
Deep Learning
Chapter 2 Building Neural Network 

from Scratch 

Dr. Van-Toi NGUYEN

EEE, Phenikaa University

Lecture slides for this course

have been prepared by Dr. Le Minh Huy,

EEE, Phenikaa University



1. Shallow neural network

2. Deep neural network
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(modulation)

4. Regularization

5. Dropout

6. Batch Normalization

7. Optimizers

8. Hyper-parameters
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Chapter 2: Building Neural Network from Scratch 
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Chapter 1: Course Infor & Programming review - 

week 1

1. Course introduction and grades

2. History of Deep learning

3. Deep learning applications

Chapter 2: Building Neural Network from Scratch – 

week 2-7

1. Shallow neural network - week 2

2. Deep neural network - week 3

3. Building neural network: step-by-step (modulation) - 

week 3

4. Regularization - week 4

5. Dropout - week 4

6. Batch Normalization  - week 5

7. Optimizers  - week 6

8. Hyper-parameters - week 7

9. Practice- week

Midterm

Chapter 3: Convolutional Neural Network - week 8-10

1. Convolutional operator

2. History of CNN

3. Deep Convolutional Models

4. Layers in CNN

5. Applications of CNN

6. Practice

Midterm summary

Chapter 4: TensorFlow Library- week 11-13

1. Introduction to TensorFlow

2. Building a deep neural network with TensorFlow

3. Applications

4. Practice

Chapter 5: Recurrent Neural Network week 14-15

1. Unfolding Computational Graphs

2. Building a Recurrent Neural Networks

3. Long Short-Term Memory

4. Vision with Language Processing

5. Application of RNN

6. Practice
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Basic of Neural Network

• The Perceptron and its Learning Rule (Frank Rosenblatt, 1957)

• Adaptive Linear Neuron and Delta Rule (Widrow & Hoff, 1960)

• Logistic Regression and Gradient Descent
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Biologically inspired (akin to the neurons in a brain)
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Artificial Neurons and the McCulloch-Pitts Model (1943)

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical 

biophysics, 5(4):115–133, 1943.
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Frank Rosenblatt’s Perceptron (1957)
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Adaptive Linear Neurons and the Delta Rule (1960)
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Adaptive Linear Neurons and the Delta Rule (1960)

• Gradient Descent
• A first-order iterative optimization algorithm for 

finding the minimum of a function

• Take steps proportional to the negative of the 
gradient of the function at the current point
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Adaptive Linear Neurons and the Delta Rule (1960)

• Cost function: sum of squared errors (SSE)

• J(w) = 
1

2
σ𝑖(𝑦′(𝑖) − 𝑦(𝑖))2

• To minimize SSE, we can use “gradient descent”

• A step in the opposite direction of gradient 

∆w = − α J(w)

where α is the learning rate, 0 < α < 1

• Thus, we need to compute the partial derivative of the cost 
function for each weight in the weight vector, 

∆wj = − α 
𝜕𝐽

𝜕𝑤𝑗
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Adaptive Linear Neurons and the Delta Rule (1960)

• A step in gradient descent:

• ∆wj  =  −α
𝜕𝐽

𝜕𝑤𝑗
 =  −α σ𝑖 𝑦′ 𝑖

− 𝑦 𝑖 −𝑥𝑗
𝑖

 = α σ𝑖(𝑦′ 𝑖
− 𝑦(𝑖))𝑥𝑗

(𝑖)

• Update weight vector:

• w := w + ∆w

• Differences with the perceptron rule

• The output y(i) is a real number, not a class label as in perceptron 
learning rule.

• Weight update is based on “all samples in the training set” (Batch GD)
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Adaptive Linear Neurons and the Delta Rule (1960)

• If the learning rate is TOO LARGE, gradient descent will overshoot the 
minima and diverge.

