
Deep Learning
Chapter 2 Building Neural Network

from Scratch

Dr. Van-Toi NGUYEN

EEE, Phenikaa University

Lecture slides for this course

have been prepared by Dr. Le Minh Huy,

EEE, Phenikaa University

1. Shallow neural network

2. Deep neural network

3. Building neural network: step-by-step
(modulation)

4. Regularization

5. Dropout

6. Batch Normalization

7. Optimizers

8. Hyper-parameters

9. Practice

Chapter 2: Building Neural Network from Scratch

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

3

Chapter 1: Course Infor & Programming review -

week 1

1. Course introduction and grades

2. History of Deep learning

3. Deep learning applications

Chapter 2: Building Neural Network from Scratch –

week 2-7

1. Shallow neural network - week 2

2. Deep neural network - week 3

3. Building neural network: step-by-step (modulation) -

week 3

4. Regularization - week 4

5. Dropout - week 4

6. Batch Normalization - week 5

7. Optimizers - week 6

8. Hyper-parameters - week 7

9. Practice- week

Midterm

Chapter 3: Convolutional Neural Network - week 8-10

1. Convolutional operator

2. History of CNN

3. Deep Convolutional Models

4. Layers in CNN

5. Applications of CNN

6. Practice

Midterm summary

Chapter 4: TensorFlow Library- week 11-13

1. Introduction to TensorFlow

2. Building a deep neural network with TensorFlow

3. Applications

4. Practice

Chapter 5: Recurrent Neural Network week 14-15

1. Unfolding Computational Graphs

2. Building a Recurrent Neural Networks

3. Long Short-Term Memory

4. Vision with Language Processing

5. Application of RNN

6. Practice

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

4

45 hours at Classes:

Theory + Coding practice

90 hours shelf-study at home:

Theory + Coding practice

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

5

Regression

Supervised: Learning with a labeled training set of data

Example: learn the classification of images based on image labels (dogs/cats, day time, numbers,

etc.)

Unsupervised: Discover patterns in unlabeled data

Example: cluster similar documents based on text

Reinforcement learning: learn to act based on feedback/reward

Example: learn to play Go, reward: win or lose

clas

s A
clas

s A

Classification

Clustering

Sources: http://mbjoseph.github.io/2013/11/27/measure.html

https://becominghuman.ai/the-very-basics-of-reinforcement-learning-154f28a79071

http://mbjoseph.github.io/2013/11/27/measure.html
https://becominghuman.ai/the-very-basics-of-reinforcement-learning-154f28a79071

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

6

• A sub-field of machine learning for learning representations of data.

• Exceptionally effective at learning patterns.

• Deep learning algorithms attempt to learn (multiple levels of) representation by using a hierarchy

of multiple layers

• If you provide the system tons of information, it begins to understand it and respond in useful

ways.

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

7

Shallow

8 layers

22 layers

152 layers

AlexNet

VGG,

GoogLeNet

ResNet SENet

ImageNet Large Scale Visual

Recognition Challenge

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

8

Basic of Neural Network

• The Perceptron and its Learning Rule (Frank Rosenblatt, 1957)

• Adaptive Linear Neuron and Delta Rule (Widrow & Hoff, 1960)

• Logistic Regression and Gradient Descent

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

9

Biologically inspired (akin to the neurons in a brain)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

10

Artificial Neurons and the McCulloch-Pitts Model (1943)

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical

biophysics, 5(4):115–133, 1943.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

11

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical

biophysics, 5(4):115–133, 1943.

• Supervised learning

• Single-layer

• Binary linear classifier

• To predict to which of 2
possible categories, a certain
data point belongs on a set of
input variables

F. Rosenblatt. The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957.

Frank Rosenblatt’s Perceptron (1957)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

12

Frank Rosenblatt’s Perceptron (1957)

• Positive class: +1

• Negative class: −1

• Activation function: g(z) = 1 if z ≥ θ; −1
o/w
• where z is a linear combination of input values

x and weights w, that is,
z = w1x1 + w2x2 + … + wmxm = σ𝑗=1

𝑚 𝑥𝑗𝑤𝑗 = wTx

• w =

𝑤1

⋮
𝑤𝑚

 is the weight vector

• x =

𝑥1

⋮
𝑥𝑚

 is an m-dimensional sample from the

training data set

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

13

Frank Rosenblatt’s Perceptron (1957)

• To simplify calculations, move θ to the origin such that
the activation function becomes

• g(z) = ቊ
1 if 𝑧 ≥ 0

−1 otherwise

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

14

Frank Rosenblatt’s Perceptron (1957)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

15

Frank Rosenblatt’s Perceptron (1957)

• Initialize the weights to 0 or small random numbers.

