/ s ≈ 3.5493Hz

ω3 =
p
λ3 = 62.952 rad/ s ≈ 10.019Hz

ω4 =
p
λ4 = 62.967 rad/ s ≈ 10.022Hz. (13.259)
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The normal form of the mode shapes of the system are

u1 =

⎡⎢⎢⎣
2.4875× 10−3
0.99878

3.3776× 10−2
−3.5939× 10−2

⎤⎥⎥⎦ (13.260)

u2 =

⎡⎢⎢⎣
0.99705

−1.264× 10−3
5.4246× 10−2
5.4346× 10−2

⎤⎥⎥⎦ (13.261)

u3 =

⎡⎢⎢⎣
1.0488× 10−4
3.1886× 10−3
−0.71477
0.69935

⎤⎥⎥⎦ (13.262)

u4 =

⎡⎢⎢⎣
9.7172× 10−3
−1.462× 10−4
−0.69932
−0.71474

⎤⎥⎥⎦ (13.263)

Example 491 Comparison of the mode shapes of a half car model.
In example 490, the biggest element of the first mode shape u1 belongs to

ϕ, the biggest element of the second mode shape u2 belongs to x, the biggest
element of the third mode shape u3 belongs to x2, and the biggest element of
the fourth mode shape u4 belongs to x1. Consider a car that starts to move
on a bumpy road at a very small acceleration. By increasing the speed, the
first resonance occurs at ω1 ≈ 1.04Hz, at which the roll vibration is the
most observable vibration. The second resonance occurs at ω2 ≈ 3.5493Hz
when the bounce vibration of the body is the most observable vibration. The
third and fourth resonances at ω3 ≈ 10.019Hz and ω4 ≈ 10.022Hz are
related to right and left wheels respectively.

Example 492 Antiroll bar affects only the roll mode.
If in example 490, we eliminate the antiroll bar by setting kR = 0, the

natural frequencies and mode shapes of the half car model would be as fol-
low.

λ1 = 12.221

λ2 = 497.41

λ3 = 3962.9

λ4 = 3964.9 (13.264)
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ω1 =
p
λ1 = 3.4957 rad/ s ≈ 0.556 36Hz

ω2 =
p
λ2 = 22.301 rad/ s ≈ 3.5493Hz

ω3 =
p
λ3 = 62. 967 rad/ s ≈ 10.022Hz

ω4 =
p
λ4 = 62. 967 rad/ s ≈ 10.022Hz. (13.265)

u1 =

⎡⎢⎢⎣
2.332 2× 10−3
0.998 80

3.350 9× 10−2
−0.035 67

⎤⎥⎥⎦ (13.266)

u2 =

⎡⎢⎢⎣
0.997 05

−1.184 6× 10−3
5.424 9× 10−2
5.434 2× 10−2

⎤⎥⎥⎦ (13.267)

u3 =

⎡⎢⎢⎣
1.038 2× 10−4
3.164× 10−3
−0.714 69
0.699 43

⎤⎥⎥⎦ (13.268)

u4 =

⎡⎢⎢⎣
9.717 2× 10−3
−1.447 2× 10−4
−0.699 4
−0.714 66

⎤⎥⎥⎦ (13.269)

Comparing these results with the results in example 490, shows the antiroll
bar affects only the roll mode of vibration. A half car model needs a proper
antiroll bar to increase the roll natural frequency.
It is recommended to have the roll mode as close as possible to the body

bounce natural frequency to have narrow resonance zone around the body
bounce. Avoiding a narrow resonance zone would be simpler.

13.6 Full Car Vibrating Model

A general vibrating model of a vehicle is called the full car model. Such
a model, that is shown in Figure 13.13, includes the body bounce x, body
roll ϕ, body pitch θ, wheels hop x1, x2, x3, and x4 and independent road
excitations y1, y2, y3, and y4.
A full car vibrating model has seven DOF with the following equations
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FIGURE 13.13. A full car vibrating model of a vehicle.

of motion.

mẍ+ cf

³
ẋ− ẋ1 + b1ϕ̇− a1θ̇

´
+ cf

³
ẋ− ẋ2 − b2ϕ̇− a1θ̇

´
+cr

³
ẋ− ẋ3 − b1ϕ̇+ a2θ̇

´
+ cr

³
ẋ− ẋ4 + b2ϕ̇+ a2θ̇

´
+kf (x− x1 + b1ϕ− a1θ) + kf (x− x2 − b2ϕ− a1θ)

+kr (x− x3 − b1ϕ+ a2θ) + kr (x− x4 + b2ϕ+ a2θ)

= 0 (13.270)

Ixϕ̈+ b1cf

³
ẋ− ẋ1 + b1ϕ̇− a1θ̇

´
− b2cf

³
ẋ− ẋ2 − b2ϕ̇− a1θ̇

´
−b1cr

³
ẋ− ẋ3 − b1ϕ̇+ a2θ̇

´
+ b2cr

³
ẋ− ẋ4 + b2ϕ̇+ a2θ̇

´
+b1kf (x− x1 + b1ϕ− a1θ)− b2kf (x− x2 − b2ϕ− a1θ)

−b1kr (x− x3 − b1ϕ+ a2θ) + b2kr (x− x4 + b2ϕ+ a2θ)

+kR

µ
ϕ− x1 − x2

w

¶
= 0 (13.271)

Iy θ̈ − a1cf

³
ẋ− ẋ1 + b1ϕ̇− a1θ̇

´
− a1cf

³
ẋ− ẋ2 − b2ϕ̇− a1θ̇

´
+a2cr

³
ẋ− ẋ3 − b1ϕ̇+ a2θ̇

´
+ a2cr

³
ẋ− ẋ4 + b2ϕ̇+ a2θ̇

´
−a1kf (x− x1 + b1ϕ− a1θ)− a1kf (x− x2 − b2ϕ− a1θ)

+a2kr (x− x3 − b1ϕ+ a2θ) + a2kr (x− x4 + b2ϕ+ a2θ)

= 0 (13.272)
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mf ẍ1 − cf

³
ẋ− ẋ1 + b1ϕ̇− a1θ̇

´
− kf (x− x1 + b1ϕ− a1θ)

−kR
1

w

µ
ϕ− x1 − x2

w

¶
+ ktf (x1 − y1)

= 0 (13.273)

mf ẍ2 − cf

³
ẋ− ẋ2 − b2ϕ̇− a1θ̇

´
− kf (x− x2 − b2ϕ− a1θ)

+kR
1

w

µ
ϕ− x1 − x2

w

¶
+ ktf (x2 − y2)

= 0 (13.274)

mrẍ3 − cr

³
ẋ− ẋ3 − b1ϕ̇+ a2θ̇

´
−kr (x− x3 − b1ϕ+ a2θ) + ktr (x3 − y3) = 0 (13.275)

mrẍ4 − cr

³
ẋ− ẋ4 + b2ϕ̇+ a2θ̇

´
−kr (x− x4 + b2ϕ+ a2θ) + ktr (x4 − y4) = 0 (13.276)

Proof. Figure 13.14 shows a better vibrating model of the system. The
body of the vehicle is assumed to be a rigid slab. This slab has a mass m,
which is the total body mass, a longitudinal mass moment of inertia Ix, and
a lateral mass moment of inertia Iy. the moments of inertia are only the
body mass moments of inertia not the vehicle’s mass moments of inertia.
The wheels have a mass m1, m2, m3, and m4 respectively. However, it is
common to have

m1 = m2 = mf (13.277)

m3 = m4 = mr. (13.278)

The front and rear tires stiffness are indicated by ktf and ktr respectively.
Because the damping of tires are much smaller than the damping of shock
absorbers, we may ignore the tires’ damping for simpler calculation.
The suspension of the car has stiffness kf and damping cf in the front and

stiffness kr and damping cr in the rear. It is common to make the suspension
of the left and right wheels mirror. So, their stiffness and damping are equal.
The vehicle may also have an antiroll bar in front and in the back, with
a torsional stiffness kRf and kRr . Using a simple model, the antiroll bar
provides a torque MR proportional to the roll angle ϕ.

MR = −
¡
kRf + kRr

¢
ϕ

= −kRϕ (13.279)
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θ

ϕ

x

y2
m4ktf

kf

y1

x1 y3

cr

y4

x4

m, Ix, Iy

m2

ktf
ktr

ktr

kf
kr

cf

cf

kRf

m1

x2 kRr

a1

b2
a2b1

FIGURE 13.14. Full car model for a vehicle vibrations.

However, a better model of the antiroll bar reaction is

MR = −kRf
µ
ϕ− x1 − x2

wf

¶
− kRf

µ
ϕ− x4 − x3

wr

¶
. (13.280)

Most cars only have an antiroll bar in front. For these cars, the moment of
the antiroll bar simplifies to

MR = −kR
µ
ϕ− x1 − x2

w

¶
(13.281)

if we use

wf ≡ w = b1 + b2 (13.282)

kRf ≡ kR. (13.283)

To find the equations of motion for the full car vibrating model, we use
the Lagrange method. The kinetic and potential energies of the system are

K =
1

2
mẋ2 +

1

2
Ixϕ̇

2 +
1

2
Iy θ̇

2

+
1

2
mf

¡
ẋ21 + ẋ22

¢
+
1

2
mr

¡
ẋ23 + ẋ24

¢
(13.284)
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V =
1

2
kf (x− x1 + b1ϕ− a1θ)

2
+
1

2
kf (x− x2 − b2ϕ− a1θ)

2

+
1

2
kr (x− x3 − b1ϕ+ a2θ)

2 +
1

2
kr (x− x4 + b2ϕ+ a2θ)

2

+
1

2
kR

µ
ϕ− x1 − x2

w

¶2
+
1

2
ktf (x1 − y1)

2
+
1

2
ktf (x2 − y2)

2

+
1

2
ktr (x3 − y3)

2 +
1

2
ktr (x4 − y4)

2 (13.285)

and the dissipation function is

D =
1

2
cf

³
ẋ− ẋ1 + b1ϕ̇− a1θ̇

´2
+
1

2
cf

³
ẋ− ẋ2 − b2ϕ̇− a1θ̇

´2
+
1

2
cr

³
ẋ− ẋ3 − b1ϕ̇+ a2θ̇

´2
+
1

2
cr

³
ẋ− ẋ4 + b2ϕ̇+ a2θ̇

´2
(13.286)

Applying Lagrange method

d

dt

µ
∂K

∂q̇r

¶
− ∂K

∂qr
+

∂D

∂q̇r
+

∂V

∂qr
= fr r = 1, 2, · · · 7 (13.287)

provides the following equations of motion (13.270)-(13.276).
The set of equations of motion may be rearranged in a matrix form

[m] ẍ+ [c] ẋ+ [k]x = F (13.288)

where,

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
ϕ
θ
x1
x2
x3
x4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.289)

[m] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 0 0 0
0 Ix 0 0 0 0 0
0 0 Iy 0 0 0 0
0 0 0 mf 0 0 0
0 0 0 0 mf 0 0
0 0 0 0 0 mr 0
0 0 0 0 0 0 mr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.290)
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[c] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 −cf −cf −cr −cr
c21 c22 c23 −b1cf b2cf b1cr −b2cr
c31 c32 c33 a1cf a1cf −a2cr −a2cr
−cf −b1cf a1cf cf 0 0 0
−cf b2cf a1cf 0 cf 0 0
−cr b1cr −a2cr 0 0 cr 0
−cr −b2cr −a2cr 0 0 0 cr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.291)

c11 = 2cf + 2cr

c21 = c12 = b1cf − b2cf − b1cr + b2cr

c31 = c13 = 2a2cr − 2a1cf
c22 = b21cf + b22cf + b21cr + b22cr

c32 = c23 = a1b2cf − a1b1cf − a2b1cr + a2b2cr

c33 = 2cfa
2
1 + 2cra

2
2 (13.292)

[k] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 k12 k13 −kf −kf −kr −kr
k21 k22 k23 k24 k25 b1kr −b2kr
k31 k32 k33 a1kf a1kf −a2kr −a2kr
−kf k42 a1kf k44 −kR

w2
0 0

−kf k52 a1kf −kR
w2

k55 0 0

−kr b1kr −a2kr 0 0 kr + ktr 0
−kr −b2kr −a2kr 0 0 0 kr + ktr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.293)

k11 = 2kf + 2kr

k21 = k12 = b1kf − b2kf − b1kr + b2kr

k31 = k13 = 2a2kr − 2a1kf
k22 = kR + b21kf + b22kf + b21kr + b22kr

k32 = k23 = a1b2kf − a1b1kf − a2b1kr + a2b2kr

k42 = k24 = −b1kf −
1

w
kR

k52 = k25 = b2kf +
1

w
kR

k33 = 2kfa
2
1 + 2kra

2
2

k44 = kf + ktf +
1

w2
kR

k55 = kf + ktf +
1

w2
kR (13.294)
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F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

y1ktf
y2ktf
y3ktr
y4ktr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13.295)

Example 493 Natural frequencies and mode shapes of a full car model.
Consider a vehicle with a the following characteristics.

m = 840 kg

mf = 53 kg

mr = 76 kg

Ix = 820 kgm2

Iy = 1100 kgm2 (13.296)

a1 = 1.4m

a2 = 1.47m

b1 = 0.7m

b2 = 0.75m (13.297)

kf = 10000N/m

kr = 13000N/m

ktf = ktr = 200000N/m

kR = 25000Nm/ rad (13.298)

Using the matrix [A] = [m]−1 [k] and solving the associated eigenvalue and
eigenvector problems, we find the following natural frequencies, and mode
shapes for the full car model.

ω1 = 1.11274Hz

ω2 = 1.15405Hz

ω3 = 1.46412Hz

ω4 = 8.42729Hz

ω5 = 8.43346Hz

ω6 = 10.0219Hz

ω7 = 10.5779Hz. (13.299)
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u1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.0871235
−0.257739
0.0747553
0.0562862
0.0347648
0.0426351

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.300)

u2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0927632
1

−0.0222029
0.101837
−0.110205
−0.0514524
0.0389078

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.301)

u3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

.331817
0.0611334

1
−0.0453749
−0.0585134
0.110767
0.116324

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.302)

u4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0000730868
0.00826940
−0.0000799890
0.00233206
−0.00241445

1
−.986988

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.303)

u5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0111901
−0.000380648
−0.0126628
0.000965144
0.00118508
0.978914

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.304)

u6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.00606295e− 2
0.000156931e− 3
0.00655247e− 2

1
0.99966

−0.000528339e− 3
−0.000566133e− 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.305)
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[ ]1.11274 Hznω =

FIGURE 13.15. 1st mode shape of a full car model.

[ ]1.15405 Hznω =

FIGURE 13.16. 2nd mode shape of a full car model.

u7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.000000327006
0.0137130

0.00000560144
−0.999745

1
0.00103530
−0.00107039

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.306)

A visual illustration of the mode shapes are shown in Figures 13.15 to
13.21. The biggest element of the mode shapes u1 to u7 are x, ϕ, θ, x3,
x4, x1, x2 respectively. These figures depict the relative amplitude of each
coordinate of the full car model at a resonance frequency.
The natural frequencies of a full car can be separated in two classes. The

first class is the natural frequencies of the body: body bounce, body roll, and
body pitch. Body related natural frequencies are always around 1Hz. The
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[ ]1.46412 Hznω =

FIGURE 13.17. 3rd mode shape of a full car model.

[ ]8.42729 Hznω =

FIGURE 13.18. 4th mode shape of a full car model.

[ ]8.43346 Hznω =

FIGURE 13.19. 5th mode shape of a full car model.
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[ ]10.0219 Hznω =

FIGURE 13.20. 6th mode shape of a full car model.

[ ]10.5779 Hznω =

FIGURE 13.21. 7th mode shape of a full car model.
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second class is the natural frequencies of the wheels bounce. Wheel related
natural frequencies are always around 10Hz.
In this example, we assumed the car has independent suspension in front

and rear. So, each wheel has only vertical displacement. In case of a solid
axle, the left and right wheels make a rigid body with a roll and bounce
motion. The energies and hence, the equations of motion should be revised
accordingly to show the bounce and roll of the solid axle.

13.7 Summary

Vehicles are connected multi-body dynamic systems and hence, their vi-
brating model has multiple DOF system. The vibrating behavior of mul-
tiple DOF systems are very much dependent to their natural frequencies
and mode shapes. These characteristics can be determined by solving an
eigenvalue and an eigenvector problems.
The most practical vibrating model of vehicles, starting from the simplest

to more complex, are the one-eight car, quarter car, bicycle car, half car,
and full car models.
Having symmetric mass, stiffness, and damping matrices of multiple DOF

system simplifies the calculation of the eigenvalue and eigenvector prob-
lems. To have symmetric coefficient matrices, we may define the kinetic
energy, potential energy, and dissipation function of the system by quadra-
tures and derive the equations of motion by applying the Lagrange method.
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13.8 Key Symbols

a, ẍ acceleration
a1 distance from mass center to front axle
a2 distance from mass center to rear axle
[a] , [A] coefficient matrix
[A] = [m]−1 [k] coefficient matrix of characteristic equation
b1 distance from mass center to left wheel
b2 distance from mass center to right wheel
c damping
ceq equivalent damping
cij element of row i and column j of [c]
[c] damping matrix
[c] symmetric damping matrix
C mass center
D dissipation function
e eccentricity arm
E mechanical energy
f, F harmonic force
f = 1

T cyclic frequency [ Hz]
fc damper force
fk spring force
F amplitude of a harmonic force f
Fr, Qr generalized force
g gravitational acceleration
I mass moment of inertia
I identity matrix
k stiffness
keq equivalent stiffness
kij element of row i and column j of [k]
kR antiroll bar torsional stiffness
[k] stiffness matrix
[k] symmetric stiffness matrix
K kinetic energy
l length
l wheelbase
L Lagrangean
m mass
me eccentric mass
mij element of row i and column j of [m]
ms sprung mass
mu unsprung mass
[m] mass matrix
[m] symmetric mass matrix
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n number of DOF
p momentum
qi, Qi generalized force
r = ω

ωn
frequency ratio

r,R radius
S quadrature
t time
T period
uij jth element of the ith mode shape
u mode shape, eigenvector
ui ith eigenvector
v,v, ẋ, ẋ velocity
V potential energy
w track
x absolute displacement
X steady-state amplitude of x
y base excitation displacement
Y steady-state amplitude of y
z relative displacement
Z steady-state amplitude of z
Zi short notation parameter

δ deflection
ξ = c

2
√
km

damping ratio
λ eigenvalue
λi ith eigenvalue
ω = 2πf angular frequency [ rad/ s]
ωn natural frequency
ωi ith natural frequency

Subscript
d driver
f front
r rear
s sprung
u unsprung
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Exercises

1. Equation of motion of a multiple DOF system.

Figure 13.22 illustrates a two DOF vibrating system.

k1 c1

x
x2

k2

m1

m1

c2

k3 c3

k4 c4

m2

x1

k5 c5

FIGURE 13.22. A two DOF vibrating system.

(a) Determine K, V , and D functions.

(b) Determine the equations of motion using the Lagrange method.

(c) F Rewrite K, V , and D in quadrature form.

(d) Determine the natural frequencies and mode shapes of the sys-
tem.

2. Absolute and relative coordinates.

Figure 13.23 illustrates two similar double pendulums. We express
the motion of the left one using absolute coordinates θ1 and θ2, and
express the motion of the right one with absolute coordinate θ1 and
relative coordinate θ2.

(a) Determine the equation of motion of the absolute coordinate
double pendulum.

(b) Determine the equation of motion of the relative coordinate dou-
ble pendulum.

(c) Compare their mass and stiffness matrices.
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y

x

m1

O

1θ

2θ

m2

l1

l2

y

x

m1

O

1θ

2θ

m2

l1

l2

FIGURE 13.23. Two similar double pendulums, expressed by absolute and rela-
tive coordinates.

3. One-eight car model.

Consider a one-eight car model as a base excited one DOF system.
Determine its natural ωn and damped natural frequencies ωd if

m = 1245 kg

k = 60000N/m

c = 2400N s/m.

4. Quarter car model.

Consider a quarter car model. Determine its natural frequencies and
mode shapes if

ms = 1085/4 kg

mu = 40 kg

ks = 10000N/m

ku = 150000N/m

cs = 800N s/m.

5. Bicycle car model.
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Consider a bicycle car model with the following characteristics:

m = 1085/2 kg

m1 = 40 kg

m2 = 40 kg

Iy = 1100 kgm2

a1 = 1.4m

a2 = 1.47m

k1 = 10000N/m

kt1 = kt2 = 150000N/m

Determine its natural frequencies and mode shapes for

(a) k2 = 8000N/m

(b) k2 = 10000N/m

(c) k2 = 12000N/m.

(d) Compare the natural frequencies for different k1/k2 and express
the effect of increasing stiffness ratio on the pitch mode.

