Lecture slides for this course have been prepared by Dr. Le Minh Huy, EEE, Phenikaa University

Deep Learning Chapter 2 Building Neural Network from Scratch

Dr. Van-Toi NGUYEN *EEE, Phenikaa University*

Chapter 2: Building Neural Network from Scratch

- 1. Shallow neural network
- 2. Deep neural network
- 3. Building neural network: step-by-step (modulation)
- 4. Regularization
- 5. Dropout
- 6. Batch Normalization
- 7. Optimizers
- 8. Hyper-parameters
- 9. Practice

Chapter 1: Course Infor & Programming review week 1

- 1. Course introduction and grades
- 2. History of Deep learning
- 3. Deep learning applications

Chapter 2: Building Neural Network from Scratch – week 2-7

- 1. Shallow neural network week 2
- 2. Deep neural network week 3
- 3. Building neural network: step-by-step (modulation) week 3
- 4. Regularization week 4
- 5. Dropout week 4
- 6. Batch Normalization week 5
- 7. Optimizers week 6
- 8. Hyper-parameters week 7
- 9. Practice- week

Midterm

Chapter 3: Convolutional Neural Network - week 8-10

- 1. Convolutional operator
- 2. History of CNN
- 3. Deep Convolutional Models
- 4. Layers in CNN
- 5. Applications of CNN
- 6. Practice

Midterm summary

Chapter 4: TensorFlow Library- week 11-13

- 1. Introduction to TensorFlow
- 2. Building a deep neural network with TensorFlow
- 3. Applications
- 4. Practice

Chapter 5: Recurrent Neural Network week 14-15

- 1. Unfolding Computational Graphs
- 2. Building a Recurrent Neural Networks
- 3. Long Short-Term Memory
- 4. Vision with Language Processing
- 5. Application of RNN
- 6. Practice

45 hours at Classes: Theory + Coding practice

90 hours shelf-study at home: Theory + Coding practice

Supervised: Learning with a labeled training set of data Example: learn the *classification* of images based on image labels (dogs/cats, day time, numbers, etc.)

Unsupervised: Discover **patterns** in **unlabeled** data Example: *cluster* similar documents based on text

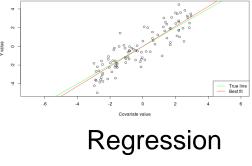
Example: learn to play Go, reward: win or lose

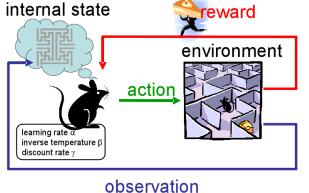
Reinforcement learning: learn to act based on feedback/reward Classification

Sources: http://mbjoseph.github.io/2013/11/27/measure.html https://becominghuman.ai/the-very-basics-of-reinforcement-learning-154f28a79071

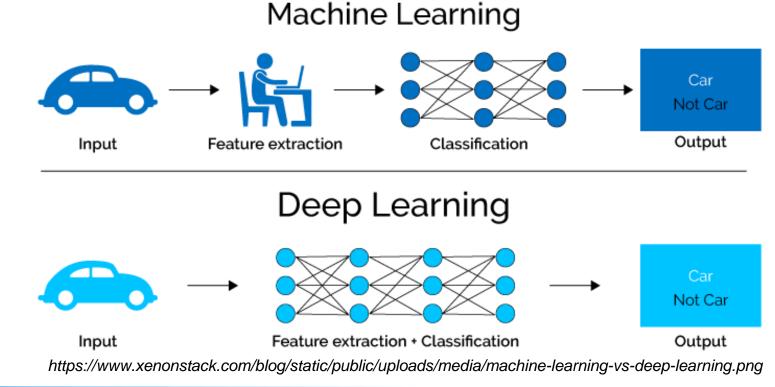
internal state action learning rate inverse temperature ß discount rate y

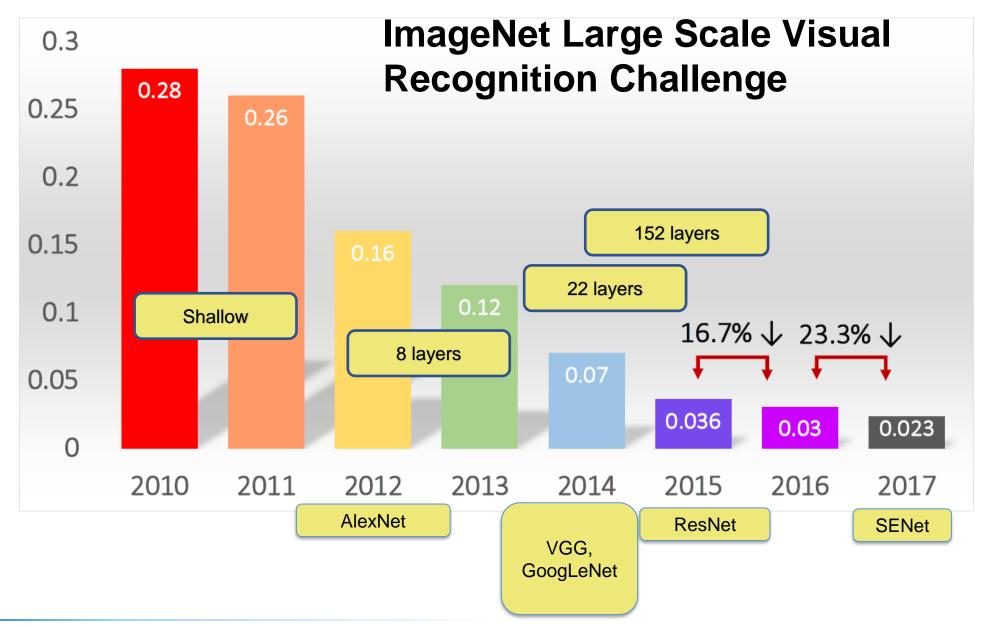
Clustering





- A sub-field of machine learning for learning representations of data.
- Exceptionally effective at learning patterns.
- Deep learning algorithms attempt to learn (multiple levels of) representation by using a hierarchy of multiple layers
- If you provide the system tons of information, it begins to understand it and respond in useful ways.