• For each training sample x(i):
• Calculate the output value y(i) = g(z(i))

• Update the weights as follows:

 wj := wj + η (y’(i) – y(i))

 where η is the learning rate, 0.0 < η < 1,
 y’(i) is is the actual true class label, and
 y(i) is the predicted class label.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

16

Frank Rosenblatt’s Perceptron (1957)

• Classify the flowers in
the Iris dataset using the
perceptron rule

• Iris dataset from UCI
Machine Learning
Repository

More complete version:

https://github.com/rasbt/mlxtend/blob/master/mlxt

end/classifier/perceptron.py

import numpy as np

class Perceptron(object):

 def __init__(self, eta=0.01, epochs=50):

 self.eta = eta

 self.epochs = epochs

 def train(self, X, y):

 self.w_ = np.zeros(1 + X.shape[1])

 self.errors_ = []

 for _ in range(self.epochs):

 errors = 0

 for xi, target in zip(X, y):

 update = self.eta * (target - self.predict(xi))

 self.w_[1:] += update * xi

 self.w_[0] += update

 errors += int(update != 0.0)

 self.errors_.append(errors)

 return self

 def net_input(self, X):

 return np.dot(X, self.w_[1:]) + self.w_[0]

 def predict(self, X):

 return np.where(self.net_input(X) >= 0.0, 1, -1)

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

17

Frank Rosenblatt’s Perceptron (1957)

Classify 2 flower species: Setosa and Versicolor using sepal length and

petal length

• import pandas as pd

• df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data',
header=None)

• # setosa and versicolor

• y = df.iloc[0:100, 4].values

• y = np.where(y == 'Iris-setosa', -1, 1)

• # sepal length and petal length

• X = df.iloc[0:100, [0,2]].values

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

18

Frank Rosenblatt’s Perceptron (1957)

%matplotlib inline

import matplotlib.pyplot as plt

from mlxtend.plotting import plot_decision_regions

ppn = Perceptron(epochs=10, eta=0.1)

ppn.train(X, y)

print('Weights: %s' % ppn.w_)

plot_decision_regions(X, y, clf=ppn)

plt.title('Perceptron')

plt.xlabel('sepal length [cm]')

plt.ylabel('petal length [cm]')

plt.show()

plt.plot(range(1, len(ppn.errors_)+1),
ppn.errors_, marker='o')

plt.xlabel('Iterations')

plt.ylabel('Misclassifications')

plt.show()

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

19

Frank Rosenblatt’s Perceptron (1957)

• Perceptron converges after 6th iteration

• Weights: [-0.4 -0.68 1.82]

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

20

Frank Rosenblatt’s Perceptron (1957)

• The 2 classes must be separable by a linear hyperplane

• If not, then the perceptron algorithm does NOT converge!

http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html#problems-with-perceptrons

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

21

Adaptive Linear Neurons and the Delta Rule (1960)

• Bernard Widrow and Tedd Hoff proposed
Adaptive Linear Neurons (Adaline)

• Linear activation function: g(z) = z.

• It is differentiable, so we can define a cost function and minimize
it!

