Lecture slides for this course have been prepared by Dr. Le Minh Huy, EEE, Phenikaa University

Deep Learning Chapter 2 Building Neural Network from Scratch

Dr. Van-Toi NGUYEN EEE, Phenikaa University

Chapter 2: Building Neural Network from Scratch

- 1. Shallow neural network
- 2. Deep neural network
- 3. Building neural network: step-by-step (modulation)
- 4. Regularization
- 5. Dropout
- 6. Batch Normalization
- 7. Optimizers
- 8. Hyper-parameters
- 9. Practice

Chapter 1: Course Infor & Programming review week 1

- 1. Course introduction and grades
- 2. History of Deep learning
- 3. Deep learning applications

Chapter 2: Building Neural Network from Scratch – week 2-7

- 1. Shallow neural network week 2
- 2. Deep neural network week 3
- 3. Building neural network: step-by-step (modulation) week 3
- 4. Regularization week 4
- 5. Dropout week 4
- 6. Batch Normalization week 5
- 7. Optimizers week 6
- 8. Hyper-parameters week 7
- 9. Practice- week

Midterm

Chapter 3: Convolutional Neural Network - week 8-10

- 1. Convolutional operator
- 2. History of CNN
- 3. Deep Convolutional Models
- 4. Layers in CNN
- 5. Applications of CNN
- 6. Practice

Midterm summary

Chapter 4: TensorFlow Library- week 11-13

- 1. Introduction to TensorFlow
- 2. Building a deep neural network with TensorFlow
- 3. Applications
- 4. Practice

Chapter 5: Recurrent Neural Network week 14-15

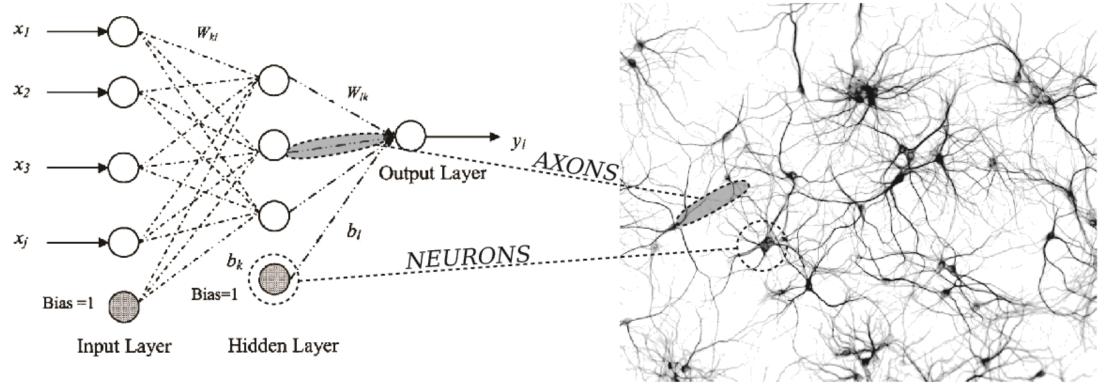
- 1. Unfolding Computational Graphs
- 2. Building a Recurrent Neural Networks
- 3. Long Short-Term Memory
- 4. Vision with Language Processing
- 5. Application of RNN
- 6. Practice

Basic of Neural Network

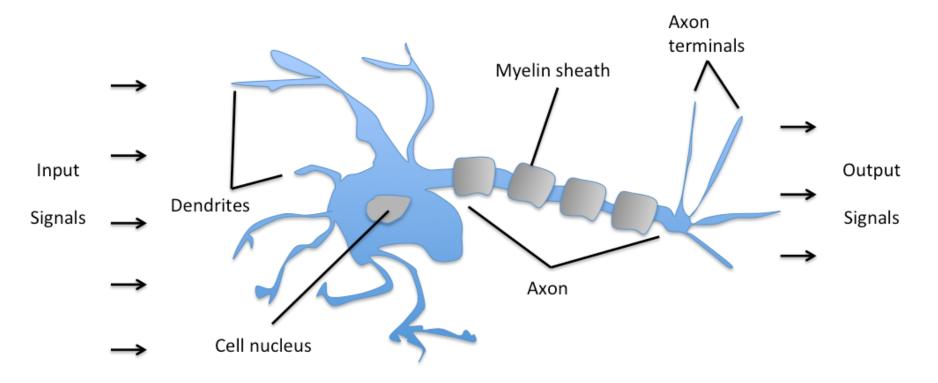
- The Perceptron and its Learning Rule (Frank Rosenblatt, 1957)
- Adaptive Linear Neuron and Delta Rule (Widrow & Hoff, 1960)
- Logistic Regression and Gradient Descent

