
Deep Learning
Chapter 2 Building Neural Network

from Scratch

Dr. Van-Toi NGUYEN

EEE, Phenikaa University

Lecture slides for this course

have been prepared by Dr. Le Minh Huy,

EEE, Phenikaa University

1. Shallow neural network

2. Deep neural network

3. Building neural network: step-by-step
(modulation)

4. Regularization

5. Dropout

6. Batch Normalization

7. Optimizers

8. Hyper-parameters

9. Practice

Chapter 2: Building Neural Network from Scratch

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

3

Chapter 1: Course Infor & Programming review -

week 1

1. Course introduction and grades

2. History of Deep learning

3. Deep learning applications

Chapter 2: Building Neural Network from Scratch –

week 2-7

1. Shallow neural network - week 2

2. Deep neural network - week 3

3. Building neural network: step-by-step (modulation) -

week 3

4. Regularization - week 4

5. Dropout - week 4

6. Batch Normalization - week 5

7. Optimizers - week 6

8. Hyper-parameters - week 7

9. Practice- week

Midterm

Chapter 3: Convolutional Neural Network - week 8-10

1. Convolutional operator

2. History of CNN

3. Deep Convolutional Models

4. Layers in CNN

5. Applications of CNN

6. Practice

Midterm summary

Chapter 4: TensorFlow Library- week 11-13

1. Introduction to TensorFlow

2. Building a deep neural network with TensorFlow

3. Applications

4. Practice

Chapter 5: Recurrent Neural Network week 14-15

1. Unfolding Computational Graphs

2. Building a Recurrent Neural Networks

3. Long Short-Term Memory

4. Vision with Language Processing

5. Application of RNN

6. Practice

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

4

Basic of Neural Network

• The Perceptron and its Learning Rule (Frank Rosenblatt, 1957)

• Adaptive Linear Neuron and Delta Rule (Widrow & Hoff, 1960)

• Logistic Regression and Gradient Descent

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

5

Biologically inspired (akin to the neurons in a brain)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

6

Artificial Neurons and the McCulloch-Pitts Model (1943)

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical

biophysics, 5(4):115–133, 1943.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

7

Frank Rosenblatt’s Perceptron (1957)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

8

Adaptive Linear Neurons and the Delta Rule (1960)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

9

Adaptive Linear Neurons and the Delta Rule (1960)

• Gradient Descent
• A first-order iterative optimization algorithm for

finding the minimum of a function

• Take steps proportional to the negative of the
gradient of the function at the current point

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

10

Adaptive Linear Neurons and the Delta Rule (1960)

• Cost function: sum of squared errors (SSE)

• J(w) =
1

2
σ𝑖(𝑦′(𝑖) − 𝑦(𝑖))2

• To minimize SSE, we can use “gradient descent”

• A step in the opposite direction of gradient

∆w = − α J(w)

where α is the learning rate, 0 < α < 1

• Thus, we need to compute the partial derivative of the cost
function for each weight in the weight vector,

∆wj = − α
𝜕𝐽

𝜕𝑤𝑗

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

11

Adaptive Linear Neurons and the Delta Rule (1960)

• A step in gradient descent:

• ∆wj = −α
𝜕𝐽

𝜕𝑤𝑗
 = −α σ𝑖 𝑦′ 𝑖

− 𝑦 𝑖 −𝑥𝑗
𝑖

 = α σ𝑖(𝑦′ 𝑖
− 𝑦(𝑖))𝑥𝑗

(𝑖)

• Update weight vector:

• w := w + ∆w

• Differences with the perceptron rule

• The output y(i) is a real number, not a class label as in perceptron
learning rule.

• Weight update is based on “all samples in the training set” (Batch GD)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

12

Adaptive Linear Neurons and the Delta Rule (1960)

• If the learning rate is TOO LARGE, gradient descent will overshoot the
minima and diverge.

• If the learning rate is too small, gradient descent will require too many epochs
to converge and can become trapped in local minima more easily.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

13

Adaptive Linear Neurons and the Delta Rule (1960)

• If features are scaled on the same scale, gradient descent converges faster and prevents
weights from becoming too small (weight decay).

• Common way for feature scaling

𝑥𝑗,𝑠𝑡𝑑 =
𝑥𝑗 − 𝜇𝑗

𝜎𝑗

 where μj is the sample mean of the feature xj and σj the standard deviation.