B. Widrow et al. Adaptive ”Adaline” neuron using chemical ”memistors”. Number Technical Report 1553-2.

Stanford Electron. Labs., Stanford, CA, October 1960.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

22

Adaptive Linear Neurons and the Delta Rule (1960)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

23

Adaptive Linear Neurons and the Delta Rule (1960)

• Gradient Descent
• A first-order iterative optimization algorithm for

finding the minimum of a function

• Take steps proportional to the negative of the
gradient of the function at the current point

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

24

Adaptive Linear Neurons and the Delta Rule (1960)

• Cost function: sum of squared errors (SSE)

• J(w) =
1

2
σ𝑖(𝑦′(𝑖) − 𝑦(𝑖))2

• To minimize SSE, we can use “gradient descent”

• A step in the opposite direction of gradient

∆w = − α J(w)

where α is the learning rate, 0 < α < 1

• Thus, we need to compute the partial derivative of the cost
function for each weight in the weight vector,

∆wj = − α
𝜕𝐽

𝜕𝑤𝑗

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

25

Adaptive Linear Neurons and the Delta Rule (1960)

𝜕𝐽

𝜕𝑤𝑗
=

𝜕

𝜕𝑤𝑗

1

2

𝑖

(𝑦′ 𝑖
− 𝑦(𝑖))2

=
1

2
σ𝑖

𝜕

𝜕𝑤𝑗
(𝑦′ 𝑖

− 𝑦(𝑖))2

=
1

2
σ𝑖 2(𝑦′ 𝑖

− 𝑦(𝑖))
𝜕

𝜕𝑤𝑗
(𝑦′ 𝑖

− 𝑦(𝑖))

= σ𝑖(𝑦′ 𝑖
− 𝑦(𝑖))

𝜕

𝜕𝑤𝑗
(𝑦′ 𝑖

− σ𝑗 𝑤𝑗𝑥𝑗
(𝑖)

)

= σ𝑖(𝑦′ 𝑖
− 𝑦 𝑖)(−𝑥𝑗

(𝑖)
)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

26

Adaptive Linear Neurons and the Delta Rule (1960)

• A step in gradient descent:

• ∆wj = −α
𝜕𝐽

𝜕𝑤𝑗
 = −α σ𝑖 𝑦′ 𝑖

− 𝑦 𝑖 −𝑥𝑗
𝑖

 = α σ𝑖(𝑦′ 𝑖
− 𝑦(𝑖))𝑥𝑗

(𝑖)

• Update weight vector:

• w := w + ∆w

• Differences with the perceptron rule

• The output y(i) is a real number, not a class label as in perceptron
learning rule.

• Weight update is based on “all samples in the training set” (Batch GD)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

27

Adaptive Linear Neurons and the Delta Rule (1960)

import numpy as np

class AdalineGD(object):

 def __init__(self, alpha=0.01, epochs=50):

 self.alpha = alpha

 self.epochs = epochs

 def train(self, X, y):

 self.w_ = np.zeros(1 + X.shape[1])

 self.cost_ = []

 for i in range(self.epochs):

 output = self.net_input(X)

 errors = (y - output)

 self.w_[1:] += self.alpha * X.T.dot(errors)

 self.w_[0] += self.alpha * errors.sum()

 cost = (errors**2).sum() / 2.0

 self.cost_.append(cost)

 return self

def net_input(self, X):

 return np.dot(X, self.w_[1:]) + self.w_[0]

 def activation(self, X):

 return self.net_input(X)

 def predict(self, X):

 return np.where(self.activation(X) >= 0.0, 1, -1)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

28

Adaptive Linear Neurons and the Delta Rule (1960)

ada = AdalineGD(epochs=10, alpha=0.01).train(X, y)

plt.plot(range(1, len(ada.cost_)+1), np.log10(ada.cost_), marker='o')

plt.xlabel('Iterations')

plt.ylabel('log(Sum-squared-error)')

plt.title('Adaline - Learning rate 0.01')

plt.show()

ada = AdalineGD(epochs=10, alpha=0.0001).train(X, y)

plt.plot(range(1, len(ada.cost_)+1), ada.cost_, marker='o')

plt.xlabel('Iterations')

plt.ylabel('Sum-squared-error')

plt.title('Adaline - Learning rate 0.0001')

plt.show()

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

29

Adaptive Linear Neurons and the Delta Rule (1960)

• If the learning rate is TOO LARGE, gradient descent will overshoot the
minima and diverge.

• If the learning rate is too small, gradient descent will require too many epochs
to converge and can become trapped in local minima more easily.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

30

Adaptive Linear Neurons and the Delta Rule (1960)

• If features are scaled on the same scale, gradient descent converges faster and prevents
weights from becoming too small (weight decay).