Biologically inspired (akin to the neurons in a brain)

NEURAL NETWORK MAPPING



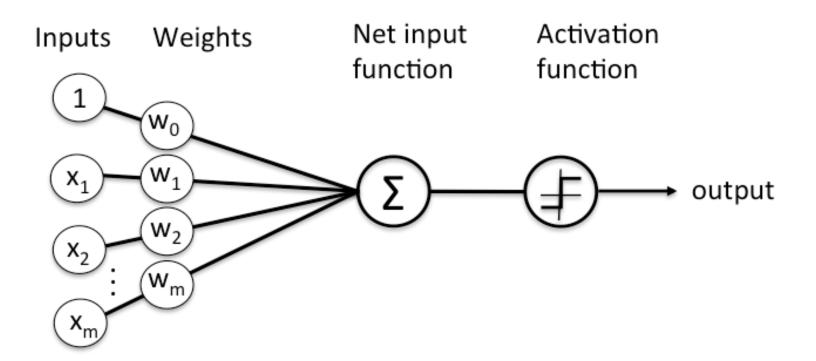
Artificial Neurons and the McCulloch-Pitts Model (1943)



Schematic of a biological neuron.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

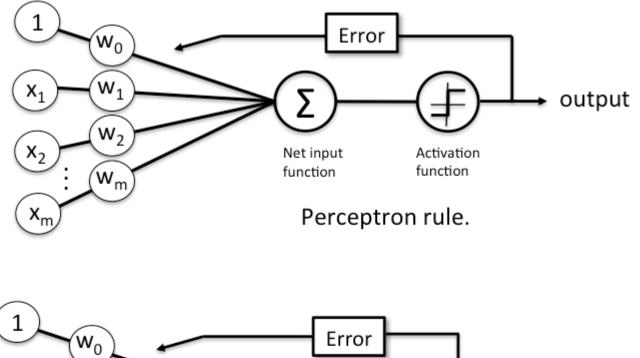
Frank Rosenblatt's Perceptron (1957)

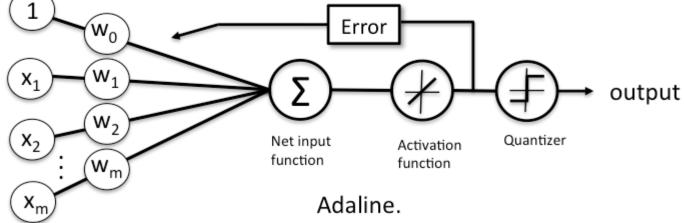


Schematic of Rosenblatt's perceptron.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

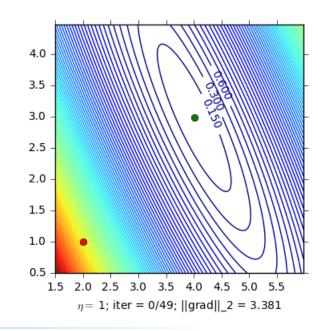
Adaptive Linear Neurons and the Delta Rule (1960)

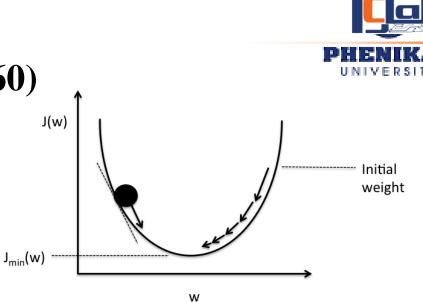




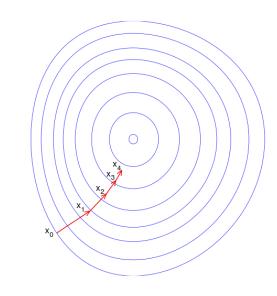
Adaptive Linear Neurons and the Delta Rule (1960)

- Gradient Descent
 - A first-order iterative optimization algorithm for finding the minimum of a function
 - Take steps proportional to the negative of the gradient of the function at the current point





Schematic of gradient descent.