6. Half car model.

Consider a bicycle car model with the following characteristics:

m = 1085/2 kg

m1 = 40 kg

m2 = 40 kg

Ix = 820 kgm2

b1 = 0.7m

b2 = 0.75m

k1 = 10000N/m

kt1 = kt2 = 150000N/m

Determine its natural frequencies and mode shapes for

(a) kR = 0

(b) kR = 10000Nm/ rad

(c) kR = 50000Nm/ rad.
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(d) Compare the natural frequencies for different kR and express the
effect of increasing roll stiffness on the roll mode.

(e) Determine kR such that the roll natural frequency be equal to
the bounce natural frequency and determine the mode shapes
of the half car for that kR.

7. Full car model.

Consider a full car model with the following characteristics:

m = 1085 kg

mf = 40 kg

mr = 40 kg

Ix = 820 kgm2

Iy = 1100 kgm2 (13.307)

a1 = 1.4m

a2 = 1.47m

b1 = 0.7m

b2 = 0.75m (13.308)

kf = 10000N/m

kr = 10000N/m

ktf = ktr = 150000N/m

kR = 20000Nm/ rad (13.309)

(a) Determine its natural frequencies and mode shapes.

(b) Change kR such that the roll mode and pitch modes have the
same frequency.

(c) Determine the mode shapes of the car for that kR.
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Suspension Optimization
In this chapter, we examine a linear, one degree-of-freedom, base excited
vibration isolator system as the simplest model for a vibration isolator
and vehicle suspension. Based on a root mean square (RMS) optimization
method, we develop a design chart to determine the optimal damper and
spring for the best vibration isolation and ride comfort.

14.1 Mathematical Model

Figure 14.1 illustrates a single-DOF base excited linear vibrating system.
It can represent a model for the vertical vibrations of a vehicle.

m

k

x

y

c

FIGURE 14.1. A base excited linear suspension.

A one-fourth (1/4) of the mass of the body is modeled as a solid mass
m denoted as sprung mass. A spring of stiffness k, and a shock absorber
with viscous damping c, support the sprung mass and represent the main
suspension of the vehicle. The suspension parameters k and c are the equiv-
alent stiffness and damping for one wheel, measured at the center of the
wheel. Because we ignore the wheel mass and tire stiffness, this model is
sometimes called one-eighth (1/8) car model.
The equation of motion for the system is

mẍ+ c ẋ+ kx = c ẏ + ky (14.1)

which can be transformed to the equation,

mz̈ + c ż + kz = −mÿ (14.2)
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using a relative displacement variable z.

z = x− y (14.3)

The variable x is the absolute displacement of the body, and y is the ab-
solute displacement of the ground.
The equation of motion (14.1) and (14.2), which are dependent on three

parameters (m, c, k) can be transformed to the following equations:

ẍ+ 2ξωn ẋ+ ω2n x = 2ξωn ẏ + ω2n y (14.4)

z̈ + 2ξωn ż + ω2n z = −ÿ (14.5)

by introducing natural frequency ωn and damping ratio ξ.

ξ =
c

2
√
km

(14.6)

ωn =

r
k

m
= 2πfn (14.7)

Proof. The kinetic energy, potential energy, and dissipation function of
the system are:

K =
1

2
mẋ2 (14.8)

V =
1

2
k (x− y)

2 (14.9)

D =
1

2
c (ẋ− ẏ)2 (14.10)

Employing the Lagrange method,

d

dt

µ
∂K

∂ẋ

¶
− ∂K

∂x
+

∂D

∂ẋ
+

∂V

∂x
= 0 (14.11)

we find the equation of motion

d

dt
(mẋ) + c (ẋ− ẏ) + k (x− y) = 0 (14.12)

which can be transformed to Equation (14.1). Introducing a relative posi-
tion variable, z = x− y, we have

ż = ẋ− ẏ (14.13)

z̈ = ẍ− ÿ (14.14)

to write Equation (14.12) as

m
d

dt
(z̈ + ÿ) + cż + kz = 0 (14.15)

which is equivalent to (14.2).
Dividing Equations (14.1) and (14.2) by m and using (14.6) and (14.7),

generate their equivalent Equations (14.4) and (14.5), respectively.
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x

(a)
m

(b)

α

k

x

m

ke

FIGURE 14.2. A tilted spring and its equivalent stiffness.

Example 494 Different model for front and rear parts of a vehicle.
Consider a car with the following information:

car mass = 1500 kg (14.16)

wheel mass = 50 kg (14.17)

Fz1 = 3941.78N (14.18)

Fz2 = 3415.6N (14.19)

where Fz1 and Fz2 are the front and rear tire loads, respectively. The mass
m of a 1/8 vibrating model for the front of the car must be

m =
Fz1

Fz1 + Fz2
× (1500− 4× 50)

= 696.49 kg (14.20)

and for the rear of the car must be

m =
Fz2

Fz1 + Fz2
× (1500− 4× 50)

= 603.51 kg. (14.21)

Example 495 Tilted spring.
Consider a mass-spring system such that the spring makes an angle α

with the axis of mass translation, as shown in Figure 14.2(a). We may
substitute such a tilted spring with an equivalent spring keq that is on the
same axis of mass translation, as shown in Figure 14.2(b).

keq ≈ k cos2 α (14.22)

When the mass m is in motion, such as is shown in Figure 14.3(a), its
free body diagram is as shown in Figure 14.3(b). If the motion of mass m is



886 14. Suspension Optimization

(a)

(b)

x

mα

kδ

k

x
δα

x

mα

(c)

kδ

FIGURE 14.3. A mass-spring system such that the spring makes and angle α
with directing of mass translation.

x << 1, we ignore any changes in α and then, as shown in Figure 14.3(c),
the spring elongation is

δ ≈ x cosα. (14.23)

Therefore, the spring force fk is

fk = kδ ≈ kx cosα. (14.24)

The spring force may be projected on the x-axis to find the x component,
fx, that moves the mass m.

fx = fk cosα

≈
¡
k cos2 α

¢
x (14.25)

The tilted spring can be substituted with an equivalent spring keq on the
x-axis that needs the same force fx to elongate the same amount as the
mass moves.

fx = keqx (14.26)

keq ≈ k cos2 α (14.27)
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x
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FIGURE 14.4. A mass m attached to the tip of a massless bar with length b.

Example 496 Alternative proof for a tilted spring.
Consider a spring that makes an angle α with a direction of motion as

shown in Figure 14.2(a). When the moving end translates x, the elongation
of the spring is

δ ≈ x cosα. (14.28)

The potential energy of such a spring would be

V =
1

2
kδ2 =

1

2

¡
k cos2 α

¢
x2. (14.29)

An equivalent spring with stiffness keq must collect the same amount of
potential energy for the same displacement x.

V =
1

2
keqx

2 (14.30)

Therefore, the equivalent stiffness keq is

keq = k cos2 α. (14.31)

Example 497 Displaced spring.
Figure 14.4(a) illustrates a mass m attached to the tip of a massless bar

with length b. The bar is pivoted to the wall and a spring k is attached to
the bar at a distance a from the pivot.
When the mass oscillates with displacement x << 1, the elongation δ of

the spring is
δ ≈ a

b
x. (14.32)

We may substitute the system with a translational mass-spring system such
as shown in Figure 14.4(b). The new system has the same mass m and an
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(a) (b)
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x
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FIGURE 14.5. A MacPherson suspenssion and its equivalent vibrating system.

equivalent spring keq.

keq =
³a
b

´2
k (14.33)

The equivalent spring provides the same potential energy as the original
spring, when the mass moves.

V =
1

2
keqx

2 =
1

2
kδ2 =

1

2
k
³a
b
x
´2

=
1

2
k
³a
b

´2
x2 (14.34)

Example 498 Equivalent spring and damper for a McPherson suspension.

Figure 14.5 illustrates a McPherson strut mechanism and its equivalent
vibrating system.
We assume the tire is stiff and therefore, the wheel center gets the same

motion y. Furthermore, we assume the wheel and and body of the vehicle
move only vertically.
To find the equivalent parameters for a 1/8 vibrating model, we use m

equal to 1/4 of the body mass. The spring k and damper c make an angle α
with the direction of wheel motion. They are also displaced b− a from the
wheel center. So, the equivalent spring keq and damper ceq are

keq = k
³a
b
cosα

´2
(14.35)

ceq = c
³a
b
cosα

´2
. (14.36)
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FIGURE 14.6. A 1/8 car model moving with speed v on a wavy road.

For example assume that we have determined the following stiffness and
damping as a result of optimization.

keq = 9869.6N/m (14.37)

ceq = 87.965N s/m. (14.38)

The actual k and c for a McPherson suspension with

a = 19 cm (14.39)

b = 32 cm (14.40)

α = 27deg (14.41)

would be

k = 28489N/m (14.42)

c = 253.9N s/m. (14.43)

Example 499 Wavy road and excitation frequency.
Figure 14.6 illustrates a 1/8 car model moving with speed v on a wavy

road with length d1 and peak-to-peak height d2. Assuming a stiff tire with a
small radius compared to the road waves, we may consider y as the fluctu-
ation of the road.
The required time to pass one length d1 is the period of the excitation

T =
d1
v

(14.44)
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which can be used to find the frequency of excitation

ω =
2π

T
=
2πv

d1
. (14.45)

Therefore, the excitation y = Y sinωt is

y =
d2
2
sin

2πv

d1
t. (14.46)

Example 500 Function of an isolator
The function of an isolator is to reduce the magnitude of motion trans-

mitted from a vibrating foundation to the equipment, or to reduce the mag-
nitude of force transmitted from the equipment to its foundation, both in
time and frequency domain.

Example 501 Rubber mount.
In the simplest approach to suspension analysis, the parameters m, k,

and c are considered constant and independent of the excitation frequency
or behavior of the foundation. This assumption is equivalent to considering
an infinitely stiff and massive foundation. For rubber mounts, the damping
coefficient usually decreases, and the stiffness coefficient increases with ex-
citation frequency. Moreover, neither the engine nor body can be assumed
an infinitely stiff rigid body at high frequencies.

14.2 Frequency Response

The most important frequency responses of a 1/8 car model, shown in
Figure 14.1, are: absolute displacement G0, relative displacement S2, and
absolute acceleration G2

G0 =

¯̄̄̄
X

Y

¯̄̄̄
=

q
1 + (2ξr)2q

(1− r2)2 + (2ξr)2
(14.47)

S2 =

¯̄̄̄
Z

Y

¯̄̄̄
=

r2q
(1− r2)2 + (2ξr)2

(14.48)

G2 =

¯̄̄̄
¯ Ẍ

Y ω2n

¯̄̄̄
¯ = r2

q
1 + (2ξr)2q

(1− r2)2 + (2ξr)2
(14.49)

where

r =
ω

ωn
ξ =

c

2
√
km

ωn =

r
k

m
. (14.50)



14. Suspension Optimization 891

Proof. Applying a harmonic excitation

y = Y sinωt (14.51)

the equation of motion (14.5) reduces to

z̈ + 2ξωn ż + ω2n z = ω2Y sinωt. (14.52)

Now, we may consider a harmonic solution such as

z = A3 sinωt+B3 cosωt (14.53)

to substitute in the equation of motion

−A3ω2 sinωt−B3ω
2 cosωt

+2ξωn (A3ω cosωt−B3ω sinωt)

+ω2n (A3 sinωt+B3 cosωt)

= ω2Y sinωt (14.54)

and find a set of equations to calculate A3 and B3.∙
ω2n − ω2 −2ξωωn
2ξωωn ω2n − ω2

¸ ∙
A3
B3

¸
=

∙
Y ω2

0

¸
(14.55)

The first row of the set (14.55) is a balance of the coefficients of sinωt
in Equation (14.54), and the second row is a balance of the coefficients of
cosωt. Therefore, the coefficients A3 and B3 can be found as follow.∙

A3
B3

¸
=

∙
ω2n − ω2 −2ξωωn
2ξωωn ω2n − ω2

¸−1 ∙
Y ω2

0

¸

=

⎡⎢⎢⎢⎣
− ω2 − ω2n
4ξ2ω2ω2n + ω4 − 2ω2ω2n + ω4n

Y ω2

− 2ξωωn

4ξ2ω2ω2n + ω4 − 2ω2ω2n + ω4n
Y ω2

⎤⎥⎥⎥⎦ (14.56)

These equations may be transformed to this simpler form, by using r and
ξ.

∙
A3
B3

¸
=

⎡⎢⎢⎢⎣
1− r2

(1− r2)2 + (2ξr)2
r2Y

−2ξr
(1− r2)2 + (2ξr)2

r2Y

⎤⎥⎥⎥⎦ (14.57)

The relative displacement amplitude Z is then equal to

Z =
q
A23 +B2

3

=
r2q

(1− r2)
2
+ (2ξr)

2
Y (14.58)
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which provides S2 = |Z/Y | in Equation (14.48).
To find the absolute frequency response G0, we may assume

x = A2 sinωt+B2 cosωt

= X sin (ωt− ϕx) (14.59)

and write

z = x− y (14.60)

A3 sinωt+B3 cosωt = A2 sinωt+B2 cosωt− Y sinωt (14.61)

which shows

A2 = A3 + Y (14.62)

B2 = B3. (14.63)

The absolute displacement amplitude is then equal to

X =
q
A22 +B2

2

=

q
(A3 + Y )2 +B2

3

=

q
1 + (2ξr)

2q
(1− r2)

2
+ (2ξr)

2
Y (14.64)

which provides G0 = |X/Y | in Equation (14.47).
The absolute acceleration frequency response

ẍ = −Xω2 sin (ωt− ϕx) (14.65)

= −Ẍ sin (ωt− ϕx) (14.66)

can be found by twice differentiating from the displacement frequency re-
sponse (14.59). If we show the amplitude of the absolute acceleration by
Ẍ, then we may define Ẍ by¯̄̄̄

¯ Ẍ

Y ω2n

¯̄̄̄
¯ = r2

q
1 + (2ξr)2q

(1− r2)2 + (2ξr)2

which provides G2 =
¯̄̄
Ẍ/

¡
ω2nY

¢¯̄̄
as in Equation (14.49).

Example 502 Principal method for absolute motion X.
To find the absolute frequency response G0, we may substitute

y = Y sinωt (14.67)
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and a harmonic solution for x

x = A2 sinωt+B2 cosωt (14.68)

in Equation (14.4)

ẍ+ 2ξωn ẋ+ ω2n x = 2ξωn ẏ + ω2n y (14.69)

and solve for X =
p
A22 +B2

2 .

−ω2A2 sinωt− ω2B2 cosωt

+2ξωn ω (A2 cosωt−B2 sinωt)

+ω2n (A2 sinωt+B2 cosωt)

= 2ξωn ωY cosωt+ ω2n Y sinωt (14.70)

The set of equations for A2 and B2 from the coefficients of sin and cos∙
ω2n − ω2 −2ξωωn
2ξωωn ω2n − ω2

¸ ∙
A2
B2

¸
=

∙
Y ω2n

2Y ξωωn

¸
(14.71)

results in the following solution:∙
A2
B2

¸
=

∙
ω2n − ω2 −2ξωωn
2ξωωn ω2n − ω2

¸−1 ∙
Y ω2n

2Y ξωωn

¸

=

⎡⎢⎢⎢⎣
−
¡
ω2 − ω2n

¢
ω2n + 4ξ

2ω2ω2n

4ξ2ω2ω2n + ω4 − 2ω2ω2n + ω4n
Y

−2ξωω3n
4ξ2ω2ω2n + ω4 − 2ω2ω2n + ω4n

Y

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
(2ξr)2 −

¡
1− r2

¢
(1− r2)2 + (2ξr)2

Y

−2ξr3

(1− r2)
2
+ (2ξr)

2Y

⎤⎥⎥⎥⎥⎦ (14.72)

Therefore, the amplitude of the absolute displacement X would be the same
as (14.64).

Example 503 G0 6= S2 + 1
We may try to find the absolute frequency response G0 = |X/Y |, from

the result for S2. The frequency response S2 is

S2 =
Z

Y
(14.73)

however,

S2 6= X

Y
− 1

6= G0 − 1 (14.74)
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FIGURE 14.7. Absolute and relative displacement frequency responses for a ve-
hicle.

because the amplitude of the relative displacement Z is not equal to the am-
plitude of absolute displacement X minus the amplitude of road excitation
Y .

Z 6= X − Y (14.75)

Example 504 A sample of frequency responses.
Consider a vehicle with the following natural frequency fn and damping

ratio ξ:

fn = 10.2Hz (14.76)

ξ = 0.08 (14.77)

The absolute and relative displacements frequency responses of the vehicle
are shown in Figure 14.7. The relative displacement starts at zero and
ends up at one, while the absolute displacement starts at one and ends up
at zero.

14.3 RMS Optimization

Figure 14.8 is a design chart for optimal suspension parameters of base
excited systems. The horizontal axis is the root mean square of relative
displacement, SZ = RMS(S2), and the vertical axis is the root mean square
of absolute acceleration, SẌ = RMS(G2). There are two sets of curves
that make a mesh. The first set, which is almost parallel at the right end,
is constant natural frequency fn, and the second set, which spread from
SZ = 1, is a constant damping ratio ξ. There is a curve, called optimal
design curve, which indicates the optimal suspension parameters.
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FIGURE 14.8. Design chart for optimal suspension parameters of equipments.
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FIGURE 14.9. Design chart for optimal suspension parameters of vehicles.
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Most equipment that are mounted on vehicles have natural frequencies
around fn = 10Hz, while the main natural frequencies of the vehicle are
around fn = 1Hz. So, we use Figure 14.8 to design the suspension of base
excited equipment, and use the magnified chart shown in the Figure 14.9
to design vehicle suspensions.
The optimal design curve is the result of the following optimization strat-

egy:
Minimize SẌ with respect to SZ (14.78)

which states that the minimum absolute acceleration with respect to the
relative displacement, if there is any, makes a suspension optimal. Mathe-
matically it is equivalent to the following minimization problem:

∂SẌ
∂SZ

= 0 (14.79)

∂2SẌ
∂S2Z

> 0 (14.80)

To determine the optimal stiffness k and damping c, we start from an
estimated value for SX on the horizontal axis and draw a vertical line to
hit the optimal curve. The intersection point indicates the optimal fn and
ξ for the SX , to have the best vibration isolation.
Figure 14.10 illustrates a sample application for SX = 1, which indicates

ξ ≈ 0.4 and fn ≈ 10Hz make the optimal suspension. fn, ξ, and the mass
of the equipment determine the optimal value of k and c.

Proof. Let’s define a working frequency range 0 < f < 20Hz to include
almost all ground vehicles, especially road vehicles, and show the RMS of
S2 and G2 by

SZ = RMS(S2) (14.81)

SẌ = RMS(G2). (14.82)

In applied vehicle dynamics, we usually measure frequencies in [ Hz], instead
of [ rad/ s], so we perform design calculations based on cyclic frequencies f
and fn in [ Hz], and analytic calculations based on angular frequencies ω
and ωn in [ rad/ s].
To calculate SZ and SẌ over the working frequency range

SZ =

s
1

40π

Z 40π

0

S22dω (14.83)

SẌ =

s
1

40π

Z 40π

0

G2dω (14.84)

we first find integrals of S22 and G2.Z
S22dω = Z1ω −

Z2

Z3
√
Z4
tan−1

ω√
Z4
+

Z5

Z6
√
Z7
tan−1

ω√
Z7

(14.85)
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FIGURE 14.10. Application of the design chart for SX = 1, that indicates the
optimal values ξ ≈ 0.4 and fn ≈ 10Hz.

ω4n

Z
G2dω = Z8ω +

1

3
Z9ω

3 +
Z10

Z11
√
Z12

tan−1
ω√
Z12

+
Z13

Z14
√
Z15

tan−1
ω√
Z15

(14.86)

The parameters Z1 through Z15 are as follows:

Z1 = 1 (14.87)

Z2 = ω2n

µ
8ξ6 − 12ξ4 + 4ξ2 −

¡
−8ξ4 + 8ξ2 − 1

¢
ξ

q
1− ξ2

¶
(14.88)

Z3 = −4ξ2
¡
1− ξ2

¢
(14.89)

Z4 = ω2n

µ
−1 + 2ξ2 + 2ξ

q
1− ξ2

¶
(14.90)

Z5 = ω2n

µ
8ξ6 − 12ξ4 + 4ξ2 −

¡
8ξ4 − 8ξ2 + 1

¢
ξ

q
1− ξ2

¶
(14.91)

Z6 = −4ξ2
¡
1− ξ2

¢
(14.92)

Z7 = ω2n

µ
−1 + 2ξ2 − 2ξ

q
1− ξ2

¶
(14.93)
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Z8 = ω4n
¡
−16ξ4 + 8ξ2 + 1

¢
(14.94)

Z9 = 4ω2nξ
2 (14.95)

Z10 = ω6n
¡
128ξ10 − 256ξ8 + 144ξ6 − 12ξ4 − 4ξ2

¢
(14.96)

−ω6n
¡
−128ξ8 + 192ξ6 − 64ξ4 − 4ξ2 + 1

¢
ξ

q
1− ξ2 (14.97)

Z11 = −4ξ2
¡
1− ξ2

¢
(14.98)

Z12 = ω2n

µ
−1 + 2ξ2 + 2ξ

q
1− ξ2

¶
(14.99)

Z13 = ω6n
¡
128ξ10 − 256ξ8 + 144ξ6 − 12ξ4 − 4ξ2

¢
(14.100)

−ω6n
¡
128ξ8 − 192ξ6 + 64ξ4 + 4ξ2 − 1

¢
ξ

q
1− ξ2 (14.101)

Z14 = −4ξ2
¡
1− ξ2

¢
(14.102)

Z15 = ω2n

µ
−1 + 2ξ2 − 2ξ

q
1− ξ2

¶
(14.103)

Therefore, SZ and SẌ over the frequency range 0 < f < 20Hz can be
calculated analytically from Equations (14.83) and (14.84).
Equations (14.85) and (14.86) show that both SẌ and SZ are functions

of only two variables ωn and ξ.