• After standardization, the features will have unit variance and centered around mean
zero.

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

14

Adaptive Linear Neurons and the Delta Rule (1960)

• Batch Gradient Descent (BGD)

• Cost function is minimized based on the complete training dataset (all samples)

• Stochastic Gradient Descent (SGD)

• Weights are incrementally updated after each individual training sample

• Converges faster than BGD since weights are updated immediately after each
training sample

• Computationally more efficient, especially for large datasets

• Mini-batch Gradient Descent (MGD)

• Compromise between BGD and SGD, dataset is divided into mini-batches

• Smoother convergence than SGD

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

15

Logistic Regression

Perceptron vs. Adaline vs.

Multi-Layer Perceptrons

(Logistic Regression)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

16

Logistic Regression

• Definition:

• Given input 𝑥 ∈ ℛ𝑛𝑥,
calculate the probability

ො𝑦 = 𝑃 𝑦 = 1 𝑥 , 0 ≤ ො𝑦 ≤ 1.

• Parameters:

• Weights: 𝑤 ∈ ℛ𝑛𝑥

• Bias: 𝑏 ∈ ℛ

• Output:

• ො𝑦 = 𝜎 𝑧 = 𝜎(𝑤𝑇𝑥 + 𝑏)

 where 𝜎 𝑧 =
1

1+𝑒−𝑧 is the

sigmoid activation
function

If z is large positive number, σ(z)

→ 1

If z is small negative number, σ(z)

→ 0

σ(z)σ(z)=
1

1+𝑒−𝑧

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

17

Logistic Regression

• Cost function is the average of all cross-entropy losses

𝒥 𝑤, 𝑏

=
1

𝑚

𝑖=1

𝑚

ℒ(ො𝑦 𝑖 , 𝑦(𝑖))

= −
1

𝑚

𝑖=1

𝑚

𝑦 𝑖 log ො𝑦 𝑖 + 1 − 𝑦 𝑖 log 1 − ො𝑦 𝑖

• Goal:

• Find vectors w and b that minimize the cost function (total loss)

• Logistic regression can be viewed as a small neural network!

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

18

Logistic Regression

• ො𝑦(𝑖) = 𝜎 𝑧(𝑖) = 𝜎 𝑤𝑇𝑥(𝑖) + 𝑏 , where 𝜎 𝑧(𝑖) =
1

1+𝑒−𝑧(𝑖)

• 𝒥 𝑤, 𝑏 =
1

𝑚
σ𝑖=1

𝑚 ℒ(ො𝑦 𝑖 , 𝑦(𝑖)) = −
1

𝑚
σ𝑖=1

𝑚 𝑦 𝑖 log ො𝑦 𝑖 + 1 − 𝑦 𝑖 log 1 − ො𝑦 𝑖

• Find w, b that minimize 𝒥 𝑤, 𝑏

𝑏

𝐽 𝑤, 𝑏

𝑤

Convergence

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

19

Logistic Regression Computation Graph

• A graph that depicts all the computations required for a function in a forward path

• For example: J(x, y, z) = 4(x + yz)

x

y

z
u = y*z

v = x+u J = 4v

Forward Path: Computation

Backward Path: Derivatives

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

20

Logistic Regression Computation Graph

𝑧 = 𝑤𝑇𝑥 + 𝑏

ො𝑦 = 𝑎 = 𝜎(𝑧)

ℒ 𝑎, 𝑦 = −(𝑦 log(𝑎) + (1 − 𝑦) log(1 − 𝑎))

x1

w1

b

z = w1x1 + w2x2 + b ℒ(a, y)a = σ(z)

x2

w2

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

Previous Lecture Overview

21

Logistic Regression Computation Graph

•
𝛿𝐿(𝑎,𝑦)

𝛿𝑎
 = −

𝑦

𝑎
+

1−𝑦

1−𝑎

•
𝛿𝐿(𝑎,𝑦)

𝛿𝑧
 =

𝛿𝐿(𝑎,𝑦)

𝛿𝑎

𝛿𝑎

𝛿𝑧
 = −

𝑦

𝑎
+

1−𝑦

1−𝑎
𝑎 1 − 𝑎 = 𝑎 − 𝑦

•
𝛿𝐿(𝑎,𝑦)

𝛿𝑤1
=

𝛿𝐿(𝑎,𝑦)