Adaptive Linear Neurons and the Delta Rule (1960)

• Cost function: sum of squared errors (SSE)

•
$$J(w) = \frac{1}{2} \sum_{i} (y'^{(i)} - y^{(i)})^2$$

- To minimize SSE, we can use "gradient descent"
- A step in the opposite direction of gradient

$$\Delta w = -\alpha \nabla J(w)$$

where α is the learning rate, $0 < \alpha < 1$

• Thus, we need to compute the partial derivative of the cost function for each weight in the weight vector,

$$\Delta \mathbf{w}_{j} = -\alpha \, \frac{\partial J}{\partial w_{j}}$$

Adaptive Linear Neurons and the Delta Rule (1960)

• A step in gradient descent:

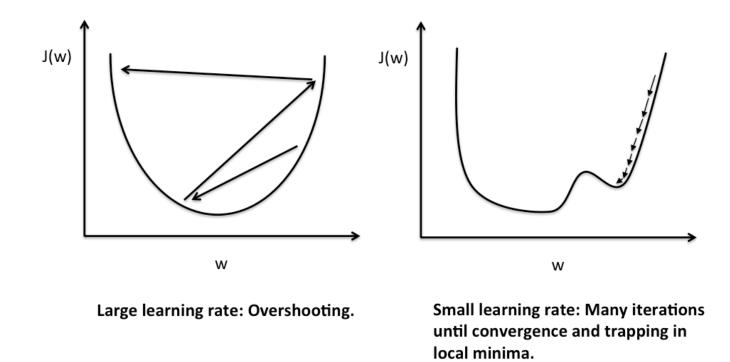
$$\cdot \Delta w_{j} = -\alpha \frac{\partial J}{\partial w_{j}} = -\alpha \sum_{i} \left({y'}^{(i)} - y^{(i)} \right) \left(-x_{j}^{(i)} \right) = \alpha \sum_{i} ({y'}^{(i)} - y^{(i)}) x_{j}^{(i)}$$

- Update weight vector:
 - $\mathbf{w} := \mathbf{w} + \Delta \mathbf{w}$
- Differences with the perceptron rule
 - The output $y^{(i)}$ is a real number, not a class label as in perceptron learning rule.
 - Weight update is based on "all samples in the training set" (Batch GD)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Adaptive Linear Neurons and the Delta Rule (1960)

- If the learning rate is TOO LARGE, gradient descent will overshoot the minima and diverge.
- If the learning rate is too small, gradient descent will require too many epochs to converge and can become trapped in local minima more easily.



Adaptive Linear Neurons and the Delta Rule (1960)

- If features are scaled on the same scale, gradient descent converges faster and prevents weights from becoming too small (weight decay).
- Common way for feature scaling

$$x_{j,std} = \frac{x_j - \mu_j}{\sigma_j}$$

where μ_i is the sample mean of the feature x_i and σ_i the standard deviation.

• After standardization, the features will have unit variance and centered around mean zero.

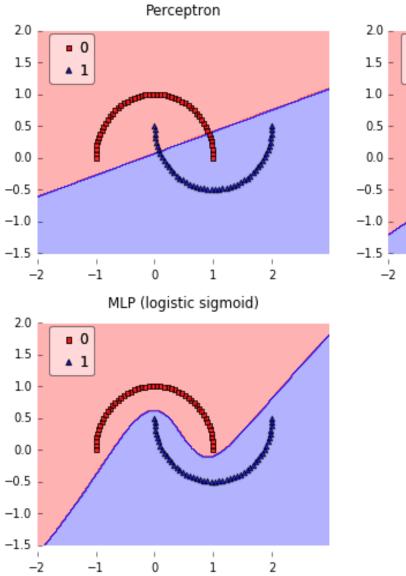
These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

