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Chapter 1: Course Infor & Programming review - 

week 1

1. Course introduction and grades

2. History of Deep learning

3. Deep learning applications

Chapter 2: Building Neural Network from Scratch – 

week 2-7

1. Shallow neural network - week 2

2. Deep neural network - week 3

3. Building neural network: step-by-step (modulation) - 

week 3

4. Regularization - week 4

5. Dropout - week 4

6. Batch Normalization  - week 5

7. Optimizers  - week 6

8. Hyper-parameters - week 7

9. Practice- week

Midterm

Chapter 3: Convolutional Neural Network - week 8-10

1. Convolutional operator

2. History of CNN

3. Deep Convolutional Models

4. Layers in CNN

5. Applications of CNN

6. Practice

Midterm summary

Chapter 4: TensorFlow Library- week 11-13

1. Introduction to TensorFlow

2. Building a deep neural network with TensorFlow

3. Applications

4. Practice

Chapter 5: Recurrent Neural Network week 14-15

1. Unfolding Computational Graphs

2. Building a Recurrent Neural Networks

3. Long Short-Term Memory

4. Vision with Language Processing

5. Application of RNN

6. Practice



These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

4

45 hours at Classes:

Theory + Coding practice

90 hours shelf-study at home:

Theory + Coding practice
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Regression

Supervised: Learning with a labeled training set of data

Example: learn the classification of images based on image labels (dogs/cats, day time, numbers, 

etc.)

Unsupervised: Discover patterns in unlabeled data

Example: cluster similar documents based on text

Reinforcement learning: learn to act based on feedback/reward

Example: learn to play Go, reward: win or lose 

clas

s A
clas

s A

Classification

Clustering

Sources: http://mbjoseph.github.io/2013/11/27/measure.html

https://becominghuman.ai/the-very-basics-of-reinforcement-learning-154f28a79071

http://mbjoseph.github.io/2013/11/27/measure.html
https://becominghuman.ai/the-very-basics-of-reinforcement-learning-154f28a79071
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• A sub-field of machine learning for learning representations of data.

• Exceptionally effective at learning patterns.

• Deep learning algorithms attempt to learn (multiple levels of) representation by using a hierarchy 

of multiple layers

• If you provide the system tons of information, it begins to understand it and respond in useful 

ways.

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png
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Shallow

8 layers

22 layers

152 layers

AlexNet

VGG,

GoogLeNet

ResNet SENet

ImageNet Large Scale Visual 

Recognition Challenge
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Basic of Neural Network

• The Perceptron and its Learning Rule (Frank Rosenblatt, 1957)

• Adaptive Linear Neuron and Delta Rule (Widrow & Hoff, 1960)

• Logistic Regression and Gradient Descent
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Biologically inspired (akin to the neurons in a brain)
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Artificial Neurons and the McCulloch-Pitts Model (1943)

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical 

biophysics, 5(4):115–133, 1943.
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W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical 

biophysics, 5(4):115–133, 1943.

• Supervised learning

• Single-layer

• Binary linear classifier

• To predict to which of 2 
possible categories, a certain 
data point belongs on a set of 
input variables

F. Rosenblatt. The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical Laboratory, 1957.

Frank Rosenblatt’s Perceptron (1957)
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Frank Rosenblatt’s Perceptron (1957)

• Positive class: +1

• Negative class: −1

• Activation function: g(z) = 1 if z ≥ θ; −1 
o/w
• where z is a linear combination of input values 

x and weights w, that is,
z = w1x1 + w2x2 + … + wmxm = σ𝑗=1

𝑚 𝑥𝑗𝑤𝑗  = wTx

• w = 

𝑤1

⋮
𝑤𝑚

 is the weight vector

• x = 

𝑥1

⋮
𝑥𝑚

 is an m-dimensional sample from the 

training data set
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Frank Rosenblatt’s Perceptron (1957)

• To simplify calculations, move θ to the origin such that 
the activation function becomes

• g(z) = ቊ
1 if 𝑧 ≥ 0

−1 otherwise
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Frank Rosenblatt’s Perceptron (1957)
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Frank Rosenblatt’s Perceptron (1957)

• Initialize the weights to 0 or small random numbers.

