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Deep Learning
Chapter 2 Building Neural Network
from Scratch
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Chapter 2: Building Neural Network from Scratch

-

. Shallow neural network
. Deep neural network

. Building neural network: step-by-step
(modulation)

. Regularization

. Dropout

. Batch Normalization
. Optimizers

. Hyper-parameters

. Practice
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Artificial Neurons and the McCulloch-Pitts Model (1943)

Axon

-
-
I
O Ow. |/ -
- S e

Schematic of a biological neuran.

W. S. McCulloch and W. Pits. A logical cakculs of the ideas immanent n nervous activy. The bullein of mathematical
biophysics, 5(4):115-133, 1043,
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Previous Lecture Overview Vectorizing across multiple examples
for i = 1 to m:
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Previous Lecture Overview Dimensions of vectorized implementations

+ For one single training example:
21 = wllgli-11 4 pl
(nl1,1) = (1) x (nlt=1, 1) + (%, 1)

For a vectorized implementation over m examples
ZW = wlgi-1 4 pltl
o (nlm) = (nl,nl=10) x (nl=1],m) + (nlt, m)

W0, A0, b1, 4z, dAl0, @pl0 (9, m)
wltl, qwi (nl), nlt=17)

Previous Lecture Overview Forward and backward functions
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Previous Lecture Overview Parameters vs. Hyperparameters

PHENIKAA
- Parameters: WU, plt, w12l pl2],
« Hyperparameters
Learning rate: a
Number of iterations
Number of hidden layers or L
Number of hidden units in each layer: n!l,nl2], ...
Choice of activation function: sigmoid, ReLU, tanh, etc.

Momentum, mini-batch size, regularization parameters, ... (in
the next Chapter)

Previous Lecture OVerVieW Summary of Forward/Backward Computations O

PHENIKAA
UNIVERSITY
dzI = Al —y
awt) = L gzl 4’
m
1
dplt) = - sum(dz¥, axis = 1, keepdims = True)
dazi-1 = dWu.]TdZu_JngLI(ZuAJ)
Al = gzl = ¢ :
dz = qw i gz12l 11 71y
Forward Propagation dwlil = ;dZ“]A[‘]T
1
dblt = T sum(dz!Y, axis = 1, keepdims = True)
Backward Propagation
These s ided by Minhhuy L, 1CSL .
X. Some COnCept Training vs. Development vs. Test sets
- PRENICAR

« Traditionally best practice:
Train : Test = 70:30
« Train: Dev : Test = 60:20:20
+ Modern big data era:
- Total dataset size: 1,000,000
- Dev set: big enough to evaluate

different algorithm choices, say
Dev Set 10,000 more than enough

Test set: big enough to test
accuracy, say 10,000 more than

Train Set enough
« Thus, train:dev:test=98:1:1

Oreven, 99.5:0.4:0.1
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X. Some concept Bias vs. Variance
o PHENIKAA
\ UNIVERSITY
\w X « X
xS 6% Ex %% "
SN <
098 % x 090 x x
000 X x OR9 % 5
T T 1
high bias “just right” high variance
High Variance
Madel Complexity
vided by Minhnuy Le, I .
~
X. Some concept Bias vs. Variance
o PHENIKAA
UNIVERSITY
1. Bigger Network
(Training set 2. Train longer
performance) 3.NN Architecture search
High Variance? 1. More data
(Dev set 2. Regularization
performance) 3.NN Architecture search
\
No
Done!
These s ided by Minhhuy L, 1CSL U
P ~
4. Regularization
o PHENIKAA
UNIVERSITY
Overfitting

« Can be solved using Regularization or More Data
«+ Sometimes it is difficult to get more data, so regularization could be a good

Logistic Regression
Cost function: min J(w, b)
w,b m
Jowb) =5 19,y 0y 4
’ m& ’ 2m 2
L2 regularization: [lwll3 = Z;.Zl w? =wlw

l

L1 regularization: [lwll; = E?ﬁl

« Adisthe regularization parameter
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~ 4. Regularization Q

o Wb, Ll B = Ly £ ®, 0y 4 Lyt ]2

+ Frobenius Norm: ||wU || =l

T A
- Back-propagation: m =dwll = ( dzma ) +2wi
« Weight updates: w1l = wll — gaw

« L2 normalization is also called “weight decay” because
wil = il — ¢ [(i dZmAm") + iwm]
m m
Lo=wl - ﬂwm _ (ldzmAmT)

_( "‘)Wm_a( dzign’y
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4. Regularization (Data Augmentation) (@)
N PHENINAA
« Separate these two tasks:
« Optimize cost J(w,b ): gradient descent, etc.
« Not overfit: regularization, dropout, etc.
Dev Set Error
Training Error or
Cost J
‘ # ikerations ‘
Small |[w||% Mid-size [|W||% Large [W|l%
These i idedby Minhhuy Le, ICSL L
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5. Dropout (@)
- PHENIKAA

URIVERSITY

- Suppose dropout rate is 0.5, drop out 0.5 nodes in each layer for each sample
- For different samples, drop out different nodes in each layer.