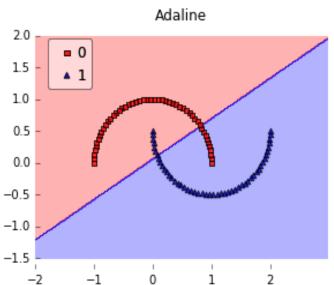
Adaptive Linear Neurons and the Delta Rule (1960)

- Batch Gradient Descent (BGD)
 - Cost function is minimized based on the complete training dataset (all samples)
- Stochastic Gradient Descent (SGD)
 - Weights are incrementally updated after each individual training sample
 - Converges faster than BGD since weights are updated immediately after each training sample
 - Computationally more efficient, especially for large datasets
- Mini-batch Gradient Descent (MGD)
 - Compromise between BGD and SGD, dataset is divided into mini-batches
 - Smoother convergence than SGD

Logistic Regression

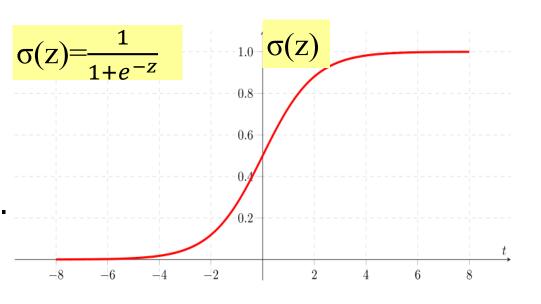
Perceptron vs. Adaline vs. Multi-Layer Perceptrons (Logistic Regression)





Logistic Regression

- Definition:
 - Given input $x \in \mathcal{R}^{n_x}$, calculate the probability $\hat{y} = P(y = 1|x), 0 \le \hat{y} \le 1$.
- Parameters:
 - Weights: $w \in \mathcal{R}^{n_x}$
 - Bias: $b \in \mathcal{R}$
- Output:
 - $\hat{y} = \sigma(z) = \sigma(w^T x + b)$ where $\sigma(z) = \frac{1}{1+e^{-z}}$ is the sigmoid activation function



If z is large positive number, $\sigma(z) \rightarrow 1$

If z is small negative number, $\sigma(z) \rightarrow 0$

Logistic Regression

• Cost function is the average of all cross-entropy losses

$$\begin{aligned} \mathcal{J}(w, b) \\ &= \frac{1}{m} \sum_{i=1_m}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) \\ &= -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right] \end{aligned}$$

- Goal:
 - Find vectors **w** and **b** that minimize the cost function (total loss)
- Logistic regression can be viewed as a small neural network!

Logistic Regression

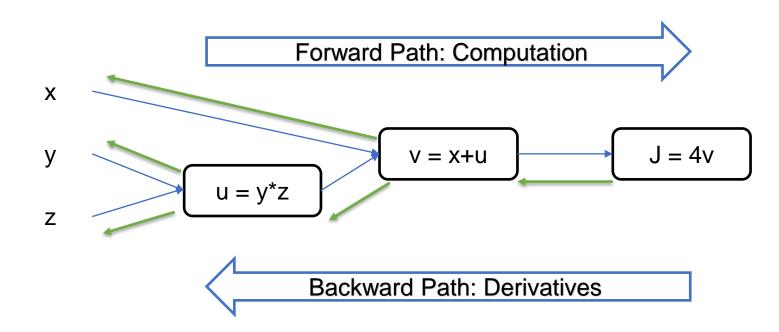
Convergence

•
$$\hat{y}^{(i)} = \sigma(z^{(i)}) = \sigma(w^T x^{(i)} + b)$$
, where $\sigma(z^{(i)}) = \frac{1}{1 + e^{-z^{(i)}}}$
• $\mathcal{J}(w, b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})]$
• Find w, b that minimize $\mathcal{J}(w, b)$

Logistic Regression

Computation Graph

- A graph that depicts all the computations required for a function in a forward path
- For example: J(x, y, z) = 4(x + yz)