• For each training sample x(i):
• Calculate the output value y(i) = g(z(i))

• Update the weights as follows:

   wj := wj + η (y’(i) – y(i))

 where η is the learning rate, 0.0 < η < 1,  
   y’(i) is is the actual true class label, and 
   y(i) is the predicted class label.
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Frank Rosenblatt’s Perceptron (1957)

• Classify the flowers in 
the Iris dataset using the 
perceptron rule

• Iris dataset from UCI 
Machine Learning 
Repository

More complete version: 

https://github.com/rasbt/mlxtend/blob/master/mlxt

end/classifier/perceptron.py

import numpy as np

class Perceptron(object):

    def __init__(self, eta=0.01, epochs=50):

        self.eta = eta

        self.epochs = epochs

    def train(self, X, y):

        self.w_ = np.zeros(1 + X.shape[1])

        self.errors_ = []

        for _ in range(self.epochs):

            errors = 0

            for xi, target in zip(X, y):

                update = self.eta * (target - self.predict(xi))

                self.w_[1:] +=  update * xi

                self.w_[0] +=  update

                errors += int(update != 0.0)

            self.errors_.append(errors)

        return self

    def net_input(self, X):

        return np.dot(X, self.w_[1:]) + self.w_[0]

    def predict(self, X):

        return np.where(self.net_input(X) >= 0.0, 1, -1)

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
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Frank Rosenblatt’s Perceptron (1957)

Classify 2 flower species: Setosa and Versicolor using sepal length and 

petal length

• import pandas as pd

• df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', 
header=None)

• # setosa and versicolor

• y = df.iloc[0:100, 4].values

• y = np.where(y == 'Iris-setosa', -1, 1)

• # sepal length and petal length

• X = df.iloc[0:100, [0,2]].values
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Frank Rosenblatt’s Perceptron (1957)

%matplotlib inline

import matplotlib.pyplot as plt

from mlxtend.plotting import plot_decision_regions

ppn = Perceptron(epochs=10, eta=0.1)

ppn.train(X, y)

print('Weights: %s' % ppn.w_)

plot_decision_regions(X, y, clf=ppn)

plt.title('Perceptron')

plt.xlabel('sepal length [cm]')

plt.ylabel('petal length [cm]')

plt.show()

plt.plot(range(1, len(ppn.errors_)+1), 
ppn.errors_, marker='o')

plt.xlabel('Iterations')

plt.ylabel('Misclassifications')

plt.show()
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Frank Rosenblatt’s Perceptron (1957)

• Perceptron converges after 6th iteration

• Weights: [-0.4  -0.68  1.82]
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Frank Rosenblatt’s Perceptron (1957)

• The 2 classes must be separable by a linear hyperplane

• If not, then the perceptron algorithm does NOT converge!

http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html#problems-with-perceptrons
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Adaptive Linear Neurons and the Delta Rule (1960)

• Bernard Widrow and Tedd Hoff proposed 
Adaptive Linear Neurons (Adaline)

• Linear activation function: g(z) = z.

• It is differentiable, so we can define a cost function and minimize 
it!

B. Widrow et al. Adaptive ”Adaline” neuron using chemical ”memistors”. Number Technical Report 1553-2. 

Stanford Electron. Labs., Stanford, CA, October 1960.
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Adaptive Linear Neurons and the Delta Rule (1960)
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Adaptive Linear Neurons and the Delta Rule (1960)

• Gradient Descent
• A first-order iterative optimization algorithm for 

finding the minimum of a function

• Take steps proportional to the negative of the 
gradient of the function at the current point
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Adaptive Linear Neurons and the Delta Rule (1960)

• Cost function: sum of squared errors (SSE)

• J(w) = 
1

2
σ𝑖(𝑦′(𝑖) − 𝑦(𝑖))2

• To minimize SSE, we can use “gradient descent”

• A step in the opposite direction of gradient 

∆w = − α J(w)

where α is the learning rate, 0 < α < 1

• Thus, we need to compute the partial derivative of the cost 
function for each weight in the weight vector, 

∆wj = − α 
𝜕𝐽

𝜕𝑤𝑗
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Adaptive Linear Neurons and the Delta Rule (1960)