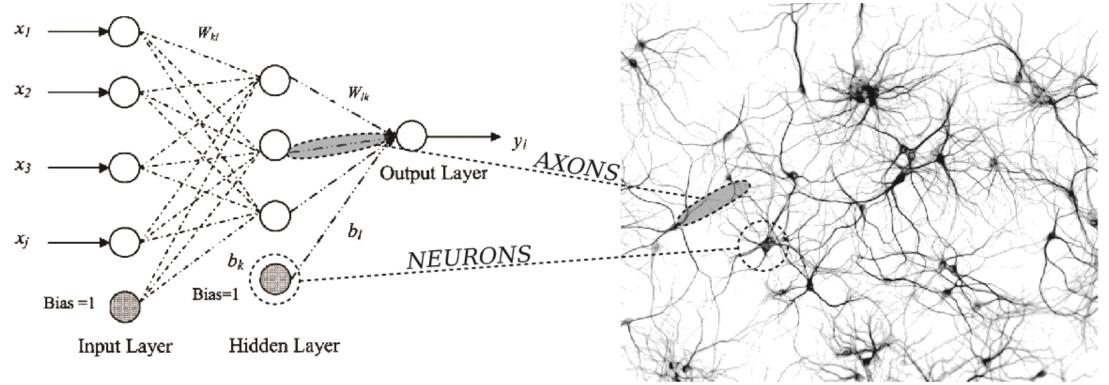
These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Basic of Neural Network

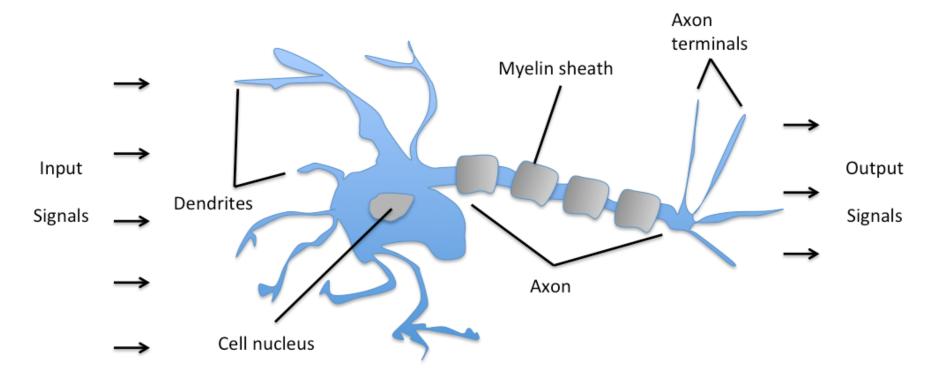
- The Perceptron and its Learning Rule (Frank Rosenblatt, 1957)
- Adaptive Linear Neuron and Delta Rule (Widrow & Hoff, 1960)
- Logistic Regression and Gradient Descent

Biologically inspired (akin to the neurons in a brain)

NEURAL NETWORK MAPPING



Artificial Neurons and the McCulloch-Pitts Model (1943)

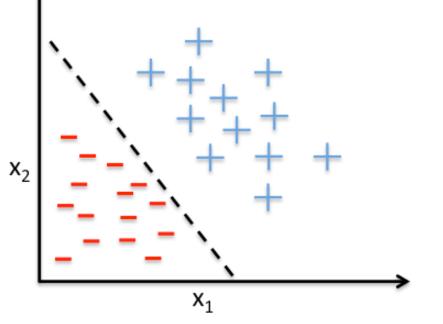


Schematic of a biological neuron.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

Frank Rosenblatt's Perceptron (1957)

- Supervised learning
- Single-layer
- Binary linear classifier
- To predict to which of 2 possible categories, a certain data point belongs on a set of input variables



Example of a linear decision boundary for binary classification.

F. Rosenblatt. The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957.

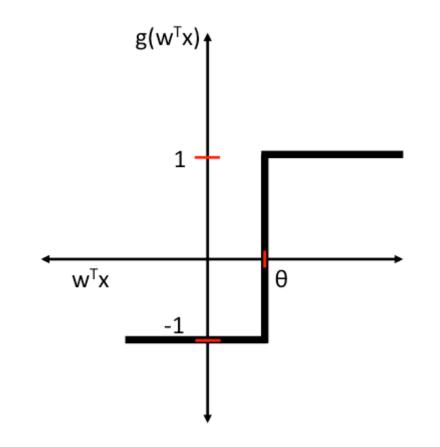
W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

Frank Rosenblatt's Perceptron (1957)

- Positive class: +1
- Negative class: -1
- Activation function: g(z) = 1 if $z \ge \theta$; -1 o/w
 - where z is a linear combination of input values x and weights w, that is,

$$z = w_1 x_1 + w_2 x_2 + \dots + w_m x_m = \sum_{j=1}^m x_j w_j = \mathbf{w}^{\mathsf{T}} \mathbf{x}$$

• $\mathbf{w} = \begin{bmatrix} \vdots \\ w_m \end{bmatrix}$ is the weight vector • $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$ is an m-dimensional sample from the training data set





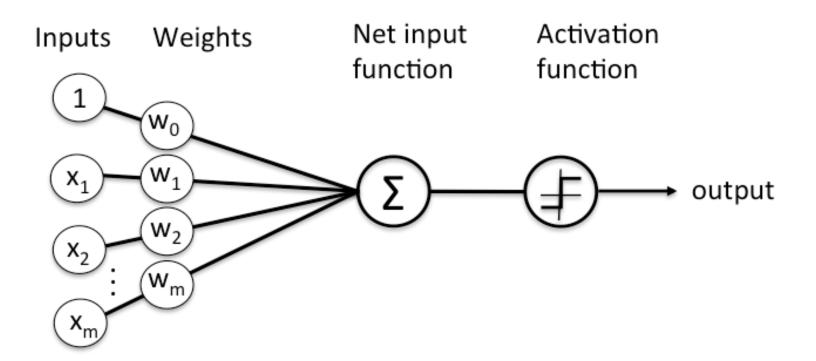
These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Frank Rosenblatt's Perceptron (1957)

• To simplify calculations, move θ to the origin such that the activation function becomes

•
$$g(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

Frank Rosenblatt's Perceptron (1957)



Schematic of Rosenblatt's perceptron.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Frank Rosenblatt's Perceptron (1957)