These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

Logistic Regression

 $z = w^T x + b$

$$\hat{y} = a = \sigma(z)$$

$$\mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

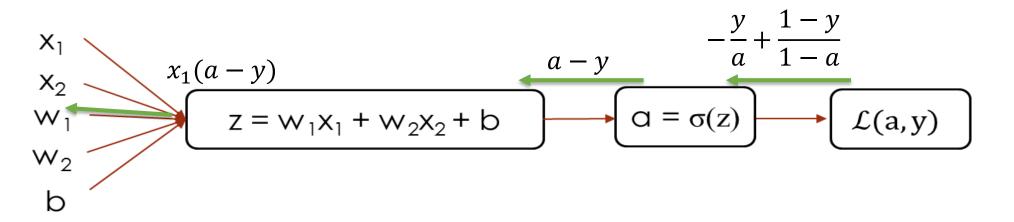
$$\begin{array}{c} x_1 \\ x_2 \\ w_1 \\ w_2 \\ b \end{array}$$

$$\begin{array}{c} z = w_1 x_1 + w_2 x_2 + b \\ b \end{array}$$

$$\begin{array}{c} a = \sigma(z) \\ c = \sigma(z) \end{array}$$

Logistic Regression

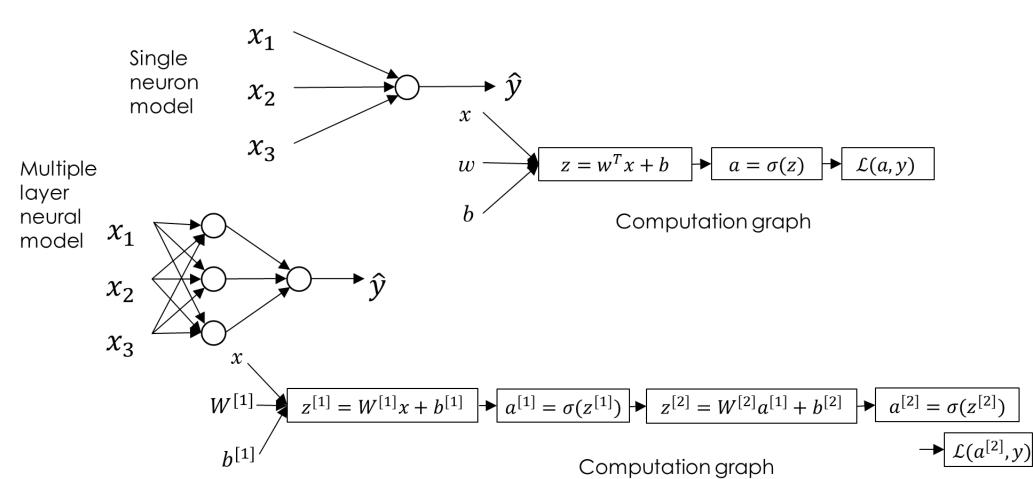
Computation Graph



$$\cdot \frac{\delta L(a,y)}{\delta a} = \left(-\frac{y}{a} + \frac{1-y}{1-a}\right)$$

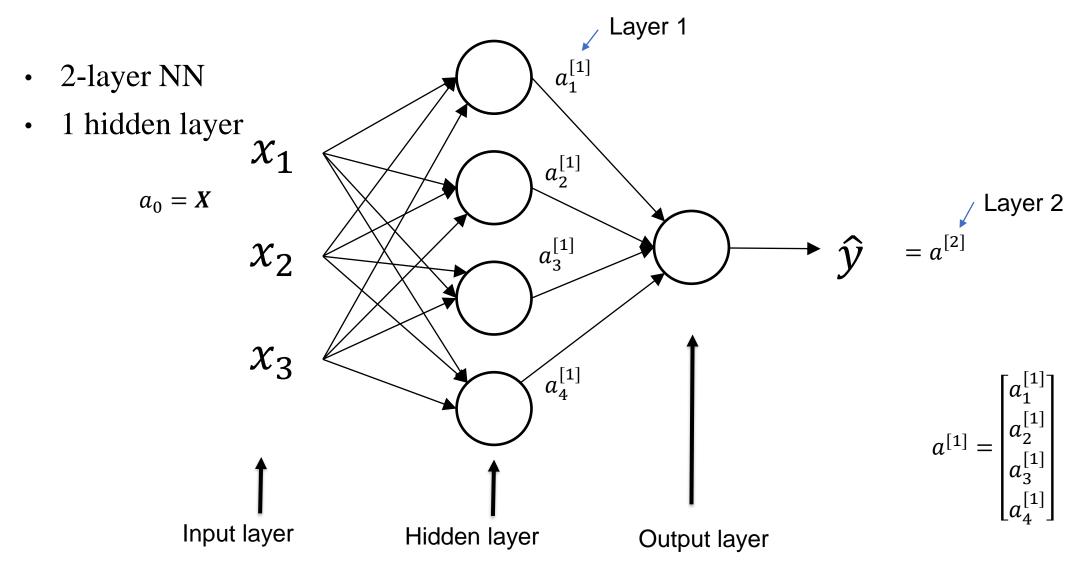
$$\cdot \frac{\delta L(a,y)}{\delta z} = \frac{\delta L(a,y)}{\delta a} \frac{\delta a}{\delta z} = \left(-\frac{y}{a} + \frac{1-y}{1-a}\right) \left(a(1-a)\right) = a - y$$

