Lecture slides for this course u
have been prepared by Dr. Le Minh Huy, PHENIKAA
EEE, Phenikaa University '

Deep Learning

Chapter 2 Building Neural Network
from Scratch

Dr. Van-Toi NGUYEN
EEE, Phenikaa University

A,

\/

UNIVERIITY

Chapter 2: Building Neural Network from Scratch

1. Shallow neural network
2. Deep neural network

3. Building neural network: step-by-step
(modulation)

Regularization
Dropout

Batch Normalization
Optimizers
Hyper-parameters
Practice

© 0o N o Ok

Previous Lecture Overview

Chapter 1: Course Infor & Programming review -
week 1
1. Course introduction and grades
2. History of Deep learning
3. Deep learning applications

Chapter 2: Building Neural Network from Scratch —
week 2-7
1. Shallow neural network - week 2
2. Deep neural network - week 3
3. Building neural network: step-by-step (modulation) -
week 3
Regularization - week 4
Dropout - week 4
Batch Normalization - week 5
Optimizers - week 6
Hyper-parameters - week 7
. Practice- week
Midterm

©oNO O A

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

———

UMIYERIITY
Chapter 3: Convolutional Neural Network - week 8-10
Convolutional operator
History of CNN
Deep Convolutional Models
Layers in CNN
Applications of CNN
6. Practice
Midterm summary
Chapter 4: TensorFlow Library- week 11-13
1. Introduction to TensorFlow
2. Building a deep neural network with TensorFlow
3. Applications
4. Practice
Chapter 5: Recurrent Neural Network week 14-15
Unfolding Computational Graphs
Building a Recurrent Neural Networks
Long Short-Term Memory
Vision with Language Processing
Application of RNN
Practice

ko E

oSOk whE

Previous Lecture Overview |Ulab

UNIVERIITY

Basic of Neural Network

« The Perceptron and its Learning Rule (Frank Rosenblatt, 1957)
« Adaptive Linear Neuron and Delta Rule (Widrow & Hoff, 1960)
 Logistic Regression and Gradient Descent

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

- Previous Lecture Overview | l=b

UNIVERIITY

Biologically inspired (akin to the neurons in a brain)

NEURAL NETWORK MAPPING

Input Layer Hidden Layer

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 5

- Previous Lecture Overview | l=b

Artificial Neurons and the McCulloch-Pitts Model (1943)

Axon
) terminals
Myelin sheath

Input

Signals 5 K‘—‘- ' ~/ : Signals

Output

|

— Cell nucleus

Schematic of a biological neuron.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical
biophysics, 5(4):115-133, 1943.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 6

—

Previous Lecture Overview IClab

Frank Rosenblatt’s Perceptron (1957)
Inputs Weights Net input Activation
function function

@—- output

Schematic of Rosenblatt’s perceptron.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 7

Previous Lecture Overview |Ulab
PHENIKAA

Adaptive Linear Neurons and the Delta Rule (1960)

Error

®_@ _ @__. output

Met input Activation
function function

Perceptron rule.

®_@ . —@— output

Met input Activation Cuantizer
function functon

Adaline.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 8

- Previous Lecture Overview |-Jab

Adaptive Linear Neurons and the Delta Rule (1960)

J(w)

. Gradient Descent

- Afirst-order iterative optimization algorithm for
finding the minimum of a function

- Take steps proportional to the negative of the i)
gradient of the function at the current point w

Initial
weight

4.0
35 i

i

i
3.0 4
2.5 1
2.0

1.5

1.0 {

0.5 - -
1.5 2.0 2.5 3.0 35 40 45 50 55

n= 1:iter = 0/49; ||grad||_2 = 3.381

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 9

Previous Lecture Overview |0zb
]) PHENIKAA
Adaptive Linear Neurons and the Delta Rule (1960) :

MIVERSITY

. Cost function: sum of squared errors (SSE)
- IW) =55, @ — y0y?
. To minimize SSE, we can use “gradient descent”
. A step In the opposite direction of gradient
Aw = —a VI(w)
where o Is the learning rate, 0 < a <1

. Thus, we need to compute the partial derivative of the cost
function for each weight in the weight vector,

0
AW, = — g —-
J aWj

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 10

Previous Lecture Overview |Ulab

]) PHENIKAA
Adaptive Linear Neurons and the Delta Rule (1960)
. A step in gradient descent:
_ 0] 10 j i 10 N (i
' AWJ' - _O‘a_wj = —0 ()’ Y- y(‘)) (—xj(l)) =a);(y V- y(l))xj(l)

Update weight vector:
- WI=W+ AW
Differences with the perceptron rule

. The output y® is a real number, not a class label as in perceptron
learning rule.