- Initialize the weights to 0 or small random numbers.
- For each training sample x⁽ⁱ⁾:
 - Calculate the output value $y^{(i)} = g(z^{(i)})$
 - Update the weights as follows:

$$\mathbf{w_j} := \mathbf{w_j} + \eta \ (\mathbf{y^{\prime(i)}} - \mathbf{y^{(i)}})$$

where

 η is the learning rate, $0.0 < \eta < 1$, y'(i) is is the actual true class label, and y(i) is the predicted class label.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Frank Rosenblatt's Perceptron (1957)

- Classify the flowers in the **Iris** dataset using the perceptron rule
- Iris dataset from <u>UCI</u> <u>Machine Learning</u> <u>Repository</u>

More complete version: https://github.com/rasbt/mlxtend/blob/master/mlxt end/classifier/perceptron.py import numpy as np class **Perceptron**(object): def __init__(self, eta=0.01, epochs=50): self.eta = etaself.epochs = epochsdef train(self, X, y): $self.w_ = np.zeros(1 + X.shape[1])$ self.errors_ = [] for _ in range(self.epochs): errors = 0for xi, target in zip(X, y): update = self.eta * (target - self.predict(xi)) self.w_[1:] += update * xi self.w_[0] += update errors += int(update != 0.0) self.errors_.append(errors) return self

def net_input(self, X):
 return np.dot(X, self.w_[1:]) + self.w_[0]

def predict(self, X):
 return np.where(self.net_input(X) >= 0.0, 1, -1)

Frank Rosenblatt's Perceptron (1957)

Classify 2 flower species: Setosa and Versicolor using sepal length and petal length

- import pandas as pd
- df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None)
- # setosa and versicolor
- y = df.iloc[0:100, 4].values
- y = np.where(y == 'Iris-setosa', -1, 1)
- # sepal length and petal length
- X = df.iloc[0:100, [0,2]].values

Frank Rosenblatt's Perceptron (1957)

% matplotlib inline

import matplotlib.pyplot as plt

from mlxtend.plotting import plot_decision_regions

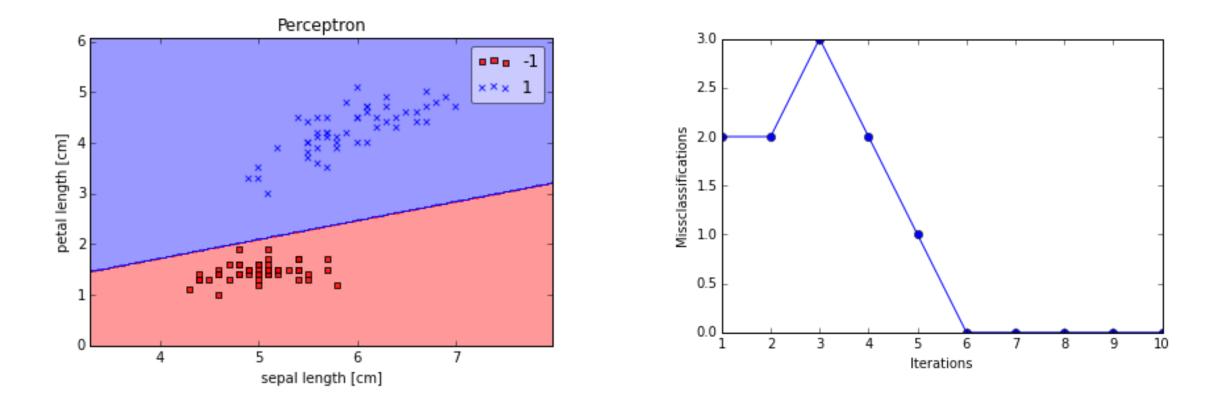
```
ppn = Perceptron(epochs=10, eta=0.1)
ppn.train(X, y)
print('Weights: %s' % ppn.w_)
plot_decision_regions(X, y, clf=ppn)
plt.title('Perceptron')
```

plt.xlabel('sepal length [cm]')
plt.ylabel('petal length [cm]')
plt.show()
plt.plot(range(1, len(ppn.errors_)+1),
ppn.errors_, marker='o')
plt.xlabel('Iterations')
plt.ylabel('Misclassifications')
plt.show()

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

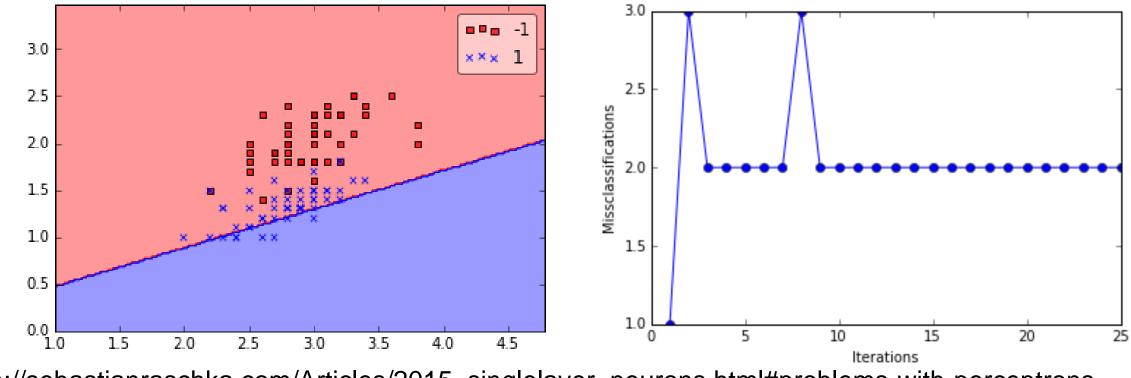
Frank Rosenblatt's Perceptron (1957)

- Perceptron converges after 6th iteration
- Weights: [-0.4 -0.68 1.82]



Frank Rosenblatt's Perceptron (1957)

- The 2 classes must be separable by a linear hyperplane
- If not, then the perceptron algorithm does NOT converge!



http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html#problems-with-perceptrons