• If the learning rate is too small, gradient descent will require too many epochs 
to converge and can become trapped in local minima more easily.
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Adaptive Linear Neurons and the Delta Rule (1960)

• If features are scaled on the same scale, gradient descent converges faster and prevents 
weights from becoming too small (weight decay).

• Common way for feature scaling

𝑥𝑗,𝑠𝑡𝑑 =
𝑥𝑗 − 𝜇𝑗

𝜎𝑗

 where μj is the sample mean of the feature xj and σj the standard deviation.

• After standardization, the features will have unit variance and centered around mean 
zero.
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Adaptive Linear Neurons and the Delta Rule (1960)

• Batch Gradient Descent (BGD)

• Cost function is minimized based on the complete training dataset (all samples)

• Stochastic Gradient Descent (SGD)

• Weights are incrementally updated after each individual training sample

• Converges faster than BGD since weights are updated immediately after each 
training sample

• Computationally more efficient, especially for large datasets

• Mini-batch Gradient Descent (MGD)

• Compromise between BGD and SGD, dataset is divided into mini-batches

• Smoother convergence than SGD
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Logistic Regression

Perceptron vs. Adaline vs. 

Multi-Layer Perceptrons 

(Logistic Regression)
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Logistic Regression

• Definition:

• Given input 𝑥 ∈ ℛ𝑛𝑥, 
calculate the probability 

ො𝑦 = 𝑃 𝑦 = 1 𝑥 , 0 ≤ ො𝑦 ≤ 1.

• Parameters:

• Weights: 𝑤 ∈ ℛ𝑛𝑥

• Bias: 𝑏 ∈ ℛ

• Output:

• ො𝑦 = 𝜎 𝑧 = 𝜎(𝑤𝑇𝑥 + 𝑏)

 where 𝜎 𝑧 =
1

1+𝑒−𝑧 is the 

sigmoid activation 
function

If z is large positive number, σ(z) 

→ 1

If z is small negative number, σ(z) 

→ 0

σ(z)σ(z)=
1

1+𝑒−𝑧
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Logistic Regression

• Cost function is the average of all cross-entropy losses

𝒥 𝑤, 𝑏

=
1

𝑚


𝑖=1

𝑚

ℒ( ො𝑦 𝑖 , 𝑦(𝑖))

= −
1

𝑚


𝑖=1

𝑚

𝑦 𝑖 log ො𝑦 𝑖 + 1 − 𝑦 𝑖 log 1 − ො𝑦 𝑖

• Goal:

• Find vectors w and b that minimize the cost function (total loss)

• Logistic regression can be viewed as a small neural network!
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Logistic Regression

• ො𝑦(𝑖) = 𝜎 𝑧(𝑖) = 𝜎 𝑤𝑇𝑥(𝑖) + 𝑏 , where 𝜎 𝑧(𝑖) =
1

1+𝑒−𝑧(𝑖)

• 𝒥 𝑤, 𝑏 =
1

𝑚
σ𝑖=1

𝑚 ℒ( ො𝑦 𝑖 , 𝑦(𝑖))  = −
1

𝑚
σ𝑖=1

𝑚 𝑦 𝑖 log ො𝑦 𝑖 + 1 − 𝑦 𝑖 log 1 − ො𝑦 𝑖

• Find w, b that minimize 𝒥 𝑤, 𝑏

𝑏

𝐽 𝑤, 𝑏

𝑤

Convergence
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Logistic Regression Computation Graph

• A graph that depicts all the computations required for a function in a forward path

• For example: J(x, y, z) = 4(x + yz)

x

y

z
u = y*z

v = x+u J = 4v

Forward Path: Computation

Backward Path: Derivatives
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Logistic Regression Computation Graph

𝑧 =  𝑤𝑇𝑥 + 𝑏

ො𝑦 = 𝑎 =  𝜎(𝑧)