X1 X1
X2

X3

X4
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~ 5. Dropout

Suppose dropout is applied to layer 3

keep_prob = 0.8 (probability a node will be kept)

« d3 = np.random.rand(a3.shape[0], a3.shape[1]) < keep_prob
A vector to decide which nodes to dropout

a3 = np.multiply(a3,d3)

a3/= keep_prob

+ Pump up the activation values by keep_prob to maintain the expected values
2141 = l4 gl3] 4 pl4l

Example: 100 units =» 20 units shut off

Dropout different hidden units in different iterations

16
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5. Dropout

PHENIKAA
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No dropout during test time
» Would add noise during predictions
is dropout is used during test time
Why dropout works?
Regularizes the network
+ Reduces the dependence on some
particular feature (input node)
+ Dropout spreads out the
weights
Can use different dropout keep_probs
for different layers
Cost function not well-defined because
of the weights randomly changed

<
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x. Data Augmentation
o PHENIKAA

URIVERSITY

30/08/2023




6. Batch Normalization @
o PHENIKAR
Unnormalizidz Normalized: Ji
b
w
w
19
6. Batch Normalization U
o PHENIKAA
- Normalizing inputs
ginp _YNTH
Xjstd = o

where y; is the sample mean of the feature x; and o; the standard deviation.

- After normalization, the inputs will have unit variance and centered around
mean zero.

. . a
6. Batch Normalization
o PHENINAA
Input: Values of x over a mini-batch: 8 = (&1}
Parameters to be learned: v, 3
Output: {y; = BN, s(x;)}
‘ li)-- #/ mini-batch me:
e = i mini-batch mean
i=
m
o - gf.p, — ps)* J mini-batch variance
J'-, Ti by H normalize
yi + 9Ei + 3 = BN, s(2;) /1 scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation r over a mini-batch.

e are provided by Minhiuy Le, ICSLab, Phenikaa U
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~ 6. Batch Normalization

b
‘ b
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widedby Minfhy Le 0
6. Batch Normalization Gradient Vanishing
sigmoid and its gradient
By applying batch 10 1 — sgmoid tirated|
normalization, we can radient of S
make sure the input stays
in the steep portion, also 081
called as the good range. i |
When the input stays in % 0af
the good range, the
derivative is also bigger 027 -
and does not vanish. saturated close to 0
a0 { -
S0 75 S0 -25 00 25 S0 75 100

~ 6. Batch Normalization
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= = =Inception
— = BN-Baseline
+* BN-x5
— BN-x30
+ -+ BN-x5-Sigmoid

4 Steps to match Inception
T T T
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~ 7. Optimizers ¢

https://ml-cheatsheet.readthedocs.io/en/latest/optimizers.html

Students Read & Discussion

~ 7. Optimizers Q

PHENIKAA

URIVERSITY

SGD.
Momentum
NAG

Adagrad
Adadelta
Rmsprop.

Adagrad
Adadelta
Rmsprop

8. Hyper-parameters Q

PHENIKAA

URIVERSITY

- Learning rate: a
- Momentum: g
- RMPprop: B, = 0.999 (usually not tuned)

- Adam: B; = 0.9,8, = 0.999,¢ = 10~ (usually not tuned)
- #layers

- #hidden units
- Learning rate decay
- Mini-batch size

27



~ 8. Hyper-parameters

Hyperparameter 2

Hyperparameter 1

28

8. Hyper-parameters

Some parameters are more important than
the others

Take for example: a, €
a is more important than &

Grid search would result in searching
through only 5 different important values
()

. Thus, a random search would be better!

Hyperparameter

Hyperparameter 2
0

~ X Softmax

~
Coarse to fine
PHENIKAA
UNIVERSITY
.
.
.
. .
. J .
. _ Works
best
—Works
° —good
. e .
~
PHENIKAA

URIVERSITY
1

—— P(other|x)
Pleati)
P(dogh)

~ P(chicksi)
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~ x. Softmax ¢

31

ozl = yltlgli-n g pll ; \ s
.zl = -
. p=efltl A 0114
w = e
: T
E}:, tj=176.3
widedby Minfhy Le 0
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X. Softmax
o PHENIKAA
s bt
5 e
2
Lzl =] 2 c=|¢
-1 el
3

~ X Softmax

« qlt] = gy = | €/ T e+ el +e?)

0.042
0.002
0.114

e l/(e®+e?+et+ed)

3

e

eS/(e5+e?+et+ed) ] |0.84Z]
e3/(eS+e?+et+ed)

- Softmax because each class has a probability, whereas hardmax would give 1 to

1
the class with highest probability and O to the rest g .
0

« If C = 2, softmax reduces to logistic regression.

HENIK|
URIVERSITY
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Conclusion

34

Has review some commons techniques in neural network
Prevent overfitting using Regularization, Dropout

Fast training, higher accuracy, prevent gradient vanishing using
Batch Norm

Optimizers improve accuracy (toward global minimum)
Multiclassification using Softmax

Hyper-parameters turning takes time and generally hard to apply
in practice. Usually choose common params from published
papers (experiences)
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