$$\cdot \frac{\delta L(a,y)}{\delta w_1} = \frac{\delta L(a,y)}{\delta a} \frac{\delta a}{\delta z} \frac{\delta z}{\delta w_1} = \left(-\frac{y}{a} + \frac{1-y}{1-a}\right) a(1-a)x_1 = x_1(a-y) = x_1 \frac{\delta L(a,y)}{\delta z}$$

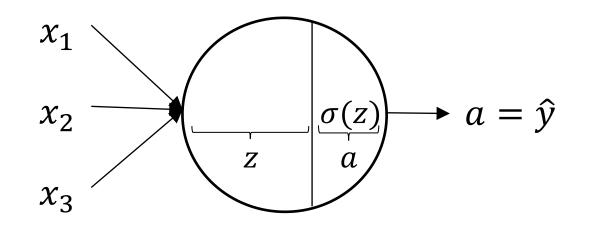


What is a Shallow Neural Network?

One hidden layer Neural Network



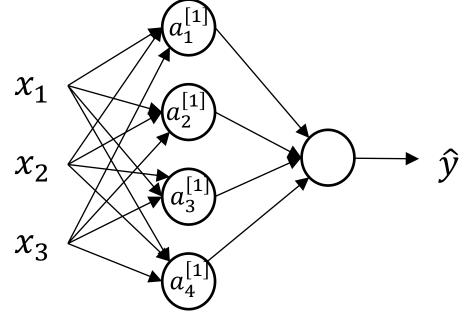
Computing NN's Output



$$z = w^T x + b$$
$$a = \sigma(z)$$

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Computing NN's Output

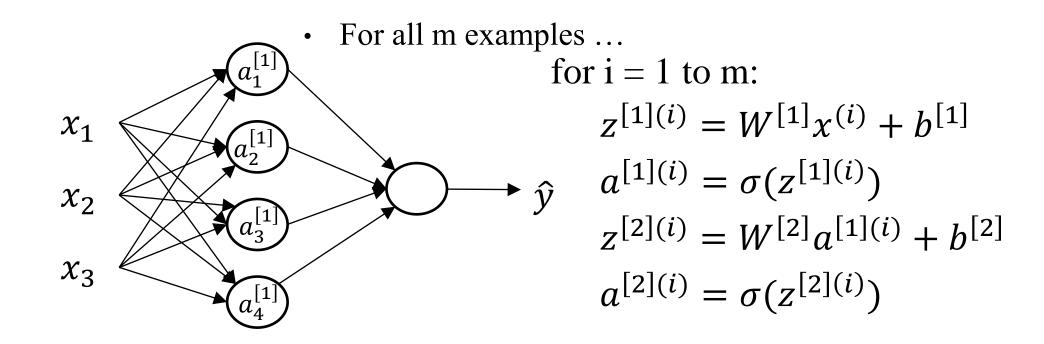


$$z_{1}^{[1]} = w_{1}^{[1]T} x + b_{1}^{[1]}, \ a_{1}^{[1]} = \sigma(z_{1}^{[1]})$$
$$z_{2}^{[1]} = w_{2}^{[1]T} x + b_{2}^{[1]}, \ a_{2}^{[1]} = \sigma(z_{2}^{[1]})$$
$$z_{3}^{[1]} = w_{3}^{[1]T} x + b_{3}^{[1]}, \ a_{3}^{[1]} = \sigma(z_{3}^{[1]})$$
$$z_{4}^{[1]} = w_{4}^{[1]T} x + b_{4}^{[1]}, \ a_{4}^{[1]} = \sigma(z_{4}^{[1]})$$