• Common way for feature scaling

𝑥𝑗,𝑠𝑡𝑑 =
𝑥𝑗 − 𝜇𝑗

𝜎𝑗

 where μj is the sample mean of the feature xj and σj the standard deviation.

• After standardization, the features will have unit variance and centered around mean
zero.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

31

Adaptive Linear Neurons and the Delta Rule (1960)

standardize features

X_std = np.copy(X)

X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()

X_std[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std()

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

32

Adaptive Linear Neurons and the Delta Rule (1960)

%matplotlib inline

import matplotlib.pyplot as plt

from mlxtend.plotting import plot_decision_regions

ada = AdalineGD(epochs=15, eta=0.01)

ada.train(X_std, y)

plot_decision_regions(X_std, y, clf=ada)

plt.title('Adaline - Gradient Descent')

plt.xlabel('sepal length [standardized]')

plt.ylabel('petal length [standardized]')

plt.show()

plt.plot(range(1, len(ada.cost_)+1), ada.cost_, marker='o')

plt.xlabel('Iterations')

plt.ylabel('Sum-squared-error')

plt.show()

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

33

Adaptive Linear Neurons and the Delta Rule (1960)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

34

Adaptive Linear Neurons and the Delta Rule (1960)

import numpy as np

class AdalineSGD(object):

 def __init__(self, alpha=0.01, epochs=50):

 self.alpha = alpha

 self.epochs = epochs

 def train(self, X, y, reinitialize_weights=True):

 if reinitialize_weights:

 self.w_ = np.zeros(1 + X.shape[1])

 self.cost_ = []

 for i in range(self.epochs):

 for xi, target in zip(X, y):

 output = self.net_input(xi)

 error = (target - output)

 self.w_[1:] += self.alpha * xi.dot(error)

 self.w_[0] += self.alpha * error

 cost = ((y - self.activation(X))**2).sum() /

2.0

 self.cost_.append(cost)

 return self

def net_input(self, X):

 return np.dot(X, self.w_[1:]) + self.w_[0]

 def activation(self, X):

 return self.net_input(X)

 def predict(self, X):

 return np.where(self.activation(X) >= 0.0,

1, -1)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

35

Adaptive Linear Neurons and the Delta Rule (1960)

• Batch Gradient Descent (BGD)

• Cost function is minimized based on the complete training dataset (all samples)

• Stochastic Gradient Descent (SGD)

• Weights are incrementally updated after each individual training sample

• Converges faster than BGD since weights are updated immediately after each
training sample

• Computationally more efficient, especially for large datasets

• Mini-batch Gradient Descent (MGD)

• Compromise between BGD and SGD, dataset is divided into mini-batches

• Smoother convergence than SGD

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

36

Adaptive Linear Neurons and the Delta Rule (1960)

import numpy as np

class AdalineSGD(object):

 def __init__(self, alpha=0.01, epochs=50):

 self.alpha = alpha

 self.epochs = epochs

 def train(self, X, y, reinitialize_weights=True):

 if reinitialize_weights:

 self.w_ = np.zeros(1 + X.shape[1])

 self.cost_ = []

 for i in range(self.epochs):

 for xi, target in zip(X, y):

 output = self.net_input(xi)

 error = (target - output)

 self.w_[1:] += self.alpha * xi.dot(error)

 self.w_[0] += self.alpha * error

 cost = ((y - self.activation(X))**2).sum() / 2.0

 self.cost_.append(cost)

 return self

def net_input(self, X):

 return np.dot(X, self.w_[1:]) + self.w_[0]

 def activation(self, X):

 return self.net_input(X)

 def predict(self, X):

 return np.where(self.activation(X) >= 0.0, 1, -1)

Adaline with SGD

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

37

Adaptive Linear Neurons and the Delta Rule (1960) Adaline with SGD

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

38

Logistic Regression

Perceptron vs. Adaline vs.