SẌ = SẌ (ωn, ξ) (14.104)

SZ = SZ (ωn, ξ) (14.105)

Therefore, any pair of design parameters (ωn, ξ) determines SẌ and SZ
uniquely. It is also possible theoretically to define ωn and ξ as two functions
of the variables SẌ and SZ .

ωn = ωn (SẌ , SZ) (14.106)

ξ = ξ (SẌ , SZ) (14.107)

So, we would be able to determine the required ωn and ξ for a specific value
of SẌ and SZ .
Using Equations (14.104) and (14.105), we may draw Figure 14.11 to

illustrate how SẌ behaves with respect to SZ when fn and ξ vary. Keeping
fn constant and varying ξ, it is possible to minimize SẌ with respect to SZ .
The minimum points make the optimal curve and determine the best fn
and ξ. The key to use the optimal design curve is to adjust, determine, or
estimate a value for SZ or SẌ and find the associated point on the design
curve.
To justify the optimization principle (14.78), we plot ω2nSẌ/SZ versus fn

in Figure 14.12 for different values of ξ. It shows that increasing either one
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of ξ or fn increases the value of ω2nSẌ/SZ . It is equivalent to making the
suspension more rigid, which causes an increase in acceleration or decrease
in relative displacement. On the contrary, decreasing ξ or fn decreases the
value of ω2nSẌ/SZ , which is equivalent to making the suspension softer.
Softening of a suspension decreases the body acceleration, however it

requires a large room for relative displacement. Due to physical constraints
the wheel travel is limited and hence, we must design the suspension to use
the available suspension travel as much as possible, and decrease the body
acceleration as low as possible. Mathematically it is equivalent to (14.79)
and (14.80).

Example 505 Wheel travel calculation.
Figure 14.13(a) illustrates a double A-arm suspension mechanism at its

equilibrium position. To limit the motion of the wheel with respect to the
body, two stoppers must be employed. There are many possible options for
the type and position of stoppers. Most stoppers are made of stiff rubber
balls and mounted somewhere on the body or suspension mechanism or
both. It is also possible that the damper acts as a stopper. Figure 14.13(a)
shows an example.
The gap sizes δu and δl indicate the upper and lower distances that a

mechanism can move. However, the maximum motion of the wheel must be
calculated at the center of the wheel. So, we transfer δu and δl to the center
of the wheel and show them by du and dl.

du ≈
bu
au

δu (14.108)

dl ≈
bl
al
δl (14.109)

Figure 14.13(b) and (c) show the mechanism at the upper and lower limits
respectively. The distance du is called the upper wheel travel, and dl is
called the lower wheel travel. The upper wheel travel is important in ride
comfort and the lower wheel travel is important for safety. To have better
ride comfort, the upper wheel travel should be as high as possible to make
the suspension as soft as possible.
Although the upper and lower wheel travels may be different, for practical

purposes, we may assume dl = du and design the suspension based on a
unique wheel travel. Wheel travel is also called suspension travel, suspension
room, and suspension clearance.

Example 506 Soft and hard suspensions.
Consider two pieces of equipment, A and B, under a base excitation with

an average amplitude Y = 1cm ≈ 0.5 in. Equipment A has a suspension
travel dA = 1.2 cm ≈ 0.6 in and equipment B has dB = 0.8 cm ≈ 0.4 in.
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FIGURE 14.13. A double A-arm suspension mechanism at (a)- equilibrium, (b)-
upper limit, and (c)- lower limit.
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Let’s assume SZ = du/Y . Therefore,

SZA = 1.2 (14.110)

SZB = 0.8. (14.111)

Using the design chart in Figure 14.14, the optimal suspensions for A
and B are

fnA ≈ 8.53Hz (14.112)

ξA ≈ 0.29 (14.113)

fnB ≈ 10.8Hz (14.114)

ξB ≈ 0.56. (14.115)

Assuming a mass m
m = 300 kg ≈ 660 lb (14.116)

we calculate the optimal spring and dampers as follows:

kA = (2πfnA)
2
m = 8.6175× 105N/m (14.117)

kB = (2πfnB)
2m = 13.814× 105N/m (14.118)

cA = 2ξA
p
kAm = 9325.7N s/m (14.119)

cB = 2ξB
p
kBm = 22800N s/m (14.120)
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SZB = 1.4714.

Equipment B has a harder suspension compared to equipment A. This is
because equipment B has less suspension travel, and hence, it has more
acceleration level ω2nSẌ . Figure 14.14 shows that

ω2nSẌA
≈ 4700 1/ s2 (14.121)

ω2nSẌB
≈ 6650 1/ s2. (14.122)

Example 507 Soft and hard vehicle suspensions.
Consider two vehicles A and B that are moving on a bumpy road with an

average amplitude Y = 10 cm ≈ 3.937 in. Vehicle A has a suspension travel
dA = 14.772 cm ≈ 5.816 in and vehicle B has dB = 14.714 cm ≈ 5.793 in.
Let’s assume SZ = du/Y . Therefore,

SZA = 1.4772 (14.123)

SZB = 1.4714. (14.124)

Using design chart 14.15, the optimal suspensions for vehicles A and B
are:

fnA ≈ 0.7Hz (14.125)

ξA ≈ 0.023 (14.126)

fnB ≈ 1.85Hz (14.127)

ξB ≈ 0.06. (14.128)
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Assuming a mass m
m = 300 kg ≈ 660 lb (14.129)

we calculate the optimal spring and dampers as follows:

kA = (2πfnA)
2
m ≈ 5803N/m (14.130)

kB = (2πfnB)
2m ≈ 40534N/m (14.131)

cA = 2ξA
p
kAm ≈ 60.7N s/m (14.132)

cB = 2ξB
p
kBm ≈ 418.5N s/m (14.133)

These are equivalent dampers and springs at the center of the wheel. The
actual value of the suspension parameters depends on the geometry of the
suspension mechanism and installment of the spring and damper. Because
kB > kA and cB > cA, suspension of vehicle B is harder than that of
vehicle A. This is because vehicle B has less wheel travel, and hence, it has
more acceleration level ω2nSẌ . Figure 14.15 shows that

ω2nSẌB
≈ 220 1/ s2 (14.134)

ω2nSẌA
≈ 28 1/ s2. (14.135)

Example 508 Average vehicle suspension design.
Most street cars with good ride comfort have a natural frequency equal or

less than one Hertz. Optimal suspension characteristics of such a car are

fn ≈ 1Hz (14.136)

ξ ≈ 0.028 (14.137)

SZ ≈ 1.47644 (14.138)

ω2nSẌB
≈ 66 1/ s2 (14.139)

and therefore,

k = (2πfn)
2m ≈ 4π2m (14.140)

c = 2ξ
√
km = 4πξm ≈ 0.112πm. (14.141)

Both k and c are proportional to the mass of the car, m. So, as a good
estimate, we may use Figures 14.16 and 14.17 to design a car suspension.
For example, the optimal k and c for a car withm = 250 kg and fn = 1Hz

are

k = 9869.6N/m (14.142)

c = 87.96N s/m. (14.143)
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FIGURE 14.18. The optimal design curve in plane (SẌ , SZ).

Example 509 Graphical representation of optimal characteristics.
To visualize how the optimal parameters vary with respect to each other,

we draw them in different coordinates. Figure 14.18 illustrates the optimal
curve in plane (SẌ , SZ). Figure 14.19 shows the optimal fn and ξ versus
SZ , and Figure 14.20 shows the optimal fn and ξ versus each other. The
optimal ξ increases slightly with fn for fn . 10Hz and it increases rapidly
for fn & 10Hz. So, as a general rule, when we change the spring of an
optimal suspension with a harder spring, the damper should also be changed
for a harder one.

Example 510 Examination of the optimization of the design curve.
To examine the optimal design curve and compare practical ways to make

a suspension optimal, we assume that there is equipment with an off-optimal
suspension, indicated by point P1 in Figure 14.21.

fn = 10Hz (14.144)

ξ = 0.15 (14.145)

To optimize the suspension practically, we may keep the stiffness constant
and change the damper to a corresponding optimal value, or keep the damp-
ing constant and change the stiffness to a corresponding optimal value.
However, if it is possible, we may change both the stiffness and damping
to a point on the optimal curve depending on the physical constraints and
requirements.
Point P2 in Figure 14.21 has the same fn as point P1 with an optimal

damping ratio ξ ≈ 0.4. Point P3 in Figure 14.21 has the same ξ as point
p1 with an optimal natural frequency fn ≈ 5Hz. Hence, points P2 and P3
are two alternative optimal designs for the off-optimal point P1.
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Figure 14.22 compares the acceleration frequency response G2 for the
three points P1, P2, and P3. Point P3 has the minimum acceleration fre-
quency response. Figure 14.23 depicts the absolute displacement frequency
response G0 and Figure 14.24 compares the relative displacement frequency
response S2 for points P1, P2, and P3. These Figure show that both points
P2 and P3 introduce better suspension than point P1. Suspension P2 has a
higher level of acceleration but needs less relative suspension travel. Suspen-
sion P3 has a lower acceleration, however it needs more room for suspension
travel.

Example 511 Sensitivity of SẌ with respect to SZ on the optimal curve.
Because SẌ is minimum on the optimal curve, the sensitivity of acceler-

ation RMS with respect to relative displacement RMS is minimum at any
point on the optimal curve. Therefore, an optimal suspension has the least
sensitivity to mass variation. If a suspension is optimized for one passen-
ger, it is still near optimal when the number of passengers, and hence the
body mass, is changed.

Example 512 Application of the optimal chart.
Select a desired value for the relative displacement as a traveling space

(or a desired value for the maximum absolute acceleration), and find the
associated values for ωn and ξ at the intersection of the associated vertical
(or horizontal) line with the optimal curve.
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FIGURE 14.23. Absolute displacement frequency response G2 for points P1, P2,
and P3 shown in Figure 14.21.
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FIGURE 14.24. Relative displacement frequency response S2 for points P1, P2,
and P3 shown in Figure 14.21.

Example 513 F Three-dimensional view of the optimal curve.
Figure 14.25 illustrates a 3D view of SẌ for different SZ and fn, to show

the optimal curve in 3D.
Theoretically, we may show the surface by

SẌ = SẌ (SZ , fn) (14.146)

and therefore, the optimal curve can be shown by the condition

OSẌ · êSZ = 0 (14.147)

where êSZ is the unit vector along the SZ-axis and OSẌ is the gradient of
the surface SẌ .

Example 514 F Suspension trade-off and trivial optimization.
Reduction of the absolute acceleration is the main goal in the optimization

of suspensions, because it represents the transmitted force to the body. A
vibration isolator reduces the absolute acceleration by increasing deflection
of the isolator. The relative deflection is a measure of the clearance known
as the working space of the isolator. The clearance should be minimized
due to safety and the physical constraints in the mechanical design.
There is a trade-off between the acceleration and relative motion. The

ratio of ω4nSẌ to SZ is a monotonically increasing function of ωn and ξ.
Keeping SZ constant increases ω4nSẌ by increasing both ωn and ξ. However,
keeping ω4nSẌ constant, decrease SZ by increasing ωn and ξ. Hence, ω4nSẌ
and SZ have opposite behaviors. These behaviors show that ωn = 0 and
ξ = 0 are the trivial and non practical solutions for the best isolation.
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FIGURE 14.25. A three-dimensional view of SẌ for different SZ and fn, to show
the optimal curve.

Example 515 F Plot for RMS of absolute acceleration RMS(G2) = SẌ .
Figures 14.26 and 14.27 illustrate the root mean square of absolute accel-

eration RMS(G2) = SẌ graphically. In Figure 14.26, SẌ is plotted versus
ξ with fn as a parameter, and in Figure 14.27, SẌ is plotted versus fn with
ξ as a parameter.

Example 516 F Plot for RMS of relative displacement RMS(S2) = SZ .
Figures 14.28 and 14.29 illustrate the root mean square of relative dis-

placement RMS(S2) = SZ . In Figure 14.28, SZ is plotted versus ξ with fn
as a parameter and in Figure 14.29, SZ is plotted versus fn with ξ as a
parameter.

Example 517 F RMS(G0) ≡ RMS(X/Y ).
RMS of the absolute displacement, SX , needs the integral of G0 ≡

(X/Y )2, which is determined as follows:Z
G0dω =

Z16

Z17
√
Z18

tan−1
ω√
Z18

+
Z19

Z20
√
Z21

tan−1
ω√
Z21

(14.148)

Z16 = ω2n

µ
−8ξ6 + 8ξ4 −

¡
8ξ4 − 4ξ2 − 1

¢
ξ

q
1− ξ2

¶
(14.149)

Z17 = −4ξ2
¡
1− ξ2

¢
(14.150)

Z18 = ω2n

µ
1− 2ξ2 − 2ξ

q
1− ξ2

¶
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FIGURE 14.26. Plot of root mean square of absolute acceleration RMS(S3) = SẌ
versus ξ with fn as a parameter.

4
n XSω &&

x

k c

m

( )siny Y t= ω

y

[ ]nf Hz
30

.0 05ξ =
.0 1ξ =

.0 15ξ =

.0 2

.0 25

.0 3
.0 4

.0 5
.0 7

.1 0
.1 5

FIGURE 14.27. Plot of root mean square of absolute acceleration RMS(S3) = SẌ
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Z19 = ω2n

µ
8ξ6 − 8ξ4 −

¡
8ξ4 − 4ξ2 − 1

¢
ξ

q
1− ξ2

¶
(14.151)

Z20 = Z17 = −4ξ2
¡
1− ξ2

¢
(14.152)

Z21 = −ω2n
µ
1− 2ξ2 − 2ξ

q
1− ξ2

¶
(14.153)

Now the RMS of absolute displacement SX can be determined analytically.
Figures 14.30 and 14.31 illustrate the root mean square of relative displace-
ment RMS(G0) = SX . In Figure 14.30, SX is plotted versus ξ with fn
as a parameter and in Figure 14.31, SX is plotted versus fn with ξ as a
parameter.

Example 518 F Plot of RMS(G2) = SẌ versus RMS(S2) = SZ .
Figures 14.32 and 14.33 show RMS(G2) = SẌ versus RMS(S2) = SZ

graphically. In Figure 14.32, ω2nSẌ is plotted for constant natural frequen-
cies fn, and in Figure 14.33 for constant ξ. Some of the curves in Figure
14.32 have a minimum, which shows that we may minimize SẌ versus SZ
for constant fn. Such a minimum is the goal of optimization.
Figure 14.33 shows that there is a maximum on some of the constant ξ

curves. These maximums indicate the worst suspension design.
Figure 14.34 illustrates the behavior of SẌ , instead of ω

2
nSẌ , versus SZ .

The minimum point on each curve occurs at the same SZ as in Figure
14.32.
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Example 519 F Alternative optimization methods.
There are various approaches and suggested methods for vibration iso-

lator optimization, depending on the application. However, there is not a
universally accepted method applicable to every application. Every optimiza-
tion strategy can be transformed to a minimization of a function called the
cost function. Considerable attention has been given to minimization of
the absolute displacement, known as themain transmissibility. However,
for a vibration isolator, the cost function may include any state variables
such as absolute and relative displacements, velocities, accelerations, and
even jerks.
Constraints may determine the domain of acceptable design parameters

by dictating an upper and lower limit for ωn and ξ. For vehicle suspension,
it is generally desired to select ωn and ξ such that the absolute acceleration
of the system is minimized and the relative displacement does not exceed a
prescribed level. The most common optimization strategies are as follow:
Minimax absolute acceleration SẌ for specified relative dis-

placement SZ0 . Specify the allowable relative displacement, and then find
the minimax of absolute acceleration

∂SẌ
∂ωn

= 0 (14.154)

∂SẌ
∂ξ

= 0 (14.155)

SZ = SZ0 . (14.156)

Minimax relative displacement SZ for specified absolute accel-
eration SẌ0

. Specify the allowable absolute acceleration, and then find the
minimax relative displacement.

∂SZ
∂ωn

= 0 (14.157)

∂SZ
∂ξ

= 0 (14.158)

SẌ = SẌ0
. (14.159)

Example 520 F More application of the design chart.
The optimization criterion

∂SẌ
∂SZ

= 0 (14.160)

∂2SẌ
∂S2Z

> 0 (14.161)

is based on the root mean square of S2 and G2 over a working frequency
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range.

SZ =

s
1

40π

Z 40π

0

S22dω (14.162)

SẌ =

s
1

40π

Z 40π

0

G2dω (14.163)

The optimal design curve is the optimal condition for suspension of a base
excited system using the following functions:

S2 =
ZB
Y

G2 =
ẌB

ω2nY

However, because

S2 =
ẌF

F/m
=

ZB
Y
=

XE

eεE
=

ZR
eεR

(14.164)

G2 =
ẌB

ω2nY
=

FTB
kY

=
FTE

eω2me
=

FTR
eω2me

³
1 +

ma

m

´
(14.165)

the optimal design curve can also be expressed as a minimization condition
for any other G2-function with respect to any other S2-function, such as
transmitted force to the base

FTE
eω2me

for an eccentric excited system XE

eεE
.

This minimization is equivalent to the optimization of an engine mount.

14.4 F Time Response Optimization

Transient response optimization depends on the type of transient excita-
tion, as well as cost function definition. Figure 14.35 illustrates a 1/8 car
model and a unit step displacement.

y =

½
1 t > 0
0 t ≤ 0 (14.166)

If the transient excitation is a step function, and the optimization crite-
ria is minimization of the peak value of acceleration versus peak value of
relative displacement, then there is optimal ξF for any fn that provides
the best transient behavior of a 1/8 car model. This behavior is shown in
Figure 14.36.

ξF = 0.4 (14.167)
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Proof. The equation of motion for the base excited one-DOF system shown
in Figure 14.35, is

ẍ+ 2ξωn ẋ+ ω2n x = 2ξωn ẏ + ω2n y (14.168)

Substituting y = 1 in Equation (14.168) provides the following initial value
problem to determine the absolute outplacement of the mass m:

ẍ+ 2ξωn ẋ+ ω2n x = ω2n (14.169)

y(0) = 0 (14.170)

ẏ(0) = 0 (14.171)

Solution of the differential equation with zero initial conditions is

x = 1− 1
2

A

ib
e−Aωnt +

1

2

A

ib
e−Aωnt (14.172)

where A and A are two complex conjugate numbers.

A = ξ + i

q
1− ξ2 (14.173)

A = ξ − i

q
1− ξ2 (14.174)

Having x and y = 1 are enough to calculate the relative displacement
z = x− y.

z = x− y

= −1
2

A

ib
e−Aωnt +

1

2

A

ib
e−Aωnt (14.175)

The absolute velocity and acceleration of the mass m can be obtained
from equation (14.172).

ẋ =
1

2

A2ωn
ib

e−Aωnt − 1
2

A
2
ωn
ib

e−Aωnt (14.176)

ẍ = −1
2

A3ω2n
ib

e−Aωnt +
1

2

A
3
ω2n
ib

e−Aωnt (14.177)

The peak value of the relative displacement is

zP = exp

Ã
cos−1

¡
2ξ2 − 1

¢
ωn
p
1− ξ2

!
(14.178)

which occurs when ż = 0 at time t1

t1 =
−ξ cos−1

¡
2ξ2 − 1

¢p
1− ξ2

. (14.179)



14. Suspension Optimization 921

The peak value of the absolute acceleration is

aP = ω2n exp

Ã
−ξ
2 cos−1

¡
2ξ2 − 1

¢
− πp

1− ξ2

!
(14.180)

which occurs at the beginning of the excitation, t = 0, or at the time instant
when

...
x = 0 at time t2

t2 =
2 cos−1

¡
2ξ2 − 1

¢
− π

ωn
p
1− ξ2

. (14.181)

Figure 14.36 is a plot for aP versus zP for different ξ and fn. The min-
imum of the curves occur at ξ = 0.4 for every fn. The optimal ξ can be
found analytically by finding the minimum point of aP versus zP . The
optimal ξ is the solution of the transcendental equation

2ξ cos−1
¡
2ξ2 − 1

¢
− π − 4ξ

q
1− ξ2 = 0 (14.182)

which is ξ = 0.4. The minimum peak value of the absolute acceleration
with respect to relative displacement is independent of the value of natural
frequency fn.