ℒ 𝑎, 𝑦 = −(𝑦 log(𝑎) + (1 − 𝑦) log(1 − 𝑎))

x1

w1

b

z = w1x1 + w2x2 + b ℒ(a, y)a = σ(z)

x2

w2
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Logistic Regression Computation Graph

•
𝛿𝐿(𝑎,𝑦)

𝛿𝑎
 = −

𝑦

𝑎
+

1−𝑦

1−𝑎

•
𝛿𝐿(𝑎,𝑦)

𝛿𝑧
 = 

𝛿𝐿(𝑎,𝑦)

𝛿𝑎

𝛿𝑎

𝛿𝑧
 = −

𝑦

𝑎
+

1−𝑦

1−𝑎
𝑎 1 − 𝑎 = 𝑎 − 𝑦

•
𝛿𝐿(𝑎,𝑦)

𝛿𝑤1
=

𝛿𝐿(𝑎,𝑦)

𝛿𝑎

𝛿𝑎

𝛿𝑧

𝛿𝑧

𝛿𝑤1
= −

𝑦

𝑎
+

1−𝑦

1−𝑎
𝑎 1 − 𝑎 𝑥1 = 𝑥1 𝑎 − 𝑦 = 𝑥1

𝛿𝐿(𝑎,𝑦)

𝛿𝑧

−
𝑦

𝑎
+

1 − 𝑦

1 − 𝑎𝑎 − 𝑦𝑥1(𝑎 − 𝑦)
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• 2-layer NN

• 1 hidden layer
𝑥1

𝑥2

𝑥3

ො𝑦

Input layer Hidden layer Output layer

𝑎1
[1]

𝑎2
[1]

𝑎3
[1]

𝑎4
[1]

= 𝑎
[2]

Layer 1

Layer 2

𝑎[1] =

𝑎1
[1]

𝑎2
[1]

𝑎3
[1]

𝑎4
[1]

𝑎0 = 𝑿

One hidden layer Neural Network
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𝑎

𝑥1

𝑥2

𝑥3

𝜎(𝑧) 𝑎 = ො𝑦
𝑧

𝑧 = 𝑤𝑇𝑥 + 𝑏

𝑎 = 𝜎(𝑧)

Computing NN’s Output
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𝑧1
1

= 𝑤1
1 𝑇 

𝑥 + 𝑏1
[1]

, 𝑎 1
[1]

= 𝜎(𝑧1
1

)

𝑧2
1

= 𝑤2
1 𝑇 

𝑥 + 𝑏2
[1]

, 𝑎 2
[1]

= 𝜎(𝑧2
1

)

𝑧3
1

= 𝑤3
1 𝑇 

𝑥 + 𝑏3
[1]

, 𝑎 3
[1]

= 𝜎(𝑧3
1

)

𝑧4
1

= 𝑤4
1 𝑇 

𝑥 + 𝑏4
[1]

, 𝑎 4
[1]

= 𝜎(𝑧4
1

)

𝑥1

𝑥2

𝑥3

ො𝑦

𝑎1
1

𝑎2
1

𝑎3
1

𝑎4
1

Given input x:

𝑧 1 = 𝑊 1 𝑥 + 𝑏 1

𝑎 1 = 𝜎(𝑧 1 )

𝑧 2 = 𝑊 2 𝑎 1 + 𝑏 2

𝑎 2 = 𝜎(𝑧 2 )

Computing NN’s Output
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• For all m examples …

𝑧 1 (𝑖) = 𝑊 1 𝑥(𝑖) + 𝑏 1

𝑎 1 (𝑖) = 𝜎(𝑧 1 𝑖 )

𝑧 2 (𝑖) = 𝑊 2 𝑎 1 (𝑖) + 𝑏 2

𝑎 2 (𝑖) = 𝜎(𝑧 2 𝑖 )

for i = 1 to m:

𝑥1

𝑥2

𝑥3

ො𝑦

𝑎1
1

𝑎2
1

𝑎3
1

𝑎4
1

Vectorizing across multiple examples
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Vectorizing across multiple examples