𝜕𝐽

𝜕𝑤𝑗
=

𝜕

𝜕𝑤𝑗

1

2
෍

𝑖

(𝑦′ 𝑖
− 𝑦(𝑖))2

= 
1

2
σ𝑖

𝜕

𝜕𝑤𝑗
(𝑦′ 𝑖

− 𝑦(𝑖))2

= 
1

2
σ𝑖 2(𝑦′ 𝑖

− 𝑦(𝑖))
𝜕

𝜕𝑤𝑗
(𝑦′ 𝑖

− 𝑦(𝑖))

= σ𝑖(𝑦′ 𝑖
− 𝑦(𝑖))

𝜕

𝜕𝑤𝑗
(𝑦′ 𝑖

− σ𝑗 𝑤𝑗𝑥𝑗
(𝑖)

)

= σ𝑖(𝑦′ 𝑖
− 𝑦 𝑖 )(−𝑥𝑗

(𝑖)
)
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Adaptive Linear Neurons and the Delta Rule (1960)

• A step in gradient descent:

• ∆wj  =  −α
𝜕𝐽

𝜕𝑤𝑗
 =  −α σ𝑖 𝑦′ 𝑖

− 𝑦 𝑖 −𝑥𝑗
𝑖

 = α σ𝑖(𝑦′ 𝑖
− 𝑦(𝑖))𝑥𝑗

(𝑖)

• Update weight vector:

• w := w + ∆w

• Differences with the perceptron rule

• The output y(i) is a real number, not a class label as in perceptron 
learning rule.

• Weight update is based on “all samples in the training set” (Batch GD)
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Adaptive Linear Neurons and the Delta Rule (1960)

import numpy as np

class AdalineGD(object):

    def __init__(self, alpha=0.01, epochs=50):

        self.alpha = alpha

        self.epochs = epochs

    def train(self, X, y):

        self.w_ = np.zeros(1 + X.shape[1])

        self.cost_ = []

        for i in range(self.epochs):

            output = self.net_input(X)

            errors = (y - output)

            self.w_[1:] += self.alpha * X.T.dot(errors)

            self.w_[0] += self.alpha * errors.sum()

            cost = (errors**2).sum() / 2.0

            self.cost_.append(cost)

        return self

def net_input(self, X):

        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, X):

        return self.net_input(X)

    def predict(self, X):

        return np.where(self.activation(X) >= 0.0, 1, -1)
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Adaptive Linear Neurons and the Delta Rule (1960)

ada = AdalineGD(epochs=10, alpha=0.01).train(X, y)

plt.plot(range(1, len(ada.cost_)+1), np.log10(ada.cost_), marker='o')

plt.xlabel('Iterations')

plt.ylabel('log(Sum-squared-error)')

plt.title('Adaline - Learning rate 0.01')

plt.show()

ada = AdalineGD(epochs=10, alpha=0.0001).train(X, y)

plt.plot(range(1, len(ada.cost_)+1), ada.cost_, marker='o')

plt.xlabel('Iterations')

plt.ylabel('Sum-squared-error')

plt.title('Adaline - Learning rate 0.0001')

plt.show()
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Adaptive Linear Neurons and the Delta Rule (1960)

• If the learning rate is TOO LARGE, gradient descent will overshoot the 
minima and diverge.

• If the learning rate is too small, gradient descent will require too many epochs 
to converge and can become trapped in local minima more easily.
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Adaptive Linear Neurons and the Delta Rule (1960)

• If features are scaled on the same scale, gradient descent converges faster and prevents 
weights from becoming too small (weight decay).

• Common way for feature scaling

𝑥𝑗,𝑠𝑡𝑑 =
𝑥𝑗 − 𝜇𝑗

𝜎𝑗

 where μj is the sample mean of the feature xj and σj the standard deviation.