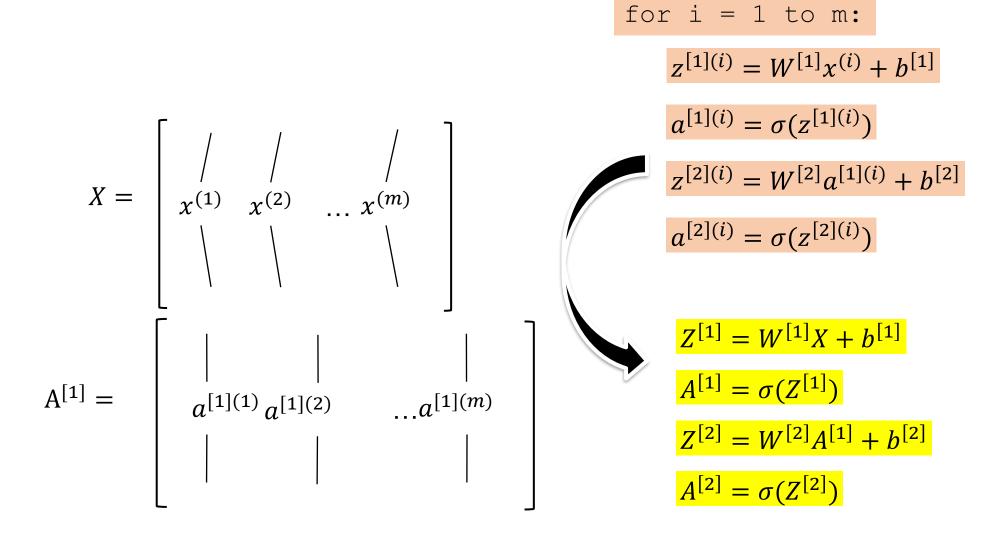
Given input x:

$$z^{[1]} = W^{[1]}x + b^{[1]} \qquad z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$
$$a^{[1]} = \sigma(z^{[1]}) \qquad a^{[2]} = \sigma(z^{[2]})$$

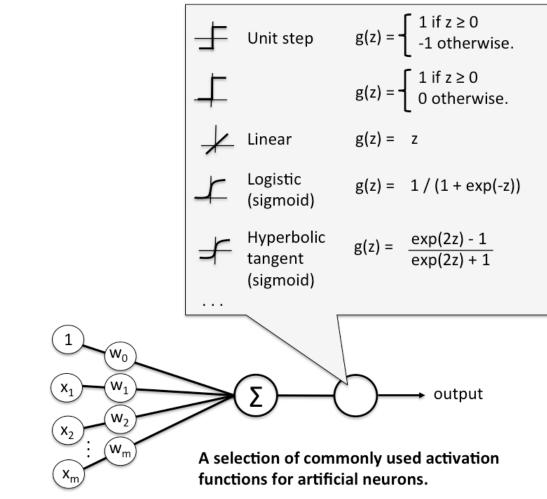
Vectorizing across multiple examples



Vectorizing across multiple examples



Activation functions

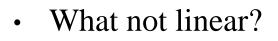


Comprehensive List of Activation Functions: <u>https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons</u>

Activation functions

Activation Function	Formula (g(z))	Derivative (g'z))	sigmoid a
sigmoid	$a = \frac{1}{1 + e^{-z}}$	a(1 – a)	tanh a
tanh	$a = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	$1 - a^2$	
ReLU	max(0, <i>z</i>)	0 if $z < 0$ 1 if $z \ge 0$	ReLU a
Leaky ReLU	max(0.01 <i>z</i> , <i>z</i>)	0.01 if $z < 0$ 1 if $z \ge 0$	Leaky a ReLU

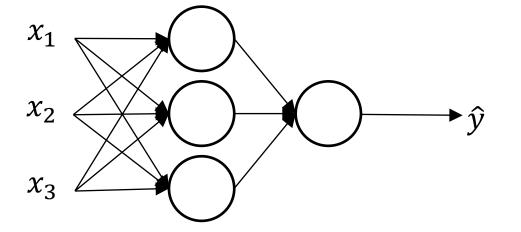
Why non-linear activation function?