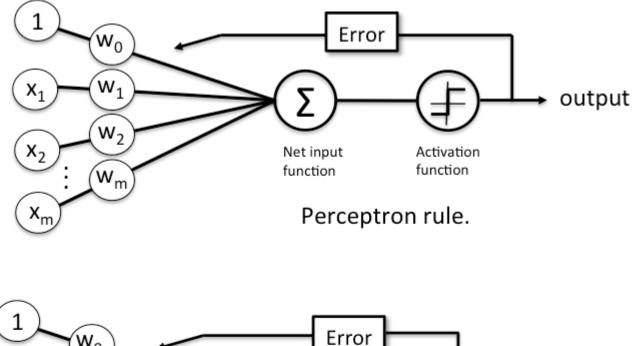
Adaptive Linear Neurons and the Delta Rule (1960)

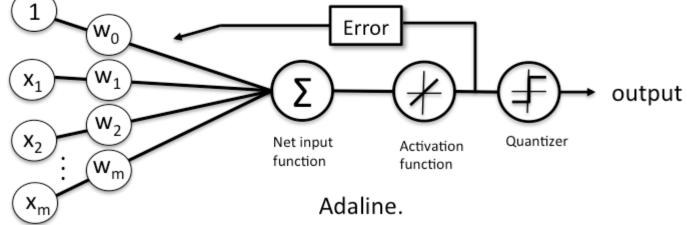
- Bernard Widrow and Tedd Hoff proposed Adaptive Linear Neurons (Adaline)
- Linear activation function: g(z) = z.
- It is differentiable, so we can define a cost function and minimize it!

B. Widrow et al. Adaptive "Adaline" neuron using chemical "memistors". Number Technical Report 1553-2. Stanford Electron. Labs., Stanford, CA, October 1960.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Adaptive Linear Neurons and the Delta Rule (1960)

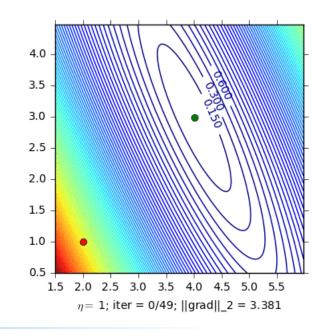


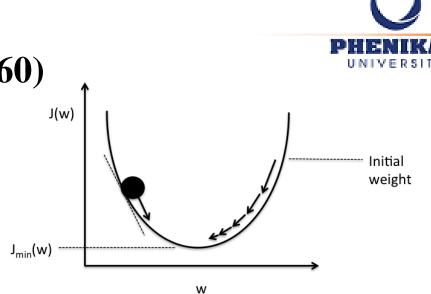


Adaptive Linear Neurons and the Delta Rule (1960)

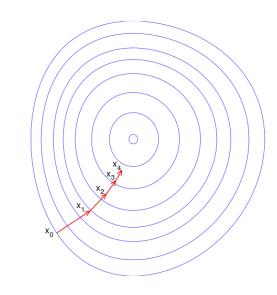
Gradient Descent

- A first-order iterative optimization algorithm for finding the minimum of a function
- Take steps proportional to the negative of the gradient of the function at the current point





Schematic of gradient descent.



PHENIKAA UNIVERSITY

Adaptive Linear Neurons and the Delta Rule (1960)

• Cost function: sum of squared errors (SSE)

•
$$J(w) = \frac{1}{2} \sum_{i} (y'^{(i)} - y^{(i)})^2$$

- To minimize SSE, we can use "gradient descent"
- A step in the opposite direction of gradient

$$\Delta w = -\alpha \nabla J(w)$$

where α is the learning rate, $0 < \alpha < 1$

• Thus, we need to compute the partial derivative of the cost function for each weight in the weight vector,

$$\Delta \mathbf{w}_{j} = -\alpha \, \frac{\partial J}{\partial w_{j}}$$

Adaptive Linear Neurons and the Delta Rule (1960)

$$\begin{aligned} \frac{\partial J}{\partial w_{j}} &= \frac{\partial}{\partial w_{j}} \frac{1}{2} \sum_{i} ({y'}^{(i)} - {y}^{(i)})^{2} \\ &= \frac{1}{2} \sum_{i} \frac{\partial}{\partial w_{j}} ({y'}^{(i)} - {y}^{(i)})^{2} \\ &= \frac{1}{2} \sum_{i} 2({y'}^{(i)} - {y}^{(i)}) \frac{\partial}{\partial w_{j}} ({y'}^{(i)} - {y}^{(i)}) \\ &= \sum_{i} ({y'}^{(i)} - {y}^{(i)}) \frac{\partial}{\partial w_{j}} ({y'}^{(i)} - \sum_{j} w_{j} x_{j}^{(i)}) \\ &= \sum_{i} ({y'}^{(i)} - {y}^{(i)}) (-x_{j}^{(i)}) \end{aligned}$$

Adaptive Linear Neurons and the Delta Rule (1960)

• A step in gradient descent:

•
$$\Delta w_j = -\alpha \frac{\partial J}{\partial w_j} = -\alpha \sum_i \left({y'}^{(i)} - y^{(i)} \right) \left(-x_j^{(i)} \right) = \alpha \sum_i ({y'}^{(i)} - y^{(i)}) x_j^{(i)}$$

- Update weight vector:
 - $\mathbf{w} := \mathbf{w} + \Delta \mathbf{w}$
- Differences with the perceptron rule
 - The output $y^{(i)}$ is a real number, not a class label as in perceptron learning rule.
 - Weight update is based on "all samples in the training set" (Batch GD)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Adaptive Linear Neurons and the Delta Rule (1960)

import numpy as np

```
class AdalineGD(object):
  def __init__(self, alpha=0.01, epochs=50):
     self.alpha = alpha
     self.epochs = epochs
  def train(self, X, y):
     self.w_{=} np.zeros(1 + X.shape[1])
     self.cost_ = []
     for i in range(self.epochs):
       output = self.net_input(X)
       errors = (y - output)
        self.w_[1:] += self.alpha * X.T.dot(errors)
        self.w_[0] += self.alpha * errors.sum()
       cost = (errors^{**}2).sum() / 2.0
        self.cost_.append(cost)
     return self
```

def net_input(self, X):
 return np.dot(X, self.w_[1:]) + self.w_[0]
 def activation(self, X):
 return self.net_input(X)
 def predict(self, X):
 return np.where(self.activation(X) >= 0.0, 1, -1)

Adaptive Linear Neurons and the Delta Rule (1960)

ada = AdalineGD(epochs=10, **alpha=0.01**).train(X, y)