…𝑋 = 𝑥(1) 𝑥(2) 𝑥(𝑚)

𝑎[1](2)A[1] = 𝑎[1](1) 𝑎[1](𝑚)…

𝑍 1 = 𝑊 1 𝑋 + 𝑏 1

𝐴 1 = 𝜎(𝑍 1 )

𝑍 2 = 𝑊 2 𝐴 1 + 𝑏 2

𝐴 2 = 𝜎(𝑍 2 )

𝑧 1 (𝑖) = 𝑊 1 𝑥(𝑖) + 𝑏 1

𝑎 1 (𝑖) = 𝜎(𝑧 1 𝑖 )

𝑧 2 (𝑖) = 𝑊 2 𝑎 1 (𝑖) + 𝑏 2

𝑎 2 (𝑖) = 𝜎(𝑧 2 𝑖 )

for i = 1 to m:
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Activation functions

Comprehensive List of Activation Functions: 

https://stats.stackexchange.com/questions/115258/comprehensi

ve-list-of-activation-functions-in-neural-networks-with-pros-cons

https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons
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Activation functions

Activation 

Function

Formula (g(z)) Derivative (g’z))

sigmoid
𝑎 =

1

1 + 𝑒−𝑧

𝑎(1 − 𝑎)

tanh
𝑎 =

𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧

1 − 𝑎2

ReLU max(0, 𝑧) 0 if 𝑧 < 0
1 if 𝑧 ≥ 0

Leaky ReLU max(0.01𝑧, 𝑧) 0.01 if 𝑧 < 0
1 if 𝑧 ≥ 0

a

z

a

z

sigmoid

tanh

ReLU

z

a

z

aLeaky 

ReLU
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Why non-linear activation function?

• What not linear?

• Suppose g[1], g[2] are all linear

• a[1] = z[1]

• a[2] = z[2]

• a[2] = W[2]a[1]+b[2]

• = W[2](W[1]X+b[1])+b[2]

• = W[2]W[1]X + W[2]b[1]+b[2]

• = W’X + b’

• All LINEAR!!!

𝑧 1 = 𝑊 1 𝑥 + 𝑏 1

𝑎 1 = 𝑔[1](𝑧 1 )

𝑧 2 = 𝑊 2 𝑎 1 + 𝑏 2

𝑎 2 = 𝑔[2](𝑧 2 )

Given  x: 

𝑥1

𝑥2

𝑥3

ො𝑦
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Gradient descent for one hidden layer

𝑧[1] = 𝑊[1]𝑥 + 𝑏[1]𝑊[1]

𝑏[1]

𝑎[1] =  𝜎(𝑧[1])

𝑥

𝑑𝑧[1] = 𝑊 2 𝑇𝑑𝑧[2] ∗ 𝑔[1]′(z 1 )

𝑑𝑊[1] = 𝑑𝑧[1]𝑥𝑇 𝑑𝑏[1] = 𝑑𝑧[1]

ℒ(𝑎[2], y)𝑧[2] = 𝑊[2]𝑥 + 𝑏[2] 𝑎[2] =  𝜎(𝑧[2])

𝑊[2]

𝑏[2]

𝑑𝑧[2] = 𝑎[2] − 𝑦

𝑑𝑊[2] = 𝑑𝑧[2]𝑎 1 𝑇

𝑑𝑏[2] = 𝑑𝑧[2]
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Vectorizing Gradient Descent 
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Initializing weights
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Initialize weights RANDOMLY!

• W[1] = np.random.randn((2,2))*0.01

• Small random values are suggested!

• If too large, Z[1] = W[1]X + b[1] will also be very large and a[1] = 
g[1](z[1]) will be in the flat areas and gradient descent will be 
very, very slooooooooow….

• b[1] = np.zero((2,1))    (b can be zero, no problem!)
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