- Suppose g^[1], g^[2] are all linear
 - $a^{[1]} = z^{[1]}$
 - $a^{[2]} = z^{[2]}$
 - $a^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$
 - = $W^{[2]}(W^{[1]}X+b^{[1]})+b^{[2]}$
 - = $W^{[2]}W^{[1]}X + W^{[2]}b^{[1]} + b^{[2]}$
 - = W'X + b'
- All LINEAR!!!

$$z^{[1]} = W^{[1]}x + b^{[1]}$$
$$a^{[1]} = g^{[1]}(z^{[1]})$$
$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$
$$a^{[2]} = g^{[2]}(z^{[2]})$$

Given x:



Gradient descent for one hidden layer

$$W^{[1]} = W^{[1]}x + b^{[1]} = a^{[1]} = \sigma(z^{[1]})$$
$$b^{[1]} dz^{[1]} = W^{[2]T} dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^{T} \quad db^{[1]} = dz^{[1]}$$

$$\Rightarrow z^{[2]} = W^{[2]}x + b^{[2]} \Rightarrow a^{[2]} = \sigma(z^{[2]}) \Rightarrow \mathcal{L}(a^{[2]}, y)$$

$$dz^{[2]} = a^{[2]} - y$$

 $dW^{[2]} = dz^{[2]}a^{[1]^T}$

$$db^{[2]} = dz^{[2]}$$

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Vectorizing Gradient Descent

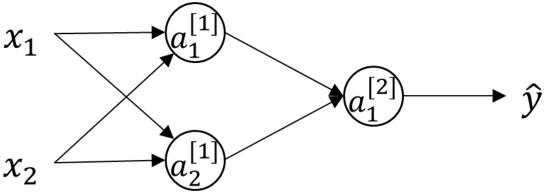
$$\begin{aligned} dz^{[2]} &= a^{[2]} - y \\ dW^{[2]} &= dz^{[2]} a^{[1]^T} \\ db^{[2]} &= dz^{[2]} \\ dz^{[1]} &= w^{[2]^T} dz^{[2]} * g^{[1]'}(z^{[1]}) \\ dz^{[1]} &= dz^{[1]} x^T \\ db^{[1]} &= dz^{[1]} \end{aligned}$$

$$\begin{aligned} dz^{[1]} &= dz^{[1]} \\ dz^{[1]} &= dz^{[1]} \\ dz^{[1]} &= dz^{[1]} \end{aligned}$$

$$\begin{aligned} dz^{[1]} &= dz^{[1]} \\ dz^{[1]} &= dz^{[1]} \\ dz^{[1]} &= dz^{[1]} \\ dz^{[1]} &= dz^{[1]} \end{aligned}$$

Initializing weights

- Suppose all weights are zero:
 - $\bullet \quad \mathsf{W}^{[1]} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 - $b^{[1]} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 - $a_1^{[1]} = a_2^{[1]}$
 - $dz_1^{[1]} = dz_2^{[1]}$
 - $dW = \begin{bmatrix} u & v \\ u & v \end{bmatrix}$ (i.e., symmetric rows)
 - $W^{[1]} = W^{[1]} \alpha dW$
 - $W^{[1]} = \begin{bmatrix} f & g \\ f & g \end{bmatrix}$ (i.e., symmetric rows)
- No need of TWO or more neurons ... because all computations are same!
 - Do NOT initialize all weights are ZERO!!



Initialize weights RANDOMLY!

- W[1] = np.random.randn((2,2))*0.01
 - **Small** random values are suggested!
 - If too large, $Z^{[1]} = W^{[1]}X + b^{[1]}$ will also be very large and $a^{[1]} = g^{[1]}(z^{[1]})$ will be in the flat areas and gradient descent will be very, very slooooooow....

• b[1] = np.zero((2,1)) (b can be zero, no problem!)