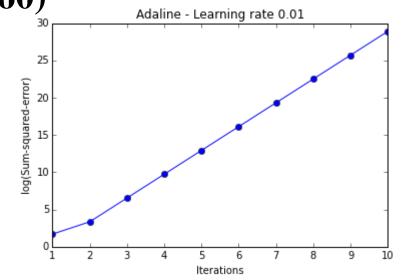
plt.plot(range(1, len(ada.cost_)+1), np.log10(ada.cost_), marker='o')
plt.xlabel('Iterations')

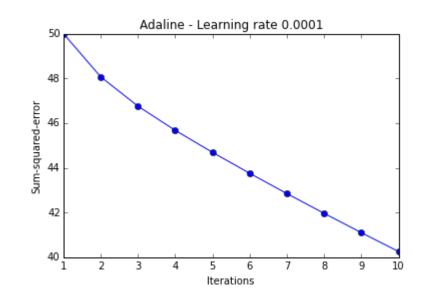
plt.ylabel('log(Sum-squared-error)')

plt.title('Adaline - Learning rate 0.01')

plt.show()

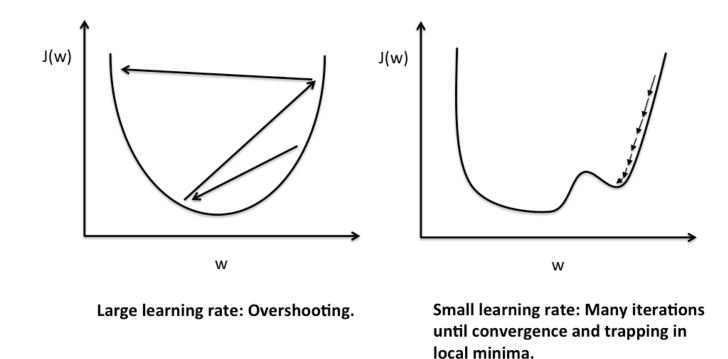
```
ada = AdalineGD(epochs=10, alpha=0.0001).train(X, y)
plt.plot(range(1, len(ada.cost_)+1), ada.cost_, marker='o')
plt.xlabel('Iterations')
plt.ylabel('Sum-squared-error')
plt.title('Adaline - Learning rate 0.0001')
plt.show()
```



Adaptive Linear Neurons and the Delta Rule (1960)

- If the learning rate is TOO LARGE, gradient descent will overshoot the minima and diverge.
- If the learning rate is too small, gradient descent will require too many epochs to converge and can become trapped in local minima more easily.



Adaptive Linear Neurons and the Delta Rule (1960)

- If features are scaled on the same scale, gradient descent converges faster and prevents weights from becoming too small (weight decay).
- Common way for feature scaling

$$x_{j,std} = \frac{x_j - \mu_j}{\sigma_j}$$

where μ_i is the sample mean of the feature x_i and σ_i the standard deviation.

• After standardization, the features will have unit variance and centered around mean zero.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Adaptive Linear Neurons and the Delta Rule (1960)

standardize features
X_std = np.copy(X)
X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()
X_std[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std()

Adaptive Linear Neurons and the Delta Rule (1960)

% matplotlib inline

import matplotlib.pyplot as plt

from mlxtend.plotting import plot_decision_regions

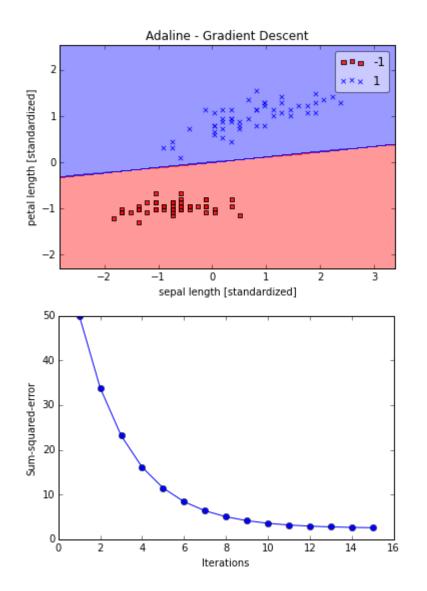
ada = AdalineGD(epochs=15, eta=0.01)

ada.train(X_std, y)
plot_decision_regions(X_std, y, clf=ada)
plt.title('Adaline - Gradient Descent')
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.show()

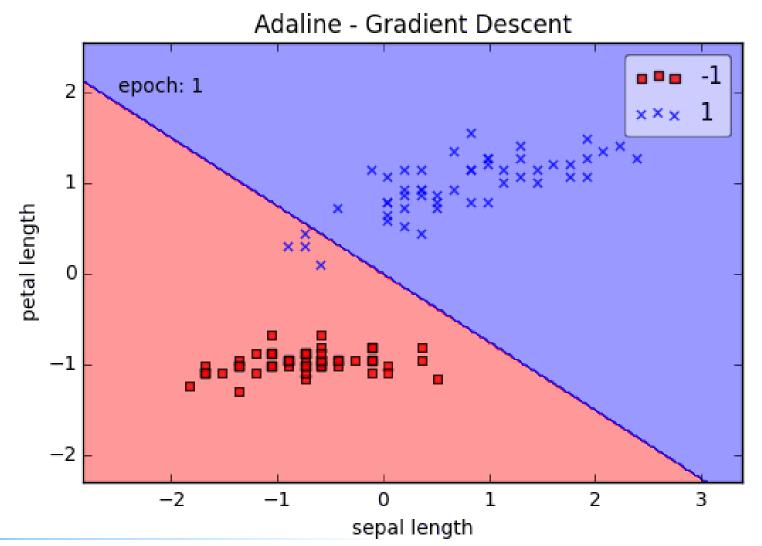
plt.plot(range(1, len(ada.cost_)+1), ada.cost_, marker='o')
plt.xlabel('Iterations')

plt.ylabel('Sum-squared-error')

plt.show() These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.