. Weight update 1s based on “all samples in the training set” (Batch GD)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 11

Previous Lecture Overview |Ulab
PHENIKAA

Adaptive Linear Neurons and the Delta Rule (1960)

If the learning rate is TOO LARGE, gradient descent will overshoot the
minima and diverge.

If the learning rate is too small, gradient descent will require too many epochs
to converge and can become trapped in local minima more easily.

i ¥

J(w)

Large learning rate: Overshooting. Small learning rate: Many iterations
until convergence and trapping in
local minima.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 12

Previous Lecture Overview |Ulab
PHENIKAA

Adaptive Linear Neurons and the Delta Rule (1960)

If features are scaled on the same scale, gradient descent converges faster and prevents
weights from becoming too small (weight decay).

Common way for feature scaling

_NTH
xj,std —
9

where g; Is the sample mean of the feature x; and o; the standard deviation.

After standardization, the features will have unit variance and centered around mean
Zero.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 13

Previous Lecture Overview |Ulab
PHENIKAA

Adaptive Linear Neurons and the Delta Rule (1960)

Batch Gradient Descent (BGD)
Cost function is minimized based on the complete training dataset (all samples)

Stochastic Gradient Descent (SGD)
Weights are incrementally updated after each individual training sample
Converges faster than BGD since weights are updated immediately after each
training sample
Computationally more efficient, especially for large datasets

Mini-batch Gradient Descent (MGD)
Compromise between BGD and SGD, dataset is divided into mini-batches
Smoother convergence than SGD

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 14

Previous Lecture Overview |tlab

. . - PHENIKAA
Logistic Regression Perceptron adaline

Perceptron vs. Adaline vs.
Multi-Layer Perceptrons
(Logistic Regression)

MLP {logistic sigmeid)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 15

Previous Lecture Overview |Ulab

UNIVERIITY

Logistic Regression

o(2)=—

o 1+e~ 2 |
Definition: 08
- Given input x € R™x, 08

calculate the probability N
9=P(y=1lx),0<y < 1.

Parameters: . x
Weights: w € R™x coo T Lo
Bias: b € R If z is large positive number, o(z)

Output: 21
y=0(z) =cwTx+b) Ifzissmall negative number, ¢(z)
where o(z) = —— isthe >0

; ; ; +e
sigmoid activation
function

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 16

Previous Lecture Overview |Ulab

L. i PHENIKAA
Logistic Regression

Cost function is the average of all cross-entropy losses

J(w,b)

1 o
— 5(0) A, (D)
mEL(y , y*)

= _%Z[y(i) log 9@ + (1 — y(i)) log(l — y(i))]
i=1

Goal:
Find vectors w and b that minimize the cost function (total loss)

Logistic regression can be viewed as a small neural network!

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 17

- Previous Lecture Overview | l=b

o] PHENIKAA
Logistic Regression Convergence
9y =g(zW) = a(WwTx® + b),where o(zV) = - - 0
+e~2
1 ~(i . 1 . ~(i . (i
c Jw,b) = ¥ LWV, yD) = ——F [yO1logy® + (1 - y?P) log(1 — O)]
+

J(w, b)

Find w, b that minimize J(w, b)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 18

Previous Lecture Overview |t=b

L. : _ PHENIKARA
Logistic Regression Computation Graph

- A graph that depicts all the computations required for a function in a forward path
For example: J(X, Y, z) = 4(X + yz)

Forward Path: Computation >
X \
y \

>{ u=y*z
Z /

< Backward Path: Derivatives

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 19

Previous Lecture Overview |Ulab

- - -] PHENIKAA
Logistic Regression Computation Graph
z=wlx+b
y=a= o(z)
L(a,y) = =(ylog(a) + (1 — y) log(1 — a))
X1
X2
Wi Z=W;X; + WX, + D J—{a = G(Z)]—»[L(a, y)]
Wo