Example 521 F Optimal design curve and time response.
To examine transient response of suspensions on the optimal design curve,

we compare a base excited equipment having an off-optimal suspension, at
point P1, with optimal suspensions at points P2 and P3 in Figure 14.21.
Point P1 is at

fn ≈ 10Hz (14.183)

ξ ≈ 0.15. (14.184)

Points P2 and P3 are two alternative optimizations for point P1. Point
P2 has ξ ≈ 0.4 with the same natural frequency as P1 and point P2 has
fn ≈ 5Hz with the same damping as point P1.
Figure 14.37 illustrates a base excited one-DOF system and a sine square

bump input.

y =

⎧⎨⎩ d2 sin
2 2πv

d1
t 0 < t < 0.1

0 t ≤ 0, t ≥ 0.1
(14.185)

d2 = 0.05m (14.186)

v = 10m/ s (14.187)

d1 = 1m (14.188)
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FIGURE 14.37. A base excited one-DOF system and a sine square bump input.
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The absolute and relative displacement time responses of the system at
points 1, 2, and 3 are shown in Figures 14.38, and 14.39, respectively. The
absolute acceleration of m is shown in Figure 14.40.
System 3 has a lower relative displacement peak value and a lower ab-

solute acceleration peak value, but it takes more time to settle down.

14.5 Summary

A one-DOF base excited system with the equation of motion

ẍ+ 2ξωn ẋ+ ω2n x = 2ξωn ẏ + ω2n y (14.189)

is an applied model for equipment mounted on a vibrating base, as well as
a model for vertical vibration of vehicles. Assuming a variable excitation
frequency, we may determine the relative displacement S2 = |Z/Y | and
absolute acceleration G2 =

¯̄̄
Ẍ/

¡
Y ω2n

¢¯̄̄
frequency responses to optimize

the system. The optimization criterion is

∂SẌ
∂SZ

= 0 (14.190)

∂2SẌ
∂S2Z

> 0 (14.191)

where SZ and SẌ are the root mean square of S2 and G2 over a working
frequency range.

SZ =

s
1

40π

Z 40π

0

S22dω (14.192)

SẌ =

s
1

40π

Z 40π

0

G2dω (14.193)

The optimization criterion states that the minimum absolute acceleration
RMS with respect to the relative displacement RMS, makes a suspension
optimal. The result of optimization may be cast in a design chart to visu-
alize the relationship of optimal ξ and ωn.
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14.6 Key Symbols

a, ẍ acceleration
a, b arm length of displaced spring
c damping
cF optimum damping
ceq equivalent damping
d1 road wave length
d2 road wave amplitude
D dissipation function
f, F force
f = 1

T cyclic frequency [ Hz]
fc damper force
fk spring force
fn cyclic natural frequency [ Hz]
F amplitude of a harmonic force f
g gravitational acceleration
G0 = |X/Y | absolute displacement frequency response

G2 =
¯̄̄
Ẍ/Y ω2n

¯̄̄
absolute acceleration frequency response

k stiffness
kF optimum stiffness
keq equivalent stiffness
K kinetic energy
L Lagrangean
m mass
r = ω

ωn
frequency ratio

S2 = |Z/Y | relative displacement frequency response
SZ RMS of S2
SẌ RMS of G2
t time
T period
v,v, ẋ, ẋ velocity
V potential energy
x absolute displacement
X steady-state amplitude of x
y base excitation displacement
Y steady-state amplitude of y
z relative displacement
Z steady-state amplitude of z
Zi short notation parameter

α tilted spring angle
δ spring deflection
δ displacement
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ξ = c
2
√
km

damping ratio
ω = 2πf angular frequency [ rad/ s]
ωn natural frequency

Subscript
eq equivalent
f front
l low
r rear
s sprung
u unsprung
u up
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Exercises

1. Equivalent McPherson suspension parameters.

Figure 14.41(a) illustrates a McPherson suspension. Its equivalent
vibrating system is shown in Figure 14.41(b).

(a) (b)

k

a

b

c keq ceq

y

x
α

k

y

x

FIGURE 14.41. A McPherson suspension and its equivalent vibrating system.

(a) Determine keq and ceq if

a = 22 cm

b = 45 cm

k = 10000N/m

c = 1000N s/m

α = 12deg .

(b) Determine the stiffness k such that the natural frequency of the
vibrating system is fn = 1Hz, if

a = 22 cm

b = 45 cm

m = 1000/4 kg

α = 12deg .
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(a) (b)

keq ceq

y

x

a

b

y

α

FIGURE 14.42. A double A-arm suspension and its equivalent vibrating system.

(c) Determine the damping c such that the damping ratio of the
vibrating system is ξ = 0.4, if

a = 22 cm

b = 45 cm

m = 1000/4 kg

α = 12deg

fn = 1Hz.

2. Equivalent double A-arm suspension parameters.

Figure 14.42(a) illustrates a double A-arm suspension. Its equivalent
vibrating system is shown in Figure 14.42(b).

(a) Determine keq and ceq if

a = 32 cm

b = 45 cm

k = 8000N/m

c = 1000N s/m

α = 10deg .

(b) Determine the stiffness k such that the natural frequency of the
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vibrating system is fn = 1Hz, if

a = 32 cm

b = 45 cm

m = 1000/4 kg

α = 10deg .

(c) Determine the damping c such that the damping ratio of the
vibrating system is ξ = 0.4, if

a = 32 cm

b = 45 cm

m = 1000/4 kg

α = 10deg

fn = 1Hz.

3. Road excitation frequency.

A car is moving on a wavy road. What is the wave length d1 if the
excitation frequency is fn = 5Hz and

(a) v = 30km/h

(b) v = 60km/h

(c) v = 100km/h.

4. F Road excitation frequency and wheelbase.

A car is moving on a wavy road.

(a) What is the wave length d1 if the excitation frequency is fn =
8Hz and v = 60 km/h?

(b) What is the phase difference between the front and rear wheel
excitations if car’s wheelbase is l = 2.82m?

(c) At what speed the front and rear wheel excitations have no phase
difference?

5. F Road excitation amplitude.

A car is moving on a wavy road with a wave length d1 = 25m. What
is the damping ratio ξ if S2 = Z/Y = 1.02 when the car is moving
with v = 120km/h?

k = 10000N/m

m = 1000/4 kg
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6. Optimized suspension comparison.

A car with m = 1000/4 kg is moving on a wavy road with a wave
length d1 = 45m and wave amplitude d2 = 8 cm at v = 120km/h.
What is the best suspension parameters if the equivalent wheel travel
of the car at the wheel center is

(a) 5 cm?

(b) 8 cm?

(c) 12 cm?

(d) Calculate G0, G2, S2, SZ , SẌ , X, Z, and Ẍ in each case.

7. Suspension optimization and keeping k or c.

Consider a base excited system with

k = 10000N/m

m = 1000/4 kg

c = 1000N s/m.

(a) Determine the best k for the same c.

(b) Determine the best c for the same k.

(c) Determine the value of SZ and SẌ in each case.

8. Suspension optimization for minimum SZ .

A base excited system has

k = 250000N/m

m = 2000 kg

c = 2000N s/m.

Determine the level of acceleration RMS SẌ that transfers to the
system.

9. Peak values and step input.

A base excited system has

k = 10000N/m

m = 1000/4 kg

c = 1000N s/m.

What is the acceleration and relative displacement peak values for a
unit step input?

10. F Acceleration peak value and spring stiffness.

Explain why the ξ-constant curves are vertical lines in the plane
(aP , zP ).
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F Quarter Car
The most employed and useful model of a vehicle suspension system is
a quarter car model, shown in Figure 15.1. We introduce, examine, and
optimize the quarter car model in this chapter.

mu

ku

xu

ms
xs

ks cs

y

FIGURE 15.1. A quarter car model.

15.1 Mathematical Model

We may represent the vertical vibration of a vehicle using a quarter car
model made of two solid masses ms and mu denoted as sprung and un-
sprung masses, respectively. The sprung mass ms represents 1/4 of the
body of the vehicle, and the unsprung mass mu represents one wheel of
the vehicle. A spring of stiffness ks, and a shock absorber with viscous
damping coefficient cs, support the sprung mass and are called the main
suspension. The unsprung mass mu is in direct contact with the ground
through a spring ku, representing the tire stiffness.
The governing differential equations of motion for the quarter car model

shown in Figure 15.1, are:

msẍs + cs (ẋs − ẋu) + ks (xs − xu) = 0 (15.1)

muẍu + cs (ẋu − ẋs) + (ku + ks)xu − ksxs = kuy. (15.2)
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Proof. The kinetic energy, potential energy, and dissipation function of
the system are as below.

K =
1

2
msẋ

2
s +

1

2
msẋ

2
s (15.3)

V =
1

2
ks (xs − xu)

2 +
1

2
ku (xu − y)2 (15.4)

D =
1

2
cs (ẋs − ẋu)

2 (15.5)

Employing the Lagrange method,

d

dt

µ
∂K

∂ẋs

¶
− ∂K

∂xs
+

∂D

∂ẋs
+

∂V

∂xs
= 0 (15.6)

d

dt

µ
∂K

∂ẋu

¶
− ∂K

∂xu
+

∂D

∂ẋu
+

∂V

∂xu
= 0 (15.7)

we find the equations of motion

ms ẍs = −ks (xs − xu)− cs (ẋs − ẋu) (15.8)

mu ẍu = ks (xs − xu) + cs (ẋs − ẋu)− ku (xu − y) (15.9)

which can be expressed in a matrix form

[m] ẋ+ [c] ẋ+ [k]x = F (15.10)

∙
ms 0
0 mu

¸ ∙
ẍs
ẍu

¸
+

∙
cs −cs
−cs cs

¸ ∙
ẋs
ẋu

¸
+∙

ks −ks
−ks ks + ku

¸ ∙
xs
xu

¸
=

∙
0
kuy

¸
. (15.11)

Example 522 Tire damping.
We may add a damper cu in parallel to ku, as shown in Figure, to model

any damping in tires. However, the value of cu for tires, compared to cs,
are very small, and hence, we may ignore cu to simplify the model. Having
the damper cu in parallel to ku, makes the equation of motion the same as
Equations (12.47) and (12.48) with a matrix form as Equation (12.50).

Example 523 Mathematical model’s limitations.
The quarter car model contains no representation of the geometric effects

of the full car and offers no possibility of studying longitudinal and lateral
interconnections. However, it contains the most basic features of the real
problem and includes a proper representation of the problem of controlling
wheel and wheel-body load variations.
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In the quarter car model, we assume that the tire is always in contact
with the ground, which is true at low frequency but might not be true at
high frequency. A better model must be able to include the possibility of
separation between the tire and ground.

Example 524 F History of quarter car model optimization.
Optimal design of two-DOF vibration systems, including a quarter car

model, is the subject of numerous investigations since the invention of the
vibration absorber theory by Frahm in 1909. It seems that the first analytical
investigation on the damping properties of two-DOF systems is due to Den
Hartog (1901− 1989).

15.2 Frequency Response

To find the frequency response, we consider a harmonic excitation,

y = Y cosωt (15.12)

and look for a harmonic solution in the form

xs = A1 sinωt+B1 cosωt

= Xs sin (ωt− ϕs) (15.13)

xu = A2 sinωt+B2 cosωt

= Xu sin (ωt− ϕu) (15.14)

z = xs − xu

= A3 sinωt+B3 cosωt

= Z sin (ωt− ϕz) (15.15)

where Xs, Xu, and Z are complex amplitudes.
By introducing the following dimensionless characteristics:

ε =
ms

mu
(15.16)

ωs =

r
ks
ms

(15.17)

ωu =

r
ku
mu

(15.18)

α =
ωs
ωu

(15.19)

r =
ω

ωs
(15.20)

ξ =
cs

2msωs
(15.21)
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we may search for the following frequency responses:

μ =

¯̄̄̄
Xs

Y

¯̄̄̄
(15.22)

τ =

¯̄̄̄
Xu

Y

¯̄̄̄
(15.23)

η =

¯̄̄̄
Z

Y

¯̄̄̄
(15.24)

and obtain the following functions:

μ2 =
4ξ2r2 + 1

Z21 + Z22
(15.25)

τ2 =
4ξ2r2 + 1 + r2

¡
r2 − 2

¢
Z21 + Z22

(15.26)

η2 =
r4

Z21 + Z22
(15.27)

Z1 =
£
r2
¡
r2α2 − 1

¢
+
¡
1− (1 + ε) r2α2

¢¤
(15.28)

Z2 = 2ξr
¡
1− (1 + ε) r2α2

¢
(15.29)

The absolute acceleration of sprung mass and unsprung mass may be
defined by the following equations:

u =

¯̄̄̄
¯ Ẍs

Y ω2u

¯̄̄̄
¯ (15.30)

= r2α2μ (15.31)

v =

¯̄̄̄
¯ Ẍu

Y ω2u

¯̄̄̄
¯ (15.32)

= r2α2τ (15.33)

Proof. To find the frequency responses, let’s apply a harmonic excitation

y = Y cosωt (15.34)

and assume that the solutions are harmonic functions with unknown coef-
ficients.

xs = A1 sinωt+B1 cosωt (15.35)

xu = A2 sinωt+B2 cosωt. (15.36)

Substituting the solutions in the equations of motion (15.1)-(15.2) and
collecting the coefficients of sinωt and cosωt in both equations provides
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the following set of algebraic equations for A1, B1, A2, B2 :

[A]

⎡⎢⎢⎣
A1
A2
B1
B2

⎤⎥⎥⎦ =
⎡⎢⎢⎣

0
0

kuY
0

⎤⎥⎥⎦ (15.37)

where [A] is the coefficient matrix.

[A] =

⎡⎢⎢⎣
ks −msω

2 −ks −csω csω
csω −csω ks −msω

2 −ks
−ks ks + ku −muω

2 csω −csω
−csω csω −ks ks + ku −muω

2

⎤⎥⎥⎦
(15.38)

The unknowns may be found by matrix inversion⎡⎢⎢⎣
A1
A2
B1
B2

⎤⎥⎥⎦ = [A]−1
⎡⎢⎢⎣

0
0

kuY
0

⎤⎥⎥⎦ (15.39)

and therefore,the amplitudes Xs and Xu can be found.

X2
s = A21 +B2

1

=
ku
ks

¡
ω2c2s + k2s

¢
Z23 + Z24

Y 2 (15.40)

X2
u = A22 +B2

2

=
ku
ks

¡
ω4m2

s + ω2c2s − 2ω2ksms + k2s
¢

Z23 + Z24
Y 2 (15.41)

Z3 = −
¡
ω2 (ksms + ksmu + kums)− ksku − ω4msmu

¢
(15.42)

Z4 = −
¡
ω3 (csms + csmu)− ωcsku

¢
(15.43)

Having Xs and Xu helps us to calculate z and its amplitude Z.

z = xs − xu

= (A1 −A2) sinωt+ (B1 −B2) cosωt

= A3 sinωt+B3 cosωt

= Z sin (ωt− ϕz) (15.44)

Z2 = A23 +B2
3

=
ku
ks

ω4m2
s

Z23 + Z24
Y 2 (15.45)
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r

sX
Y

μ =

0ξ =

1.0

0.8

0ξ =

ξ = ∞

1.5 .
3
0 2

ε =
α =

FIGURE 15.2. A sample for the sprung mass displacement frequency response,
μ = Xs

Y
.

Taking twice the derivative of μ and τ ends up the acceleration frequency
responses u and v for the unsprung and sprung masses. Equations (15.30)-
(15.33) express u and v.
Using the definitions (15.16)-(15.21), we may transform Equations (15.40),

(15.41), and (15.45) to (15.25), (15.26), and (15.27). Figures 15.2, 15.3, and
15.4, are samples of the frequency responses μ, τ , and η for ε = 3, and
α = 0.2.

Example 525 Average value of parameters for street cars.
Equations (15.25)-(15.27) indicate that the frequency responses μ, τ , and

η are functions of four parameters: mass ratio ε, damping ratio ξ, natural
frequency ratio α, and excitation frequency ratio r. The average, minimum,
and maximum of practical values of the included parameters are indicated
in Table 14.1.
For a quarter car model, it is known that ms > mu, and therefore, ε > 1.

Typical mass ratio, ε, for vehicles lies in the range 3 to 8, with small cars
closer to 8 and large cars near 3. The excitation frequency ω is equal to ωu,
when r = 1/α, and equal to ωs, when r = 1. For a real model, the order of
magnitude of the stiffness is ku > ks, so ωu > ωs, and α < 1. Therefore,
r > 1 at ω = ωu. So, we expect to have two resonant frequencies greater



15. F Quarter Car 937

r

uX
Y

τ =

0ξ =

0.5

.0 2ξ =ξ = ∞

.
3
0 2

ε =
α =

1.0

0ξ =

0ξ =

FIGURE 15.3. A sample of the unsprung mass displacement frequency response,
τ = Xu

Y .

r

Z
Y

η =

0ξ =

0.5

ξ = ∞

.
3
0 2

ε =
α =

1.0

0ξ =

0.8

1.0

1.5

FIGURE 15.4. A sample of the relative displacement frequency response, η = Z
Y
.
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than r = 1.

Table 14.1 - Average value of quarter car parameters.
Parameter Average Minimum Maximum

ε =
ms

mu
3− 8 2 20

ωs =

r
ks
ms

1 0.2 1

ωu =

r
ku
mu

10 2 20

r =
ω

ωs
0− 20Hz 0 200Hz

α =
ωs
ωu

0.1 0.01 1

ξ =
cs

2msωs
0.55 0 2

Example 526 F Three-dimensional visualization for frequency responses.

To get a sense about the behavior of different frequency responses of a
quarter car model, Figures 15.5 to 15.8 are plotted for

ms = 375kg

mu = 75kg

ku = 193000N/m

ks = 35000N/m.

15.3 F Natural and Invariant Frequencies

The system is a two-DOF system and therefore it has two natural frequen-
cies. The natural frequencies rn1 , rn2 , of a quarter car are

rn1 =

s
1

2α2

µ
1 + (1 + ε)α2 −

q
(1 + (1 + ε)α2)

2 − 4α2
¶
(15.46)

rn2 =

s
1

2α2

µ
1 + (1 + ε)α2 +

q
(1 + (1 + ε)α2)2 − 4α2

¶
. (15.47)

The family of response curves for the displacement frequency response of
the sprung mass, μ, are obtained by keeping ε and ξ constant, and varying
ξ. This family has several points in common, which are at frequencies r1,
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sX
Y

μ =

[ ]f Hz

[ ]/sc Ns m

FIGURE 15.5. Three-dimensional view of the frequency response μ = Xs
Y
.

uX
Y

τ =

[ ]f Hz

[ ]/sc Ns m

FIGURE 15.6. Three-dimensional view of the frequency response τ = Xu
Y
.
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Z
Y

η =

[ ]f Hz

[ ]/sc Ns m

FIGURE 15.7. Three-dimensional view of the frequency response η = Z
Y
.

s
2
n

Xu
Y

=
ω

&&

[ ]f Hz

[ ]/sc Ns m

FIGURE 15.8. Three-dimensional view of the frequency response u = Ẍs
Y ω2u

.
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r2, r3, r4, and μ1, μ2, μ3, μ4.⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r1 = 0 μ1 = 1

r3 =
1

α
μ3 =

1

ε

r2 μ2 =
1

1− (1 + ε) r22α
2

r4 μ4 =
−1

1− (1 + ε) r22α
2

(15.48)

r2 =

s
1

2α2

µ
1 + 2 (1 + ε)α2 −

q
(1 + 2 (1 + ε)α2)2 − 8α2

¶
(15.49)

r4 =

s
1

2α2

µ
1 + 2 (1 + ε)α2 +

q
(1 + 2 (1 + ε)α2)2 − 8α2

¶
(15.50)

where

r1 (= 0) < r2 <
1

α
√
1 + ε

< r3

µ
=
1

α

¶
< r4 (15.51)

the corresponding transmissivities at r2 and r4 are

μ2 =
1

1− (1 + ε) r22α
2

(15.52)

μ4 =
−1

1− (1 + ε) r22α
2

(15.53)

The frequencies r1, r2, r3, and r4 are called invariant frequencies, and their
corresponding amplitudes are called invariant amplitudes because they are
not dependent on ξ. However, they are dependent on the values of ε and
α. The order of magnitude of the natural and invariant frequencies are:

r1 (= 0) < rn1 < r2 <
1

α
√
1 + ε

< r3 <

µ
=
1

α2

¶
< rn2 < r4 (15.54)

The curves for μ have no other common points except r1, r2, r3, and r4.
The order of frequencies along with the order of corresponding amplitudes
can be used to predict the shape of the frequency response curves of the
sprung mass μ. Figure 15.9 shows schematically the shape of the amplitude
μ versus excitation frequency ratio r.
Proof. Natural and resonant frequencies of a system are where the ampli-
tude goes to infinity when damping is zero. Hence, the natural frequencies
would be the roots of the denominator of the μ function.

g
¡
r2
¢
= r2

¡
r2α2 − 1

¢
+
¡
1− (1 + ε) r2α2

¢
= α2r2 −

¡
1 + (1 + ε)α2

¢
+ 1 = 0 (15.55)
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r

μ

0ξ =ξ = ∞0ξ =

1nr 0nr 2nr2r 3r 4r1r 0=

1.0

0 < ξ < ∞

FIGURE 15.9. Schematic illustration of the amplitude μ versus excitation fre-
quency ratio r.