Adaptive Linear Neurons and the Delta Rule (1960)



Adaptive Linear Neurons and the Delta Rule (1960)

import numpy as np

```
class AdalineSGD(object):
  def init (self, alpha=0.01, epochs=50):
     self.alpha = alpha
     self.epochs = epochs
  def train(self, X, y, reinitialize_weights=True):
     if reinitialize_weights:
       self.w_ = np.zeros(1 + X.shape[1])
     self.cost_ = []
     for i in range(self.epochs):
       for xi, target in zip(X, y):
          output = self.net_input(xi)
          error = (target - output)
          self.w_[1:] += self.alpha * xi.dot(error)
          self.w_[0] += self.alpha * error
       cost = ((y - self.activation(X))^{**2}).sum() /
2.0
        self.cost_.append(cost)
     return self
```

def net_input(self, X):
 return np.dot(X, self.w_[1:]) + self.w_[0]

def activation(self, X):
 return self.net_input(X)

def predict(self, X):
 return np.where(self.activation(X) >= 0.0,
1, -1)

Adaptive Linear Neurons and the Delta Rule (1960)

- Batch Gradient Descent (BGD)
 - Cost function is minimized based on the complete training dataset (all samples)
- Stochastic Gradient Descent (SGD)
 - Weights are incrementally updated after each individual training sample
 - Converges faster than BGD since weights are updated immediately after each training sample
 - Computationally more efficient, especially for large datasets
- Mini-batch Gradient Descent (MGD)
 - Compromise between BGD and SGD, dataset is divided into mini-batches
 - Smoother convergence than SGD

Adaptive Linear Neurons and the Delta Rule (1960)

import numpy as np

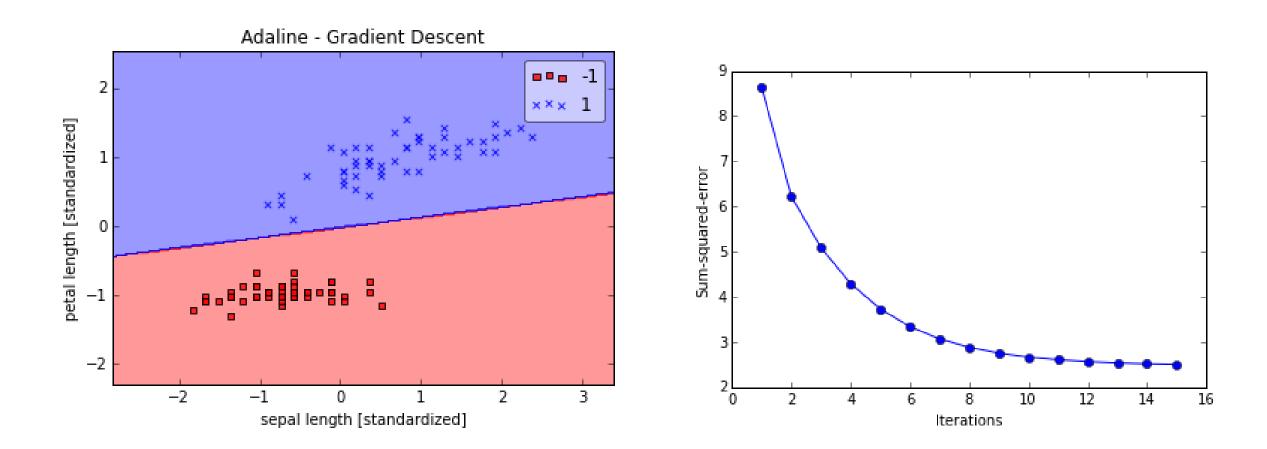
```
class AdalineSGD(object):
  def init (self, alpha=0.01, epochs=50):
     self.alpha = alpha
     self.epochs = epochs
  def train(self, X, y, reinitialize_weights=True):
     if reinitialize_weights:
       self.w_{-} = np.zeros(1 + X.shape[1])
     self.cost = []
     for i in range(self.epochs):
       for xi, target in zip(X, y):
          output = self.net_input(xi)
          error = (target - output)
          self.w_[1:] += self.alpha * xi.dot(error)
          self.w_[0] += self.alpha * error
       cost = ((y - self.activation(X))^{**2}).sum() / 2.0
       self.cost_.append(cost)
     return self
```

def net_input(self, X):
 return np.dot(X, self.w_[1:]) + self.w_[0]

def activation(self, X):
 return self.net_input(X)

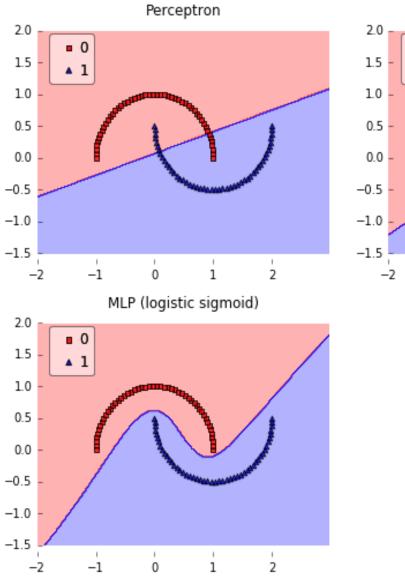
def predict(self, X):
 return np.where(self.activation(X) >= 0.0, 1, -1)

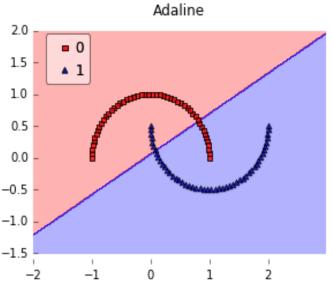
Adaptive Linear Neurons and the Delta Rule (1960)



Logistic Regression

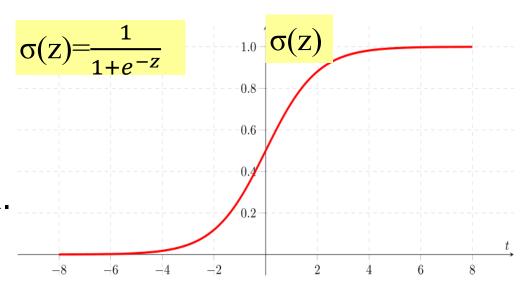
Perceptron vs. Adaline vs. Multi-Layer Perceptrons (Logistic Regression)





Logistic Regression

- Definition:
 - Given input $x \in \mathcal{R}^{n_x}$, calculate the probability $\hat{y} = P(y = 1|x), 0 \le \hat{y} \le 1$.
- Parameters:
 - Weights: $w \in \mathcal{R}^{n_x}$
 - Bias: $b \in \mathcal{R}$
- Output:
 - $\hat{y} = \sigma(z) = \sigma(w^T x + b)$ where $\sigma(z) = \frac{1}{1+e^{-z}}$ is the sigmoid activation function