• After standardization, the features will have unit variance and centered around mean 
zero.
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Adaptive Linear Neurons and the Delta Rule (1960)

# standardize features

X_std = np.copy(X)

X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()

X_std[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std()
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Adaptive Linear Neurons and the Delta Rule (1960)

%matplotlib inline

import matplotlib.pyplot as plt

from mlxtend.plotting import plot_decision_regions

ada = AdalineGD(epochs=15, eta=0.01)

ada.train(X_std, y)

plot_decision_regions(X_std, y, clf=ada)

plt.title('Adaline - Gradient Descent')

plt.xlabel('sepal length [standardized]')

plt.ylabel('petal length [standardized]')

plt.show()

plt.plot(range(1, len( ada.cost_)+1), ada.cost_, marker='o')

plt.xlabel('Iterations')

plt.ylabel('Sum-squared-error')

plt.show()
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Adaptive Linear Neurons and the Delta Rule (1960)
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Adaptive Linear Neurons and the Delta Rule (1960)

import numpy as np

class AdalineSGD(object):

    def __init__(self, alpha=0.01, epochs=50):

        self.alpha = alpha

        self.epochs = epochs

    def train(self, X, y, reinitialize_weights=True):

        if reinitialize_weights:

            self.w_ = np.zeros(1 + X.shape[1])

        self.cost_ = []

        for i in range(self.epochs):

            for xi, target in zip(X, y):

                output = self.net_input(xi)

                error = (target - output)

                self.w_[1:] += self.alpha * xi.dot(error)

                self.w_[0] += self.alpha * error

            cost = ((y - self.activation(X))**2).sum() / 

2.0

            self.cost_.append(cost)

        return self

def net_input(self, X):

        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, X):

        return self.net_input(X)

    def predict(self, X):

        return np.where(self.activation(X) >= 0.0, 

1, -1)
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Adaptive Linear Neurons and the Delta Rule (1960)

• Batch Gradient Descent (BGD)

• Cost function is minimized based on the complete training dataset (all samples)

• Stochastic Gradient Descent (SGD)

• Weights are incrementally updated after each individual training sample

• Converges faster than BGD since weights are updated immediately after each 
training sample

• Computationally more efficient, especially for large datasets

• Mini-batch Gradient Descent (MGD)

• Compromise between BGD and SGD, dataset is divided into mini-batches

• Smoother convergence than SGD
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Adaptive Linear Neurons and the Delta Rule (1960)

import numpy as np

class AdalineSGD(object):

    def __init__(self, alpha=0.01, epochs=50):

        self.alpha = alpha

        self.epochs = epochs

    def train(self, X, y, reinitialize_weights=True):

        if reinitialize_weights:

            self.w_ = np.zeros(1 + X.shape[1])

        self.cost_ = []

        for i in range(self.epochs):

            for xi, target in zip(X, y):

                output = self.net_input(xi)

                error = (target - output)

                self.w_[1:] += self.alpha * xi.dot(error)

                self.w_[0] += self.alpha * error

            cost = ((y - self.activation(X))**2).sum() / 2.0

            self.cost_.append(cost)

        return self

def net_input(self, X):

        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, X):

        return self.net_input(X)

    def predict(self, X):

        return np.where(self.activation(X) >= 0.0, 1, -1)

Adaline with SGD
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Adaptive Linear Neurons and the Delta Rule (1960) Adaline with SGD
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Logistic Regression

Perceptron vs. Adaline vs. 

Multi-Layer Perceptrons 

(Logistic Regression)
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Logistic Regression

• Definition:

• Given input 𝑥 ∈ ℛ𝑛𝑥, 
calculate the probability 

ො𝑦 = 𝑃 𝑦 = 1 𝑥 , 0 ≤ ො𝑦 ≤ 1.

• Parameters:

• Weights: 𝑤 ∈ ℛ𝑛𝑥

• Bias: 𝑏 ∈ ℛ

• Output:

• ො𝑦 = 𝜎 𝑧 = 𝜎(𝑤𝑇𝑥 + 𝑏)

 where 𝜎 𝑧 =
1

1+𝑒−𝑧 is the 

sigmoid activation 
function

If z is large positive number, σ(z) 

→ 1

If z is small negative number, σ(z) 

→ 0

σ(z)σ(z)=
1

1+𝑒−𝑧
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Logistic Regression

• For ith input 𝑥(𝑖), ො𝑦(𝑖) = 𝜎 𝑧(𝑖) = 𝜎 𝑤𝑇𝑥(𝑖) + 𝑏  where 𝜎 𝑧(𝑖) =
1

1+𝑒−𝑧(𝑖)

• For each labeled data (𝑥(𝑖), 𝑦(𝑖)), we could like ො𝑦(𝑖) ≈ 𝑦 𝑖 , where ො𝑦(𝑖)is the 
predicted output and 𝑦(𝑖)is the actual expected ground truth value.