Multi-Layer Perceptrons

(Logistic Regression)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

39

Logistic Regression

• Definition:

• Given input 𝑥 ∈ ℛ𝑛𝑥,
calculate the probability

ො𝑦 = 𝑃 𝑦 = 1 𝑥 , 0 ≤ ො𝑦 ≤ 1.

• Parameters:

• Weights: 𝑤 ∈ ℛ𝑛𝑥

• Bias: 𝑏 ∈ ℛ

• Output:

• ො𝑦 = 𝜎 𝑧 = 𝜎(𝑤𝑇𝑥 + 𝑏)

 where 𝜎 𝑧 =
1

1+𝑒−𝑧 is the

sigmoid activation
function

If z is large positive number, σ(z)

→ 1

If z is small negative number, σ(z)

→ 0

σ(z)σ(z)=
1

1+𝑒−𝑧

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

40

Logistic Regression

• For ith input 𝑥(𝑖), ො𝑦(𝑖) = 𝜎 𝑧(𝑖) = 𝜎 𝑤𝑇𝑥(𝑖) + 𝑏 where 𝜎 𝑧(𝑖) =
1

1+𝑒−𝑧(𝑖)

• For each labeled data (𝑥(𝑖), 𝑦(𝑖)), we could like ො𝑦(𝑖) ≈ 𝑦 𝑖 , where ො𝑦(𝑖)is the
predicted output and 𝑦(𝑖)is the actual expected ground truth value.

• Loss (error)function for each input is defined using Cross-Entropy or Log Loss
ℒ ො𝑦, 𝑦 = − 𝑦 log ො𝑦 + 1 − 𝑦 log 1 − ො𝑦

• Intuition

• If y=1, ℒ ො𝑦, 𝑦 = − log ො𝑦

• Need large ො𝑦

• If y=0, ℒ ො𝑦, 𝑦 = − log(1 − ො𝑦)

• Need small ො𝑦

Note: we do not use sum of squared errors

because it will be not convex in logistic

regression

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

41

Logistic Regression

• Cost function is the average of all cross-entropy losses

𝒥 𝑤, 𝑏

=
1

𝑚

𝑖=1

𝑚

ℒ(ො𝑦 𝑖 , 𝑦(𝑖))

= −
1

𝑚

𝑖=1

𝑚

𝑦 𝑖 log ො𝑦 𝑖 + 1 − 𝑦 𝑖 log 1 − ො𝑦 𝑖

• Goal:

• Find vectors w and b that minimize the cost function (total loss)

• Logistic regression can be viewed as a small neural network!

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

42

Logistic Regression

• ො𝑦(𝑖) = 𝜎 𝑧(𝑖) = 𝜎 𝑤𝑇𝑥(𝑖) + 𝑏 , where 𝜎 𝑧(𝑖) =
1

1+𝑒−𝑧(𝑖)

• 𝒥 𝑤, 𝑏 =
1

𝑚
σ𝑖=1

𝑚 ℒ(ො𝑦 𝑖 , 𝑦(𝑖)) = −
1

𝑚
σ𝑖=1

𝑚 𝑦 𝑖 log ො𝑦 𝑖 + 1 − 𝑦 𝑖 log 1 − ො𝑦 𝑖

• Find w, b that minimize 𝒥 𝑤, 𝑏

𝑏

𝐽 𝑤, 𝑏

𝑤

Convergence

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

43

Logistic Regression

Repeat {

 𝑤 ≔ 𝑤 −∝
𝛿𝐽(𝑤)

𝛿𝑤

}

𝑤

Convergence

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

44

Logistic Regression Computation Graph

• A graph that depicts all the computations required for a function in a forward path