If z is large positive number, $\sigma(z) \rightarrow 1$

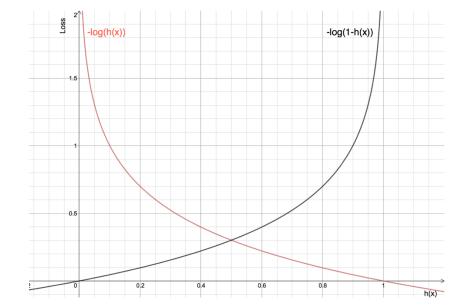
If z is small negative number, $\sigma(z) \rightarrow 0$

Logistic Regression

• For *i*th input
$$x^{(i)}$$
, $\hat{y}^{(i)} = \sigma(z^{(i)}) = \sigma(w^T x^{(i)} + b)$ where $\sigma(z^{(i)}) = \frac{1}{1 + e^{-z^{(i)}}}$

- For each labeled data $(x^{(i)}, y^{(i)})$, we could like $\hat{y}^{(i)} \approx y^{(i)}$, where $\hat{y}^{(i)}$ is the predicted output and $y^{(i)}$ is the actual expected ground truth value.
- Loss (error)function for each input is defined using Cross-Entropy or Log Loss $\mathcal{L}(\hat{y}, y) = -(y \log \hat{y} + (1 - y) \log(1 - \hat{y}))$
- Intuition
 - If y=1, $\mathcal{L}(\hat{y}, y) = -\log \hat{y}$
 - Need large \hat{y}
 - If y=0, $\mathcal{L}(\hat{y}, y) = -\log(1-\hat{y})$
 - Need small \hat{y}

Note: we do not use sum of squared errors because it will be not convex in logistic regression



Logistic Regression

• Cost function is the average of all cross-entropy losses

$$\begin{aligned} \mathcal{J}(w, b) \\ &= \frac{1}{m} \sum_{i=1_m}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) \\ &= -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right] \end{aligned}$$

- Goal:
 - Find vectors **w** and **b** that minimize the cost function (total loss)
- Logistic regression can be viewed as a small neural network!

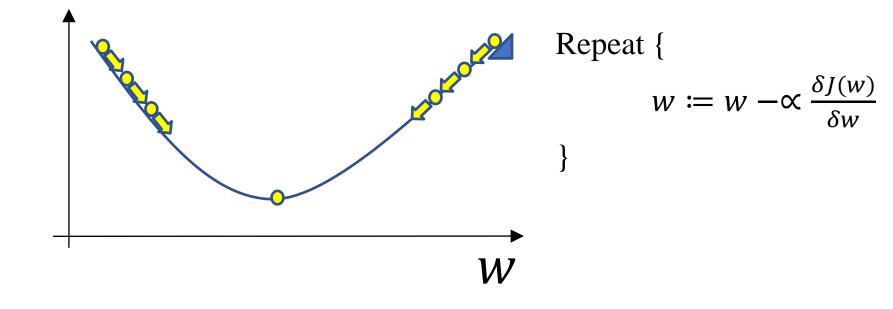
Logistic Regression

Convergence

•
$$\hat{y}^{(i)} = \sigma(z^{(i)}) = \sigma(w^T x^{(i)} + b)$$
, where $\sigma(z^{(i)}) = \frac{1}{1 + e^{-z^{(i)}}}$
• $\mathcal{J}(w, b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})]$
• Find w, b that minimize $\mathcal{J}(w, b)$

Logistic Regression

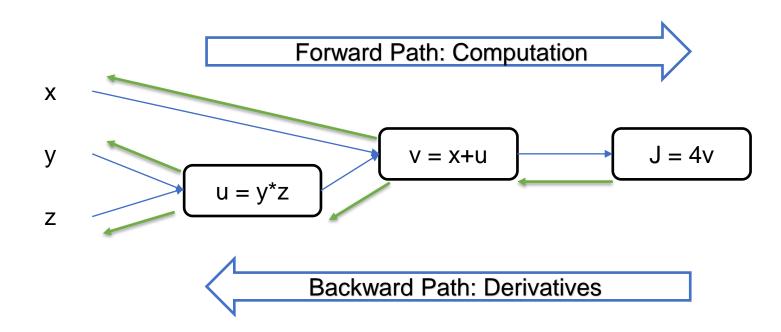
Convergence



Logistic Regression

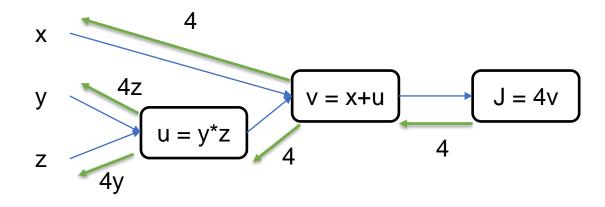
Computation Graph

- A graph that depicts all the computations required for a function in a forward path
- For example: J(x, y, z) = 4(x + yz)



Logistic Regression

Computation Graph



•
$$\frac{\delta J}{\delta v} = 4$$

• $\frac{\delta J}{\delta x} = \frac{\delta J}{\delta v} \frac{\delta v}{\delta x} = 4 \times 1 = 4$
• $\frac{\delta J}{\delta u} = \frac{\delta J}{\delta v} \frac{\delta v}{\delta u} = 4 \times 1 = 4$
• $\frac{\delta J}{\delta y} = \frac{\delta J}{\delta u} \frac{\delta u}{\delta y} = 4 \times z = 4z$
• $\frac{\delta J}{\delta z} = \frac{\delta J}{\delta u} \frac{\delta u}{\delta z} = 4 \times y = 4y$