The solution of this equation are the natural frequencies given in Equations
(15.46) and (15.47).

μ2 =
4ξ2r2 + 1

Z21 + Z22
(15.56)

τ2 =
4ξ2r2 + 1 + r2

¡
r2 − 2

¢
Z21 + Z22

(15.57)

η2 =
r4

Z21 + Z22
(15.58)

The invariant frequencies are not dependent ξ, so they can be found by
intersecting the μ curves for ξ = 0 and ξ =∞.

lim
ξ→0

= ± 1

(r2 (r2α2 − 1)− r2α2 (ε+ 1) + 1)2
(15.59)

lim
ξ→∞

= ± 1

(r2α2 (ε+ 1)− 1)2
(15.60)

Therefore, the invariant frequencies, ri, can be determined by solving the
following equation:

r2
¡
r2α2 − 1

¢
+
¡
1− (1 + ε) r2α2

¢
= ±

¡
1− (1 + ε) r2α2

¢
(15.61)

Using the (+) sign, we find r1 and r3 with their corresponding transmis-
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sivities μ1, and μ3,

r1 = 0 μ1 = 1 (15.62)

r3 =
1

α
μ3 =

1

ε
(15.63)

and, with the (−) sign, we find the following equation for r2, and r4:

α2r4 −
¡
1 + 2 (1 + ε)α2

¢
r2 + 2 = 0 (15.64)

Equation (15.64) has two real positive roots, r2 and r4,

r2 =

s
1

2α2

µ
1 + 2 (1 + ε)α2 −

q
(1 + 2 (1 + ε)α2)

2 − 8α2
¶
(15.65)

r4 =

s
1

2α2

µ
1 + 2 (1 + ε)α2 +

q
(1 + 2 (1 + ε)α2)2 − 8α2

¶
(15.66)

with the following relative order of magnitude:

r1 (= 0) < r2 <
1

α
√
1 + ε

< r3

µ
=
1

α

¶
< r4 (15.67)

The corresponding amplitudes at r2, and r4 can be found by substituting
Equations (15.65) and (15.66) in (15.25).

μ2 =
1

1− (1 + ε) r22α
2

(15.68)

μ4 =
−1

1− (1 + ε) r24α
2

(15.69)

It can be checked that

(1 + ε)α2r24 − 1 > ε > 1 (15.70)

and hence,

|r4| <
1

ε
(= μ3) < 1 < |r2| (15.71)

and therefore,

μ2 > 1 (15.72)

μ4 < 1. (15.73)

Using Equation (15.55), we can evaluate g
¡
r22
¢
, g
¡
r24
¢
, and g

¡
r23
¢
as

g
¡
r22
¢
= (1 + ε)α2r22 − 1 < 0 (15.74)

g
¡
r24
¢
= (1 + ε)α2r24 − 1 > 0 (15.75)

g
¡
r23
¢
= g

µ
1

α2

¶
(15.76)
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FIGURE 15.10. A magnification around the nodes for the sprung mass displace-
ment frequency response, μ = Xs

Y
.

therefore, the two positive roots of Equation (15.55), rn1 and rn2
¡
>
√
2 > r2

¢
,

have the order of magnitudes as follows:

r1 (= 0) < rn1 < r2 <
1

α
√
1 + ε

< r3 <

µ
=
1

α2

¶
< rn2 < r4 (15.77)

Example 527 F Nodes of the absolute displacement frequency response
μ.
There are four nodes in the absolute displacement frequency response of

a quarter car. The first node is at a trivial point (r1 = 0, μ1 = 1), which
shows that Xs = Y when the excitation frequency is zero. The fourth
node is at (r4, μ4 < 1). There are also two middle nodes at (r2, μ2 > 1)
and

¡
r3 =

1
α , μ3 =

1
ε

¢
.

Because μ1 ≤ 1 and μ4 ≤ 1, the middle nodes are important in opti-
mization. To have a better view at the middle nodes, Figure 15.10 illus-
trates a magnification of the sprung mass displacement frequency response,
μ =

¯̄
Xs

Y

¯̄
around the middle nodes.

Example 528 F There is no Frahm optimal quarter car.
Reduction in absolute amplitude is the first attempt at optimization. If the

amplitude frequency response μ = μ (r) contains fixed points with respect to
some parameters, then using the Frahm method, the optimization process
is carried out in two steps:



15. F Quarter Car 945

.0 1ε =

1nr

α

1ε =

3ε =5ε =

10ε =

FIGURE 15.11. The natural frequency rn1 as a function of ε and α.

1− We select the parameters that control the position of the invariant
points to equalize the corresponding height at the invariant frequencies, and
minimize the height of the fixed points as far as possible.
2− We find the remaining parameters such that the maximum amplitude

coincides precisely at the invariant points.
For a real problem, the values of mass ratio ε, and tire frequency ωu

are fixed and we are trying to find the optimum values of α and ξ. The
parameters α and ξ include the unknown stiffness of the main spring and
the unknown damping of the main shock absorber, respectively.
The amplitude μi at invariant frequencies ri, shows that the first invari-

ant point (r1 = 0, μ1 = 1) is always fixed, and the fourth one (r4, μ4 < 1)
happens after the natural frequencies. Therefore, the second and third nodes
are the suitable nodes for applying the above optimization steps. However,

μ2 ≤ 1 ≤ μ3 ∀ε > 1 (15.78)

and hence, we cannot apply the above optimization method. It is because
μ2 and μ3 can never be equated by varying α. Ever so, we can still find the
optimum value of ξ by evaluating α based on other constraints.

Example 529 Natural frequency variation.
The natural frequencies rn1 and rn2 , as given in Equations (15.46) and

(15.47), are functions of ε and α. Figures 15.11 and 15.12 illustrate the
effect of these two parameters on the variation of the natural frequencies.
The first natural frequency rn1 ≤ 1 decreases by increasing the mass ratio

ε. rn1 is close to the natural frequency of a 1/8 car model and indicates the
principal natural frequency of a car. Hence, it is called the body bounce
natural frequency. The second natural frequency, rn2 , approaches infinity
when α decreases. However, rn2 ≈ 10Hz for street cars with acceptable ride
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FIGURE 15.12. The natural frequency rn2 as a function of ε and α.

comfort. rn1 relates to the unsprung mass, and is called the wheel hop
natural frequency.
Figure 15.13 that plots the natural frequency ratio rn1/rn2 shows their

relative behavior better.

Example 530 Invariant frequencies variation.
The invariant frequencies r2, r3, and r4, as given in Equation (15.48),

are functions of ε and α. Figures 15.14 to 15.18 illustrate the effect of these
two parameters on the invariant frequencies.
The second invariant frequency r2, as shown in Figure 15.14, is always

less than
√
2 because

lim
α→0

r2 =
√
2. (15.79)

So, whatever the value of the mass ratio, r2 cannot be greater than
√
2.

Such a behavior may not let us control the position of second node freely.
The third invariant frequency r3 as shown in Figure 15.15 is not a func-

tion of the mass ratio and may have any value depending on α. The fourth
invariant frequency r4 is shown in Figure 15.15. r4 increases when α de-
creases. However, r4 settles when α & 0.6.

lim
α→0

r2 =∞ (15.80)

To have a better idea about the behavior of invariant frequencies, Figures
15.17 and 15.18 depict the relative frequency ratio r4/r3 and r3/r2.

Example 531 Frequency response at invariant frequencies.
The frequency response μ is a function of α, ε, and ξ. Damping always

diminishes the amplitude of vibration, so we set ξ = 0 and plot the behavior
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FIGURE 15.13. The natural frequency ratio rn1/rn2 as a function of ε and α.
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FIGURE 15.14. The second invariant frequency r2 as a function of ε and α.
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FIGURE 15.16. The fourth invariant frequency r4 as a function of ε and α.
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FIGURE 15.18. The ratio of r3/r2 as a function of ε and α.
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FIGURE 15.19. Behavior of μ2 as a function of α, ε.

of μ is a function of α, ε. Figure 15.19 illustrates the behavior of μ at the
second invariant frequency r2. Because

lim
α→0

μ2 = 1 (15.81)

μ2 starts at one regardless of the value of ε. The value of μ2 is always an
greater than one and is an increasing function.
Figure 15.20 shows that μ3 is not a function of α and a decreasing func-

tion of ε. Figure 15.21 shows that μ4 ≤ 1 regardless of the value of α and
ε. The relative behavior of μ2, μ3, and μ4 is shown in Figures 15.22 and
15.23.

Example 532 Natural frequencies and vibration isolation of a quarter car.
For a modern, typical passenger car, the values of natural frequencies

are around 1Hz and 10Hz respectively. The former is due to the bounce
of sprung mass and the latter belongs to the unsprung mass. At average
speed, bumps of wavelengths, which are much greater than the wheelbase of
the vehicle, will excite bounce motion of the body, whereas at higher speed,
bumps of wavelengths, which become shorter than a wheelbase length, will
cause heavy vibrations of the unsprung. Therefore, when the wheels hit a
single bump on the road, the impulse will set the wheels into oscillation
at the natural frequency of the unsprung mass around 10Hz. In turn, for
the sprung mass, the excitation will be the frequency of vibration of the
unsprung around 10Hz. Because the natural frequency of the sprung is ap-
proximately 1Hz, then the excellent isolation for sprung mass occurs and
the frequency range around 10Hz has no essential influence on the sprung
discomfort. When the wheel runs over a rough undulating surface, the ex-
citation will consists of a wide range of frequencies. Again, high excitation
frequency at 5Hz to 20Hz means high frequency input to the sprung mass,
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FIGURE 15.21. Behavior of μ4 as a function of α, ε.
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FIGURE 15.24. Root mean square of absolute acceleration, Su = RMS(u) vreus
root mean square of relative displacement Sη = RMS(η), for a quarter car model
and the optimal curve.

which can effectively be isolated. Low frequency excitation, however, will
cause resonance in the sprung mass.

15.4 F RMS Optimization

Figure 15.24 is a design chart for optimal suspension parameters of a base
excited two-DOF system such as a quarter car model. The horizontal axis is
the root mean square of relative displacement, Sη = RMS(η), and the ver-
tical axis is the root mean square of absolute acceleration, Su = RMS(u).

There are two sets of curves that make a mesh. The first set, which is al-
most parallel at the right end, are constant damping ratio ξ, and the second
set is constant natural frequency ratio α. There is a curve, called the opti-
mal design curve, which indicates the optimal main suspension parameters:

The optimal design curve is the result of the following RMS optimization
strategy

Minimize SẌ with respect to SZ (15.82)

which states that the minimum absolute acceleration with respect to the
relative displacement, if there is any, makes the suspension of a quarter
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FIGURE 15.25. Application of the design chart for Sη = 1, which indicates the
optimal values ξ ≈ 0.3 and α ≈ 0.35.

car optimal. Mathematically, it is equivalent to the following minimization
problem:

∂Su
∂Sη

= 0 (15.83)

∂2Su
∂S2η

> 0 (15.84)

To use the design curve and determine optimal stiffness ks and damping
cs for the main suspension of the system, we start from an estimate value
for Sη on the horizontal axis and draw a vertical line to hit the optimal
curve. The intersection point indicates the optimal α and ξ for the Sη.
Figure 15.25 illustrates a sample application for Sη = 0.75, which in-

dicates ξ ≈ 0.3 and α ≈ 0.35 for optimal suspension. Having α, and ξ,
determines the optimal value of ks and cs.

ks = α2
ms

mu
ku (15.85)

cs = 2ξ
p
ksms (15.86)

Proof. The RMS of a function g (α, ξ, ε, ω), is defined by

RMS (g) =

s
1

ω2 − ω1

Z ω2

ω1

g2 (α, ξ, ε, ω) dω
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where ω2 ≤ ω ≤ ω1 is called the working frequency range. Let’s consider a
working range for the excitation frequency 0 ≤ f

¡
= ω

2π

¢
≤ 20Hz to include

almost all ground vehicles, especially road vehicles, and show the RMS of
η and u by

Sη = RMS(η) (15.87)

Su = RMS(u). (15.88)

In applied vehicle dynamics, we usually measure frequencies in [ Hz], instead
of [ rad/ s], we perform design calculations based on cyclic frequencies f and
fn in [ Hz], and we do analytic calculation based on angular frequencies ω
and ωn in [ rad/ s].
To calculate Sη and Su over the working frequency range

Sη =

s
1

40π

Z 40π

0

η2dr (15.89)

Su =

s
1

40π

Z 40π

0

u2dr

= α2

s
1

40π

Z 40π

0

r2μ2dr (15.90)

we first find integrals of η2 and u2.Z
u2dr =

1

2Z6

µ
1

Z1
+ Z1Z5

¶
ln

µ
r − Z1
r + Z1

¶
+
1

2Z7

µ
1

Z2
+ Z2Z5

¶
ln

µ
r − Z2
r + Z2

¶
+
1

2Z8

µ
1

Z3
+ Z3Z5

¶
ln

µ
r − Z3
r + Z3

¶
+
1

2Z9

µ
1

Z4
+ Z4Z5

¶
ln

µ
r − Z4
r + Z4

¶
(15.91)

Z
η2dr =

Z31
2Z6

ln

µ
r − Z1
r + Z1

¶
++

Z32
2Z7

ln

µ
r − Z2
r + Z2

¶
+

Z33
2Z8

ln

µ
r − Z3
r + Z3

¶
+

Z34
2Z9

ln

µ
r − Z4
r + Z4

¶
(15.92)

The parameters Z1 through Z9 are as follows:

Z1 =
1

2

−Z19 +
√
Z23

Z19

1

4

Z15
Z14

(15.93)

Z2 =
1

2

−Z19 −
√
Z23

Z19

1

4

Z15
Z14

(15.94)
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Z3 =
1

2

−Z19 +
√
Z24

Z19

1

4

Z15
Z14

(15.95)

Z4 =
1

2

−Z19 −
√
Z24

Z19

1

4

Z15
Z14

(15.96)

Z5 = 4ξ2 (15.97)

Z6 =
¡
Z21 − Z22

¢ ¡
Z21 − Z23

¢ ¡
Z21 − Z24

¢
(15.98)

Z7 =
¡
Z22 − Z23

¢ ¡
Z22 − Z23

¢ ¡
Z22 − Z21

¢
(15.99)

Z8 =
¡
Z23 − Z24

¢ ¡
Z23 − Z21

¢ ¡
Z23 − Z22

¢
(15.100)

Z9 =
¡
Z24 − Z21

¢ ¡
Z24 − Z22

¢ ¡
Z24 − Z23

¢
(15.101)

Z10 =
1

6
3
p
Z20 +

8Z13 +
2
3Z

2
11

3
√
Z20

+
1

3
Z11 (15.102)

Z11 =
8Z16Z14 − 3Z315

8Z314
(15.103)

Z12 = −4Z16Z14Z15 − Z315 − 8Z214Z17
8Z314

(15.104)

Z13 =
−64Z214Z17Z15 + 256Z314Z18 + 16Z14Z215Z16 − 3Z415

256Z414
(15.105)

Z14 = α4 (15.106)

Z15 = −2α4 (1 + ε)− 2α2 + 4 (1 + ε)2 α4ξ2 (15.107)

Z16 = −8α2ξ2 (1 + ε) + (1 + ε)2 α4 − 2α2 (2 + ε) + 1 (15.108)

Z17 = 4ξ2 − 2α2 (1 + ε)− 2 (15.109)

Z18 = 1 (15.110)

Z19 = Z10 − Z11 (15.111)

Z20 = Z21 + 12
p
Z22 (15.112)

Z21 = −288Z11Z13 + 108Z212 + 8Z311 (15.113)

Z22 = −768Z313 + 384Z211Z213 − 48Z13Z411
−432Z11Z212Z13 + 81Z412 + 12Z311Z212 (15.114)

Z23 = Z19 (Z11 − Z10)− 2Z12Z3/219 (15.115)

Z24 = Z19 (Z11 + Z10) + 2Z12Z
3/2
19 (15.116)
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FIGURE 15.26. RMS of absolute acceleration, Su = RMS(u) vreus RMS of
relative displacement Sη = RMS(η), for a quarter car model.

Now the required RMS, Sη, and Su, over the frequency range 0 < f <
20Hz, can be calculated analytically from Equations (15.89) and (15.90).
Equations (15.89) and (15.90) show that both Sη and Su are functions

of only three variables: ε, α, and ξ.

Sη = Sη (ε, α, ξ) (15.117)

Su = Su (ε, α, ξ) (15.118)

In applied vehicle dynamics, ε is usually a fixed parameter, so, any pair of
design parameters (α, ξ) determines Sη and Su uniquely. Let’s set

ε = 3 (15.119)

Using Equations (15.89) and (15.90), we may draw Figure 15.26 to illus-
trate how Su behaves with respect to Sη when α and ξ vary. Keeping α
constant and varying ξ, it is possible to minimize Su with respect to Sη.
The minimum points make the optimal curve and determine the best α
and ξ. The way to use the optimal design curve is to estimate a value for
Sη or Su and find the associated point on the design curve. A magnified
picture is shown in Figure 15.24.
The horizontal axis is the root mean square of relative displacement,

Sη = RMS(η), and the vertical axis is the root mean square of absolute
acceleration, Su = RMS(u).
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FIGURE 15.27. Two optimal designs at points P2 and P3 for an off-optimal design
quarter car at point P1.

The optimal curve indicates that softening a suspension decreases the
body acceleration, however, it requires a large room for relative displace-
ment. Due to physical constraints, the wheel travel is limited, and hence, we
must design the suspension such that to use the available suspension travel,
and decrease the body acceleration as low as possible. Mathematically it is
equivalent to (15.83) and (15.84).

Example 533 Examination of the optimal quarter car model.
To examine the optimal design curve and compare practical ways to make

a suspension optimal, we assume that there is a quarter car with an off-
optimal suspension, indicated by point P1 in Figure 15.27.

ε = 3 (15.120)

α = 0.35 (15.121)

ξ = 0.4 (15.122)

To optimize the suspension practically, we may keep the stiffness constant
and change the damper to a corresponding optimal value, or keep the damp-
ing constant and change the stiffness to a corresponding optimal value.
However, if it is possible, we may change both, stiffness and damping to
a point on the optimal curve depending on the physical constraints and
requirements.
Point P2 in Figure 15.27 has the same α as point P1 with an optimal
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FIGURE 15.28. Absolute displacement frequency response μ for points P1, P2,
and P3 shown in Figure 15.27.

damping ratio ξ ≈ 0.3. Point P3 in Figure 15.27 has the same ξ as point P1
with an optimal natural frequency ratio α ≈ 0.452. Hence, points P2 and
P3 are two alternative optimal designs for the off-optimal point P1.
Figure 15.28 compares the acceleration frequency response log u for the

three points P1, P2, and P3. Point P3 has the minimum acceleration fre-
quency response. Figure 15.29 depicts the absolute displacement frequency
response logμ and Figure 15.30 compares the relative displacement fre-
quency response log η for the there points P1, P2, P3. These Figures show
that both points P2 and P3 introduce better suspension than point P1. Sus-
pension P2 has a higher level of acceleration but needs less relative sus-
pension travel than suspension P3. Suspension P3 has a lower level of ac-
celeration, but it needs more room for suspension travel than suspension
P2.

Example 534 Comparison of an off-optimal quarter car model with two
optimal.
An alternative method to optimize an off-optimal suspension is to keep

the RMS of relative displacement Sη or absolute acceleration Su constant
and find the associated point on the optimal design curve. Figure 15.31
illustrates two alternative optimal designs, points P2 and P3, for an off-
optimal design at point P1.
The mass ratio is assumed to be

ε = 3 (15.123)
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FIGURE 15.29. Relative displacement frequency response η for points P1, P2,
and P3 shown in Figure 15.27.
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FIGURE 15.30. Absolute acceleration frequency response u for points P1, P2,
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FIGURE 15.31. Two alternative optimal designs at points P2 and P3 for an
off-optimal design quarter car at point P1.

and the suspension characteristics at P1 are

ξ = 0.0465 (15.124)

α = 0.265 (15.125)

Sη = 2 (15.126)

Su = 0.15. (15.127)

The optimal point corresponding to P1 with the same Su is at P2 with the
characteristics

ξ = 0.23 (15.128)

α = 0.45 (15.129)

Sη = 0.543 (15.130)

Su = 0.15 (15.131)

and the optimal point with the same Sη as point P1 is a point at P2 with
the characteristics:

ξ = 0.0949 (15.132)

α = 0.1858 (15.133)

Sη = 2 (15.134)

Su = 0.0982 (15.135)
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FIGURE 15.32. Absolute displacement frequency response μ for points P1, P2,
and P3 shown in Figure 15.31.