• For example: J(x, y, z) = 4(x + yz)

x

y

z
u = y*z

v = x+u J = 4v

Forward Path: Computation

Backward Path: Derivatives

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

45

Logistic Regression Computation Graph

•
𝛿𝐽

𝛿𝑣
= 4

•
𝛿𝐽

𝛿𝑥
=

𝛿𝐽

𝛿𝑣

𝛿𝑣

𝛿𝑥
= 4 × 1 = 4

•
𝛿𝐽

𝛿𝑢
=

𝛿𝐽

𝛿𝑣

𝛿𝑣

𝛿𝑢
= 4 × 1 = 4

•
𝛿𝐽

𝛿𝑦
=

𝛿𝐽

𝛿𝑢

𝛿𝑢

𝛿𝑦
= 4 × 𝑧 = 4𝑧

•
𝛿𝐽

𝛿𝑧
=

𝛿𝐽

𝛿𝑢

𝛿𝑢

𝛿𝑧
= 4 × 𝑦 = 4𝑦

x

y

z
u = y*z

v = x+u J = 4v

4

4

4

4z

4y

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

46

Logistic Regression Computation Graph

𝑧 = 𝑤𝑇𝑥 + 𝑏

ො𝑦 = 𝑎 = 𝜎(𝑧)

ℒ 𝑎, 𝑦 = −(𝑦 log(𝑎) + (1 − 𝑦) log(1 − 𝑎))

x1

w1

b

z = w1x1 + w2x2 + b ℒ(a, y)a = σ(z)

x2

w2

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

47

Logistic Regression Computation Graph

•
𝛿𝐿(𝑎,𝑦)

𝛿𝑎
 = −

𝑦

𝑎
+

1−𝑦

1−𝑎

•
𝛿𝐿(𝑎,𝑦)

𝛿𝑧
 =

𝛿𝐿(𝑎,𝑦)

𝛿𝑎

𝛿𝑎

𝛿𝑧
 = −

𝑦

𝑎
+

1−𝑦

1−𝑎
𝑎 1 − 𝑎 = 𝑎 − 𝑦

•
𝛿𝐿(𝑎,𝑦)

𝛿𝑤1
=

𝛿𝐿(𝑎,𝑦)

𝛿𝑎

𝛿𝑎

𝛿𝑧

𝛿𝑧

𝛿𝑤1
= −

𝑦

𝑎
+

1−𝑦

1−𝑎
𝑎 1 − 𝑎 𝑥1 = 𝑥1 𝑎 − 𝑦 = 𝑥1

𝛿𝐿(𝑎,𝑦)

𝛿𝑧

−
𝑦

𝑎
+

1 − 𝑦

1 − 𝑎𝑎 − 𝑦𝑥1(𝑎 − 𝑦)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

48

Logistic Regression Code

J = 0; dw1 = 0; dw2 = 0; db = 0;

For i = 1 to m

 z(i) = wTx(i) + b

 a(i) = σ(z(i))

 J += – [y(i) log a(i) + (1 – y(i)) log(1 – a(i))]

 dz(i) = a(i) – y(i)

 dw1 += x1
(i) dz(i)

 dw2 += x1
(i) dz(i)

 db += dz(i)

J /= m; dw1 /= m; dw2 /= m; db /= m;

Update weights:

w1 := w1 – α dw1

w2 := w2 – α dw2

b := b – α db

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

49

Logistic Regression Code

import numpy as np

a = np.array([1,2,3,4])

print(a)

import time

a = np.random.rand(1000000)

b = np.random.rand(1000000)

tic = time.time()

c = np.dot(a,b)

toc = time.time()

print(c)

print(“Vectorized version:” + str(1000*(toc-tic) +
“ms”)

c = 0

tic = time.time()

for i = range(1000000):

 c += a[i]*b[i]

toc = time.time()

print(c)

print(“For loop:” + str(1000*(toc-tic) + “ms”)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

50

Logistic Regression Vectorization

J = 0; dw1 = 0; dw2 = 0; db = 0;

For i = 1 to m

 z(i) = wTx(i) + b

 a(i) = σ(z(i))

 J += – [y(i) log a(i) + (1 – y(i)) log(1 – a(i))]

 dz(i) = a(i) – y(i)

 dw1 += x1
(i) dz(i)

 dw2 += x1
(i) dz(i)

 db += dz(i)

J /= m, dw1 /= m, dw2 /= m, db /= m

dw = np.zeros((nx, 1))

dw += x(i)dz(i)

dw /= m

One for

loop is thus

removed!!!