𝛿𝑎

𝛿𝑎

𝛿𝑧

𝛿𝑧

𝛿𝑤1
= −

𝑦

𝑎
+

1−𝑦

1−𝑎
𝑎 1 − 𝑎 𝑥1 = 𝑥1 𝑎 − 𝑦 = 𝑥1

𝛿𝐿(𝑎,𝑦)

𝛿𝑧

−
𝑦

𝑎
+

1 − 𝑦

1 − 𝑎𝑎 − 𝑦𝑥1(𝑎 − 𝑦)

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow neural network

22

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow neural network

23

• 2-layer NN

• 1 hidden layer
𝑥1

𝑥2

𝑥3

ො𝑦

Input layer Hidden layer Output layer

𝑎1
[1]

𝑎2
[1]

𝑎3
[1]

𝑎4
[1]

= 𝑎
[2]

Layer 1

Layer 2

𝑎[1] =

𝑎1
[1]

𝑎2
[1]

𝑎3
[1]

𝑎4
[1]

𝑎0 = 𝑿

One hidden layer Neural Network

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow neural network

24

𝑎

𝑥1

𝑥2

𝑥3

𝜎(𝑧) 𝑎 = ො𝑦
𝑧

𝑧 = 𝑤𝑇𝑥 + 𝑏

𝑎 = 𝜎(𝑧)

Computing NN’s Output

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow neural network

25

𝑧1
1

= 𝑤1
1 𝑇

𝑥 + 𝑏1
[1]

, 𝑎 1
[1]

= 𝜎(𝑧1
1

)

𝑧2
1

= 𝑤2
1 𝑇

𝑥 + 𝑏2
[1]

, 𝑎 2
[1]

= 𝜎(𝑧2
1

)

𝑧3
1

= 𝑤3
1 𝑇

𝑥 + 𝑏3
[1]

, 𝑎 3
[1]

= 𝜎(𝑧3
1

)

𝑧4
1

= 𝑤4
1 𝑇

𝑥 + 𝑏4
[1]

, 𝑎 4
[1]

= 𝜎(𝑧4
1

)

𝑥1

𝑥2

𝑥3

ො𝑦

𝑎1
1

𝑎2
1

𝑎3
1

𝑎4
1

Given input x:

𝑧 1 = 𝑊 1 𝑥 + 𝑏 1

𝑎 1 = 𝜎(𝑧 1)

𝑧 2 = 𝑊 2 𝑎 1 + 𝑏 2

𝑎 2 = 𝜎(𝑧 2)

Computing NN’s Output

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow neural network

26

• For all m examples …

𝑧 1 (𝑖) = 𝑊 1 𝑥(𝑖) + 𝑏 1

𝑎 1 (𝑖) = 𝜎(𝑧 1 𝑖)

𝑧 2 (𝑖) = 𝑊 2 𝑎 1 (𝑖) + 𝑏 2

𝑎 2 (𝑖) = 𝜎(𝑧 2 𝑖)

for i = 1 to m:

𝑥1

𝑥2

𝑥3

ො𝑦

𝑎1
1

𝑎2
1

𝑎3
1

𝑎4
1

Vectorizing across multiple examples

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow neural network

27

Vectorizing across multiple examples

…𝑋 = 𝑥(1) 𝑥(2) 𝑥(𝑚)

𝑎[1](2)A[1] = 𝑎1 𝑎[1](𝑚)…

𝑍 1 = 𝑊 1 𝑋 + 𝑏 1

𝐴 1 = 𝜎(𝑍 1)

𝑍 2 = 𝑊 2 𝐴 1 + 𝑏 2

𝐴 2 = 𝜎(𝑍 2)

𝑧 1 (𝑖) = 𝑊 1 𝑥(𝑖) + 𝑏 1

𝑎 1 (𝑖) = 𝜎(𝑧 1 𝑖)

𝑧 2 (𝑖) = 𝑊 2 𝑎 1 (𝑖) + 𝑏 2

𝑎 2 (𝑖) = 𝜎(𝑧 2 𝑖)

for i = 1 to m:

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow neural network

28

Activation functions

Comprehensive List of Activation Functions:

https://stats.stackexchange.com/questions/115258/comprehensi

ve-list-of-activation-functions-in-neural-networks-with-pros-cons

https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow neural network

29

Activation functions

Activation

Function

Formula (g(z)) Derivative (g’z))

sigmoid
𝑎 =

1

1 + 𝑒−𝑧

𝑎(1 − 𝑎)

tanh
𝑎 =

𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧

1 − 𝑎2

ReLU max(0, 𝑧) 0 if 𝑧 < 0
1 if 𝑧 ≥ 0

Leaky ReLU max(0.01𝑧, 𝑧) 0.01 if 𝑧 < 0
1 if 𝑧 ≥ 0

a

z

a

z

sigmoid

tanh

ReLU

z

a

z

aLeaky

ReLU

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow neural network

30

Why non-linear activation function?