Figure 15.32 depicts the sprung mass vibration amplitude μ, which shows
that both points P2 and P3 have lower overall amplitude specially at second
resonance. Figure 15.33 shows the amplitude of relative displacement η be-
tween sprung and unsprung masses. The amplitude of absolute acceleration
of the sprung mass u is shown in Figure 15.34.

Example 535 F Natural frequencies and vibration isolation requirements.
Road irregularities are the most common destructive source of excitation

for passenger cars. Therefore, the natural frequencies of vehicle system are
the primary factors in determining design requirements for conventional
isolators. The natural frequency of the vehicle body supported by the primary
suspension is usually between 0.2Hz and 2Hz, and the natural frequency of
the unsprung mass, called wheel hop frequency, usually is between 2Hz and
20Hz. The higher values generally apply to military vehicles.
The isolation of sprung mass from the uneven road can be improved by

using a soft spring, which reduces the primary natural frequency. Lowering
the natural frequency always improves the ride comfort, however it causes
a design problem due to the large relative motion between the sprung and
unsprung masses. One of the most important constraints that suspension
system designers have to consider is the rattle-space constraint, the maxi-
mum allowable relative displacement. Additional factors are imposed by the
overall stability, reliability, and economic or cost factors.
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FIGURE 15.34. Absolute acceleration frequency response u for points P1, P2,
and P3 shown in Figure 15.31.
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FIGURE 15.35. The optimal value of α as a function of relative displacement
RMS Sη.

Example 536 Optimal characteristics variation.
We may collect the optimal α and ξ and plot them as shown in Figures

15.35 and 15.36. These figures illustrate the trend of their variation. The
optimal value of both α and ξ are decreasing functions of relative displace-
ment RMS Sη. So, when more room is available, we may reduce α and ξ
and have a softer suspension for better ride comfort. Figure 15.37 shows
how the optimal α and ξ change with each other.

15.5 F Optimization Based on Natural Frequency
and Wheel Travel

Assume a fixed value for the mass ratio ε and natural frequency ratio α.
So the position of nodes in the frequency response plot are fixed. Then, an
optimal value for damping ratio ξ is

ξF =

√
Z35
Z36

sq
Z237 − 8α2 + Z37 −

8α2

Z35
(15.136)

where

Z35 = α2 (1 + ε) + 1 (15.137)

Z36 = 4α
√
1 + ε (15.138)

Z37 =
¡
2α2 (1 + ε) + 1

¢
. (15.139)

The optimal damping ratio ξF causes the second resonant amplitude μ2 to
occur at the second invariant frequency r2. The value of relative displace-
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FIGURE 15.36. The optimal value of ξ as a function of relative displacement
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FIGURE 15.37. The optimal α versus optimal ξ for a quarter car with ε = 3.
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ment η at r = r2 for ξ = ξF is,

η2 =

vuuut
³p

Z237 − 8α2 − Z35

´√
1 + ε

2α2
³
Z28

p
Z237 − Z29

´ (15.140)

where,

Z28 = 4α4 (1 + ε)4 − 4α2 (1 + ε)2 (1− ε) +
¡
1 + ε2

¢
(15.141)

Z29 = −8α6 (1 + ε)5 + 12α4 (1 + ε)3 (1− ε)

−2α4 (1 + ε)
¡
1 + 3ε2 − 2ε

¢
+
¡
1 + ε2

¢
(15.142)

Proof. Natural frequencies of the sprung and unsprung masses, as given
in Equations (15.46) and (15.47), are related to ε and α. When ε is set, we
can evaluate α by considering the maximum permissible static deflection,
which in turn adjusts the value of natural frequencies. If the values of α
and ε are determined and kept fixed, then the value of damping ratio ξ
which cause the first resonant amplitude to occur at the second node, can
be determined as optimum damping. For a damping ratio less or greater
than the optimum, the resonant amplitude would be greater.
The frequencies related to the maximum of μ are obtained by differenti-

ating μ with respect to r and setting the result equal to zero

∂μ

∂r
=

1

2μ

∂μ2

∂r

=
1

Z225

¡
8ξ2rZ25 − Z26 − Z27

¢
= 0 (15.143)

where

Z25 =
£
r2
¡
r2α2 − 1

¢
+
¡
1− (1 + ε) r2α2

¢¤2
+4ξ2r2

¡
1− (1 + ε) r2α2

¢2
(15.144)

Z26 = 8ξ2r
¡
4ξ2r2 + 1

¢ ¡
3r2α2 (1 + ε)− 1

¢
×
¡
r2α2 (1 + ε)− 1

¢
(15.145)

Z27 = 4r
¡
4ξ2r2 + 1

¢ £
r2α2 (1 + ε) + r2

¡
1− r2α2

¢
− 1
¤

×
£
α2 (1 + ε)− 2r2α2 + 1

¤
. (15.146)

Now, the optimal value ξF in Equation (15.136) is obtained if the frequency
ratio r in Equation (15.143) is replaced with r2 given by Equation (15.65).
The optimal damping ratio ξF makes μ have a maximum at the second
invariant frequency r2. Figure 15.38 illustrates an example of frequency
response μ for different ξ including ξ = ξF.
Figure 15.39 shows the sensitivity of ξF to α and ε.
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r

sX
Y

μ =

0ξ =

0.8

0ξ =

ξ = ∞

1.5

.
3
0 2

ε =
α =ξ

1.00675ξ =

FIGURE 15.38. A sample of frequency response μ for different ξ including ξ = ξF .
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FIGURE 15.39. the optimal value ξF as a function of α and ε.
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α

2η

2ε =

3ε =
4ε =
6ε =
10ε =

1ε =

FIGURE 15.40. The behavior of η2 for ξ = ξF as a function of α and ε.

Substituting ξF in the general expression of μ, the absolute maximum
value of μ would be equal to μ2 given by equation (15.52). Substituting
r = r2 and ξ = ξF in Equation (15.25) gives us Equation (15.140) for η2.
The lower the natural frequency of the suspension, the more effective the
isolation from road irregularities. So, the stiffness of the main spring must
be as low as possible. Figure 15.40 shows the behavior of η2 for ξ = ξF.

Example 537 Nodes in η2 for ξ = ξF.
The relative displacement at second node, η2, is a monotonically increas-

ing function of α, and has two invariant points. The invariant points of η
may be found from

±r2
£¡
r2α2 − 1

¢
+
¡
1− (1 + ε)α2

¢¤
=

£
r2
¡
r2α2 − 1

¢
+
¡
1− (1 + ε) r2α2

¢¤2
+r2

¡
1− (1 + ε) r2α2

¢
(15.147)

that are,

r1 = 0 η1 = 0 (15.148)

rn0 =
1

α
√
1 + ε

ηn0 = 1 +
1

ε
(15.149)

The value of μ at rn0 is,

μn0 =
α2

ε2
(1 + ε)3

£
4ξ2 + α2 (1 + ε)

¤
. (15.150)
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Example 538 F Maximum value of η.
Figure 15.4 shows that η has a node at the intersection of the curves for

ξ = 0 and ξ =∞. There might be a specific damping ratio to make η have
a maximum at the node. To find the maximum value of η, we have to solve
the following equation for r:

∂η

∂r
=

1

2η

∂η2

∂r

=
1

Z223

¡
4r3Z23 − Z30 − Z31

¢
(15.151)

where

Z23 =
£
r2
¡
r2α2 − 1

¢
+
¡
1− (1 + ε) r2α2

¢¤2
+4ξ2r2

¡
1− (1 + ε) r2α2

¢2
(15.152)

Z30 = 8ξ2r5
£
3r2α2 (1 + ε)− 1

¤ ¡
r2α2 (1 + ε)− 1

¢
(15.153)

Z31 = 4r5
£
r2α2 (1 + ε) + r2

¡
1− r2α2

¢
− 1
¤

×
£
α2 (1 + ε)− 2r2α2 + 1

¤
(15.154)

Therefore, the maximum η occurs at the roots of the equation:

Z32r
8 + Z33r

6 + Z34r
2 − 1 = 0 (15.155)

where

Z32 = α4 (15.156)

Z33 = 2α4ξ2 (1 + ε)2 + α4 (1 + ε)− α2 (15.157)

Z34 = α2 (1 + ε) + 1− 2ξ2. (15.158)

Equation (15.155) has two positive roots when ξ is less than a specific value
of damping ratio, ξη, and one positive root when ξ is greater than ξη, where,

ξη = ξη (α, ξ, ε) . (15.159)

The positive roots of Equation (15.155) are r5 and r6, and the correspond-
ing relative displacements are denoted by η5 and η6, where r5 < r6. The
invariant frequencies r5 and r6 would be equal when ξ ≥ ξη, and they ap-
proach rn0 when ξ goes to infinity. The invariant frequency η6 is greater
than η5 as long as ξ ≤ ξη, and they are equal when ξ ≥ ξη. The relative
displacements η5 and η6 are monotonically decreasing functions of ξ, and
they approach to ηn0 when ξ goes to infinity.
It is seen from (15.149) that the invariant point at rn0 , depends on α and

ε, but the value of ηn0 depends only on ε. If ε is given, then ηn0 is fixed.
Therefore, the maximum value of the relative displacement, η, cannot be less
than ηn0 , and we cannot find any real value for ξ that cause the maximum
of η to occur at rn0 . The optimum value of ξ could be found when we adjust
the maximum value of η6, and is equated to the allowed wheel travel.
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15.6 Summary

The vertical vibration of vehicles may be modeled as a two-DOF linear
system called quarter car model. One-fourth of the body mass, known as
sprung mass, is suspended by the main suspension of the vehicle ks and
cs. The main suspension ks and cs are mounted on a wheel of the vehicle,
known as unsprung mass. The wheel is sitting on the road by a tire with
stiffness ku.
Assuming the vehicle is running on a harmonically bumped road we are

able to find the frequency responses of the sprung and unsprung masses,
and relative displacement can be found analytically by taking advantage of
the linearity of the system. The frequency response of the sprung mass has
four nodes. The first and fourth nodes are usually out of resonance or of
working frequency range. The middle nodes sit at different sides of μ = 1,
and therefore, they cannot be equated and Frahm optimization cannot be
applied.
The root mean square of the absolute acceleration and relative displace-

ment can be found analytically by applying the RMS optimization method.
The RMS optimization method is based on minimizing the absolute accel-
eration RMS with respect to the relative displacement RMS. The result
of RMS optimization introduces an optimal design curve for a fixed mass
ratio.
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15.7 Key Symbols

a, ẍ acceleration
c damping
cs main suspension damper
[c] damping matrix
d1 road wave length
d2 road wave amplitude
D dissipation function
f, F force
f = 1

T cyclic frequency [ Hz]
fc damper force
fk spring force
fn cyclic natural frequency [ Hz]
g
¡
r2
¢

charactristic equation
k stiffness
ks main suspension spring stiffness
ku tire stiffness
keq equivalent stiffness
[k] stiffness matrix
K kinetic energy
L Lagrangean
m mass
ms sprung mass
mu unsprung mass
[m] mass matrix
r = ω/ωs excitation frequency ratio
ri, i ∈ N nodal frequency ratio
rn = ωn/ωs natural frequency ratio
Su = RMS(u) RMS of u
Sη = RMS(η) RMS of η
t time
T period
u = r2α2μ sprung mass acceleration frequency response
v = r2α2τ unsprung mass acceleration frequency response
V potential energy
x absolute displacement
xs sprung mass displacement
xu unsprung mass displacement
X steady-state amplitude of x
Xs steady-state amplitude of xs
Xu steady-state amplitude of xu
y base excitation displacement
Y steady-state amplitude of y
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z relative displacement
Z steady-state amplitude of z
Zi short notation parameter

α = ωs/ωu sprung mass ratio
ε = ms/mu sprung mass ratio
η = |Z/Y | sprung mass relative frequency response
μ = |Xs/Y | sprung mass frequency response
ξ = cs/

¡
2
√
ksms

¢
damping ratio

ξF optimal damping ratio
τ = |Xu/Y | unsprung mass frequency response
ω = 2πf angular frequency [ rad/ s]
ωs =

p
ks/ms sprung mass frequency

ωu =
p
ku/mu unsprung mass frequency

ωn natural frequency

Subscript
i ∈ N node number
n natural
s sprung
u unsprung
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Exercises

1. 10Quarter car natural frequencies.

Determine the natural frequencies of a quarter car with the following
characteristics:

ms = 275 kg

mu = 45 kg

ku = 200000N/m

ks = 10000N/m.

2. Equations of motion.

Derive the equations of motion for the quarter car model that is shown
in Figure 15.1, using the relative coordinates:

(a)

zs = xs − y

zu = xu − y

(b)

z = xs − xu

zu = xu − y

(c)

z = xs − xu

zs = xs − y

3. F Natural frequencies for different coordinates.

Determine and compare the natural frequencies of the three cases in
Exercise 2 and check their equality by employing the numerical data
of Exercise 10.

4. Quarter car nodal frequencies.

Determine the nodal frequencies of a quarter car with the following
characteristics:

ms = 275 kg

mu = 45 kg

ku = 200000N/m

ks = 10000N/m.

Check the order of the nodal frequencies with the natural frequencies
found in Exercise 10.
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5. Frequency responses of a quarter car.

A car is moving on a wavy road with a wave length d1 = 20m and
wave amplitude d2 = 0.08m.

ms = 200 kg

mu = 40 kg

ku = 220000N/m

ks = 8000N/m.

Determine the steady-state amplitude Xs, Xu, and Z if the car is
moving at:

(a) v = 30km/h

(b) v = 60km/h

(c) v = 120km/h.

6. Quarter car suspension optimization.

Consider a car with

ms = 200 kg

mu = 40 kg

ku = 220000N/m

Sη = 0.75

and determine the optimal suspension parameters.

A quarter car has α = 0.45 and ξ = 0.4. What is the required wheel
travel if the road excitation has an amplitude Y = 1cm?

7. F Quarter car and time response.

Find the optimal suspension of a quarter car with the following char-
acteristics:

ms = 220 kg

mu = 42 kg

ku = 150000N/m

Sη = 0.75

and determine the response of the optimal quarter car to a unit step
excitation.

8. F Quarter car mathematical model.

In the mathematical model of the quarter car, we assumed the tire
is always sticking to the road. Determine the condition at which the
tire leaves the surface of the road.
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9. Optimal damping.

Consider a quarter car with α = 0.45 and ε = 0.4. Determine the
optimal damping ratio ξF.
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Appendix A

Frequency Response Curves
There are four types of one-DOF harmonically excited systems as shown
in Figure 12.14:

1− base excitation,
2− eccentric excitation,
3− eccentric base excitation,
4− forced excitation.
The frequency responses of the four systemscan be summarized, labeled

and shown as follows:

S0 =
XF

F/k
(A.1)

=
1q

(1− r2)2 + (2ξr)2
(A.2)

S1 =
ẊF

F/
√
km

(A.3)

=
rq

(1− r2)2 + (2ξr)2
(A.4)

S2 =
ẌF

F/m
=

ZB
Y
=

XE

eεE
=

ZR
eεR

(A.5)

=
r2q

(1− r2)
2
+ (2ξr)

2
(A.6)

S3 =
ŻB
ωnY

=
ẊE

eεEωn
=

ŻR
eεRωn

(A.7)

=
r3q

(1− r2)
2
+ (2ξr)

2
(A.8)

S4 =
Z̈B
ω2nY

=
ẌE

eεEω2n
=

Z̈R
eεRω2n

(A.9)

=
r4q

(1− r2)
2
+ (2ξr)

2
(A.10)
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Appendix B

Trigonometric Formulas
Definitions in Terms of Exponentials

cos z =
eiz + e−iz

2
(B.1)

sin z =
eiz − e−iz

2i
(B.2)

tan z =
eiz − e−iz

i (eiz + e−iz)
(B.3)

eiz = cos z + i sin z (B.4)

e−iz = cos z − i sin z (B.5)

Angle Sum and Difference

sin(α± β) = sinα cosβ ± cosα sinβ (B.6)

cos(α± β) = cosα cosβ ∓ sinα sinβ (B.7)

tan(α± β) =
tanα± tanβ
1∓ tanα tanβ (B.8)

cot(α± β) =
cotα cotβ ∓ 1
cotβ ± cotα (B.9)

Symmetry

sin(−α) = − sinα (B.10)

cos(−α) = cosα (B.11)

tan(−α) = − tanα (B.12)

Multiple Angles

sin(2α) = 2 sinα cosα =
2 tanα

1 + tan2 α
(B.13)

cos(2α) = 2 cos2 α− 1 = 1− 2 sin2 α = cos2 α− sin2 α (B.14)

tan(2α) =
2 tanα

1− tan2 α (B.15)

cot(2α) =
cot2 α− 1
2 cotα

(B.16)
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sin(3α) = −4 sin3 α+ 3 sinα (B.17)

cos(3α) = 4 cos3 α− 3 cosα (B.18)

tan(3α) =
− tan3 α+ 3 tanα
−3 tan2 α+ 1 (B.19)

sin(4α) = −8 sin3 α cosα+ 4 sinα cosα (B.20)

cos(4α) = 8 cos4 α− 8 cos2 α+ 1 (B.21)

tan(4α) =
−4 tan3 α+ 4 tanα
tan4 α− 6 tan2 α+ 1 (B.22)

sin(5α) = 16 sin5 α− 20 sin3 α+ 5 sinα (B.23)

cos(5α) = 16 cos5 α− 20 cos3 α+ 5 cosα (B.24)

sin(nα) = 2 sin((n− 1)α) cosα− sin((n− 2)α) (B.25)

cos(nα) = 2 cos((n− 1)α) cosα− cos((n− 2)α) (B.26)

tan(nα) =
tan((n− 1)α) + tanα
1− tan((n− 1)α) tanα (B.27)

Half Angle

cos
³α
2

´
= ±

r
1 + cosα

2
(B.28)

sin
³α
2

´
= ±

r
1− cosα

2
(B.29)

tan
³α
2

´
=
1− cosα
sinα

=
sinα

1 + cosα
= ±

r
1− cosα
1 + cosα

(B.30)

sinα =
2 tan α

2

1 + tan2 α
2

(B.31)

cosα =
1− tan2 α

2

1 + tan2 α
2

(B.32)

Powers of Functions

sin2 α =
1

2
(1− cos(2α)) (B.33)

sinα cosα =
1

2
sin(2α) (B.34)

cos2 α =
1

2
(1 + cos(2α)) (B.35)

sin3 α =
1

4
(3 sin(α)− sin(3α)) (B.36)
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sin2 α cosα =
1

4
(cosα− 3 cos(3α)) (B.37)

sinα cos2 α =
1

4
(sinα+ sin(3α)) (B.38)

cos3 α =
1

4
(cos(3α) + 3 cosα)) (B.39)

sin4 α =
1

8
(3− 4 cos(2α) + cos(4α)) (B.40)

sin3 α cosα =
1

8
(2 sin(2α)− sin(4α)) (B.41)

sin2 α cos2 α =
1

8
(1− cos(4α)) (B.42)

sinα cos3 α =
1

8
(2 sin(2α) + sin(4α)) (B.43)

cos4 α =
1

8
(3 + 4 cos(2α) + cos(4α)) (B.44)

sin5 α =
1

16
(10 sinα− 5 sin(3α) + sin(5α)) (B.45)

sin4 α cosα =
1

16
(2 cosα− 3 cos(3α) + cos(5α)) (B.46)

sin3 α cos2 α =
1

16
(2 sinα+ sin(3α)− sin(5α)) (B.47)

sin2 α cos3 α =
1

16
(2 cosα− 3 cos(3α)− 5 cos(5α)) (B.48)

sinα cos4 α =
1

16
(2 sinα+ 3 sin(3α) + sin(5α)) (B.49)

cos5 α =
1

16
(10 cosα+ 5 cos(3α) + cos(5α)) (B.50)

tan2 α =
1− cos(2α)
1 + cos(2α)

(B.51)

Products of sin and cos

cosα cosβ =
1

2
cos(α− β) +

1

2
cos(α+ β) (B.52)

sinα sinβ =
1

2
cos(α− β)− 1

2
cos(α+ β) (B.53)

sinα cosβ =
1

2
sin(α− β) +

1

2
sin(α+ β) (B.54)

cosα sinβ =
1

2
sin(α+ β)− 1

2
sin(α− β) (B.55)
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sin(α+ β) sin(α− β) = cos2 β − cos2 α = sin2 α− sin2 β (B.56)

cos(α+ β) cos(α− β) = cos2 β + sin2 α (B.57)

Sum of Functions

sinα± sinβ = 2 sin α± β

2
cos

α± β

2
(B.58)

cosα+ cosβ = 2 cos
α+ β

2
cos

α− β

2
(B.59)

cosα− cosβ = −2 sin α+ β

2
sin

α− β

2
(B.60)

tanα± tanβ = sin(α± β)

cosα cosβ
(B.61)

cotα± cotβ = sin(β ± α)

sinα sinβ
(B.62)

sinα+ sinβ

sinα− sinβ =
tan α+β

2

tan α−+β
2

(B.63)

sinα+ sinβ

cosα− cosβ = cot
−α+ β

2
(B.64)

sinα+ sinβ

cosα+ cosβ
= tan

α+ β

2
(B.65)

sinα− sinβ
cosα+ cosβ

= tan
α− β

2
(B.66)

Trigonometric Relations

sin2 α− sin2 β = sin(α+ β) sin(α− β) (B.67)

cos2 α− cos2 β = − sin(α+ β) sin(α− β) (B.68)



Appendix C

Unit Conversions
General Conversion Formulas

Namb sc ≈ 4.448a × 0.3048b × lba ftb sc

≈ 4.448a × 0.0254b × lba inb sc

lba ftb sc ≈ 0.2248a × 3.2808b × Namb sc

lba inb sc ≈ 0.2248a × 39.37b × Namb sc

Conversion Factors
Acceleration

1 ft/ s2 ≈ 0.3048m/ s2 1m/ s2 ≈ 3.2808 ft/ s2

Angle

1 deg ≈ 0.01745 rad 1 rad ≈ 57.307 deg
Area

1 in2 ≈ 6.4516 cm2 1 cm2 ≈ 0.155 in2
1 ft2 ≈ 0.09290304m2 1m2 ≈ 10.764 ft2
1 acre ≈ 4046.86m2 1m2 ≈ 2.471× 10−4 acre
1 acre ≈ 0.4047 hectare 1 hectare ≈ 2.471 acre

Damping

1N s/m ≈ 6.85218× 10−2 lb s/ ft 1 lb s/ ft ≈ 14.594N s/m
1N s/m ≈ 5.71015× 10−3 lb s/ in 1 lb s/ in ≈ 175.13N s/m

Energy and Heat

1Btu ≈ 1055.056 J 1 J ≈ 9.4782× 10−4 Btu
1 cal ≈ 4.1868 J 1 J ≈ 0.23885 cal
1 kWh ≈ 3600 kJ 1MJ ≈ 0.27778 kWh

Force

1 lb ≈ 4.448222N 1N ≈ 0.22481 lb



994 Appendix C. Unit Conversions

Length

1 in ≈ 25.4mm 1 cm ≈ 0.3937 in
1 ft ≈ 30.48 cm 1m ≈ 3.28084 ft
1mi ≈ 1.609347 km 1km ≈ 0.62137mi

Mass.