• Loss (error)function for each input is defined using Cross-Entropy or Log Loss
ℒ ො𝑦, 𝑦 = − 𝑦 log ො𝑦 + 1 − 𝑦 log 1 − ො𝑦

• Intuition

• If y=1, ℒ ො𝑦, 𝑦 = − log ො𝑦

• Need large ො𝑦

• If y=0, ℒ ො𝑦, 𝑦 = − log(1 − ො𝑦)

• Need small ො𝑦

Note: we do not use sum of squared errors 

because it will be not convex in logistic 

regression
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Logistic Regression

• Cost function is the average of all cross-entropy losses

𝒥 𝑤, 𝑏

=
1

𝑚
෍

𝑖=1

𝑚

ℒ( ො𝑦 𝑖 , 𝑦(𝑖))

= −
1

𝑚
෍

𝑖=1

𝑚

𝑦 𝑖 log ො𝑦 𝑖 + 1 − 𝑦 𝑖 log 1 − ො𝑦 𝑖

• Goal:

• Find vectors w and b that minimize the cost function (total loss)

• Logistic regression can be viewed as a small neural network!
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Logistic Regression

• ො𝑦(𝑖) = 𝜎 𝑧(𝑖) = 𝜎 𝑤𝑇𝑥(𝑖) + 𝑏 , where 𝜎 𝑧(𝑖) =
1

1+𝑒−𝑧(𝑖)

• 𝒥 𝑤, 𝑏 =
1

𝑚
σ𝑖=1

𝑚 ℒ( ො𝑦 𝑖 , 𝑦(𝑖))  = −
1

𝑚
σ𝑖=1

𝑚 𝑦 𝑖 log ො𝑦 𝑖 + 1 − 𝑦 𝑖 log 1 − ො𝑦 𝑖

• Find w, b that minimize 𝒥 𝑤, 𝑏

𝑏

𝐽 𝑤, 𝑏

𝑤

Convergence
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Logistic Regression

Repeat {

 𝑤 ≔ 𝑤 −∝
𝛿𝐽(𝑤)

𝛿𝑤

}

𝑤

Convergence
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Logistic Regression Computation Graph

• A graph that depicts all the computations required for a function in a forward path

• For example: J(x, y, z) = 4(x + yz)

x

y

z
u = y*z

v = x+u J = 4v

Forward Path: Computation

Backward Path: Derivatives
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Logistic Regression Computation Graph

•
𝛿𝐽

𝛿𝑣
= 4

•
𝛿𝐽

𝛿𝑥
=

𝛿𝐽

𝛿𝑣

𝛿𝑣

𝛿𝑥
= 4 × 1 = 4

•
𝛿𝐽

𝛿𝑢
=

𝛿𝐽

𝛿𝑣

𝛿𝑣

𝛿𝑢
= 4 × 1 = 4

•
𝛿𝐽

𝛿𝑦
=

𝛿𝐽

𝛿𝑢

𝛿𝑢

𝛿𝑦
= 4 × 𝑧 = 4𝑧

•
𝛿𝐽

𝛿𝑧
=

𝛿𝐽

𝛿𝑢

𝛿𝑢

𝛿𝑧
= 4 × 𝑦 = 4𝑦

x

y

z
u = y*z

v = x+u J = 4v

4

4

4

4z

4y
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Logistic Regression Computation Graph

𝑧 =  𝑤𝑇𝑥 + 𝑏

ො𝑦 = 𝑎 =  𝜎(𝑧)

ℒ 𝑎, 𝑦 = −(𝑦 log(𝑎) + (1 − 𝑦) log(1 − 𝑎))

x1

w1

b

z = w1x1 + w2x2 + b ℒ(a, y)a = σ(z)

x2

w2
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Logistic Regression Computation Graph

•
𝛿𝐿(𝑎,𝑦)

𝛿𝑎
 = −

𝑦

𝑎
+

1−𝑦

1−𝑎

•
𝛿𝐿(𝑎,𝑦)

𝛿𝑧
 = 

𝛿𝐿(𝑎,𝑦)