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 20

Previous Lecture Overview |Ulab

.. : _ PHENIKAA
Logistic Regression Computation Graph
X4 Y, 1oy
%, x1(a — y) a 1-a
W1\ Z=WiX;+ WoXy,+ b }——'[—G(Z)]—’[»C(a}’)]
W
b
oL(ay) _ (_¥y 4 17y
sa (a T 1—a)
6L(a,y) O6L(a,y)da _ T i _ _
5z ba 62_(+1 a) (a(l a))—a
6L(a,y) _ OL(a)y)d6a 6z A i _ _ _ oL(a,y)
Swy da b8z6w; (.l a) a(l—a)x, =x(a-y) =x 5z

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 21

—

1. Shallow neural network [Clab

———

UNIVERIITY

What is a Shallow Neural Network?e

X1
Single
neuron > V
model X2 x Y
X3 -
Multiple w z=wx+b P a=d(z) P Lay)
layer
neural b Computation graph
model X1
>
X2 y
X3 N
w il 210 = Wil 4 pl1] [g1 = g(2l10) ol £[2] = Wizl 4 pl2] |l gl2] = g(z12))
pli] —> L(al?,y)

Computation graph

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. -

1. Shallow neural network One hidden layer Neural Network IEIE_lh
PHENIKAA

UNIVERIITY

2-layer NN
1 hidden layer

apg =X / Layer 2
_ 47
agl]
[1]
g1 = “f |
1
as
;]
Input layer Hidden layer Output layer

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 23

1. Shallow neural network

Computing NN’s Output

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

—

Clab

— T

———

UNIVERIITY

24

1. Shallow neural network

Given input x:

L1 = il 4 pll

altl = g(z11h

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Computing NN’s Output

— 7 ey i

z{ =
Z£1] _
ZE] _ W?E1]T
Z£1] _ WE]T
7121 =

al?l = g(z12h

Wl[l]T x + b1 = O'(ZP])
= J(ZE])
= a(zs[,l])

x + bgl], a

X + b = O'(ZL[Ll])

—

|Cl=b

UNIVERIITY

25

1. Shallow neural network Vectorizing across multiple examples IEIE_lh
PHENIKAA

UNIVERIITY

fori=1tom:
71110 = il @ 4 pli]
altl®) = gzl

71210 = w2l g1l 4 pl2l
al2l®) = g (7121

<

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 26

—

1. Shallow neural network Vectorizing across multiple examples |Cl;:_l!:l
PHENIKAA

\ UMIVERSITY
for 1 = 1 to m:

L0 = il 6 4 phl

i _ 1O = 5110

X= | x@ @ 5
\ \ \ a2l = 5(z121D)
[1] — [1]
Alll = altl® 4[11(2) ql11(m) A =o0(ZY)

l l ‘ 7121 — yl2lgltl o pl2]
A2l = g(z12h

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 27

1. Shallow neural network Activation functions |t=b

UNIVERIITY

| [1ifz>0
:F Unit step 8(2) =7 -1 otherwise.

[1ifz>0
8(2) =7 0 otherwise.

I
7!4 Linear glz)= z
£
=+

Logistic ~ g(z) = 1/(1+exp(-2))
(sigmoid)

Hyperbolic (z) = exp(2z) - 1
tangent exp(2z) + 1
(sigmoid)

output

Comprehensive List of Activation Functions:
https://stats.stackexchange.com/questions/115258/comprehensi
ve-list-of-activation-functions-in-neural-networks-with-pros-cons

A selection of commonly used activation
functions for artificial neurons.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 28

https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons

1. Shallow neural network — Activation functions | l=b

UNIVERIITY

Activation Formula (g(z)) Derivative (g°z)) EStTele a
Function
, >
" Z
sigmoid _ a(l—a)
= 1tes tanh a4
>
tanh L ef—e” 1-a? Z
ezt ez
a
Rel U max(0, z) 0ifz< 0 RelU
1ifz=0
>
k 0.01ifz<0 Z
. I Z
Leaky RelLU max(0.01z, z) ity o Leaky q
- RelLU
— e >
Z