1 lb ≈ 0.45359 kg 1 kg ≈ 2.204623 lb
1 slug ≈ 14.5939 kg 1 kg ≈ 0.068522 slug
1 slug ≈ 32.174 lb 1 lb ≈ 0.03.1081 slug

Moment and Torque

1 lb ft ≈ 1.35582Nm 1Nm ≈ 0.73746 lb ft
1 lb in ≈ 8.85075Nm 1Nm ≈ 0.11298 lb in

Moment of Inertia

1 lb ft2 ≈ 0.04214 kgm2 1 kgm2 ≈ 23.73 lb ft2

Power

1Btu/h ≈ 0.2930711W 1W ≈ 3.4121Btu/h
1 hp ≈ 745.6999W 1kW ≈ 1.341 hp
1 hp ≈ 550 lb ft/ s 1 lb ft/ s ≈ 1.8182× 10−3 hp
1 lb ft/h ≈ 3.76616× 10−4W 1W ≈ 2655.2 lb ft/h
1 lb ft/min ≈ 2.2597× 10−2W 1W ≈ 44.254 lb ft/min

Pressure and Stress

1 lb/ in2 ≈ 6894.757Pa 1MPa ≈ 145.04 lb/ in2
1 lb/ ft2 ≈ 47.88Pa 1Pa ≈ 2.0886× 10−2 lb/ ft2

Stiffness

1N/m ≈ 6.85218× 10−2 lb/ ft 1 lb/ ft ≈ 14.594N/m
1N/m ≈ 5.71015× 10−3 lb/ in 1 lb/ in ≈ 175.13N/m

Temperature

◦C = ( ◦F− 32)/1.8
◦F = 1.8 ◦C+ 32

Velocity

1mi/h ≈ 1.60934 km/h 1 km/h ≈ 0.62137mi/h
1mi/h ≈ 0.44704m/ s 1m/ s ≈ 2.2369mi/h
1 ft/ s ≈ 0.3048m/ s 1m/ s ≈ 3.2808 ft/ s
1 ft/min ≈ 5.08× 10−3m/ s 1m/ s ≈ 196.85 ft/min
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Volume

1 in3 ≈ 16.39 cm3 1 cm3 ≈ 0.0061013 in3
1 ft3 ≈ 0.02831685m3 1m3 ≈ 35.315 ft3
1 gal ≈ 3.785 l 1 l ≈ 0.2642 gal
1 gal ≈ 3785.41 cm3 1 l ≈ 1000 cm3



Index
2R planar manipulator

dynamics, 561
equations of motion, 564
ideal, 561
joint 2 acceleration, 280
kinetic energy, 562
Lagrangean, 563
potential energy, 563

4-bar linkages, 309—311, 325, 326,
330, 356

acceleration analysis, 317, 318
concave, 315
convex, 315
coupler angle, 310
coupler link, 310
coupler point, 356—358
coupler point curve, 356—358,

360—362
crank-crank, 319
crank-rocker, 319
crossed, 315
dead positions, 320
designing, 321
elbow-down, 315
elbow-up, 315
Grashoff criterion, 319
input angle, 310
input link, 310
input variable, 310
limit positions, 319
non-crossed, 315
output angle, 310
output link, 310
position analysis, 310
possible configurations, 314
rocker-rocker, 319
spatial, 363
sweep angles, 325

velocity analysis, 315, 316

Acceleration, 184
angular, 272, 277, 278, 280,

281
body point, 263, 280, 281, 523
capacity, 183
centripetal, 280
Coriolis, 525
matrix, 273
tangential, 280

Acceleration
power-limited, 184
traction-limited, 184

Acceleration capacity, 183
Ackerman

condition, 377
history, 392
mechanism, 424

Ackerman
geometry, 379
mechanism, 379
steering, 377, 379

Ackerman condition, 377
Angle

attitude, 230
bank, 230
camber, 96
heading, 230
inclination, 46, 62
pitch, 230
roll, 230
sideslip, 96
spin, 230
steering, 378
tilting, 46
tire contact, 111
tireprint, 111
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yaw, 230
Angular acceleration, 272, 273, 279,

281
combination, 277
in terms of Euler parameters,

278
matrix, 273
relative, 278
vector, 273

Angular momentum, 528, 530—532,
537, 538

2 link manipulator, 535
Angular velocity, 236, 238, 239,

248, 254
alternative definition, 264, 265
alternative proof, 265
combination, 253, 254, 277
coordinate transformation, 256
decomposition, 253
elements of matrix, 257
Euler frequency, 236
instantaneous, 250
instantaneous axis, 251
matrix, 249, 255
principal matrix, 252
transformation, 254
vector, 236, 239, 248

Atan2 function, 64
Attitude angle, 583, 586
Axis-angle rotation, 282—287

B-derivative, 257
Based excitation, 755

acceleration, 761, 764
frequency response, 755
transmitted force, 764
velocity, 761, 764

Bicycle car
mode shape, 854—856
Natural frequency, 854—856
vibration, 851—854

Bicycle model, 599, 607, 615, 618,
629, 682

body force components, 599
camber trust, 690

characteristic equation, 640
coefficient matrix, 634, 683
constant lateral force, 628
control variables, 610, 614, 683,

685
coordinate frame, 581, 582
critical speed, 626
curvature response, 619, 632,

686
eigenvalue, 640
equations of motion, 682, 684
force system coefficients, 604,

620, 681
free dynamics, 692
free response, 636, 643, 692
global sideslip angle, 602
hatchback, notchback, station,

699
input vector, 610, 614, 685
kinematic steering, 605
lateral acceleration response,

619, 632, 687
linearized model, 629
neutral distance, 628
neutral steer, 625
neutral steer point, 628
Newton-Euler equations, 608
oversteer, 625
passing maneuver, 696, 699
roll angle response, 687
roll damping, 679
roll steer, 690
roll stiffness, 679
rotation center, 649
sideslip coefficient, 600, 677
sideslip response, 619
slip response, 686
stability factor, 625
steady state conditions, 632
steady-state motion, 686
steady-state response, 622, 628,

686
step input, 635, 644, 647, 693
time response, 633, 691
time series, 643

Index
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torque coefficient, 679
transient response, 634
understeer, 625
vehicle velocity vector, 601
yaw rate response, 619, 687
zero steer angle, 636

Bump steering, 405

Camber, 481
angle, 96, 145, 148
line, 505
moment, 148
stiffness, 145
theory, 505
torque, 147
trail, 147

Camber angle, 476
Camber theory, 505
Car

classifications, 25
flying, 81

Cartesian
angular velocity, 238

Caster, 480
negative, 480
positive, 480
theory, 495

Caster theory, 495
Catapults, 569
Centrifugal moments, 540
Characteristic equation, 786
Chasles theorem, 288, 300
Christoffel operator, 558
Clutch, 182

dynamics, 178
Foettinger, 182, 183
hydrodynamic, 182

Coordinate frame
body, 583
global, 583
rim, 491
tire, 485
vehicle, 485, 581, 583, 663
wheel, 485
wheel , 596

wheel-body, 485, 597
Coriolis

acceleration, 277, 281
effect, 525
force, 524

Couple, 520, 521
Critical speed, 626
Critically-damped

vibration, 789, 790
Crouse angle, 583, 586
Curvature response, 619, 632, 686
Cycloid, 490, 491

curtate, 491
prolate, 491

Damper, 727
linear, 728
parallel, 730, 731
serial, 729
viscous, 728

Damping ratio, 745
determination, 797

Deviation moments, 540
Differentiating, 257

B-derivative, 257, 260
G-derivative, 257, 263
second, 266
transformation formula, 262,

263
Directions

cosine, 222
principal, 544

Dissipation function, 825, 826
Driveline, 165, 173, 175

clutch, 173
differential, 173
drive shafts, 173
drive wheels, 174
engine, 173
gearbox, 173
propeller shaft, 173

Dynamics
direct, 525
forward, 525

Index



1000

Earth
effect of rotation, 524
kinetic energy, 557
revolution, 557
rotation, 557
rotation effect, 277

Eccentric base excitation, 773, 830
frequency response, 773, 778
mass ratio, 776

Eccentric excitation, 767, 829
acceleration, 772
eccentric mass, 767
eccentricity, 767
frequency response, 767
mass ratio, 768
transmitted force, 773
velocity, 772

Eccentricity, 768
Efficiency, 173

convertor, 174
differential, 179
driveline, 175
engine, 168
mechanical, 177, 178
overall, 174
thermal, 177, 178
transmission, 174
volumetric, 177, 178

Eigenvalue, 786
Eigenvalue problem, 845

characteristic equation, 845
Eigenvector

first-unit, 846
high-unit, 846
last-unit, 846
normal form, 846
normalization, 846

Eigenvector problem, 845
Ellipsoid

energy, 537
momentum, 537

Energy
conservation , 565, 567
Earth kinetic, 557
ellipsoid, 537

kinetic, 521, 522, 525, 529,
533, 537, 554, 727, 826

mechanical, 564, 565
potential, 559, 727, 826

Engine, 165
Diesel, 166
dynamics, 165
efficiency, 168
front, 176
gasoline, 166
ideal, 171
injection Diesel, 166
maximum speed, 184
performance, 165
rear, 176
spark ignition, 166
speed, 179
torque, 178, 179
working range, 187, 200

Envelope, 181
Euler

-Lexell-Rodriguez formula, 285
angles, 231, 233—240
coordinate frame, 238
equation of motion, 528, 532—

534, 538, 540
frequencies, 236, 238, 254
global rotation matrix, 233
inverse matrix, 246
local rotation matrix, 233
rotation matrix, 231, 233, 234,

246
Euler equation

body frame, 532, 533, 540
Eulerian

viewpoint, 271
Excitation

base, 742, 744, 755, 981
eccentric, 742, 744, 981
eccentric base, 742, 744, 981
forced, 742, 744, 981
harmonically, 742, 981

Force, 519, 520, 523
body, 519

Index
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centrifugal, 524
conservative, 559
contact, 519
Coriolis, 524, 525
effective, 524
external, 519
generalized, 552, 555, 559, 826
internal, 519
moment of, 520
potential, 559
resultant, 520
rotating, 533
time varying, 525
total, 520

Force system, 520, 523
equivalent, 520, 523

Forced excitation, 744
acceleration, 749
fequency response, 744
transmitted force, 751
velocity, 749

Formula
Euler-Lexell-Rodriguez, 285
Rodriguez, 285

Four wheel steering, 407
Frame

central, 527
principal, 529, 533, 541, 544

Free dynamics, 692
Free response, 636, 643, 692
Free system, 843
Frequency

angular, 728
cyclic, 728
damped natural, 788
natural , 787
nodal, 807
ratio, 745
response, 742, 745

Frequency ratio, 745
Frequency response, 742
Freudenstein’s equation, 312, 321
Friction ellipse, 155, 156
Friction mechanisms, 132
Front-engined, 176

Front-wheel-drive, 176
Front-wheel-steering, 377
Fuel

consumption, 170
Full car

mode shape, 868
natural frequency, 868
vibration, 862—865, 868

Function
dissipation, 826
Rayleigh, 826

G-derivative, 257
Gear ratio, 179
Gear reduction ratio, 174
Gearbox, 178, 180, 184, 185, 187,

188, 190, 191, 193, 196,
200, 202

design, 187, 188, 190, 191, 193,
196, 200, 202

dynamics, 178
geometric, 188, 191, 193, 196,

200, 202
progressive, 190, 191
stability condition, 184, 185
step jump, 188

Gearbox ratio, 174
Generalized

coordinate, 552, 555, 556, 559,
560

force, 552, 554, 555, 557, 559,
561, 564

Global sideslip angle, 598, 602
Gough diagram, 141
Grashoff criterion, 319

Half car
antiroll bar, 858, 861
mode shape, 859—861
natural frequency, 859—861
vibration, 857, 858

Heading angle, 583, 586
Helix, 288
Hermitian form, 837
Homogeneous matrix, 289

Index
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Hook joint, 363
Hydroplaning, 18

dynamic, 19
rubber, 19
speed, 19
viscous, 19

Instant center, 346
application, 350
number of, 349
of acceleration, 355

Inverted slider-crank mechanism,
339

acceleration analysis, 345
application, 346
coupler point curve, 361
input-output, 339
possible configurations, 342
velocity analysis, 343, 344

Jackknifing, 398
Joint, 309

coordinate, 309
prismatic, 309
revolute, 309
universal, 363

Kennedy theorem, 347
Kinematics

acceleration, 272
Kinetic energy, 521, 522, 537, 554

Earth, 557
rigid body, 533
rotational body, 529

Kronecker’s delta, 243, 257, 528,
551

Lagrange
equation, 825, 827
equation of motion, 552—557,

559
mechanics, 559
method, 825

Lagrange equation
explicit form, 558

Lagrangean, 559, 825, 827
viewpoint, 271

Lateral acceleration response, 619,
632, 687

Law
of motion, 521
second of motion, 521, 526
third of motion, 521

Linearized model, 629
oversteer, 633
understeer, 633

Link, 309
ground, 310

Linkage, 309
4-bar, 309
coupler link, 310
dyad, 322, 329
four-bar, 310
ground link, 310
input angle, 310
output link, 310
two-link, 322, 329

Location vector, 290, 292, 496

Manipulator
2R planar, 561
one-link, 560

Manjaniq, 569
Mass center, 521, 522, 526, 527
Matrix

angular velocity, 249
Euler rotation, 233
global rotation, 220
local rotation, 226
skew symmetric, 245, 246, 249,

283
McPherson suspension

equivalent vibrating model, 886
kinematic model, 463

Mechanism, 310
closed loop, 310
instant center, 346
inversion, 339
inverted slider-crank, 339
open loop, 310

Index
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parallel, 310
pole, 346
serial, 310
slider-crank, 332
steering, 383, 401
suspension, 346
trapezoidal steering, 383

Mode shape, 843
Moment, 519, 520, 523

external, 532
resultant, 520, 532
total, 520

Moment of inertia, 540
about a line, 551
about a plane, 551
about a point, 551
about the origin, 552
characteristic equation, 549
diagonal elements, 540, 548
eigenvalues, 543, 548
eigenvectors, 548
elements, 540
frame-dependent, 541
Huygens-Steiner theorem, 543
matrix, 540
off-diagonal elements, 540
parallel-axes theorem, 541—543
polar, 540
principal, 541, 542, 544, 550
principal axes, 529
principal invariants, 549
product, 540
rigid body, 528, 531, 532
rotated-axes theorem, 541—543

Moment of momentum, 520
Moments of inertia

determination, 799
Momentum, 520

angular, 520, 521, 528, 530—
532, 537

angular , 538
ellipsoid, 537
linear, 520
translational, 520

Natural frequency, 745, 787, 843
determination, 799

Neutral distance, 628
Neutral steer, 625, 626
Neutral steer point, 628
Newton

equation in body frame, 527
equation of motion, 521, 526,

528, 534, 552
equations of motion, 554
Lagrange form, 554
rotating frame, 524

Onager, 569
One-eighth car model, 881, 886

absolute acceleration, 888
absolute displacement, 888, 890,

891
damping ratio, 882
design curve, 919
equation of motion, 882
excitation frequency, 887
frequency response, 888, 892
hard suspension, 898, 901
model, 737
natural frequency, 882
optimal characteristics, 902
optimal damping, 902
optimal design chart, 904
optimal design curve, 892, 904,

906
optimal stiffness, 902
optimal suspension, 901
optimization, 892
optimization strategy, 894
relative displacement, 888, 890,

891
soft suspensions, 898, 901
step input, 916
suspension clearance, 898
suspension room, 898
suspension travel, 898
time response, 916, 919
trade-off, 909
wheel travel , 898

Index
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working frequency range, 894
Optimization

alternative method, 912
cost function, 915
design curve, 951
one-eighth car, 881, 892
quarter car, 951
RMS, 892, 951
time response, 916, 919
transient response, 916, 919
trivial, 909
vehicle suspension, 902
vibration, 802—810
wheel travel, 962

Orthogonality condition, 242
Over-damped

vibration, 789, 790
Oversteer, 625, 626, 647

Passing maneuver, 696, 699
Pendulum

chain, 833
double, 832
inverted, 740
oscillating, 556
simple, 274, 555
spherical, 560

Permutation symbol, 257
Pitch moment, 582
Planar dynamics, 607, 615

attitude angle, 586
body force components, 599
characteristic equation, 640
coefficient matrix, 634
constant lateral force, 628
control variables, 610, 614
coordinate frame, 581, 582
critical speed, 626
crouse angle, 586
curvature response, 619, 632
eigenvalue, 640
force system coefficients, 604,

620
free response, 636, 643
global sideslip angle, 602

heading angle, 586
input vector, 610, 614
kinematic steering, 605
lateral acceleration response,

619, 632
linearized model, 629
neutral distance, 628
neutral steer, 625
neutral steer point, 628
Newton-Euler, 587
Newton-Euler equations, 608
oversteer, 625
rotation center, 649
sideslip coefficient, 600
sideslip response, 619
stability factor, 625
steady state conditions, 632
steady-state response, 622, 628
steady-state turning, 618
step input, 635, 644, 647
time response, 633
time series, 643
transient response, 634
understeer, 625
vehicle velocity vector, 601
wheel number, 584
yaw rate response, 619
zero steer angle, 636

Plot
gear-speed, 194, 196, 202
power, 191, 202
progressive, 190
working range, 191

Poinsot’s construction, 537
Pole, 297
Potential

energy, 559
force, 559
kinetic, 559

Power
at wheel, 175
constant, 171
driveline, 175
engine, 175
equation, 166
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friction, 178
ideal, 171
law, 176
maximum, 172
peak, 171
performance, 165, 166, 168,

170, 171
units, 169

Power steering, 405

Quadrature, 836, 837
asymmetric, 837

Quarter car, 840
model, 737
natural frequency, 849
sprung mass, 849
unsprung mass, 849

Quarter car model, 929
3-D frequency response, 936
body bounce frequency, 944
coefficient matrix, 933
dimensionless characteristics,

931
equations of motion, 930
frequency response, 931—934,

942, 944
history, 931
invariant amplitude, 939
invariant frequency, 936, 939,

944
main suspension, 929
mathematical model, 929
natural frequency, 936, 939,

943
nodal amplitude, 941
nodal frequency, 939—941
optimal characteristics, 962
optimal design curve, 951, 956
optimization, 951
optimization strategy, 952
principal natural frequency,