Logistic Regression

$$\mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

$$x_{1}$$

$$x_{2}$$

$$w_{1}$$

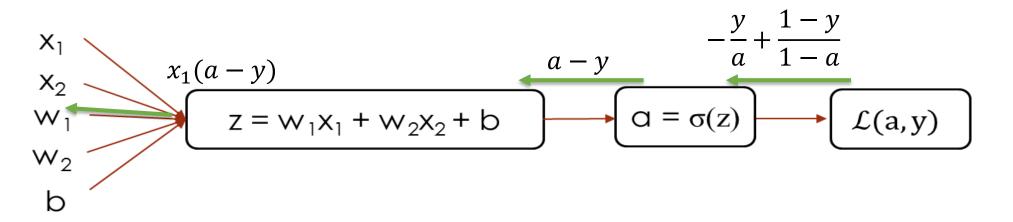
$$w_{2}$$

$$w_{2$$

Computation Graph

Logistic Regression

Computation Graph



$$\cdot \frac{\delta L(a,y)}{\delta a} = \left(-\frac{y}{a} + \frac{1-y}{1-a}\right)$$

$$\cdot \frac{\delta L(a,y)}{\delta z} = \frac{\delta L(a,y)}{\delta a} \frac{\delta a}{\delta z} = \left(-\frac{y}{a} + \frac{1-y}{1-a}\right) \left(a(1-a)\right) = a - y$$

$$\cdot \frac{\delta L(a,y)}{\delta w_1} = \frac{\delta L(a,y)}{\delta a} \frac{\delta a}{\delta z} \frac{\delta z}{\delta w_1} = \left(-\frac{y}{a} + \frac{1-y}{1-a}\right) a(1-a)x_1 = x_1(a-y) = x_1 \frac{\delta L(a,y)}{\delta z}$$

Logistic Regression

$$\begin{array}{ll} J=0; \ dw_1=0; \ dw_2=0; \ db=0; \\ \\ For \ i=1 \ to \ m & & \\ & z^{(i)}=w^Tx^{(i)}+b & & \\ & a^{(i)}=\sigma(z^{(i)}) & & \\ & J+=-\left[y^{(i)} \ log \ a^{(i)}+(1-y^{(i)}) \ log(1-a^{(i)})\right] & & \\ & w_2:=w_2-\alpha \ dw_2 & \\ & dz^{(i)}=a^{(i)}-y^{(i)} & & \\ & dw_1+=x_1^{(i)} \ dz^{(i)} & & \\ & dw_2+=x_1^{(i)} \ dz^{(i)} & & \\ & db+=dz^{(i)} & \\ \end{array} \right) \\ J=m; \ dw_1/=m; \ dw_2/=m; \ db/=m; \end{array}$$

Code

 αdw_1

 αdw_2

Logistic Regression

import numpy as np
a = np.array([1,2,3,4])
print(a)

import time a = np.random.rand(1000000) b = np.random.rand(1000000) tic = time.time() c = np.dot(a,b) toc = time.time()

Code

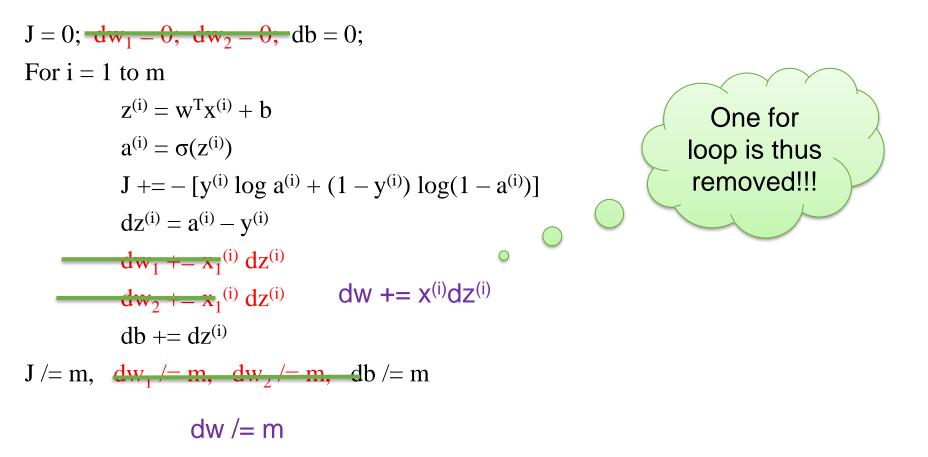
c = 0
tic = time.time()
for i = range(1000000):
 c += a[i]*b[i]
toc = time.time()
print(c)
print("For loop:" + str(1000*(toc-tic) + "ms")

print(c) print("Vectorized version:" + str(1000*(toc-tic) + "ms")

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Logistic Regression

dw = np.zeros((nx, 1))



Vectorization

Logistic Regression

Vectorization

- $X = [x^{(1)} x^{(2)} \dots x^{(m)}]$
- $Z = [z^{(1)} z^{(2)} \dots z^{(m)}] = w^T X + [b b \dots b] =$ np.dot(w.T, X) + b

•
$$A = [a^{(1)} a^{(2)} \dots a^{(m)}] = sigmoid(Z)$$

Logistic Regression

Vectorization

- $dz^{(1)} = a^{(1)} y^{(1)}, dz^{(2)} = a^{(2)} y^{(2)}, \dots$ (all m examples)
- $dZ = [dz^{(1)} dz^{(2)} \dots dz^{(m)}]$
- $A = [a^{(1)} \dots a^{(m)}]$
- $Y = [y^{(1)} \dots y^{(m)}]$
- $dZ = \mathbf{A} \mathbf{Y} = [a^{(1)}-y^{(1)} \dots a^{(m)}-y^{(m)}]$
- db = $\frac{1}{m} \sum_{i=1}^{m} dz^{(i)} = \frac{1}{m} np.sum(dZ)$
- dw = $\frac{1}{m} X dZ^T$

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Logistic Regression

J = 0; dw = np.zeros((nx,1)); db = 0;For i = 1 to m $z^{(i)} = w^T x^{(i)} + b$ $a^{(i)} = \sigma(z^{(i)})$ $J_{x} + = -[y^{(i)} \log a^{(i)} + (1 - y^{(i)})]$ $log(1 - a^{(i)})]$ $W := W - \alpha d$ $dz^{(i)} = a^{(i)} - y^{(i)}$ $b := b - \alpha d$ $dw += x^{(i)} * dz^{(i)}$ $db += dz^{(i)}$ J = m, dw = m, db = m

Vectorization

 $Z = w^T X + b = np.dot(w.T, X) + b$ A = sigmoid(Z)

$$dZ = A - Y$$

 $dw = 1/m X dZ^T$
 $db = 1/m np.sum(dZ)$