𝛿𝑎

𝛿𝑎

𝛿𝑧
 = −

𝑦

𝑎
+

1−𝑦

1−𝑎
𝑎 1 − 𝑎 = 𝑎 − 𝑦

•
𝛿𝐿(𝑎,𝑦)

𝛿𝑤1
=

𝛿𝐿(𝑎,𝑦)

𝛿𝑎

𝛿𝑎

𝛿𝑧

𝛿𝑧

𝛿𝑤1
= −

𝑦

𝑎
+

1−𝑦

1−𝑎
𝑎 1 − 𝑎 𝑥1 = 𝑥1 𝑎 − 𝑦 = 𝑥1

𝛿𝐿(𝑎,𝑦)

𝛿𝑧

−
𝑦

𝑎
+

1 − 𝑦

1 − 𝑎𝑎 − 𝑦𝑥1(𝑎 − 𝑦)
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Logistic Regression Code

J = 0;  dw1 = 0;  dw2 = 0;  db = 0;

For i = 1 to m

 z(i) = wTx(i) + b

 a(i) = σ(z(i))

 J += – [y(i) log a(i) + (1 – y(i)) log(1 – a(i))]

 dz(i) = a(i) – y(i)

 dw1 += x1
(i) dz(i)

 dw2 += x1
(i) dz(i)

 db += dz(i)

J /= m;   dw1 /= m;   dw2 /= m;   db /= m;

Update weights:

w1 := w1 – α dw1

w2 := w2 – α dw2

b := b – α db
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Logistic Regression Code

import numpy as np

a = np.array([1,2,3,4])

print(a)

import time

a = np.random.rand(1000000)

b = np.random.rand(1000000)

tic = time.time()

c = np.dot(a,b)

toc = time.time()

print(c)

print(“Vectorized version:” + str(1000*(toc-tic) + 
“ms”)

c = 0

tic = time.time()

for i = range(1000000):

 c += a[i]*b[i]

toc = time.time()

print(c)

print(“For loop:” + str(1000*(toc-tic) + “ms”)
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Logistic Regression Vectorization

J = 0;  dw1 = 0;  dw2 = 0;  db = 0;

For i = 1 to m

 z(i) = wTx(i) + b

 a(i) = σ(z(i))

 J += – [y(i) log a(i) + (1 – y(i)) log(1 – a(i))]

 dz(i) = a(i) – y(i)

 dw1 += x1
(i) dz(i)

 dw2 += x1
(i) dz(i)

 db += dz(i)

J /= m,   dw1 /= m,   dw2 /= m,   db /= m

dw = np.zeros((nx, 1))

dw += x(i)dz(i)

dw /= m

One for 

loop is thus 

removed!!!
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Logistic Regression Vectorization

• X = [x(1) x(2) … x(m)]

• Z = [z(1) z(2) … z(m)] = wTX + [b b … b] = 
np.dot(w.T, X) + b

• A = [a(1) a(2) … a(m)] = sigmoid(Z)
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Logistic Regression Vectorization

• dz(1) = a(1) – y(1),  dz(2) = a(2) – y(2),  … (all m examples)

• dZ = [dz(1) dz(2) … dz(m)]

• A = [a(1) … a(m)]

• Y = [y(1) … y(m)]

• dZ = A – Y = [a(1)-y(1)  … a(m)-y(m)]

• db = 
1

𝑚
σ𝑖=1

𝑚 𝑑𝑧(𝑖) =
1

𝑚
𝑛𝑝. 𝑠𝑢𝑚 𝑑𝑍

• dw = 
1

𝑚
𝑋𝑑𝑍𝑇
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Logistic Regression Vectorization

J = 0;  dw = np.zeros((nx,1));  db = 0;

For i = 1 to m

 z(i) = wTx(i) + b

 a(i) = σ(z(i))

 J += – [y(i) log a(i) + (1 – y(i)) 
log(1 – a(i))]

 dz(i) = a(i) – y(i)

 dw += x(i) *dz(i)

 db += dz(i)

J /= m,   dw /= m,   db /= m

Z = wTX + b = np.dot(w.T, X) + b

A = sigmoid(Z)

dZ = A – Y

dw = 1/m X dZT

db = 1/m np.sum(dZ)

w := w – α dw

b := b – α db

Vectorized 

Version: 

Without any for 

loop!
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