944
resonant frequency, 939
sprung mass, 929
street cars, 934

tire damping, 930
unsprung mass, 929
wheel hop frequency, 944
wheel travel, 962
working frequency range, 953

Rear wheel steering, 387
Rear-engined, 176
Rear-wheel drive, 176
Resonance, 848
Resonance zone, 748
Ride, 825
Ride comfort, 825
Rigid body

acceleration, 279
angular momentum, 530—532
centroid, 271
Euler equation, 532, 533
Euler equation of motion, 538
kinetic energy, 533
moment of inertia, 528, 531,

532
moment-free motion, 537
principal rotation matrix, 548
rotational kinetics, 528
steady rotation, 534
translational, 526
velocity, 267, 269

Rim, 1, 3, 21—23
alloy, 23
diameter, 3
flange, 21
hub, 21
spider, 21
width, 5

Road pavement, 121
Rodriguez

rotation formula, 285, 286, 291,
295

Roll angle, 582, 664
Roll angle response, 687
Roll axis, 468
Roll center, 350, 468, 470
Roll dynamics, 663

bicycle model, 675
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camber trust, 690
coefficient matrix, 683
control variables, 683, 685
curvature response, 686
equations of motion, 682, 684
force system, 669
force system coefficients, 681
free dynamics, 692
free response, 692
hatchback, notchback, station,

699
input vector, 685
lateral acceleration response,

687
lateral force, 672
Newton-Euler equations, 664,

667, 668
passing maneuver, 696, 699
roll angle response, 687
roll damping, 679
roll steer, 690
roll stiffness, 679
roll-steering angle, 672
sideslip angle, 672
sideslip coefficient, 677
slip response, 686
steady-state motion, 686
steady-state response, 686
step input, 693
time response, 691
tire slip coefficient, 673
torque coefficient, 679
two-wheel model, 675
vehicle slip coefficient, 674
wheel force system, 669
yaw rate response, 687

Roll moment, 582
Roll-pitch-yaw

frequency, 239
global angles, 225, 230
global rotation matrix, 225,

230
Rolling disc, 831
Rolling friction, 115, 117, 119, 122

Rolling resistance, 114, 117, 119,
121, 122, 124, 126, 127

Rotation, 285
about global axis, 219, 223
about local axis, 226, 229
axis-angle, 282, 285—287
direction cosines, 222, 227
general matrix, 241
global Euler matrix, 247
global matrices, 222
instantaneous axis, 251
instantaneous center, 271
local Euler matrix, 247
local matrix, 230
matrix, 224
nutation, 231
off-center axis, 299
order of, 224
orthogonal, 224
orthogonality condition, 242
pitch, 225
pole, 271
precession, 231
radius of, 378, 381
roll, 225
roll-pitch-yaw matrix, 230
spin, 231
successive, 223, 229
X-matrix, 220
x-matrix, 226
Y-matrix, 220
y-matrix, 226
yaw, 225
Z-matrix, 220
z-matrix, 226

Rotation matrix
element of, 242

SAE steering definition, 629
Screw, 290, 300

axis, 288
central, 289, 290, 292, 294
coordinate, 288
general, 290
left-handed, 288
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location vector, 288, 290
motion, 288
parameters, 288, 297
pitch, 288
principal, 299
right-handed, 288
rotation, 288
special case, 296
transformation, 292, 294, 296,

299
translation, 288
twist, 288

Second derivative, 266
Sideslip angle, 96, 583, 598
Sideslip coefficient, 599, 600
Sideslip response, 619
Slider-crank mechanism, 332

acceleration analysis, 337, 338
coupler point curve, 360
input angle, 332
input-output, 332
limit positions, 338
possible configurations, 334
quick return, 339
slider position, 332
velocity analysis, 335, 336

Slip response, 686
Speed equation, 178, 180, 181
Speed ratio, 174
Speed span, 189
Spring, 727

linear, 728
massive, 734
parallel, 730, 731
serial, 729
stiffness, 728

Stability factor, 622, 625
Steering, 377, 378, 408

4WS factor, 417
Ackerman, 423
Ackerman condition, 377
Ackerman mechanism, 424
active steer, 419
autodriver, 420
bicycle model, 378, 379, 418

command, 402
comparison, 418
counter steer, 413
error, 385, 423, 430, 432
four wheel, 407—417, 419, 420
front wheel, 377
independent rear wheel drive,

390
inner steer angle, 377, 378,

408
inner wheel, 377, 378, 387,

389, 408
inner-outer relationship, 378,

383
jackknifing, 398, 433
kinematic, 377, 381, 387
kinematic condition, 377, 379,

418
locked rear axle, 385—387
maximum radius, 381
mechanism, 383, 401—403
midline, 394
more than two axles, 393, 394
multi-link, 425
offset, 405
optimization, 423, 425, 427,

429, 430, 432
outer steer angle, 377, 378,

408
outer wheel, 377, 378, 387,

389, 408
passive steer, 419
Pitman arm, 401
racecars, 390
radius of curvature, 416
rear wheel, 387
reverse efficiency, 403
same steer, 413
self-steering wheels, 396
sign convection, 413, 417
sign convention, 408
six-wheel vehicle, 394
smart steer, 419
space requirement, 381, 399
speed dependent, 392
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steer angle, 378
steering length, 417
trapezoidal, 407, 423, 424
trapezoidal mechanism, 383,

385, 423
turning center, 407, 413—415
turning radius, 378, 379, 381,

412, 413, 417
unequal tracks, 389
with trailer, 396, 398, 433—

440, 442—445
Steering axis

caster angle, 496
caster plane, 497
forward location, 497
lateral location, 497
lean angle, 496
lean plane, 497

Steering mechanisms
drag link, 402
lever arm, 402
multi-link, 403
optimization, 423, 425, 427,

429, 430, 432
parallelogram, 401
Pitman arm, 401
rack-and-pinion, 401
steering wheel, 401
tie rod, 402
trapezoidal, 423

Steering ratio, 401
Step input, 635, 647, 794
Step jump, 188
Step response, 794

overshoot, 796
peak time, 796
peak value, 796
rise time, 796
settling time, 796
steady-state, 796

Step steer input, 644, 649
Suspension

anti-tramp bar, 455
antiroll bar, 467
camber, 481

camber angle, 476
caster, 480
caster angle, 496
caster plane, 497
Chebyshev linkage, 457
De Dion, 462
dead axle, 462
dependent, 453
double A-arm, 463
double triangle, 457
double wishbone, 463
equilibrium position, 473
Evance linkage, 457
forward location, 497
four-bar linkage, 473
Hotchkiss, 454
independent, 463, 466, 467
lateral location, 497
lean angle, 496
lean plane, 497
live axle, 462
location vector, 497
McPherson, 463, 886
multi-link, 463
optimization, 881
Panhard arm, 457
rest position, 473
Robert linkage, 457
roll axis, 468
roll center, 350, 468, 470
S shape problem, 454
semi-trailing arm, 467
short/long arm, 463
solid axle, 453—455, 457, 460,

462
spung mass, 454
stabilizer, 468
steering axis, 496, 497
straight line linkages, 457
swing arm, 466
swing axle, 466
toe, 477
trailing arm, 466
triangulated linkage, 457
trust angle, 481
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twisting problem, 455
unsprung mass, 454
unsprung mass problem, 460
vibration, 881
Watt, 457
with coil spring, 462

Suspension mechanism, 330, 346,
453

Chapman, 346
double A arm, 330
double wishbone, 330
dynamic requirement, 484
kinematic requirement, 483,

484
McPherson, 346

Symbols, xv

Theorem
Chasles, 300, 523
Chasles , 288
Huygens-Steiner, 543
Kennedy, 347, 470
parallel-axes, 541, 543
Poinsot, 523
rotated-axes, 541

Time derivative, 257
Time response, 785

free dynamics, 692
free response, 692
hatchback, notchback, station,

699
homogeneous, 785
homogeneous solution, 785
initial condition, 791—793
initial-value problem, 785
non-homogeneous, 785
particular solution, 785
passing maneuver, 696, 699
step input, 693
vehicle dynamics, 633, 634,

691
Time series, 636, 643
Tire, 1, 95

adhesion friction, 132

aligning moment, 98, 136, 138,
139, 150

American, 6
aspect ratio, 3, 6
bank moment, 96
bead, 11, 13
belt, 12
bias ply, 3
bias-ply, 15
blocks, 17
bore torque, 98
camber angle, 127, 148, 150
camber arm, 148
camber force, 145, 148
camber moment, 148
camber stiffness, 145, 152
camber torque, 147
camber trail, 147
camber trust, 145
Canadian, 7
carcass, 12
circumferential slip, 129
cold welding friction, 132
combined force, 152
combined slip, 155, 156
components, 11
contact angle, 111
coordinate frame, 95, 98, 485
cords, 13
cornering force, 139
cornering stiffness, 136, 139
critical speed, 119
damping structure, 117
deflection, 101
deformation friction, 133
diameter, 5
dissipated power, 123
DOT index, 6
drag force, 139
E-Mark, 7
effective radius, 109, 111, 112
equivalent radius, 130
equivalent speed, 128
European, 7, 8
force system, 96, 151
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forces model, 157
forward force, 96
forward velocity, 110
friction, 131, 132
friction coefficient, 127
friction ellipse, 155
friction stress, 108
function, 17
geometric radius, 109, 112
grip, 139
groove, 12, 17, 19
height, 1, 4
hydroplaning, 18
hysteresis, 103
inflation, 10
inflation pressure, 112, 124,

125
inner liner, 11
lateral force, 96, 136, 138, 141,

143—146, 148
lateral load, 108
lateral ratio, 135
lateral stiffness, 136
lateral stress, 144
light truck, 8
load, 111
load index, 3, 4
loaded height, 109
longitudinal force, 96, 127
longitudinal friction, 131
longitudinal ratio, 135
longitudinal slip, 127, 128, 152
lugs, 17
M&S, 6
motorcycles, 123
non-radial, 15, 16, 117
non-radiale, 150
normal force, 96
normal load, 104, 106, 107
normal stress, 104, 106, 107,

115, 117
overturning moment, 96
pitch moment, 98
plane, 95
plus one, 10

pneumatic trail, 138
racecar, 122
radial, 3, 15, 16, 117
radial displacement, 113
radiale, 150
radius, 5
roll moment, 96
rolling friction, 115, 117, 119,

122
rolling radius, 109
rolling resistance, 114, 117,

119, 121, 122, 124, 126,
127

rolling resistance torque, 98
rubber, 12—14
SAE coordinate frame, 98
section height, 1
section width, 1
self aligning moment, 98
shallow, 16
shear stress, 108
side force, 139
sideslip angle, 126, 136, 148,

152
sidewall, 1, 9, 10, 12
size, 1, 2, 5
slick, 122
sliding line, 137
slip coefficient, 128
slip models, 133, 134
slip moment, 138
slip ratio, 127—131, 133, 134,

152
slots, 17
spare, 24
speed index, 3, 5, 6
spring structure, 117
stiffness, 98, 101—103, 136
stress, 104, 106—108
tangential slip, 129
tangential stress, 108, 109
tilting torque, 96
tireprint, 20
tireprint angle, 111
tireprint model, 151

Index



1011

tread, 12, 13, 17, 18, 114
tread travel, 114
tread wear index, 9
tube-type, 16
tubeless, 16
type index, 2
UTQG index, 9
vertical force, 96
voids, 17
wear, 20
wear friction, 133
weight, 6
wheel load, 96
width, 1, 2, 5
yaw moment, 98

Tireprint, 20, 96, 104, 106, 151
angle, 111

Toe, 477
Toe-in, 477
Toe-out, 477
Torque, 520

at wheel, 176, 179
equation, 166
maximum, 172
peak, 171
performance, 166, 168, 179

Track, 378
Traction

force, 178
Traction equation, 178, 180, 181
Trailer, 59, 65
Transformation

general, 241
tire to vehicle frame, 493
tire to wheel frame, 488
tire to wheel-body frame, 489,

490
wheel to tire frame, 486, 488
wheel to wheel-body frame,

491
wheel-body to vehicle frame,

495
Transformation matrix

elements, 243
Transient response

free dynamics, 692
free response, 692
hatchback, notchback, station,

699
passing maneuver, 696, 699
step input, 693
vehicle dynamics, 634, 691

Transmission ratio, 174, 175, 179
Transmission ratios, 185
Trapezoidal steering, 383, 385
Tread, 17, 18

grooves, 17
lugs, 17
slots, 17
voids, 17

Trebuchet, 567
Trigonometric equation, 64
Trochoid, 491
Trust angle, 481
Turning center, 407, 413—415
Two-wheel vehicle, 599, 605, 607,

615, 618, 629, 682
body force components, 599
camber trust, 690
characteristic equation, 640
coefficient matrix, 634, 683
constant lateral force, 628
control variables, 610, 614, 683,

685
coordinate frame, 581, 582
critical speed, 626
curvature response, 619, 632,

686
eigenvalue, 640
equations of motion, 682, 684
force system coefficients, 604,

620, 681
free dynamics, 692
free response, 636, 643, 692
global sideslip angle, 602
hatchback, notchback, station,

699
input vector, 610, 614, 685
kinematic steering, 605
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lateral acceleration response,
619, 632, 687

linearized model, 629
neutral distance, 628
neutral steer, 625
neutral steer point, 628
Newton-Euler equations, 608
oversteer, 625
passing maneuver, 696, 699
roll angle response, 687
roll damping, 679
roll steer, 690
roll stiffness, 679
rotation center, 649
sideslip coefficient, 600, 677
sideslip response, 619
slip response, 686
stability factor, 625
steady state conditions, 632
steady-state motion, 686
steady-state response, 622, 628,

686
step input, 635, 644, 647, 693
time response, 633, 691
time series, 643
torque coefficient, 679
transient response, 634
understeer, 625
vehicle velocity vector, 601
yaw rate response, 619, 687
zero steer angle, 636

Under-damped
vibration, 789, 790

Understeer, 625, 626, 644
Unit system, xv
Universal joint, 363, 365—367, 369—

371
history, 369, 371
speed ratio, 366, 367

Vector
bounded, 521
line, 521
line of action, 521

sliding, 521
Vehicle, 25

accelerating, 50, 52, 54, 55,
57, 58

classifications, 25
FHWA classifications, 25
ISO classifications, 25
longitudinal dynamics, 39, 41,

42, 44, 46—48, 50, 52, 54,
55, 57, 58, 65, 67, 68, 71—
74, 76, 78, 80—82, 86

mass center, 72
mass center position, 41, 42,

44
maximum acceleration, 52, 54,

57, 58
more than two axles, 74, 76
on a banked road, 65, 67
on a crest, 78, 80—82
on a dip, 82, 86
on a level pavement, 39
on an inclined pavement, 44,

48
optimal brake force, 68, 71
optimal drive force, 68, 71,

72
passenger car classifications,

28, 30
wheel loads, 40
wheel locking, 73
with a trailer, 59, 65

Vehicle dynamics
180 deg quick turn, 616
aligning moment, 582
attitude angle, 583, 586
bank moment, 582
bicycle model, 599, 601, 607,

615, 618, 629, 675
body force components, 599
body force system, 595
camber trust, 690
characteristic equation, 640
coefficient matrix, 634, 683
coefficients matrix, 610, 615
constant lateral force, 628
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control variables, 610, 614, 615,
683, 685

critical speed, 626
crouse angle, 583, 586
curvature response, 619, 632,

686
direct, 635
eigenvalue, 640
equations of motion, 601, 682,

684
force system, 582, 669
force system coefficients, 604,

620, 681
forward, 635
forward force, 582
four-wheel-steering, 611
free dynamics, 692
free response, 636, 643, 692
front-wheel-steering, 631
general motion, 668
hatchback, notchback, station,

699
heading angle, 583, 586
indirect, 635
input vector, 610, 614, 685
inputs vector, 615
inverse, 635
Lagrange method, 590
lateral acceleration response,

619, 632, 687
lateral force, 582, 598, 603,

672
lateral moment, 582
linearized model, 629, 632
longitudinal force, 582
neutral, 625, 626
neutral distance, 628
neutral steer, 625
neutral steer point, 628
Newton-Euler, 587
Newton-Euler equations, 608,

664
normal force, 582
oversteer, 625, 626
overturning moment, 582

passing maneuver, 696, 699
path of motion, 592
pitch angle, 582, 664
pitch moment, 582
pitch rate, 582, 664
planar, 581
principal method, 592
rear-wheel-steering, 615
rigid vehicle, 581, 663
roll angle, 582, 664
roll angle response, 687
roll damping, 679
roll dynamics, 663, 664, 668
roll moment, 582
roll rate, 582, 664
roll rigid vehicle, 668
roll steer, 690
roll stiffness, 679
roll-steering angle, 672
rotation center, 649
SAE steering definition, 629
second-order equations, 652
sideslip angle, 583, 672
sideslip coefficient, 600, 677
sideslip coefficients , 599
sideslip response, 619
six DOF, 667
slip response, 686
stability factor, 622, 625
steady state conditions, 632
steady-state motion, 686
steady-state response, 622, 628,

686
steady-state turning, 618
steer angle, 600
step input, 635, 644, 647, 693
step steer input, 649
tilting torque, 582
time response, 633, 644, 647,

691
time series, 636, 643
tire force system, 595
tire lateral force, 597
tire slip coefficient, 673
torque coefficient, 679
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traction force, 582
transient response, 634, 691
two-wheel model, 599, 601, 607,

615, 618, 629, 675
understeer, 625, 626
vehicle load, 582
vehicle slip coefficient, 674
vehicle velocity vector, 601
vertical force, 582
wheel force system, 669
wheel frame, 596
wheel number, 584
yaw angle, 582, 664
yaw moment, 582
yaw rate, 582, 664
yaw rate response, 619, 687
zero steer angle, 636

Vehicle vibration, 825
alternative optimization, 912
antiroll bar, 858, 861
base excited model, 881
bicycle car, 851, 854—856
body pitch, 851
body roll, 857, 858
bounce, roll, and pitch, 862
dissipation function, 826
driver, 840
excitation frequency, 887
frequency response, 888
full car, 862—865
half car, 857, 858
Lagrange equation, 826
Lagrange method, 826
McPherson suspension, 886
mode shape, 843, 859—861, 868
natural frequenc, 868
natural frequency, 843, 859—

861
one-eighth model, 881
optimal design curve, 892
optimization, 881
optimization strategy, 894
quadrature, 836
quarter car, 840, 929
sprung mass, 881

time response, 916, 919
wheel travel , 898
working frequency range, 894

Velocity
body point, 523

Vibration
1/8 car model, 737
absorber, 802
amplitude, 744
angular frequency, 728
angular lag, 745
application, 797
base excitation, 742, 755, 981
beating, 753
characteristic equation, 845
cyclic frequency, 728
damping ratio, 745
discrete model, 736
displacedspring, 885, 886
dynamic amplitude, 748
eccentric base excitation, 742,

981
eccentric excitation, 742, 981
eigenvalue problem, 845
eigenvector problem, 845
equilibrium position, 736
Equivalent system, 738
excitation, 729
forced, 729, 748
forced excitation, 742, 981
Frahm absorber, 803—810
Frahm damper, 803—810
free, 791—793
free system, 843
frequency ratio, 745
frequency response, 742, 745,

749
harmonic, 729
initial condition, 791—793
isolator, 802
lumped model, 736
measurement, 797
mechanical, 727
natural frequency, 745
Newton’s method, 736
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nontrivial solution, 845
optimization theory, 802—810
orthogonality functions, 752
periodic, 729
phase, 745
quarter car model, 737
random, 729
resonance zone, 748
rest position, 845
ride comfort, 825
stable, 736
static amplitude, 748
steady-state solution, 742
step input, 794
tilted spring, 883, 885, 886
transient, 729
transmitted force, 751, 764
trivial solution, 845
two-DOF base excited, 739
unstable, 737
vehicle, 825
work of a harmonic force, 793

Viration
characteristic equation, 786
characteristic parameters, 786
critically-damped, 789
damped natural frequency, 788
eigenvalues, 786
forced, 785
forced classification, 780
free, 785
initial-value problem, 785
natural frequency, 787, 788
over-damped, 789
time response, 785, 786
transient response, 786
under-damped, 789

Virtual
displacement, 555
work, 555

Wheel, 21, 22
angular velocity, 109
camber angle, 483
coordinate frame, 483, 485

degrees-of-freedom, 483
forward velocity, 110
history, 25
non-steerable, 484
spin, 483
steer angle, 483
steerable, 484
wire spoke, 23

Wheel number, 584
Wheel travel, 898

lower, 898
upper, 898

Wheel-body
coordinate frame, 485

Wheelbase, 378
Windshield wiper, 322

double-arm opposing, 322
double-arm parallel , 322
sweep angles, 325

Work, 522, 525
virtual, 555

Work-energy principle, 522
Wrench, 523

Yaw moment, 582
Yaw rate response, 619, 687
Yaw velocity, 386
Yoke joint, 363

Zero steer input, 636
Zero velocity point, 271
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