• What not linear?

• Suppose g[1], g[2] are all linear

• a[1] = z[1]

• a[2] = z[2]

• a[2] = W[2]a[1]+b[2]

• = W[2](W[1]X+b[1])+b[2]

• = W[2]W[1]X + W[2]b[1]+b[2]

• = W’X + b’

• All LINEAR!!!

𝑧 1 = 𝑊 1 𝑥 + 𝑏 1

𝑎 1 = 𝑔[1](𝑧 1)

𝑧 2 = 𝑊 2 𝑎 1 + 𝑏 2

𝑎 2 = 𝑔[2](𝑧 2)

Given x:

𝑥1

𝑥2

𝑥3

ො𝑦

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow neural network

31

Gradient descent for one hidden layer

𝑧[1] = 𝑊[1]𝑥 + 𝑏[1]𝑊[1]

𝑏[1]

𝑎[1] = 𝜎(𝑧[1])

𝑥

𝑑𝑧[1] = 𝑊 2 𝑇𝑑𝑧[2] ∗ 𝑔[1]′(z 1)

𝑑𝑊[1] = 𝑑𝑧[1]𝑥𝑇 𝑑𝑏[1] = 𝑑𝑧[1]

ℒ(𝑎[2], y)𝑧[2] = 𝑊[2]𝑥 + 𝑏[2] 𝑎[2] = 𝜎(𝑧[2])

𝑊[2]

𝑏[2]

𝑑𝑧[2] = 𝑎[2] − 𝑦

𝑑𝑊[2] = 𝑑𝑧[2]𝑎 1 𝑇

𝑑𝑏[2] = 𝑑𝑧[2]

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow neural network

32

Vectorizing Gradient Descent

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow neural network

33

Initializing weights

These slides are provided by Minhhuy Le, ICSLab, Phenikaa Uni.

1. Shallow neural network

34

Initialize weights RANDOMLY!

• W[1] = np.random.randn((2,2))*0.01

• Small random values are suggested!

• If too large, Z[1] = W[1]X + b[1] will also be very large and a[1] =
g[1](z[1]) will be in the flat areas and gradient descent will be
very, very slooooooooow….

• b[1] = np.zero((2,1)) (b can be zero, no problem!)

	Slide 1: Deep Learning Chapter 2 Building Neural Network from Scratch
	Slide 2: Chapter 2: Building Neural Network from Scratch
	Slide 3: Previous Lecture Overview
	Slide 4: Previous Lecture Overview
	Slide 5: Previous Lecture Overview
	Slide 6: Previous Lecture Overview
	Slide 7: Previous Lecture Overview
	Slide 8: Previous Lecture Overview
	Slide 9: Previous Lecture Overview
	Slide 10: Previous Lecture Overview
	Slide 11: Previous Lecture Overview
	Slide 12: Previous Lecture Overview
	Slide 13: Previous Lecture Overview
	Slide 14: Previous Lecture Overview
	Slide 15: Previous Lecture Overview
	Slide 16: Previous Lecture Overview
	Slide 17: Previous Lecture Overview
	Slide 18: Previous Lecture Overview
	Slide 19: Previous Lecture Overview
	Slide 20: Previous Lecture Overview
	Slide 21: Previous Lecture Overview
	Slide 22: 1. Shallow neural network
	Slide 23: 1. Shallow neural network
	Slide 24: 1. Shallow neural network
	Slide 25: 1. Shallow neural network
	Slide 26: 1. Shallow neural network
	Slide 27: 1. Shallow neural network
	Slide 28: 1. Shallow neural network
	Slide 29: 1. Shallow neural network
	Slide 30: 1. Shallow neural network
	Slide 31: 1. Shallow neural network
	Slide 32: 1. Shallow neural network
	Slide 33: 1. Shallow neural network
	Slide 34: 1. Shallow neural network