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 29

1. Shallow neural network Why non-linear activation function? ICIE_llJ

PHENIKAR
X1
What not linear? X2 9
Suppose gltl, gl?! are all linear
3l1l = 7[1] X3
421 = 7[2]
al2l = Wlzaltl+plel Given X:

= WERI(WILX+bl)+bl2
= WIRIWILX + WI2p1l4+pl2]
~W'X+b’ qlll = g[ll (Z[l])

All LINEAR!! 7121 — w2lgl 4 pl2]

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 30

—

1. Shallow neural network Gradient descent for one hidden layer Il_:_lg_g!]

X UNIVERIITY

Wil — 7110 = witly 4 p11 B g1 = 5(2[1

> | 7121 = w2y 4 pl2] s ql2] = 5(z[2]) Il £(al2],y)

dZ[Z] — a[z] -y

dw2l = gz[21400"

dbl?l = q72]

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 31

1. Shallow neural network

dz[z] — a[z] —y

dw2l = 51214007

dbl?2]l = dz12]

dz[]-] — W[Z]sz[z] % g[l]’(z[l])
awltl = dzI1UxT

dplll = 47111

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

—

Vectorizing Gradient Descent IELC_'lJ

—

UNIVERIITY

dz12] = gl2l —y

1 m
e Oh = LGEY)
=1

aw'2l = L gzl
m

1
dbl2l = —np. sum(dZ!?, axis = 1, keepdims = True)

azll = wlaTqz12] « glil(zIy

aw'ltl = = qzlgr
m

1
aplll = —np. sum(dZ axis = 1, keepdims = True)

32

1. Shallow neural network Initializing weights | l=b

D

UMIVERSITY
= What is weights are initialized to zero? @
» Suppose all weights are zero:

_[0 0
-WU]_[O 0 xz @

- o[

A

- a£1] _ a£1]
- dz{ll = dz£1]
u v . .
» JdW = [u v] (l.e., symmetric rows)
Wil =wll— gdw
1] — f g9 -
» W= g (l.e., symmetric rows)

=» No need of TWO or more neurons ... because all computations are same!
» Do NOT initialize all weights are ZERO!!

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni. 33

1. Shallow neural network Initialize weights RANDOMLY!

WI[1] = np.random.randn((2,2))*0.01
Small random values are suggested!

If too large, ZI1 = WX + bl will also be very large and alll =
gLtz will be in the flat areas and gradient descent will be
very, very slooooooooow....

b[1] = np.zero((2,1)) (b can be zero, no problem!)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

UNIVERIITY

34

	Slide 1: Deep Learning Chapter 2 Building Neural Network from Scratch
	Slide 2: Chapter 2: Building Neural Network from Scratch
	Slide 3: Previous Lecture Overview
	Slide 4: Previous Lecture Overview
	Slide 5: Previous Lecture Overview
	Slide 6: Previous Lecture Overview
	Slide 7: Previous Lecture Overview
	Slide 8: Previous Lecture Overview
	Slide 9: Previous Lecture Overview
	Slide 10: Previous Lecture Overview
	Slide 11: Previous Lecture Overview
	Slide 12: Previous Lecture Overview
	Slide 13: Previous Lecture Overview
	Slide 14: Previous Lecture Overview
	Slide 15: Previous Lecture Overview
	Slide 16: Previous Lecture Overview
	Slide 17: Previous Lecture Overview
	Slide 18: Previous Lecture Overview
	Slide 19: Previous Lecture Overview
	Slide 20: Previous Lecture Overview
	Slide 21: Previous Lecture Overview
	Slide 22: 1. Shallow neural network
	Slide 23: 1. Shallow neural network
	Slide 24: 1. Shallow neural network
	Slide 25: 1. Shallow neural network
	Slide 26: 1. Shallow neural network
	Slide 27: 1. Shallow neural network
	Slide 28: 1. Shallow neural network
	Slide 29: 1. Shallow neural network
	Slide 30: 1. Shallow neural network
	Slide 31: 1. Shallow neural network
	Slide 32: 1. Shallow neural network
	Slide 33: 1. Shallow neural network
	Slide 34: 1. Shallow neural network