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

51

Logistic Regression Vectorization

• X = [x(1) x(2) … x(m)]

• Z = [z(1) z(2) … z(m)] = wTX + [b b … b] =
np.dot(w.T, X) + b

• A = [a(1) a(2) … a(m)] = sigmoid(Z)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

52

Logistic Regression Vectorization

• dz(1) = a(1) – y(1), dz(2) = a(2) – y(2), … (all m examples)

• dZ = [dz(1) dz(2) … dz(m)]

• A = [a(1) … a(m)]

• Y = [y(1) … y(m)]

• dZ = A – Y = [a(1)-y(1) … a(m)-y(m)]

• db =
1

𝑚
σ𝑖=1

𝑚 𝑑𝑧(𝑖) =
1

𝑚
𝑛𝑝. 𝑠𝑢𝑚 𝑑𝑍

• dw =
1

𝑚
𝑋𝑑𝑍𝑇

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow Neural Network

53

Logistic Regression Vectorization

J = 0; dw = np.zeros((nx,1)); db = 0;

For i = 1 to m

 z(i) = wTx(i) + b

 a(i) = σ(z(i))

 J += – [y(i) log a(i) + (1 – y(i))
log(1 – a(i))]

 dz(i) = a(i) – y(i)

 dw += x(i) *dz(i)

 db += dz(i)

J /= m, dw /= m, db /= m

Z = wTX + b = np.dot(w.T, X) + b

A = sigmoid(Z)

dZ = A – Y

dw = 1/m X dZT

db = 1/m np.sum(dZ)

w := w – α dw

b := b – α db

Vectorized

Version:

Without any for

loop!

	Slide 1: Deep Learning Chapter 2 Building Neural Network from Scratch
	Slide 2: Chapter 2: Building Neural Network from Scratch
	Slide 3: Previous Lecture Overview
	Slide 4: Previous Lecture Overview
	Slide 5: Previous Lecture Overview
	Slide 6: Previous Lecture Overview
	Slide 7: Previous Lecture Overview
	Slide 8: 1. Shallow Neural Network
	Slide 9: 1. Shallow Neural Network
	Slide 10: 1. Shallow Neural Network
	Slide 11: 1. Shallow Neural Network
	Slide 12: 1. Shallow Neural Network
	Slide 13: 1. Shallow Neural Network
	Slide 14: 1. Shallow Neural Network
	Slide 15: 1. Shallow Neural Network
	Slide 16: 1. Shallow Neural Network
	Slide 17: 1. Shallow Neural Network
	Slide 18: 1. Shallow Neural Network
	Slide 19: 1. Shallow Neural Network
	Slide 20: 1. Shallow Neural Network
	Slide 21: 1. Shallow Neural Network
	Slide 22: 1. Shallow Neural Network
	Slide 23: 1. Shallow Neural Network
	Slide 24: 1. Shallow Neural Network
	Slide 25: 1. Shallow Neural Network
	Slide 26: 1. Shallow Neural Network
	Slide 27: 1. Shallow Neural Network
	Slide 28: 1. Shallow Neural Network
	Slide 29: 1. Shallow Neural Network
	Slide 30: 1. Shallow Neural Network
	Slide 31: 1. Shallow Neural Network
	Slide 32: 1. Shallow Neural Network
	Slide 33: 1. Shallow Neural Network
	Slide 34: 1. Shallow Neural Network
	Slide 35: 1. Shallow Neural Network
	Slide 36: 1. Shallow Neural Network
	Slide 37: 1. Shallow Neural Network
	Slide 38: 1. Shallow Neural Network
	Slide 39: 1. Shallow Neural Network
	Slide 40: 1. Shallow Neural Network
	Slide 41: 1. Shallow Neural Network
	Slide 42: 1. Shallow Neural Network
	Slide 43: 1. Shallow Neural Network
	Slide 44: 1. Shallow Neural Network
	Slide 45: 1. Shallow Neural Network
	Slide 46: 1. Shallow Neural Network
	Slide 47: 1. Shallow Neural Network
	Slide 48: 1. Shallow Neural Network
	Slide 49: 1. Shallow Neural Network
	Slide 50: 1. Shallow Neural Network
	Slide 51: 1. Shallow Neural Network
	Slide 52: 1. Shallow Neural Network
	Slide 53: 1. Shallow Neural Network

